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Abstract

In many information extraction applications, entity linking (EL) has emerged as a crucial
task that allows leveraging information about named entities from a knowledge base. In this
paper, we address the task of multimodal entity linking (MEL), an emerging research field in
which textual and visual information is used to map an ambiguous mention to an entity in a
knowledge base (KB). First, we propose a method for building a fully annotated Twitter dataset
for MEL, where entities are defined in a Twitter KB. Then, we propose a model for jointly
learning a representation of both mentions and entities from their textual and visual contexts.
We demonstrate the effectiveness of the proposed model by evaluating it on the proposed dataset
and highlight the importance of leveraging visual information when it is available.

1 Introduction

Entity linking (EL) is a crucial task for natural language processing applications that require dis-
ambiguating named mentions within textual documents. It consists in mapping ambiguous named
mentions to entities defined in a knowledge base (KB). To address the EL problem, most of the state-
of-the-art approaches use some form of textual representations associated with the target mention
and its corresponding entity. [4] first proposed to link a named mention to an entity in a knowledge
base, followed by several other local approaches [10, 36, 15, 16, 11] where mentions are individually
disambiguated using lexical mention-entity measures and context features extracted from their sur-
rounding text. In contrast, global approaches [43, 22, 40, 20] use global features at the document-level
to disambiguate all the mentions within the document and can also exploit semantic relationships
between entities in the KB. These approaches have shown their effectiveness on standard EL datasets
such as TAC KBP [28], CoNLL-YAGO [24], and ACE [3] which contain structured documents that
provide a rich context for disambiguation. However, EL becomes more challenging when a limited,
informal, textual context is available, such as in social media posts. On the other hand, social media
posts often include images to illustrate the text that could be exploited to improve the disambiguation
by adding a visual context.

In this paper, we address the problem of multimodal entity linking (MEL), by leveraging both
semantic textual and visual information extracted from mention and entity contexts. We propose
to apply MEL on Twitter posts as they form a prototypical framework where the textual context
is generally poor and visual information is available. Indeed, an important mechanism in Twitter
communication is the usage of a user’s screen name (@UserScreenName) in a tweet text. This helps to
explicitly mention that the corresponding user is somehow related to the posted tweet. One observation
we made is that some Twitter users tend to mention other users without resorting to screen names
but rather use their first name, last name, or acronyms (when the Twitter user is an organization).
Consider the following example tweet (see Figure 1):

Andrew explains how embracing AI doesn’t have to be daunting
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Figure 1: An illustrative example of multimodal Entity Linking on our Twitter dataset. The example
depicts a subset of (text, image) pairs representing the entity @AndrewNg (left), and some example
of (text, image) pairs related to the mention Andrew (right).

In this example, the mention Andrew refers to the user’s screen name @AndrewYNg. Obviously,
the mention Andrew could have referred to any Twitter user whose name includes Andrew. Such
a practice, when it occurs, may lead to ambiguities that standard EL systems may not be able to
resolve, as most of Twitter users do not have entries in standard knowledge bases. We thus propose
to link ambiguous mentions to a specific Twitter KB, composed of Twitter users.

Our contributions are: (i) we investigate the multimodal entity linking task. To the best of our
knowledge, this is the first EL work that combines textual and visual contexts on a Twitter dataset; (ii)
we construct a new large-scale dataset for multimodal EL and above all, define a method for building
such datasets at convenience; (iii) we present a new EL model-based for learning a multimodal joint
representation of tweets and show, on the proposed dataset, the interest of adding visual features for
the EL task. Code and data are available at https://github.com/OA256864/MEL Tweets1.

2 Related Work

Entity Linking on Twitter Recently, several research efforts proposed to meet the challenges
posed by the EL task on Twitter media posts. Collective approaches are preferred and leverage
global information about tweets in relation with the target mention. [34] collectively resolves a set
of mentions by aggregating all their related tweets to compute mention-mention and mention-entity
similarities while [26] takes advantage of both semantic relatedness and mention co-referencing. In
a more original way, [45] determines the user’s topics of interest from all its posted tweets in order
to collectively link all its named entity mentions. Similarly [25] considers social (user’s interest +
popularity) and temporal contexts. Other collective approaches include in their EL model additional
non-textual features. For example, [17] and [7] use global information of tweets that are close in space
and time to the tweet of the target mention. Finally, [14] proposes a joint cross-document co-reference
resolution and disambiguation approach including temporal information associated with their corpus
to improve EL performance. While these works yield interesting results using non-textual features,
they often depend on the availability of social data and do not exploit visual information.
Multimodal Representation Learning Joint multimodal representations are used in several mul-
timodal applications such as visual question answering [27, 2], text-image retrieval [49, 5, 8] and image
captioning [31, 29] and exploits different approaches e.g., Canonical Correlation Analysis [47], linear
ranking-based models and non-linear deep learning models to learn projecting image features and text
features into a joint space [18]. In our work, we take inspiration from [48] for our joint representation
learning model as it showed satisfying results for multimodal learning.

