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Abstract

Many real-world visual recognition use-cases can not directly benefit from state-of-
the-art CNN-based approaches because of the lack of many annotated data. The usual
approach to deal with this is to transfer a representation pre-learned on a large annotated
source-task onto a target-task of interest. This raises the question of how well the original
representation is “universal”, that is to say directly adapted to many different target-tasks.
To improve such universality, the state-of-the-art consists in training networks on a diver-
sified source problem, that is modified either by adding generic or specific categories to
the initial set of categories. In this vein, we proposed a method that exploits finer-classes
than the most specific ones existing, for which no annotation is available. We rely on un-
supervised learning and a bottom-up split and merge strategy. We show that our method
learns more universal representations than state-of-the-art, leading to significantly better
results on 10 target-tasks from multiple domains, using several network architectures,
either alone or combined with networks learned at a coarser semantic level.

1 Introduction
The state-of-art performances in visual recognition obtained by Convolutional Neural Net-
works (CNNs) are subject to the availability of a large set of annotated training data to learn
the model. Since it is rarely the case for many practical tasks of interest (target-tasks), one
usually adopts a transfer-learning approach [24, 25, 27] which relies on a CNN pre-trained
on a source task with sufficient annotated data (often ImageNet [31]) then further truncated
to provide the representations of the samples of target-task. Then, even with few annotated
data, this last can usually be learned with a linear classifier. Such approaches raise the ques-
tion of the similarity of the source-task on which the representation has been learned and
the target-task on which it is used. Although this similarity is not easy to formalize, one has
the intuition that the closer the both tasks the better the representation will be adapted to the
target-task. This consideration leads to several methods that tend to obtain more universal
representations [2, 9, 18, 28, 34, 36], that is to say that are more adapted to a large set of
diverse target-tasks, in a transfer-learning scenario.

c© 2018. The copyright of this document resides with its authors.
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The general idea of these methods is to diversify the classification problem of the source-
task in order to obtain more features, able to adequately represent new target-datasets, from
more domains, in a larger context. All these approaches vary the problem by creating new
categories having an existing label. However, most of them studied the effect of adding
categories extracted from ImageNet, either generic categories [19, 22, 34, 36] or specific
ones [1, 2, 28, 45], that are at the bottom of a hierarchy such as ImageNet, except [17, 37, 38]
that use web annotations with noisy labels. In general, the usage of specific categories tends
to provide better performances than generic ones [2, 28], although combining them can
significantly boost the universalizing capacity of the CNN [34, 36]. Yet, even for the most
specific categories, it is plausible that it exists a variety of semantics within the class that is
not explored (e.g., one could imagine to split the object-class according to the different poses
of the object). Clearly, the limiting point is the availability of such finest annotation (e.g.,
poses, contexts, attributes) for existing specific classes.

In this article, we argue that exploring finer classes than the most specific existing ones,
can significantly increase the diversity of the problem, therefore improve the universality of
the representation learned in the internal layers of the CNN. The main difficulty is the lack
of annotation below the most specific levels. We propose to rely on unsupervised learning
(clustering) to determine these finer categories within each specific category. Our contribu-
tion is three-fold. First, we show that the use of finer categories rather than the most specific
ones to learn CNNs, improves the universality of the resulting representation, even when
the finer classes are determined randomly within each specific class. Second, the usage of
a K-means based approach leads to slightly better results although the resulting clusters are
strongly imbalanced. To fix this, our core contribution splits and merges the specific cate-
gories to automatically determine better balanced finer classes, leading to better results. Last,
we show that CNNs learned with our approach provide a better complementary to standard
CNN representations than those learned on generic categories.

Let note that if the target-task has enough data, the representation can be adapted to
the target-task by fine-tuning. This is nevertheless out of the scope of this work, because
it is a complementary process to the transfer-learning in itself, that will always improve the
performances, and especially, because fine-tuning modifies the representations, which leads
to a bias that hides the real ability of a universalizing method [16]. Hence, in this paper,
we are only interested into studying the universality of the representations, independently of
many possible refinements of a full adaptation method on each target-task.

