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Zerotrees of wavelet coefficients have shown a good adaptability for the compression of three-dimensional images. EZW, the
original algorithm using zerotree, shows good performance and was successfully adapted to 3D image compression. This paper
focuses on the adaptation of EZW for the compression of hyperspectral images. The subordinate pass is suppressed to remove the
necessity to keep the significant pixels in memory. To compensate the loss due to this removal, signed binary digit representations
are used to increase the efficiency of zerotrees. Contextual arithmetic coding with very limited contexts is also used. Finally, we
show that this simplified version of 3D-EZW performs almost as well as the original one.
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1. INTRODUCTION

Since the publication of the Grossmann and Morlet paper
[1], theory and applications concerning wavelets have im-
proved. Theory on wavelets was progressively refined in sev-
eral papers (e.g., [2, 3]). Originally, applications concerned
mostly the data analysis field and more precisely in the time-
scale analysis. However, their efficiency to represent complex
signals with a limited number of generating functions raised
an interest for image coding [4].

Research in wavelet-based image coding began focusing
on the search for the most efficient wavelet form to represent
the data as in [4] together with the most efficient decompo-
sition [5]. The quasiorthogonal 9/7 wavelet for lossy com-
pression and the 5/3 wavelet for lossless compression with
a multiresolution decomposition exhibit good results for a
wide range of natural images. Thus, these specifications were
adopted in the latest still image compression standard: JPEG
2000 [6].

Efficient techniques to code these wavelet coefficients
were then defined. EZW successfully made use of the relation
of wavelet coefficients in zerotrees [7], a technique which was
further refined with SPIHT [8]. EBCOT, the coder for JPEG
2000 focuses on the neighborhood of each coefficient using
contextual arithmetic coding [9]. In this standard, a total of

18 different contexts are used according to the value of neigh-
boring coefficients.

This paper looks at the zerotree-based compression tech-
niques and improves them with the use of signed binary rep-
resentations and arithmetic coding particularly in the con-
text of 3D image encoding. The 3D images used here are
hyperspectral images from the JPL/NASA airborne sensor
AVIRIS. The same methods can be applied to medical images
as magnetic resonance (MR) or computed tomography (CT)
which are also formed of several slices. Hyperspectral image
involves observing the same scene at different wavelengths
(Figure 1). Typically, each image pixel is represented by hun-
dreds of values, corresponding to various wavelengths. These
values correspond to a sampling of the continuous light spec-
trum emitted by the pixel. This sampling of the spectrum
at very high resolution allows pixel identification (materials,
mineral and gases, etc.). Hyperspectral images can be seen
as three-dimensional data where two dimensions correspond
to the spatial scene observed and the third dimension to the
light spectrum for the pixel.

The highlight of this paper is not on the wavelet form,
thus the popular 9/7 wavelet is chosen for lossy compression
and the 5/3 for lossless compression. The decomposition is
first done for each spatial plane in a Mallat’s decomposition
scheme and then for each spectrum (the third dimension) as
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Figure 1: Example of a hyperspectral data cube (Moffett Field by
AVIRIS): the front of the cube is a color composite of three spectral
bands while the other sides display the spectra of the side pixels.

this decomposition was shown to be nearly optimal [10, 11].
The adaptation is done on EZW as the progression between
coefficients is in raster order and less dependant of the data
which is easier to adapt compared to SPIHT.

Details on the EZW algorithm are given in Section 2. Our
EZW reference version is validated against results from other
papers both in the 2D and 3D cases. This reference version,
described in [11], exhibits slightly higher performances than
those of the original EZW paper [7]. One drawback com-
ing from the use of the subordinate pass is explained. In
Section 3, successive improvements are described to finally
reach a version of EZW performing almost as well as the orig-
inal one without the use of the subordinate pass. Several re-
sults are given in this section to show the progression of the
improvements. All the details concerning the measures: dis-
tortion, bit rate are given later in Section 4, but all are com-
mon.