To our knowledge, [37] is the only other work that leverages multimodal information for an entity
disambiguation task in a social media context. However, they use a dataset of 12K annotated image-
caption pairs from Snapchat (which is not made available), whereas our work relies on a much larger

1forked at https://github.com/cea-list-lasti/MEL Tweets
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base (85K samples for the benchmark and 2M to build the KB) and is more in line with the state-of-the-
art which mostly uses Twitter as case study for EL on social media. Furthermore, they use Freebase
as KB, which does not contain image information and does not allow a multimodal representation at
the KB level, leading to a very different disambiguation model.

3 Problem Formulation

In Twitter terms, each user account has a unique screen name (@AndrewYNg), a user name (An-
drew Ng), a user description (Stanford CS adjunct faculty) and a timeline containing all the tweets
(text+image) posted by the user (see Figure 1). On this basis, we consider the following definitions:

• an entity e corresponds to a Twitter user account u (generally associated with a person or an
organization);

• a mention m corresponds to an ambiguous textual occurrence of an entity ej mentioned in a
tweet t that does not belong to the timeline of ej ;

• the knowledge base is the set of entities (i.e. Twitter accounts).

Formally, we denote the knowledge base KB = {ej} as a set of entities, each entity being defined
as a tuple ej = (sj , uj , TLj) including their screen name sj , user name uj and timeline TLj (we did
not use the user description in the representation of the entity). The timeline contains both texts
and images. A mention mj is defined as a pair (wi, ti) composed of the word (or set of words) wi

characterizing the mention and the tweet ti in which it occurs: ti contains both text and images.
The objective of the task consists in finding the most similar entity e∗(mi) to the mention mi in the

KB according to a given similarity. From a practical point of view, we do not compute the similarities
between the mention and all entities in the KB. We first select a subset of the entities that are good
candidates to disambiguate mi. It is defined as Cand(mi) = {ej ∈ KB|wi ∼ uj} where wi ∼ uj

indicates that the mention words wi are close to the entity name uj . In our case, due to the nature of
the dataset, we only use a simple inclusion (i.e. the mention words are present in the entity name) but
a more complex lexical distance that takes into account more variations could be considered [37]. The
disambiguation of mi is then formalized as finding the best multimodal similarity measure between
the tweet containing the mention and the timeline of the correct entity, both containing text and
images:

e∗(mi) = argmax
ej∈Cand(mi)

sim(ti, TLj) (1)

4 Twitter-MEL Dataset

One important contribution of our work is a novel dataset for multimodal entity linking on short
texts accompanied by images derived from Twitter posts. The process to build this dataset is mostly
automatic and can, therefore, be applied to generate a new dataset at convenience. More details and
further analysis on the dataset can be found in [1].

All the tweets and user’s metadata were collected using the Twitter official API2. The dataset
creation process comprises two phases: the construction of the knowledge base and the generation of
ambiguous mentions. As mentioned in Section 1, our multimodal EL task aims at mapping mentions
to entities (i.e. twitter users) from our Twitter knowledge base, which are characterized by a timeline,
namely the collection of the most recent tweets posted by a given user.

As a first step, we established a non-exhaustive initial list of Twitter user’s screen names using
Twitter lists in order to have users that are likely to produce a sufficient number of tweets and be
referred by a sufficient number of other users. A Twitter list is a curated set of Twitter accounts3

generally grouped by topic. From this initial list of users, we started building the KB by collecting the
tweets of each user’s timeline along with its meta-information ensuring that both re-tweets and tweets
without images were discarded. Moreover, as explained previously, users tend to create ambiguous
mentions in tweets when they employ any expression (for example first or last name) other than
Twitter screen names to mention other users in their post (see Section 1). Consequently, we have drawn

2https://dev.twitter.com
3https://help.twitter.com/en/using-twitter/twitter-lists
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Table 1: Statistics on timeline and entity distributions in MEL dataset.
Mean Median Max Min StdDev

nb Tweets / timeline (text+image) 127.9 52 3,117 1 222.2
nb ambiguous entities/mention 16.5 16 67 2 12

inspiration from this usage to elaborate a simple process for both candidate entity and ambiguous
mention generation.