Previous works [6, 11, 12, 43] exploited sub-categories in the context of visual recogni-
tion. In [11, 12], an object instance affinity graph is computed from intra-class similarities
and inter-class ambiguities then the visual subcategories are detected by the graph shift al-
gorithm. The process is nevertheless quite computationally demanding and applied to object
detection on small target datasets only. In [6, 43], subcategories that are learned from ex-
trapolated feature maps and fine-tuned on a target-dataset, are used within a CNN to improve
region proposal for object detection. To the best of our knowledge, our paper is the first to
propose the usage of subcategories determined by unsupervised learning on a source-task,
in order to improve universality of representations. More related to universality, [2, 28, 29]
added annotated data from more domains as well as domain-specific neurons to an initial set
of domain-agnostic ones. Contrary to them, our method only modifies the source-problem
at zero cost of annotation. Our work is closer to the approach of [34, 36] that proposes
to relabel specific categories into generic ones (that match the upper categorical-levels), to
learn an additive CNN with the same architecture. Nevertheless, our approach is interested
into the “opposite way”, that is, creating finer classes than those at the bottom of a hierarchy
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Figure 1: Illustration of our splitting principle that determines a finer-level `+1 containing
n`+1 finer-classes (blue nodes in A) from the finest-level ` of a hierarchy (here, ImageNet),
containing n` specific categories that the leaf gray nodes in (A). Each finer-class c`+1

i (i ∈
[n`+1]) is related to a specific-class c`j ( j∈ [n`]) through “is-a” relations, since the c`+1

i classes
are obtained from each c`j class. In (B), we focus on the particular specific class c`nl

( ) and
its image-representations ( ), to determine the finer-classes {c`+1

nl−3,c
`+1
nl−2,c

`+1
nl−1,c

`+1
nl
}. In

(b), it is splitted into K (here K=4) groups ( ) corresponding to the finer-classes c`+1
j .

(ImageNet), for which no annotation exists and thus their method can not be applied.
We evaluated our proposal on the problem of universality, that is, in a transfer-learning

scheme using multiple target-tasks (i.e., ten classification benchmarks from multiple do-
mains, including actions, food, scenes, birds, aircrafts, etc.). In particular, in comparable set-
tings (using ILSVRC as source-task and two architectures, AlexNet [19] and DarkNet [30]),
we showed that our method outperforms state-of-the-art ones.

2 Proposed Method
We propose a new universalizing method that consists in training a network on a set of cate-
gories that are finer than those of the finest-level of a hierarchy (e.g., ImageNet hierarchy or
any set of categories). In Sec. 2.1, we start by describing its general principle as well as two
baselines that splits them either randomly or by clustering their features. With such baseline,
the number of finer classes must be a priori fixed, thus we propose a “bottom-up clustering-
based merging” approach that determines a better splitting automatically (Sec. 2.2). Fur-
thermore, we propose to combine the features learned on the specific categories and those
learned on the finer ones to get an even more universal representation (Sec. 2.3).

2.1 FiNet: Network Trained on Finer-Classes
The leaf nodes of the ImageNet hierarchy represents the finest or most specific categories
that are annotated. More generally, this is the case for the set of categories of any classifi-
cation dataset. To go towards our goal of automatically obtaining finer categories (without
annotations) from the finest ones, a baseline approach consists in using a random partition-
ing of the specific categories or a simple clustering-based approach of their image-features.
The first baseline, randomly assigns every image of a specific category to one of Ki clusters.
The second one, first, learns a CNN (noted SpeNet) on the specific categories, uses one of
its layer as features-extractor for every image, then determines Ki clusters using K-means on
these vectors. A more sophisticated way is our final method that is presented in Sec. 2.2.
Note that, in all cases, the splitting is performed on specific categories, that already contains
quite similar samples/vectors. Once the finer classes obtained, we train another network
(denoted FiNet) on the same images used to train SpeNet, but labeled among the obtained
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finer-classes. The whole set of finer-classes forms the new finest-level of the hierarchy. Our
general principle is illustrated in Fig. 1 and presented more formally below.