2. EZW ALGORITHM

2.1. Zerotree coding

At the time of its publication, embedded zerotree coding of
wavelet coefficients (EZW) from Shapiro [7] produced state-
of-the-art compression performance at a modest level of
complexity. This algorithm has some properties which make
it particularly attractive in the context of 3D image compres-
sion. It produces an embedded bitstream: every prefix of a
bitstream produced by EZW is a valid EZW bitstream, lead-
ing to a decompressed image with a lower quality. This algo-
rithm manages to achieve this at a relatively modest level of
complexity.

To ensure that the property of embedded bitstream is ad-
hered to, the algorithm uses bitplane encoding of coefficients.

For each bitplane:

(i) dominant pass: For each coefficient which has not been
found as significant before, output one of the symbol ZTR
(zerotree: all coefficients corresponding to the same location
in higher frequency subbands are insignificant), IZ (isolated
zero: the coefficient in not significant and at least one
coefficient corresponding to the same location in higher
frequency subbands is significant), POS (positive significant
coefficient) or NEG (negative significant coefficient);

(ii) subordinate pass: output one bit for all coefficients
declared as significant before the current bitplane. This bit
corresponds to the value of the coefficient in the current
bitplane.

Algorithm 1: EZW.
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Figure 2: Illustration of the wavelet decomposition and tree struc-
ture.

As explained by Shapiro, the costly part in a bitplane encod-
ing is to code the map of the significant coefficients. Zerotree
coding is based on the assumption that if a coefficient in a
given subband is insignificant, coefficients corresponding to
the same location in higher-frequency subbands have a high
probability to be also insignificant. All these coefficients are
coded together with a single zerotree symbol (ZTR in the
EZW denomination). After a coefficient has been declared
as significant, the remaining bits will be output during the
refinement pass (also called subordinate pass).

For the sake of clarity, see Algorithm 1. However all de-
tails can be found in the original paper [7].

In the 3D case, there are several possibilities to define the
relationship between coefficients. For example, in [12], only
the spatial link between pixels is used. However, it has been
shown in [11] that the most efficient tree structure for EZW
uses both spectral and spatial links. Finally, the tree structure
illustrated on Figure 2 is used.
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Table 1: Validation of our implementation of EZW used in this pa-
per as a reference. Performance on Barbara image.

Rate (bpp)
Original EZW [7] Reference used

MSE PSNR MSE PSNR

1.0 19.92 35.14 18.52 35.45

0.5 57.57 30.53 55.63 30.68

0.25 136.8 26.77 138.21 26.73

0.125 257.1 24.03 246.10 24.22

0.0625 318.5 23.10 309.46 23.22

0.03125 416.2 21.94 382.68 22.30

Let us denote (i, j, k) the coordinate of one coefficient
and (ns,nl,nb), respectively, the number of samples (or
columns), lines, and spectral bands of the image, these three
numbers correspond to the size of the image for the three
dimensions. Let O(i, j, k) the offspring of coefficient (i, j, k).
We do not detail the case of the low frequency subband which
is similar to the standard EZW. With the tree structure used
here, we have

(i) if i ≥ ns/2 or j ≥ nl/2, O(i, j, k) = ∅;
(ii) if k ≥ nb/2, O(i, j, k) = {(2i, 2 j, k), (2i + 1, 2 j, k),

(2i, 2 j + 1, k), (2i + 1, 2 j + 1, k)};
(iii) else O(i, j, k) = {(2i, 2 j, k), (2i + 1, 2 j, k), (2i, 2 j +

1, k), (2i + 1, 2 j + 1, k), (i, j, 2k), (i, j, 2k + 1)}.
It has to be noted that this structure leads to an over-

lapping tree structure. It has been found as being the most
efficient in the case of EZW coding [11].

For the coefficients without descendant, there is no dis-
tinction to make between isolated zero (IZ) and zerotrees
(ZTR), therefore the symbol Z is used. One modification is
done for the high spatial frequency subband (i ≥ ns/2 or
j ≥ nl/2) to make full use of the Z symbol when a coefficient
has no descendant. With this modification, more coefficients
are in this situation and the algorithm performs slightly bet-
ter.