4.1 Selection of Possibly Ambiguous Entities

To ensure that the KB contains sufficiently ambiguous entities, i.e. entities with possible ambiguous
mentions, to make the EL task challenging, we expanded the KB from the initial lists with ambiguous
entities. More precisely, we first extracted the last name from each Twitter account name of the initial
list of users. Then, we used these names as search queries in the Twitter API user search engine to
collect data about similar users4. Users that have been inactive for a long period, non-English users
and non-verified user accounts were filtered. Furthermore, to ensure more diversity in the entities and
not only use person names, we manually collected data about organization accounts. We relied on
Wikipedia acronym disambiguation pages to form groups of ambiguous (organization) entities that
share the same acronym.

4.2 Generation of Ambiguous Mentions

After building the KB, we used the collected entities to search for tweets that mention them. The
Twitter Search API5 returns a collection of relevant tweets matching the specified query. Thus, for
each entity in the KB, (i) we set its screen name (@user) as the query search; (ii) we collect all the
retrieved tweets; (iii) we filtered out tweets without images. Given the resulting collections of tweets
mentioning the different entities of the KB, we systematically replaced the screen name mentioned
in the tweet with its corresponding ambiguous mention: last names for person entities and acronyms
for organization entities. Finally, we kept track of the ground truths of each tweet in the dataset
reducing the cost of a manual annotation task and resulting in a dataset composed of annotated pairs
of text and image. Although ambiguous mentions are synthetically generated, they are comparable
to some extent with real-world ambiguous mentions in tweets. We applied a named entity recognition
(NER) system [13] on the tweets of the dataset which achieved a 77% accuracy score on the generated
mentions. This suggests that these latter are somehow close to real-world named mentions.

4.3 Dataset Statistics and Analysis

Altogether, we collected and processed 14M tweets, 10M timeline tweets for entity characterization
and 4M tweets with ambiguous mentions (mention tweets) covering 20k entities in the KB. Filtering
these tweets drastically reduced the size of our data set. Regarding mention tweets, a key factor in the
reduction is the elimination of noisy tweets where mentions have no syntactic role in the tweet text
(e.g. where the mention is included in a list of recipients of the message). Discarding these irrelevant
tweets as well as tweets without image left a dataset of 2M timeline tweets and 85k mention tweets.
After 3 months of data collection, we found that only 10% of tweet posts are accompanied by images.
In the end, we randomly split the set of mention tweets into training (40%), validation (20%) and test
(40%) while ensuring that 50% of mention tweets in the test set correspond to entities unseen during
the training.

Table 1 shows the timeline tweet distribution of all entities in our KB. As noted by [25], this dis-
tribution reveals that most Twitter users are information seekers, i.e. they rarely tweet, in contrast to
users that are content generators who tweet frequently. Along with user’s popularity, this has an in-
fluence on the number of mention tweets we can collect. We necessarily gathered more mention tweets
from content generator entities, as they are more likely to be mentioned by others than information
seeker entities.

4Only the first 1,000 matching results are available with the Twitter API.
5Twitter API searches within a sampling of tweets published in the past 7 days.
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5 Proposed MEL Approach

Visual and textual representations of mentions and entities are extracted with pre-trained networks.
We then learn a two-branch feed-forward neural network to minimize a triplet-loss defining an implicit
joint feature space. This network provides a similarity score between a given mention and an entity
that is combined with other external features (such as popularity or other similarity measures) as the
input of a multi-layer perceptron (MLP) which performs a binary classification on a (mention, entity)
pair.