Let us consider a semantic hierarchy with hyponymy relations, that is to say a set of
categories organized according to “is-a” relations (e.g., ImageNet [10] hierarchy). This hi-
erarchy denoted H` = (C`,E) is a directed acyclic graph of ` levels of nodes, with C` being
all the nodes and E the set of directed edges between the nodes. Each node c`i ∈ C` corre-
sponds to the i-th category at level ` in H` and n` is the number of categories at level `. A
hierarchy-edge (c`i ,c

`+1
j ) ∈ E indicates that class c`i subsumes class c`+1

j . Let us also con-
sider an initial dataset D`

N containing a set of N images labeled among the categories at level
` and let us denote N`

i the number of images labeled among the i-th category at level `. Note
that, N = ∑

nl
i=1 N`

i . Each image I j
i ∈D`

N of the dataset, is associated to a given category c`j for

j ∈ [n`]1. Let us denote X`,L
i ∈Rd` the representation of an image Ii extracted from layer L of

the network trained on D`
N (i.e., SpeNet). Let also X `

i = {X`,L
j }

N`
i

j=1 being the set of features
extracted from all the images belonging to the category c`i .

In order to construct the Ki finer-categories {c`+1
j }n`+1

j=1 of each category of the previ-
ous level c`i , we apply a clustering algorithm (e.g., K-means, MeanShift or BUCBAM pre-
sented in Sec. 2.2) on X `

i (that builds Ki centroids) where the feature vector X`,L
j of each

image I j ( j ∈ [N`
i ]) is assigned to the nearest centroid (hard-coding [20]), which forms the

Ki finer classes. This process is applied for all i ∈ [n`] which gives the n`+1 = Ki× n` finer
classes, that forms the nodes of the finer level `+ 1. This latter results in a new dataset
D`+1

N , for which each image I j
i ∈ D

`+1
N is associated to a given category c`+1

j for j ∈ [n`+1].

Note that by construction, every c`i subsumes all its finer-categories {c`+1
j }

Ki
j=1, thus we have

(c`i ,c
`+1
j )(i, j)∈[n`]×[Ki]. The whole process results in a new hierarchical level `+1 that forms

the new hierarchyH`+1 = (C`+1,E ′) with C`+1 = C`∪{c`+1
j, j∈[Ki]

}i∈[n`]. E ′ corresponds to the

union of E and the edges that connect each category c`i to its Ki finer ones c`+1
j . It is impor-

tant to point out that, depending on the clustering algorithm, Ki will depend on c`i or be the
same for all categories. This is discussed in the next section.

The new dataset D`+1
N is used to train (softmax cross-entropy loss minimized by SGD)

the FiNet network, which has n`+1 neurons on its last layer. FiNet is then used as features-
extractors for the images Ii of the target-tasks: X`+1,L

i = Φ
`+1
L (Ii).

2.2 Bottom-Up Clustering-Based Merging
We empirically observed (see Fig. 3) that clustering approaches with a fixed Ki for each
category (e.g., Kmeans) usually leads to a FiNet that gives better universality results than
approaches that adapt Ki to each category (e.g., Affinity-Propagation). Indeed, this latter
tends to provide a set of finer classes with many clusters containing few images and a couple
of clusters containing a large number of images, leading to an undesirable imbalanced dataset
that penalizes the network training. Even if the use of fixed-Ki clustering methods leads to
more balanced data, it remains sub-optimal since it sets the same amount of clusters for
all specific categories (∀i ∈ [n`],Ki = K), while this may depend on the content of each
category. Furthermore, in fixed-Ki clustering methods, the K value is an hyper-parameter
that is cross-validated on the target-tasks, which are not accessible during the learning on the

