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Abstract: We present a template matching algorithm based on local descriptors for aligning two
geospatial products of different modalities with a large area asymmetry. Our system is generic with
regards to the modalities of the geospatial products and is applicable to the self-localization of aerial
devices such as drones and missiles. This algorithm consists in finding a superposition such that the
average dissimilarity of the superposed points is minimal. The dissimilarity of two points belonging
to two different geospatial products is the distance between their respective local descriptors. These
local descriptors are learned. We performed experiments consisting in estimating a translation
between optical (Pléiades) and SAR (Miranda) images onto vector data (OpenStreetMap), onto
optical images (DOP) and onto SAR images (KOMPSAT-5). Each remote sensing image to be aligned
covered 0.64 km², and each reference geospatial product spanned over 225 km². We conducted
a total of 381 alignment experiments, with six unique modality combinations. In aggregate, the
precision reached was finer than 10 m with 72% probability and finer than 20 m with 96% probability.
This is considerably more than with traditional methods such as normalized cross-correlation and
mutual information.

Keywords: geospatial data fusion; deep learning; multimodality; local descriptors; image alignment;
SAR; OpenStreetMap; Pléiades; Miranda; KOMPSAT-5; DOP

1. Introduction

An approach to the self-localization of aerial devices such as missiles and drones
consists in producing a remote sensing image and in aligning it over another known
geospatial product. Formally, we estimate the transformation between a proprioceptive
frame, in which the device trajectory and the remote sensing image are known, and the
geographic frame, in which the reference geospatial product is known, and in which
the device trajectory is to be determined. The transformation between the geographic
and proprioceptive frames is determined by aligning the remote sensing image over the
reference geospatial product. Determining the geographic location of the flying device is
reduced to the fusion of two geospatial products. These geospatial products may have
different modalities.

Aligning two geospatial products of different modalities relies on transforming sepa-
rately each product into a common modality and in determining a superposition that is
optimal with respect to the average similarity of the superposed points in this common
modality. The transformation into a common modality may consist in detecting and char-
acterizing sparsely distributed structures such as salient points, contours and semantic
instances, in densely extracting local descriptors, in extracting a global descriptor or in
direct image translation [1,2]. For instance, the early Tomahawk’s DSMAC (Digital Scene
Matching Area Correlator) image fusion method relied on binarizing two optical remote
sensing images and in determining the superposition of these two images having the
highest number of coherent paired pixels [3]. In [4], the road intersections are separately
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detected in an optical image and read from an OpenStreetMap archive. The superposition
that pairs similar intersections is then determined. Many human-engineered descriptors
for finely aligning remote sensing images or matching local features have been proposed.
Some are based on histograms of contours (with a contour detection that is robust to the
modality gap if any) [5–11]. They include SAR-SIFT [12] which enables one to match SAR
image patches and aims to be a direct adaptation of SIFT [13]. CFOG [14] is tailored to
finely register SAR, optical images and maps. Some other human-engineered multimodal
local descriptors are based on local self-similarity [15,16]. Deep local descriptors have been
introduced in the literature in the past decade. New neural network architectures and
training methodologies have been introduced [17–20], such as MatchNet [21], L2-Net [22]
and PN-Net [23]. These advances were applied to the fine registration of SAR and optical
image patches [24–30].

One approach for aligning a query remote sensing image over a reference geospatial
product is template matching. A set of alignments are tested using a patch similarity
metric such as the sum of squared differences, the normalized cross-correlation or the
mutual information. However, these metrics are not discriminative enough to reliably align
geospatial products of different modalities when the reference area is a hundred times
larger than the query area. Handcrafted and learned multimodal descriptors have been
introduced for the purpose of refining tie points to finely register multimodal geospatial
products, given a prior registration of decametric precision [14]. However, algorithms for
locally refining tie points do not generalize to aligning a large geospatial product (i.e., about
one square kilometer) over a hundred times larger reference geospatial product (i.e., about
one hundred square kilometers).