5.1 Features

Textual context representation We used the unsupervised Sent2Vec [38] model to learn tweet
representations, pre-trained on large Twitter corpus. We adopted this model as training on the same
type of data (short noisy texts) turns out to be essential for performing well on the MEL task (see Sec.
6.2). The Sent2Vec model extends the CBOW model proposed by [35] to learn a vector representation
of words. More precisely, it learns a vector representation of a sentence S by calculating the average
of the embeddings of the words (unigrams) making up the sentence S and the n-grams present in S :

VS =
1

|R(S)|
∑

w∈R(S)

vw (2)

where R(S) is the set of n-grams (including unigrams) in the sentence S, and vw is the embedding
vector of the word w. Therefore, the textual context of a mention mi within the tweet ti is represented
by the sentence embedding vector of ti. We produce then for each mention two continuous vector

representations (D=700), a sentence embedding U
(i)
m inferred using only tweet unigrams and a sentence

embedding B
(i)
m inferred using tweet unigrams and bigrams. Combining their vectors is generally

beneficial [38]. An entity context being represented by a set of tweets (see Section 3), given an entity
ei, we average the unigram and bigram embeddings of all ei’s timeline tweets yielding two average

embedding vectors U
(i)
e , B

(i)
e representing the entity textual context used as features.

BM25 features
Given that the disambiguation task aims at finding the correct entity for a tweet, it can be viewed

as an IR problem, where we try to associate a given tweet with the most relevant timeline in the KB.
We, therefore, consider, as a baseline, a tf-idf -like model to match the mention with the entity: in
our case, both the tweet and the timeline are represented as bag-of-words vectors and we used the
standard BM25 weighting scheme to perform the comparison.
Popularity features Given an entity e representing a Twitter user u, we consider 3 popularity
features represented by: Nfo the number of followers, Nfr the number of friends and Nt the number
of tweets posted by u.
Visual context features The visual features are extracted with the Inception v3 model [46], pre-
learned on the 1.2M images of the ILSVRC challenge [44]. We use its last layer (D = 1,000), which
encodes high-level information that may help discriminating between entities. For an entity ei, we
retain a unique feature vector that is the average of the feature vectors of all the images within its
timeline, similarly to the process for the textual context. The visual feature vector of a mention is
extracted from the image of the tweet that contains the mention.

5.2 Joint Multimodal Representation Learning

The proposed model measures the multimodal context similarity between a mention and its candidate
entities. Figure 2 shows the architecture of the proposed joint representation learning model. It follows
a triplet loss structure with two sub-models as in [23, 42], one processing the mention contexts and
the other processing the entity contexts. Each sub-model has a structure resembling the similarity
model proposed by [48], i.e., it comprises three branches (unigram embedding, bigram embedding,
image feature), each in turn including 2 fully connected (FC) layers with a Rectified Linear Unit
(ReLU) activation followed by a normalization layer [33]. Then, the output vectors of the three
branches are merged using concatenation, followed by a final FC layer. Other merging approaches
exist such as element-wise product and compact bilinear pooling [18, 48]. However, in our work, simple
concatenation showed satisfying results as a first step. Moreover, the mention and entity inputs differ

5
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Figure 2: Triplet ranking model for learning entity and mention joint representations.

in our task, a mention being characterized by one (text, image) pair and an entity by a large set
of (text, image) pairs. Thus, we investigated the performance of our model when the parameters of
the two sub-models are partially or fully shared. We found that shared parameters yielded better
accuracy results on the validation set, thus the weight of the FC layers of both branches are shared.

In summary, using the extracted visual and textual features {Um,Bm,Im}, {Ue,Be,Ie} respectively
of a mention mi and an entity ei, our model is trained to project each modality through the branches
into an implicit joint space. The resulting representations are concatenated into Cm and Ce and
passed through the final FC layer yielding two multimodal vectors Jm and Je. The objective is to
minimize the following triplet loss function:

min
W

∑
e− 6=e+

max(0, 1− ‖fm(m), fe(e
+)‖ − ‖fm(m), fm(e−)‖)

where m, e+ , e−, are the mention, positive and negative entities respectively. fm(·) is the mention sub-
network output function, fe(·) the entity sub-network function and ‖ ·‖ is the L2-norm. The objective
aims at minimizing the L2 distance between the multimodal representation of m and the representation
of a positive entity p+, and maximizing the distance to the negative entity e− multimodal represen-
tation. For MEL, we calculate the cosine similarity between the two vectors of a pair (mi, ei) given

by fm(·) and fe(·) to represent their multimodal context similarity: sim(mi, ei) = cosine(J
(i)
m , J

(i)
e ).