1Let [n] denotes J1,nK, in all the paper.
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Figure 2: On the left, given image-representations ( ) labeled among a specific class ( ),
BUCBAM first performs a clustering with many clusters ( ), then attaches small clusters to
bigger closest ones ( ) and lastly, merges similar ones ( ), w.r.t certain strategies. On the
right, we describe the latter merging strategies. Given the similarity matrix M j (high values:
blue, low: white) for one specific class c`j, BUCBAM-SS merges only clusters that are re-
ciprocally highly similar to each other, respecting constraint (a) with high scoring values in
(M j)k,l and (M j)l,k). BUCBAM-AS also merges asymmetrically similar clusters (those that
respect constraints (a), (b) and (c)). In both cases, dissimilar clusters (d) are let disjoint.

source-task, in the context of universality [36]. Hence, the cross-validation of K should be
performed only with the source-task, which is not trivial (optimal K on the source-task not
necessary optimal one for the target-tasks). To overcome the drawbacks of fixed and adapted-
Ki clustering methods, we proposed an hybrid one called “Bottom-Up Clustering-BAsed
Merging” (BUCBAM). It roughly starts with the clusters obtained by a fixed-Ki clustering
and automatically sets the amount of clusters for each specific category by enforcing a more
balanced resulting set of finer-classes. Specifically, it consists in three main steps (illustrated
on the left of Fig. 2): (i) splitting the specific categories into K clusters (with a large K);
(ii) attaching small clusters to the closest bigger ones (to avoid imbalanced data); and (iii)
merging the most similar ones, with respect to a proposed similarity criteria.

Formally, BUCBAM starts with a large amount of K finer-classes per category c j with
j ∈ [n`]` and K being the same for all c`j. Let us assume we have K(∈ N∗) finer-categories
{c`+1

i }i∈[K j ] obtained from the category c`j of the previous level through a fixed-Ki cluster-

ing method. Let denote X `+1
i = {X`,L

i }i∈[N`+1
i ]

the whole set of features extracted from the

images of a given category c`+1
i through the SpeNet Φ`

L. Note that, N`+1
i corresponds to the

amount of images in each c`+1
i

2. The goal of BUCBAM is to get an amount of clusters K j
depending on the images of each category c`j. To do so, it first prunes out the small clus-
ters (i.e., all the ci such that ∀i ∈ [K j], Card(ci) < S ∈ N∗, with S� Ni), by re-assigning
their samples Ik,k∈[Ni] (that were assigned to ci) to the category of the closest feature vec-
tor Xi

l,l∈[Ni]
=N (Xm

k,k∈[Nm]
), with m 6= i and N (·) being a function that provides the closest

vector (e.g., k-NN algorithm with Euclidean distance) in the set of features {X j} belonging
to the other and large clusters (i.e., all cm with Card(cm) > S). Pruning small clusters for
all categories c`j, results in a set of KP

j finer-classes {ci}i∈KP
j

per class c`j. The last step of
BUCBAM is to merge the similar clusters. To do that, a classifier Ψi is trained for each
cluster ci – using features of ci samples as positives and same amount of samples from a
diverse class cd as negatives – and evaluated on the images of all other clusters. The diverse
category cd is created by randomly picking elements equiprobably from all the categories

2For simplicity, we omit the power indices `, `+1 and L in the following.
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{c`i }i∈[n`]. The evaluation of the classifiers provides a similarity matrix M j ∈ [0,1]K
P
i ×KP

i

for each category c`i . This last is used to merge similar clusters and let dissimilar ones dis-
joint. More precisely, a first strategy is to consider clusters ci and cm symmetrically similar
(BUCBAM-SS) if: Ψi(Xm

k,k∈[Nm]
) > SH and Ψm(Xi

k,k∈[Ni]
) > SH , with m 6= i and SH ∈ [0,1]

a high score (close to 1). Another strategy is to consider, clusters asymmetrically similar
(BUCBAM-AS) if only one constraint is respected and the other is greater than SM , with
SM = SH/2 a medium score. In both cases (that are illustrated in Fig. 2), dissimilar clusters
are desirably let disjoint. Merging similar clusters for all classes c`j, results in a set of KM

j
finer-classes {ci}i∈KM

j
per category c j.