We investigate determining a superposition that is optimal with respect to the aver-
age similarity of the superposed points. Two points of different geospatial products are
compared using multimodal descriptors. This method is different from image retrieval
because several local descriptors are extracted from the template instead of extracting one
global descriptor. A local similarity metric is easier to train than a global one due to the
more abundant training samples so a better discriminativeness can be expected. We use
learned multimodal descriptors. Such descriptors are typically used for matching feature
points, for image retrieval and for locally refining point-to-point correspondences but not
for template matching.

We describe our method in Section 2 and we describe experimental results in Section 3.
We finally put our method and results into perspective in the discussion of Section 4.

2. Method
2.1. Overview

The registration method aims at determining the superposition of two geospatial
products that is associated with a minimal average dissimilarity of the superposed points.
Formally, the problem can be formulated as:

min
T∈T

∫
Ω

s(x, f , T(x), g)dx (1)

where T is a class of coordinate mappings, T is a coordinate mapping, Ω is the coordinate
domain of the query remote sensing image, and f and g are the query remote sensing
image and the reference geospatial product, respectively. The function s(x, f , y, g) measures
how dissimilar point x on f and point y on g are. For instance, It may be the L2 norm. We
decompose s as:

s(x, f , y, g) = s(µ(x, f ), ν(y, g)) (2)

Here, where µ(x, f ) and ν(y, g) are local descriptors extracted from f at x and from g
at y, respectively. If we approximate the integral with a finite sum, the problem becomes:

min
T∈T ∑

x∈X
s(µ(x, f ), ν(T(x), g)) (3)
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where X denotes a set of integration points sampled over the coordinate domain of the
query. The cost function can be evaluated for any coordinate mapping without computing
local descriptors µ(x, f ) from the query remote sensing image more than once. For saving
execution time, we wish that the cost function could similarly be evaluated for any coor-
dinate mapping without computing local descriptors ν(T(x), g) from the reference more
than once. For this purpose, we consider the following problem instead:

min
T∈T ∑

x∈X
s(µ(x, f ), ν(nn(T(x),Y), g)) (4)

where nn(y,Y) is the nearest neighbor of y in Y , and Y contains samples of points in the
coordinate domain of the reference geospatial product. In an implementation, a nearest
neighbor search can be performed efficiently using adequate algorithms and data structures.

We define F as points in the query coordinate domain together with their local descriptors:

F = {(x, µ(x, f )); x ∈ X} (5)

We define G as points in the reference coordinate domain together with their local
descriptors:

G = {(y, ν(y, g)); y ∈ Y} (6)

Given F and G, the cost function introduced above can be evaluated without comput-
ing other descriptors.

2.2. Sampling Local Descriptors

Our method relies on sampling points in the coordinate domain of each geospatial
product and on extracting a local descriptor at each point. On the query geospatial product,
the descriptors are sampled on a grid with a step equal to half the descriptors’ footprint.
On the reference geospatial product, the descriptors are sampled according to stratified
sampling. In other words, the coordinate domain associated with a geospatial product is
partitioned into a grid and points are sampled within each cell with a uniform distribution,
with a cell size equal to 1/20 that of the descriptors’ footprint.

2.3. Computing Local Descriptors

Computing a local descriptor is composed of two parts. First, we render a raster local
patch representing the neighborhood of the point at which to extract a descriptor. Secondly,
the patch is processed by a neural network to produce the local descriptor. The neural
network is trained using examples of pairs of colocated geospatial products. In order to
use some modality of geospatial data with our fusion system, it suffices to define the patch-
rendering process associated with this modality. The rest of the system is independent of
the data modalities involved. A patch-rendering request is defined by a center point, a
footprint diameter, a rotation angle and optional flipping.

The neural network produces a descriptor from a raster patch. Its architecture is
represented in Figure 1. It is notably composed of convolutional layers only. The absence of
densely connected layers enables a smaller number of parameters but implies that the local
descriptors produced with this architecture cannot be rotation-invariant. The similarity of
two descriptors is measured with the L2 norm.

For training the neural network, pairs of colocated raster patches are generated, relying
on the rendering processes of the data modalities involved.