Finally, we propose to integrate the popularity of the entity to the estimation of the similarity
by combining the multimodal context similarity score and popularity features through a MLP. Other
external features may also be combined at the MLP level, as in our case the BM25 similarity. This
MLP is trained to minimize a binary cross-entropy, with label 0 (resp. 1) for negative (resp. positive)
entities w.r.t the mention.

6



Table 2: Features and models used in our experiments.
Features Description (see Section 5.1)

Popularity (Pop) Baseline feature where the most popular entity is selected;
BM25 Standard textual context similarity with BM25 weighting;
S2V-uni Similarity measured between the unigram embeddings extracted using the

Sent2Vec language model;
S2V-bi Similarity measured between the bigram embeddings extracted using the Sent2Vec

language model;
S2V For easy readibility, we use the S2V notation to represent the combination of

S2V-uni and S2V-bi;
Img Similarity measured between the image features extracted using the pretrained

Inception-V3 model;
ET(X ) Combination of features X using an Extra-Trees classifier;
JMEL(X ) Combination of features X with our joint multimodal representation model (see

Section 5.2).

6 Experiments Analysis and Evaluation Setup

6.1 Parameter Settings

We initialized the weights of each FC layer using the Xavier initialization [21]. Training is performed
over 100 epochs, each covering 600k (mention, entity) pairs of which 35k are positive samples. The
triplet loss is minimized by stochastic gradient descent, with a momentum of 0.9, an initial learning
rate of 0.1 and a batch size of 256. The learning rate is divided by 10 when the loss does not change
by more than 1e−4 during 6 epochs. After 50 epochs, if the accuracy on the validation set does not
increase during 5 successive evaluations, the training is early stopped. Regarding the BCE branch, the
MLP has two hidden layers with one more neuron than the number of inputs and tanh non-linearities.
The BCE loss is minimized using L-BGFS with a learning rate of 10−5. The network is implemented
in PyTorch [39].

Since our approach is not directly comparable with previous works [37], we compare the results
with different configurations and baselines. As 50% of mentions are unique in each split of our dataset,
we do not take the standard most frequent entity prediction as a baseline, which links the entity that
was seen most in training to its corresponding mention. We rather consider the popularity features
and standard textual similarity measures (BM25), presented in section 5.1. Moreover, for comparison
sake, we also report in Table 3 the performance of a baseline combination of the features using an
Extra-Trees classifier [19], compared with our Joint Multimodal Entity Linking approach (JMEL),
which combines the textual and visual features at the representation level. Table 2 summarizes the
features and the combination models used in these experiments.

In order to more thoroughly assess the contribution of textual and visual information in the MEL
task, we compare the performance of the proposed model when the visual features are combined
with sentence embeddings that are derived from different models the following notable models: Skip-
Thought [32] (D=4,800) trained on a large corpus of novels, Sent2Vec [38] unigram and bigram
vectors (D=700) trained respectively on English Wikipedia and on a Twitter corpus, InferSent [9]
(D=2,048) Bi-LSTM+max pooling model trained on the Standford SNLI corpus, BERT [13] trained
on BooksCorpus [50] and on English Wikipedia and ELMo [41] trained on the One Billion Word
Benchmark [6]. For BERT and ELMo, sentences are represented by the average word embedding.

6.2 Results

Table 3 reports the accuracy results on the validation and test sets for the binary classification task
about the correctness of the first entity selected from the KB for a given mention. First, we note that
the baseline points out an imbalance in our dataset, as 59% of the mentions in the test set correspond
to the most popular entity among the candidate entities, compared to 36.9% in the validation set.
Note that for some Entity linking datasets, popularity can achieve up to 82% accuracy score [12]. We
also observe that our popularity baseline outperforms the combination of textual and visual features
with the Extra-Trees classifier: this indicates that the features extracted from the textual and visual

7



Table 3: Multimedia Entity Linking results (accuracy).
Valid. Test

Single features

Popularity 0.369 0.590
BM25 0.415 0.433
S2V-uni 0.482 0.513
S2V-bi 0.487 0.523
Img 0.290 0.299

Combination of features with an ExtraTrees Classifier

ET(S2V) 0.495 0.529
ET(S2V + Img) 0.507 0.542
ET(S2V + Img + Pop) 0.585 0.627
ET(S2V + Img + Pop + BM25) 0.654 0.671