2.3 SpeFiNet: Combining Specific and Finer Features
Following the approach of [36] – which roughly consists in training initial features on
an initial set of categories, then learning new features on new set of categories and fi-
nally combining initial and new features –, we propose to learn the new features with our
FiNet (rather than a network trained on generic categories [34, 36]) and combine them
with the features of the initial SpeNet to get a representation even more universal. This
method is denoted SpeFiNet in the following. Formally, the final SpeFiNet representation
combines specific and finer features and is computed for an image Ii of a target-task as:
Xi = F

(
{Z(X`

i ),Z(X`+1
i )}

)
, where F is a fusion operator, and Z is a normalization func-

tion. In practice for the normalization and fusion, we respectively choose the L-infinite norm
(L-∞) and the concatenation. To the best of our knowledge, we are the first to propose to
combine a SpeNet (trained on specific categories) and a FiNet (trained on finer categories)
to get more universal representations.

3 Experimental Results
Universality
Universalizing methods are evaluated in a transfer-learning scheme on multiple target-tasks [4,
9, 36]. More precisely, a source-task is used to train a network that acts as a representation
extractor on the data of the target-tasks. Each target-task is trained with a simple predictor on
top of the representations extracted from the samples of the target-task. Note that, fine-tuning
the representations on the target-tasks could always improve performances but induces a bias
avoiding correct evaluation of universality [8, 16, 32, 36]. Hence, following the literature,
simple predictors that do not modify the representations learned on the source-task are used.
In particular, here for the target-tasks, we used a classification task with datasets from mul-
tiple visual domains (presented below) and for the predictor, we used a one-versus-all SVM
classifier for each class. Even if [8, 28, 36] initiated a work around universality evaluation,
it seems to remain an open problem. Hence here, since we only have benchmarks that are
evaluated in terms of accuracy and precision, we evaluate universalizing methods in terms
of average of their performances on the multiple benchmarks.

Datasets
For the source-task, we used ILSVRC [31] and ILSVRC* (half of the former, detailed
in [34]). For the target-tasks, we used ten datasets from multiple domains, including gen-
eral objects (VOC07 [13], NWO [7], CA101 [14], CA256 [15]), scenes (MIT67 [26]), ac-
tions (stACT [44]), birds (CUB [39]), plants (FLO [23]), food (FOOD [3]) and airplanes
(AIRC [21]). The characteristics of all the datasets are detailed in supplementary material.
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Method
VOC07 CA101 CA256 NWO MIT67 stACT CUB FLO

Avg
mAP Acc. Acc. mAP Acc. Acc. Acc. Acc.