2.2. Validation of the reference implementation

The EZW algorithm used in this paper for reference is close
to the original EZW in [7]. The wavelet transform and the
arithmetic coder are performed using the latest version of the
QccPack library [13]. The rest is programmed using ANSI
C. Coding of the coefficients follows the details given in the
original paper: initialization of the arithmetic model at the
beginning of each new dominant and subordinate pass. It has
to be noted that the tree structure chosen above is exactly the
same as Shapiro’s for 2D images. The only possible difference
between the algorithms is the use of different symbol statis-
tics for the arithmetic coder between the highest frequency
subbands (where the three symbols POS, NEG, and Z are suf-
ficient) and the lower frequency subbands (where four sym-
bols are necessary: POS, NEG, IZ, and ZTR). This fact is not
explicitly mentioned in Shapiro’s paper. The performances of
our reference are slightly better than the original EZW. PSNR
and MSE values for Barbara image are given in Table 1.

Table 2: Effect on removing the subordinate pass. Results are for
Moffett AVIRIS image (Figure 4(a)).

Rate (bpppb)
3D-EZW Without subordinate pass

MSE PSNR MSE PSNR

1.0 106.15 76.07 193.73 73.46

0.5 445.22 69.84 685.49 67.97

Lossless performance is also confirmed to be slightly bet-
ter than the CB-EZW defined in [14]. In this latest paper,
the lossless rate obtained for the 512 × 512 × 224 scene 3 of
Moffett Field from AVIRIS is 5.2605 bpppb (bit per pixel per
band). With our reference, the rate is 5.1429 bpppb.

2.3. One drawback

One drawback of EZW is the memory required to store the
coefficients already noticed as significant. These coefficients
are processed during the subordinate pass and should not
be processed during the dominant pass. One bit of mem-
ory at least is required for every coefficient of the image only
for that purpose. For a 256 × 256 × 224 hyperspectral im-
age, counting 1 bit of memory to flag the position of signif-
icant coefficients, we need to keep an additional 14.7 Mbits
in memory during compression. As a result, if the image is
processed bitplane by bitplane (keeping only the current bit-
plane in memory), keeping this significance map in memory
doubles the required amount of memory. One solution to
remove the need for this memory is to remove the subordi-
nate pass. In this situation only the significant pass is pro-
cessed for each bitplane. Coefficients are considered as in-
significant if the bit in the bitplane is 0 and significant oth-
erwise. However, this simple change causes a loss in perfor-
mances of more than 2 dB PSNR (see Table 2).

It is the purpose of this paper to propose an algorithm
which does not require this additional memory (thus saving
14.7 Mbits in the previous example) without any significant
loss in performance. This requires to increase the efficiency
of the dominant pass for every bitplane, which is addressed
in the next section.

3. IMPROVEMENT

3.1. Increasing the number of zeros

As we have seen, zerotrees high performance is to be cred-
ited mostly to their ability to code a great number of zero
coefficients using only one symbol. However, if all bitplanes
are processed with a dominant pass, when going down the
bitplanes, the probability of having 0 on a lower bitplane for
a given coefficient tends to be close to 0.5. Moreover, these
zeros tend to be randomly distributed, thus hurting the ca-
pabilities of zerotrees to efficiently gather these coefficients.

One strategy to increase the compression capability is to
increase the proportion of zeros in each bitplane. One solu-
tion is to use a signed digit representation. A signed binary
digit representation of a number n is a sequence of digits
a = (. . . , a2, a1, a0) with ai ∈ {−1, 0, 1} such as n =∑∞

i=0 ai2
i.
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t = 0

a = (. . . , a2, a1, a0), the standard binary notation for the

number to convert

while (. . . , at+2, at+1, at) �= (. . . , 0, 0, 0)

• if at �= 0

– b = (. . . , 0, sgn(at),−2∗ sgn(at), 0, . . . , 0)

(nonzeros at t, t + 1)

– c = a + b

– if ct+1 = 0

∗a = c

– endif

• endif

• t = t + 1

endwhile

return a

Algorithm 2: Signed binary digit representation.