Combination of features with our JMEL model

JMEL(S2V) 0.628 0.724
JMEL(S2V + Img) 0.639 0.731
JMEL(S2V + Img + Pop) 0.767 0.776
JMEL(S2V + Img + Pop + BM25) 0.795 0.803

contexts, when naively used and combined, produce poor results. In contrast, our model achieves
significant improvements on both the validation and test sets compared with the popularity baseline
and the Extra-Trees combination. We see that combining additional features in the JMEL model
(popularity and BM25) also provides significant performance gain. Regarding the visual modality,
although considering it alone leads to poor results, its integration in a global model always improve
the performance, compared to text-only features.
Image and sentence representation impact analysis Table 4 reports the MEL accuracy on the
validation and test sets with various sentence representation models. It shows that the integration of
visual features always improves the performance of our approach, whatever the sentence embedding
model we use, even though the level of improvement varies depending on the sentence model. For
example, while the results of averaging BERT word embeddings and InferSent are comparable using
images on the test set, InferSent performs significantly better than BERT using text only. This
emphasizes the role of the visual context representation of mentions and entities to help in the EL
task. If we look at the performance of the various sentence embeddings models, we can see that
the sent2vec model trained on a Twitter corpus outperforms all other embeddings: this reveals the
importance of training data in a transfer learning setting. Indeed, we observe that the sent2vec model
trained on English Wikipedia produces worse results than the model trained on the target task data
(Twitter). Hence, we can assume that other models that achieve good results when trained on a
general corpus (such as InferSent or BERT) would get better results if trained on a Twitter collection.
Error analysis We identified several potential sources of errors that may be addressed in future
work. First, in our approach we characterize entity contexts with a collection of text/image pairs and
by taking their mean, we consider all these pairs equally important to represent an entity. However, by
manually checking some entities, we note that each timeline may contain a subset of outlier pairs and
more specifically, images that are not representative of an entity. Sampling strategies may be employed
to select the most relevant images and to discard the misleading outliers. Moreover, our model fails on
some difficult cases where the visual and textual contexts of entity candidates are indistinguishable.
For example, it fails on the mention ”post”, by linking it to the entity @nationalpost instead of @nypost,
two entities representing news organizations whose posts cover various topics. One additional bias is
that we restricted our dataset and KB to have only tweets with images. Meanwhile, we observed that
tweets without images tend to have more textual context. Thus, it would be interesting to include
tweets without images for further experiments.

8



Table 4: Impact of sentence embeddings on EL results.
Valid Test

Sent. Embedding Txt Txt+Img Txt Txt+Img
S2V-uni(Twitter) 0.592 0.611 0.698 0.708
S2V-uni(Wiki) 0.499 0.538 0.625 0.654
S2V-bi(Twitter) 0.616 0.637 0.709 0.716
S2V-bi(Wiki) 0.511 0.547 0.639 0.663
InferSent(GloVe) 0.559 0.579 0.666 0.683
InferSent(fastText [30]) 0.551 0.570 0.671 0.689
Avg. BERT 0.580 0.594 0.641 0.687
Avg. ELMo 0.524 0.563 0.605 0.655
Skip-Thought 0.464 0.511 0.575 0.605
S2V(Twitter) 0.628 0.639 0.724 0.731
S2V(Wiki) 0.524 0.551 0.652 0.666

7 Conclusion

We explore a novel approach that makes use of text and image information for the entity linking
task applied to tweets. Specifically, we emphasize the benefit of leveraging visual features to help
in the disambiguation. We propose a model that first extracts textual and visual contexts for both
mentions and entities and learns a joint representation combining textual and visual features. This
representation is used to compute a multimodal context similarity between a mention and an entity.
Preliminary experiments on a dedicated dataset demonstrated the effectiveness of the proposed model
and revealed the importance of leveraging visual contexts in the EL task. Furthermore, our work is
all the more relevant with the emergence of social media, which offer abundant textual and visual
information. In that perspective, we propose a new multimodal EL dataset based on Twitter posts
and a process for collecting and constructing a fully annotated multimodal EL dataset, where entities
are defined in a Twitter KB.

Further exploration is still needed concerning certain points in our model: in particular, our
future work includes exploring attention mechanisms for text and images and experimenting different
sampling strategies for the triplet loss.
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