We train the network using a triplet margin contrastive loss [17,19] defined as follows:

l(νi, µi, νj, µk) = lQ(νi, µi, νj) + lR(νi, µi, µk) (7)

with
lQ(νi, µi, νj) = max

{
0, δ + ‖νi − µi‖2 − ‖νj − µi‖2

}
(8)



Remote Sens. 2023, 15, 4510 4 of 16

and
lR(νi, µi, µk) = max

{
0, δ + ‖νi − µi‖2 − ‖νi − µk‖2

}
(9)

Here, δ stands for some margin (we set δ = 1). Letters Q and R designate the query
and the reference modalities, respectively. Letters µ and ν designate the reference and the
query descriptors produced by the network, respectively. Finally, indices i, j and k identify
geographic locations. We assume that i 6= j and i 6= k.

Conv2d(1×1, 96, 5)

Dropout2d(0.2)

AdaptiveAvgPool2d(5)

Conv2d(3×3, 96, 96) + BatchNorm2d + ReLU

Conv2d(3×3, 48, 96) + BatchNorm2d + ReLU

MaxPool2d(2)

Conv2d(3×3, 48, 48) + BatchNorm2d + ReLU

Conv2d(3×3, 24, 48) + BatchNorm2d + ReLU

MaxPool2d(2)

Conv2d(3×3, 24, 24) + BatchNorm2d + ReLU

Conv2d(3×3, 1, 24) + BatchNorm2d + ReLU

Figure 1. Neural network architecture.

2.4. Optimization

Values of the cost function are sampled in the parameter space of the geometric
transform, and a stochastic search is performed starting from the parameters found to have
the lowest cost.

2.5. Usage

Figure 2 represents the complete fusion process. First (in pink), one trains the descrip-
tion models (i.e., the neural networks) associated with the reference and query modalities.
This task requires pairs of colocated geospatial products of the reference and query modal-
ities. Secondly (in yellow), one produces the alignment data. The alignment data are a
set of points sampled in the coordinate domain of the reference geographic product and
their respective local descriptors. This task can be performed offline and depends on the
reference geospatial product and on the reference description model. Thirdly (in blue),
given the query remote sensing image and the query description extraction model, one
samples points in the coordinate domain of the query remote sensing image, one computes
their local descriptors and one finds the minimum of the cost function to infer the mapping
between the query and reference coordinate systems.
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Offline task Online taskInfrastructure task Data

Some query productsSome reference products

Train description models

Define and describe sample points Define and describe test points

Query description model Query geospatial productReference description modelReference geospatial product

Reference sample points Query test points

Find optimal alignment

Alignment

Figure 2. Fusion process.

The online execution time is asymptotically proportional to the reference area and to
the query area. The offline execution time is proportional to the reference area. Both the
online and the offline phase are fully parallelizable. The online phase exhibits a very simple
computational structure.

3. Experiments
3.1. Implementation

We implemented our template matching method as a computer program written
in C++ and relying on Torch and OpenCV. Thanks to its object-oriented architecture,
our program accommodates all geospatial data modalities generically and can be easily
extended to support a new one by defining a patch-rendering process.

The computer with which we developed the method and conducted all the experi-
ments was equipped with an Intel(R) Core(TM) i7-12700 CPU, a GeForce RTX 3080 GPU
and 32 Gio of random access memory.

3.2. Data

In this section, we present the data with which we conducted our experiments, and we
describe the patch-rendering process of each modality. These data constitute a multimodal
stack of five different kinds of geospatial products covering five distinct geographic loca-
tions in Germany. These locations have forestial, agrarian, industrial and urban land uses.

3.2.1. Pléiades

Pléiades is a constellation of optical remote sensing satellites. We purchased five
true-color ortho-images. Their GSD was 50 cm/pixel.

The patch-rendering process associated with Pléiades images was as follows. First,
the image was converted to grayscale. Secondly, the image was warped and resampled
into a patch having the requested center, footprint diameter, rotation angle, horizontal and
vertical flipping. Thirdly, the patch was normalized to zero mean and unit variance.

3.2.2. Miranda

Miranda is a Ka band SAR imaging RADAR developed by Fraunhofer Institute for
High Frequency Physics [31–33]. We worked with five images. They were vertically
monopolarized. They were acquired with an FMCW waveform, a carrier frequency of
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35 GHz and a bandwidth of either 600 MHz or 1000 MHz. They were in ground range
geometry and their GSD was 12.5 cm/pixel.