The number 119, for example in classical binary nota-
tion, is (0, 1, 1, 1, 0, 1, 1, 1) as it is equal to 1∗26 + 1∗25 + 1∗
24 + 1∗ 22 + 1∗ 21 + 1∗ 20. If −1 is used also instead of only
1 and 0, the number 119 can be noted (1, 0, 0, 0,−1, 0, 0,−1)
as it is equal to 1∗ 27 − 1∗ 23 − 1∗ 20.

The signed binary digit representation for a given num-
ber is not unique. Generally, the interest is in representations
which have a maximum of 0s. This could be achieved con-
sidering the Hamming weight of a binary representation of
a number. The Hamming weight of a number representation
is equal to the number of nonzero elements in the represen-
tation a. In [15], an algorithm is given to find a signed bi-
nary digit representation of minimal Hamming weight (see
Algorithm 2).

This algorithm is simple but not the most efficient in
terms of complexity. Further research has been made on ef-
ficient algorithms to reach signed binary digit representation
of minimal Hamming weight, we can cite [16–18] for exam-
ple.

However, the signed binary digit representation of mini-
mal Hamming weight is not unique. In general, the use of a
signed binary digit representation is in fast exponentiation.
The nonadjacent form (NAF), where nonzero digits are sep-
arated by at least one zero, is unique and provides the re-
quired properties for fast exponentiation. Hence, most of al-
gorithms lead to the NAF form.

In our case, while the minimum Hamming weight is re-
quired, we cannot be sure that the NAF provides any ad-
vantage. Two different forms are compared in this paper us-
ing the transformation (. . . , 1, 0,−1, . . . ) → (. . . , 0, 1, 1, . . . )
and similarly (. . . ,−1, 0, 1, . . . ) → (. . . , 0,−1,−1, . . . ). We de-
note this latest representation as AF (adjacent form). The two
forms provide the same number of zeros. However, due to the
different position of the first significant bit, the proportion
of zeros can be slightly different. Examples of signed binary
digit representation for number 349 are given in Table 3.

Table 3: Example of representation for number 349.

t 9 8 7 6 5 4 3 2 1 0

2t 512 256 128 64 32 16 8 4 2 1

Binary 0 1 0 1 0 1 1 1 0 1

NAF 1 0 -1 0 -1 0 0 -1 0 1

AF 0 1 0 1 1 0 0 0 -1 -1

Table 4: Zero bits proportion after the first significant bit. Results
are for Moffett AVIRIS image (Figure 4(a)).

Notation
Average num. of bits
after the first sig.

Number of
zero bits

Proportion
of zero bits

Binary 2.72 20 490 955 51.28%

NAF 3.12 29 263 791 63.83%

AF 2.85 25 507 573 61.03%

Table 5: EZW with independent processing of each bitplane (no
subordinate pass).

Rate (bpppb)
Binary NAF AF

MSE PSNR MSE PSNR MSE PSNR

1.0 193.73 73.46 149.07 74.60 151.76 74.52

0.5 685.49 67.97 549.56 68.93 553.10 68.90

To measure the efficiency in increasing the amount of
zero coefficients, we compute the proportion of zeros after
the first significant bit. For the wavelet transform of an ex-
tract of scene 3 of the Moffett Field data of 256 × 256 × 224
coefficients (Figure 4(a)), the average number of bits after
the first significant bit, the number of zero bits after this
first significant bit, and the proportion of zero bits ver-
sus nonzero are detailed in Table 4. As shown in this ta-
ble, the two signed binary digit representations managed to
increase significantly the proportion of zeros for lower bit-
planes: more than 60% of 0 s against 50% before. These re-
sults correspond to the value expected from the properties of
signed binary digit representation.

EZW is implemented using signed binary digit represen-
tations (NAF and AF) and each bitplane is processed sepa-
rately with a dominant pass. However, even if we can observe
a gain of 1 dB using any of the signed binary digit represen-
tation (Table 5), this improvement is not sufficient to recover
from the loss due to the removal of the subordinate pass. We
do not reach the original performance from Table 2. In this
case, no major difference is noted between the NAF and the
AF forms.