SpeNet (REFERENCE) 66.8 71.1 53.2 52.5 36.0 44.3 36.1 50.5 51.3
SPVspe

A [1] 66.6 74.7 54.7 53.2 37.4 45.1 36.0 51.9 52.4
SPVgen

G [22, 35] 67.7 73.0 54.3 50.5 37.1 44.9 36.8 50.3 51.8
AMECON [5] 61.1 58.7 40.6 45.8 24.3 32.7 26.1 36.4 44.5
WhatMakes [16] 64.0 69.4 50.1 45.6 33.7 41.9 15.0 42.8 45.3
ISM [42] 62.5 68.8 50.7 28.5 37.9 42.6 34.0 50.0 46.9
GrowingBrain-RWA [41] 69.1 74.8 55.9 50.4 40.0 48.4 38.6 56.1 54.2
FSFT [36] 67.5 73.9 55.0 44.6 40.4 47.1 38.7 56.8 53.0
MuCaLe-Net [34] 69.5 76.0 56.8 54.7 41.3 48.5 35.6 54.8 54.6
MulDiP-Net [36] 69.8 77.5 58.3 47.9 43.7 50.2 37.4 59.7 55.6
FiNet, Random† 66.4 72.4 53.2 51.0 39.7 46.9 35.7 55.9 52.6
FiNet, Cluster† 66.0 73.2 54.6 50.9 40.7 47.2 36.4 55.6 53.1
FiNet, BUCBAM 65.3 75.4 56.0 48.6 41.6 49.4 37.8 59.8 54.2
SpeFiNet, Random† 69.8 75.7 57.5 54.6 41.2 50.0 39.8 58.3 55.9
SpeFiNet, Cluster† 68.6 77.9 58.1 53.9 41.3 50.5 40.8 60.1 56.4
SpeFiNet, BUCBAM 69.1 78.3 59.3 54.0 42.7 52.0 41.8 61.7 57.4

Table 1: Comparison of our methods (bottom) to the state-of-the-art (top). All the methods
are trained on the data of ILSVRC* with an AlexNet network and compared in terms of
average (Avg) performance on the set of eight target-tasks used in [36]. For each benchmark,
we highlight the best score in bold and the second is underlined. Methods marked with † are
obtained with a parameter cross-validated (on the target-tasks), while our BUCBAM method
automatically set this parameter on the source-task. Note that MuCaLe-Net, MulDiP-Net
and SpeFiNets use representations which dimension is twice other method’s.

Implementation Details
Our method consists in the combination of a SpeNet and FiNet. For both networks, we used
two architectures, namely the classical AlexNet [19] and the deeper DarkNet [30]. They are
respectively trained on the images of ILSVRC* and ILSVRC. SpeNet is thus respectively
trained to recognize C = 483 and C = 1,000 specific categories. In contrast, FiNet is trained
to recognize a set of Ki×C finer-classes (Ki depends on the splitting method), for which we
used four variants: (i) random splitting with Ki ∈ {2,4,8,16} fixed, denoted Random-K (ii)
K-means clustering with Ki ∈ {2,4,8,16} fixed, denoted Cluster-K (iii) BUCBAM splitting
with asymmetrically similar clusters merging, denoted BUCBAM-AS and (iv) BUCBAM
splitting with symmetrically similar clusters merging, denoted BUCBAM-SS. Note that, the
BUCBAM methods leads to a Ki depending on the content of each category. In Sec. 3.2, we
provides some statistics of the resulting dataset of each method, including the total amount of
finer-classes. In Cluster-K and BUCBAM methods, we extract features from the penultimate
layer to represent the samples of each class, which results in features of 4096 dimensions
for AlexNet and 1000 for DarkNet. Specific to BUCBAM, the K, S and SH parameters are
respectively set to 32, 15 and 0.8. Indeed, K has to be large, and we found that as long as
K is larger than 20 our method provides the same splitting result. S = 15 ensures to train
a network with at least 15 images per class. We obtained similar results with S = 50. The
parameters SH is not critical since similar clusters generally provides very high (close to 1.0)
classification scores.
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Method
VOC07 CA101 CA256 NWO MIT67 stACT CUB FLO AIRC FOOD

Avg.
mAP Acc. Acc. mAP Acc. Acc. Acc. Acc. Acc. Acc.