The patch-rendering process associated with Miranda images was as follows. First, the
image was warped and resampled into a patch having the requested geometry. Secondly,
the patch was converted from intensity to log-intensity. Thirdly, the patch was normalized
to zero mean and unit variance.

3.2.3. OpenStreetMap

OpenStreetMap is an open worldwide geographic database together with a rich
ecosystem of tools to manipulate its content. We extracted from the OpenStreetMap global
archive a few subsets corresponding to our regions of interest in Germany.

The patch-rendering process associated with OpenStreetMap data was as follows. First,
a color raster having the requested geometry was rendered using libosmscout, a software
library that provides the functionality of drawing OpenStreetMap data. We customized
the stylesheet that controlled the drawing appearance and behavior. We notably disabled
zoom-conditional drawing, we removed labels and icons, we set all lines to be drawn as
solid instead of dashes, and we removed line terminal markers. The rendered patch was
finally converted to grayscale and normalized to zero mean and unit variance.

3.2.4. DOP

DOP stands for Digitale OrthoPhotos. It is a collection of airborne optical images
covering the entire German territory. As part of the EU open-data directive, the states of
Rhineland-Palatinate and North Rhine-Westphalia provide DOP images under an open
license. The state of Baden-Wuttemberg currently sells DOP images but plans to provide
open access to them by June 2024. The resolutions of the images that we accessed or
purchased were 20 cm/pixel and 40 cm/pixel. We produced large rasters whose GSD was
1 m/pixel.

The patch-rendering process associated with the DOP modality was as follows. First,
the image was converted to grayscale. Secondly, the image was warped and resampled into
a patch having the requested geometry. Thirdly, the patch was normalized to zero mean
and unit variance.

3.2.5. KOMPSAT-5

KOMPSAT-5 is a Korean X band SAR imaging earth observation satellite. We pur-
chased two images. Their imaging mode was enhanced standard (ES) stripmap, their
processing level was L1D (geocoded with a digital elevation model), and their GSD was
1.1 m. Both their range and azimuth resolution were 2.5 m. One image was vertically
polarized while the other was horizontally polarized.

The patch-rendering process associated with the KOMPSAT-5 modality was as follows.
First, the image was warped and resampled into a patch having the requested geometry.
Secondly, the patch was converted from intensity to log-intensity. Thirdly, the patch was
normalized to zero mean and unit variance.

3.3. Protocol

Our experiments consisted in aligning query remote sensing images over reference
geospatial products. As query remote sensing images, we used crops extracted from the
Pléiades images and from the Miranda images. Their size was 800 m × 800 m (their area
was 0.64 km²). These crops were generated using a sliding window with 50% overlap
between consecutive windows. As reference geospatial products, we used crops extracted
from OpenStreetMap data, from DOP images and from KOMPSAT-5 images. Their size
was 15 km × 15 km (their area was 225 km²). The true location of the query crop within the
reference crop was random and uniformly distributed (apart from KOMPSAT-5 images
because they were not large enough). For one of our five geographic locations, the DOP im-
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age was large enough for training description models but not large enough for performing
alignment experiments.

For training the description models and for measuring the performance of our al-
gorithm, we manually produced a ground-truth alignment. The produced alignments
were either affine transforms or natural neighbor interpolants. It may happen that two
superposed geospatial products are locally incoherent. They may have been produced at
different times and the content of the scene may have changed in-between. We masked out
such areas when training the description models but not when performing the alignments.

We chose the ground footprint and the raster size of the patches depending on the
combination of query and reference modalities. These settings are reported in Table 1.
Examples of pairs of raster patches are represented in Figure 3.

Table 1. Patch footprint diameter and patch size for each combination of query and reference modalities.

Query Modality Reference Modality Patch Footprint Patch Size

Pléiades OpenStreetMap (150 m)² (60 px)²
Pléiades DOP (150 m)² (40 px)²
Pléiades KOMPSAT-5 (200 m)² (60 px)²
Miranda OpenStreetMap (150 m)² (60 px)²
Miranda DOP (150 m)² (40 px)²
Miranda KOMPSAT-5 (200 m)² (60 px)²

Figure 3. Examples of pairs of raster patches. From left to right and from top to bottom: Pleiades/
OpenStreetMap, Miranda/OpenStreetMap, Pleiades/DOP, Miranda/DOP, Pleiades/KOMPSAT-5
and Miranda/KOMPSAT-5.