3.2. Using the spatial dependencies

This latest version of the EZW coder does not take into ac-
count the values of the neighboring coefficient in the same
bitplane. A simple way to consider the neighboring coef-
ficients is to use contextual arithmetic coding. Only three
coefficients on the same bit plane are considered. These
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Figure 3: Probability of having value −1, 0, or 1 for the current
coefficient according to the neighborhood value with the NAF form.
The 27 possible neighborhoods are presented on abscissa according
to the value of η.

coefficients are those preceding the current pixel in the three
directions of the hyperspectral wavelet cube.

The coefficient at the same location on the previous bit-
plane is also considered. In the case of the NAF, this depen-
dency is easy to take into account: if this coefficient on the
previous bitplane is 1 or −1, we know that the coefficient on
the current bitplane is 0. In the case of the AF form, no such
rule exists. We would have to double the number of contexts
for the cases where the coefficient on the previous bitplane
is 0 or is 1 or −1. Thus, the NAF form which leads to more
simple contexts is chosen.

Let denote ηs, ηl, and ηb the preceding coefficients on the
three directions. Thus, we have

(i) ηs(i, j, k) = (i− 1, j, k),
(ii) ηl(i, j, k) = (i, j − 1, k),

(iii) ηb(i, j, k) = (i, j, k − 1).

As the bitplanes are considered separately, ηs, ηl, and
ηb are within the set {−1, 0, +1}. We consider the valuation
function for the neighborhood η defined as η = ηs+3ηl+9ηb.
This function is a bijection between all possible neighbor-
hoods and the integers between −13 and 13.

We can plot the probability of having the values −1,
0, or 1 according to the neighborhood values. The proba-
bility curves are presented on Figure 3. These probabilities
are computed for the 256 × 256 × 224 Moffett image on
all bitplanes for the NAF notation. Thus, several millions of
data are taken into account. From these curves, we can see
that one neighborhood clearly differs in terms of probability
compared to the others, when η = 0, that is, ηs=ηl = ηb = 0.

Table 6: EZW with independent processing of each bitplane NAF
with and without contextual coding.

Rate (bpppb)
Noncontextual Contextual

MSE PSNR MSE PSNR

1.0 149.07 74.60 121.38 75.49

0.5 549.56 68.93 457.77 69.72

With this neighborhood, the probability to have a 0 for the
current coefficient is very high.

The context for the arithmetic coder will be separated in
two cases: η = 0 and η �= 0.

It can also be noted that in the case of the NAF, a nonzero
value for a coefficient at a certain bitplane will be followed by
one 0 at the next bitplane (hence the reason for the denom-
ination nonadjacent form). In this case, it is not necessary to
give any output for this 0. This advantage does not appear
with the AF notation, and thus AF does not perform as well
as NAF. Performance using the arithmetic coder with NAF
are presented in Table 6.

This latest version of EZW without subordinate pass us-
ing NAF and contextual arithmetic coding is referred to as
3D-EZW-NAF.

4. RESULTS

3D-EZW-NAF is applied to a 256× 256× 224 extract of the
scene 3 of f970620t01p02 r03 run from AVIRIS sensor on
Moffett Field site. This part is shown in Figure 4(a) and is the
most difficult part of the image to compress (urban area).
Another image is a 256 × 256 × 224 extract of the scene 1
of f970403t01p02 r03 AVIRIS run over Jasper site. This part
is shown in Figure 4(b). These two images are in radiance
and correspond to the signal received by the airborne sensor.
These two scenes are widely available and popular in experi-
ments on hyperspectral image compression.

Mean-square error (MSE) and peak signal-to-noise ra-
tio (PSNR) for different rates are given in Table 7 for Moffett
Field image and in Table 8 for Jasper image. The rate is given
in bit per pixel per band (bpppb), the PSNR in dB is calcu-
lated as

PSNR = 10 log10
(216 − 1)2

MSE
. (1)

The use of 216 as peak signal (signal dynamic) explains
the unexpectedly high PSNR values, however to keep the sci-
entific value of the data, the PSNR value has to be kept above
65 dB.