SpeNet (REF.) 82.7 91.0 78.4 70.5 64.8 72.2 59.5 80.0 49.2 47.6 69.6
GenNet [34] 83.2 91.5 78.1 73.2 64.4 72.6 52.5 78.9 48.5 46.2 68.9
MulDiP-Net [36] 84.1 92.7 80.1 73.9 66.4 74.5 61.2 82.1 53.5 49.3 71.8
FiNet, Cluster† 82.5 91.8 78.8 70.0 65.8 73.2 60.9 81.9 51.9 47.8 70.5
FiNet, Cluster(K = 16) 81.4 91.5 77.4 69.5 64.6 72.2 58.6 81.5 52.3 47.5 69.6
FiNet, BUCBAM 81.3 91.0 77.0 69.7 64.3 72.2 59.1 81.6 52.9 48.9 69.8
SpeFiNet, Cluster† 83.7 92.5 79.8 71.9 66.7 74.8 63.6 83.1 54.5 49.5 72.0
SpeFiNet, Cluster(K = 16) 83.3 92.2 79.6 71.9 66.6 74.1 62.5 83.0 55.1 49.8 71.8
SpeFiNet, BUCBAM 83.2 92.2 79.6 71.7 66.6 74.5 62.7 83.4 56.1 50.0 72.0

Table 2: Comparison of our methods (bottom) to the state-of-the-art (top). All the methods
are trained on the data of full ILSVRC with a DarkNet network and compared in terms of
average performance (Avg) on the set of ten target-tasks presented in Sec 3. For each bench-
mark, we highlight the best score in bold and the second is underlined. Methods marked with
† are obtained with a parameter cross-validated on the target-tasks. BUCBAM automatically
set this parameter on the source-task.

3.1 Comparison to the State-of-the-Art

We compare the results obtained by our method with those of the literature, in particular, all
the methods re-implemented and reported in [36]. For fair comparisons, we followed their
training configuration, and trained our method with an AlexNet network and ILSVRC* as
source-task. Moreover, instead of using our more diverse set of ten target-datasets, we used
the eight ones used in their paper. The results are reported on Table 1. We first observe
that our methods are always better than the reference method used in [2, 28, 29, 34, 36],
namely SpeNet. In particular our best method (BUCBAM) exhibits a boost of 6 points
on average, compared to SpeNet. Let also note that SpeFiNet is always better than FiNet,
itself better than SpeNet, regardless the splitting method. More precisely, the BUCBAM
splitting method is significantly better than the best Cluster one, without the high cost of
cross-validation of the K parameter. Compared to state-of-the-art methods, ours achieves the
best performances, that is, almost 2 points of improvement compared to the most competitive
MulDiP-Net method [36], while it surpasses all other methods by more than 3 points. A last
salient result is the fact that a SpeFiNet (whatever the splitting method) is significantly better
than MuCaLe-Net [34] which has been trained on the best generic categories (manually
obtained from categorical-levels [33, 34]). This latter clearly demonstrates than combining
features trained on specific categories with those trained on finer categories is better than
combining them with those trained on generic categories.

Furthermore, since [36] reported better results with a deeper network (DarkNet) trained
on the full ILSVRC, we also implemented our method in the same configuration. Since
MulDiP-Net provides the best results of the literature on the problem of universality, we
only compare to them for this setting. The results are reported on Table 2. While the
improvement is only slightly better, our method still beats the competitive MulDiP-Net.
Moreover, a salient observation is that our method tend to be much better than theirs on
the fine-grained classification benchmarks, which are more challenging. As in the previous
setting, SpeFiNet is better than FiNet which is itself better than SpeNet. We also compared
to the GenNet (which is the generic sub-component of MulDiP-Net [36]) and we observe
that FiNet-BUCBAM is better by 0.9 points.
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Figure 3: Comparison of our methods to multiple splitting baselines. On the left, we
illustrate the average results of each method on the ten target-tasks, were for each splitting
method, we illustrate the FiNet in dark color and SpeFiNet in light color. On the right, we
plot a diagram for the SpeFiNet-BUCBAM, FiNet-BUCBAM and SpeNet methods, their
performances on each target-task. Best view in color