We trained a description model for each combination of a query remote sensing image
and a reference modality. This amounted to 30 description models. Each description
model was tested on its corresponding query remote sensing image and was trained on
the other query remote sensing images of the same modality. We could thus perform a
cross-validation for each combination of a query modality and a reference modality.

The neural networks were trained using stochastic gradient descent. The learning rate
was 10−2 with a decay of 0.95 every four epochs. We considered to hard-mine the negatives
j and k but having observed no benefit, we discarded this strategy. The negatives were
sampled from the entire dataset. Each batch referenced 128 distinct geographic locations.
Given that a geographic location was associated with a positive and a negative patch from
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the reference and from the query modalities, each batch was accordingly associated with
4× 128 = 512 descriptors. The number of epochs was 39.

3.4. Results
3.4.1. Local Description Models

The discriminativeness of the trained description models was measured according to
the score defined in [34]. It is the probability that two geographically separate descriptors
are closer than T in the descriptor space. This threshold was chosen such that the probability
of two collocated descriptors being farther apart than T was 5%. These scores are reported
in Table 2. The combination of modalities achieving the best scores is Pléiades/DOP. It
is the combination whose modality gap is minimal. The combinations of modalities with
the worst scores are those involving KOMPSAT-5. The resolution and dynamic range of
the KOMPSAT-5 images are significantly worse than those of the other images involved in
the experiment.

Table 2. False positive rate for a false negative rate of 5%.

Query Image False Positive Rate
(OpenStreetMap)

False Positive Rate
(DOP)

False Positive Rate
(KOMPSAT-5)

Miranda A 0.15 0.25 0.35
Miranda B 0.03 0.01 0.04
Miranda C 0.28 0.23 0.31
Miranda D 0.33 0.11 0.20
Miranda E 0.28 0.29 0.47

Miranda (mean) 0.22 0.18 0.27
Pléiades A 0.11 0.22 0.33
Pléiades B 0.27 0.29 0.24
Pléiades C 0.19 0.08 0.22
Pléiades D 0.13 0.02 0.25
Pléiades E 0.08 0.07 0.22

Pléiades (mean) 0.16 0.14 0.25

3.4.2. Alignment

We aligned each crop of a query remote sensing image onto each reference modality.
The description model used to align a crop was not trained on the geospatial product to
which the crop belonged. We built one piece of alignment data (i.e., one set of reference
points and their respective local descriptors) for each combination of a query remote sensing
image and a reference modality. Without parallelization, building one piece of alignment
data comprising about 8 million points took a few hours. Building the alignment data was
fully parallelizable though, so that the execution time could be reduced proportionally
to the number of processing units. One piece of alignment data composed of 8 million
points took about 4 Gio of storage. Note that each piece of alignment data was shared
between several crops and was consequently larger than necessary for a single alignment.
Performing an alignment (that is to say, computing the local descriptors from the query and
performing the optimization) took between 1.5 and 2 s. The sampling of the cost function
was multithreaded. The alignment execution time included the nearest neighbor searches,
but these could be precomputed offline.

The quality of a superposition produced by our algorithm was measured as follows.
For each single alignment experiment, we computed the magnitude of the average offset
(i.e., the magnitude of the average difference between the predicted and the ground-truth
positions in the coordinate domain of the reference when we took a point uniformly at
random in the coordinate domain of the query). In Figure 4, for each combination of
data modalities, we report the cumulative distribution of these magnitudes over all the
corresponding alignment experiments. These curves indicate the percentage of alignments
that achieved a given precision. In Table 3, for each combination of data modalities, we
report the number of experiments for which the magnitude of the average offset was lower



Remote Sens. 2023, 15, 4510 9 of 16

than 20 m. By convention, we call such alignment experiments successful even though
some of them may be imprecise. We also report in Table 3 the success rate for mutual
information (MI), normalized cross-correlation (NCC) and channel features of oriented
gradient (CFOG). We computed the success rates of these three methods by producing 10 m
resolution rasters (for the reference and the query) comparing the pattern with a moving
window. Examples of alignments produced by our algorithm are reported in Figure 5.
Finally, a correlation map produced using our method and a correlation map produced
using MI are reported in Figure 6.
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Figure 4. Alignment precision.