The use of the NAF enables us to recover more than
2 dB from the loss resulting from the removal of the sub-
ordinate pass. The performance of EZW without subordi-
nate pass comes very close to the original EZW without the
need to keep the list of significant coefficients in memory,
thus making the hardware implementation easier. The full
rate-distortion curve is presented on Figure 5 for the Moffett
image.
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(a)

(b)

Figure 4: Hyperspectral images used during the experiment: (a)
from Moffett Field site and (b) from Jasper site (b). Images are all in
radiance.

Table 7: Comparison between 3D-EZW and the simplified version
using signed binary digit representation (NAF) on AVIRIS image
Moffet.

Rate (bpppb)
3D-EZW 3D-EZW-NAF

MSE PSNR MSE PSNR

1.0 106.15 76.07 121.38 75.49

0.5 445.22 69.84 457.77 69.72

0.25 1407.34 64.85 1514.81 64.53

0.125 3933.86 60.38 4402.34 59.89

Even if the original purpose was to remove the subordi-
nate pass to ease the memory requirements, we can check the

Table 8: Comparison between 3D-EZW and the simplified version
using signed binary digit representation (NAF) on AVIRIS image
Jasper.

Rate (bpppb)
3D-EZW 3D-EZW-NAF

MSE PSNR MSE PSNR

1.0 40.56 80.25 43.49 79.95

0.5 139.31 74.89 140.76 74.84

0.25 391.31 70.40 411.75 70.18

0.125 981.79 66.41 1080.47 65.99
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Figure 5: Comparison of compression performance between 3D-
EZW and the NAF without subordinate pass.

performance of the signed binary digit representation with
the subordinate pass (Table 9). The quality obtained is very
close to the reference version of EZW and even exceeds it for
some rates (0.5 bpppb and 0.25 bpppb).

In terms of complexity, a precise estimation would be re-
quired before hardware implementation. However a rough
and simple way to measure the complexity is computation
time. The coding time is similar between 3D-EZW and 3D-
EZW-NAF: about 100 s for both versions. The conversion to
signed binary digit representation is not optimized in our
case (adding about 24 s) and could be greatly reduced with
one of the smarter algorithms available in the literature. As
one of the main applications of signed binary digit represen-
tations is on speeding exponentiation operation, fast conver-
tion should not be a problem.

Note, however, that the main interest of the proposed
solution is that it provides an algorithm which can be
very easily parallelized, at almost no cost in terms of
speed/complexity tradeoff. We can imagine for example to
use separated coding units to encode each bitplane. Each of
these coding units would be fed with one bitplane and would
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Table 9: Comparison between 3D-EZW and 3D-EZW-NAF with
subordinate pass.

Rate (bpppb)
3D-EZW

3D-EZW-NAF with
subordinate pass

MSE PSNR MSE PSNR

1.0 106.15 76.07 112.42 75.82

0.5 445.22 69.84 427.36 70.02

0.25 1407.34 64.85 1399.51 64.87

0.125 3933.86 60.38 4001.42 60.30

output the portion of the bitstream corresponding to this bit-
plane.

The nature of the error caused by 3D-EZW-NAF is sim-
ilar to the error caused by 3D-EZW and other wavelet-
based compression algorithms. The compression introduced
a quantization of the wavelet coefficients. For the given rates
the degradation remains small and is similar to white noise.

5. CONCLUSION

Signed binary digit representations, particularly the NAF,
have shown a good ability to compensate for the removal of
the subordinate pass. However, this compensation is not as
significant as expected but it enables a simplified algorithm
to perform almost as well as the original one.

The use of signed binary digits is typically to enable fast
exponentiation and it is not common to use it to increase the
proportion of zeros. Binary signed digit representations have
shown a good ability for that and such a use could be applied
to other compression algorithms.
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