3.2 Analysis and Comparison to Baselines

In this section, we perform an in-depth analysis of our method through an ablation study, a
comparison to baselines and visualization of some statistics. In particular, in supplementary
we compared our method to multiple clustering baselines, namely Spectral Clustering and
Affinity propagation. The former provides a fixed set of clusters per category, while the latter
leads to a dynamic set of clusters. A summary of results is presented on the left of Fig. 3,
where we plot, a bar for each method, that represents its average performance on the set of 10
benchmarks described in Sec 3. We also tested the Mean-Shift algorithm with many different
bandwidth values, but it always led to many clusters with one or two images, and one cluster
containing all the remaining images. This setting providing very low results, we did not
report them. From these results, we observe that our BUCBAM method is better than all the
baselines including other existing algorithms. Rather than the average performances, in the
diagram on the right of Fig. 3, we illustrated the detailed results (on the ten benchmarks)
of the SpeFiNet-BUCBAM, FiNet-BUCBAM and SpeNet methods. We clearly observe that
the diagram of our SpeFiNet-BUCBAM overlaps FiNet-BUCBAM, which itself overlaps the
reference SpeNet method. In addition, we provide in supplementary material the detailed
results of all the methods on all the target-tasks.

In Figure 4, we visualize some of the clusters obtained by each splitting method (random,
clustering and BUCBAM). To do so, we highlight three clusters for two specific categories
(two blocks of three rows of five images). On the left, the clusters are determined from
a random distribution within the full specific category, leading to clusters that contain its
full diversity. On the contrary, with the K-means clustering (middle), the clusters exhibits a
more coherent aspect. For example, for the goldfish category, the c1

3 cluster report close-up
views of fish that are rather seen on their profile. We have a similar behaviour for the banjo
category with cluster c3

1 and c3
2. With the proposed BUCBAM method (right), the clusters

are even more specific than in the K-means case. For instance, for the goldfish category, we
clearly identify a cluster that represents “many golfishes” (c1

1), “on goldfish in a close-up
view” (c1

2) and some images on which the fish tank is visible (c1
3). Also for the banjo class,
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Figure 4: Illustration of some finer categories obtained from two specific categories (two
row blocks) with the different methods: random split (left), Kmeans clustering with K=16
(middle) and our BUCBAM proposal (right). In every block, a line (from the three) shows
the five most representative images of a cluster at the new finest-level. Best view in PDF.

we also clearly observe that our method identified a cluster that represents “person playing
banjo” c3

1 and even “person playing banjo in a concert” c3
3. Importantly, while the clustering

method tend to results in duplicate clusters (e.g., c1
2 with c1

3; c3
1 with c3

2; etc.), ours tend to
provide only dissimilar results, thank to our merging process.

In supplementary material, we also provided some statistics of our method and base-
lines (i.e., histograms of average amount of clusters per category, histograms of intra-class
variance of the clusters) and more visualizations of the obtained clusters, through the visu-
alization of some images in some clusters and the features of each image of the clusters in
a 2D dimensional space, after performing a PCA on their full features. This highlights the
clear interest of our method, in terms of cluster relevancy and the balance of resulting data,
compared to the random and clustering baselines.

4 Conclusions

In this paper, we tackled the problem of universality of representations with a new method
relying on categories that are finer than the most specific ones of the ImageNet hierarchy.
These last being the finest that are annotated, we proposed a method that automatically add
a hierarchical-level to the ImageNet hierarchy. A network trained on the categories of such
finer-level provides a more universal representation than with the upper levels. In practice,
it leads to significantly better results in a transfer-learning scheme, on 10 publicly available
datasets from diverse domains.

We also showed that a K-means and, surprisingly, a random partitioning of the leaf nodes
of ImageNet already gives interesting results, although below than the proposed approach. It
nevertheless suggests that the general principle highlighted in this article could be fruitful to
design new CNN-based representations that are more universal in a transfer-learning context.
Furthermore, it should be noted that our principle is neither limited to the ImageNet hierarchy
nor to the classification task. Indeed, it could be applied to any hierarchy or dataset and on
other tasks, such as detection, segmentation or keypoint estimation, as considered in [40].
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