Table 3. Alignment success rate.

Query
Modality

Reference
Modality

Number
of Experi-

ments

Success
Rate (Our
Method)

Success
Rate (MI)

Success
Rate

(NCC)

Success
Rate

(CFOG)

Pléiades OpenStreetMap 74 100% 33.0% 1.1% 0.0%
Pléiades DOP 74 100% 63.5% 45.9% 16.2%
Pléiades KOMPSAT5 94 94% 3.2% 1.1% 0.0%
Miranda OpenStreetMap 46 98% 11.1% 1.9% 0.0%
Miranda DOP 45 100% 4.4% 6.7% 0.0%
Miranda KOMPSAT5 48 78% 14.6% 14.6% 8.3%
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(a) Example I (reference) (b) Example I (query)

(c) Example II (reference) (d) Example II (query)

(e) Example III (reference) (f) Example III (query)

Figure 5. Examples of alignments. The rectangle represents the footprint of the reference geospatial
product over which to align the query. Examples I and II are Pléiades/OpenStreetMap. Example III
is Miranda/KOMPSAT-5.
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(a) A correlation map produced by our algorithm.

(b) A correlation map produced by MI.

Figure 6. A correlation map produced using our method and a correlation map produced using
MI. The modality combination is Pléiades/DOP. The geographic location is the same and its area is
(15 km)2. White means higher correlation. Black means lower correlation. The correlation scores
were affinely transformed to the range [0, 1]. Note the clean dot on the first correlation map and the
more chaotic nature of the second correlation map.

CFOG is a dense descriptor tailored for refining tie points between geospatial products
of different modalities [14]. It was introduced and experimentally benchmarked for refining
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tie points and thus determines a residual deformation field, which is a different use case
than ours. Each pixel is associated with one local histogram of gradient orientation. Densely
extracting CFOG descriptors involves detecting contours with Sobel filtering (i.e., based
on finite differences), building a histogram for each 1 × 1 local neighborhood, depthwise
low-pass filtering (to enlarge the local neighborhoods) and pixelwise low-pass filtering
(to reduce orientation quantization artefacts). The similarity metric for CFOG is the sum
of squared differences, which can be computed quickly by fast convolution using an FFT.
Fundamentally, CFOG measures the local similarity of contour orientation. As in the
original paper, we used nine orientation bins, a 3 × 3 Sobel kernel, and orientations were
modulo 180 degrees.

First, we observed that the traditional methods as well as CFOG failed to obtain
satisfying alignment success rates. Mutual information offered much higher success rates
than normalized cross-correlation when the reference was OpenStreetMap. For the other
references, these two methods offered relatively similar success rates. For the traditional
methods, the best scores were achieved on the combination Pléiades-DOP, which had the
smallest modality gap. As seen in Figure 6, the correlation map produced by our method is
flatter and exhibits a clearer correlation peak than the correlation map produced using MI.

CFOG also failed and proved worse than the traditional methods. We used the same
template size and resolution as in [14] but the area of the search window was 315 times
larger. Moreover, [14] used many tie points (instead of one), which we could not do
because our query remote sensing products were large enough for only one template at
that resolution. CFOG relies on Sobel filtering for contour detection, which is sensitive to
speckle. However, at the resampled resolution, the speckle of the Miranda images was
averaged out and visually imperceptible. Thus, the poor performance of CFOG could not
be attributed to the presence of speckle. CFOG relies on contour orientation co-occurrence
and not on intensity co-occurrence as MI and NCC. The poor performance of CFOG may
be attributed to an unreliability of the multimodal contour detection. A better approach
to multimodal alignment based on contours may be to minimize the average distance
between the contours. This can be efficiently implemented with chamfer matching [35] or
the iterative closest point (ICP) method [36]. However, this approach requires a handcrafted
multimodal contour detector, which is not trivial. For instance, the width of the roads in
OpenStreetMap is rarely set, so the roads are rendered based on a conventional width and
not on a physical width. A metric based on deep learning can handle such discrepancies
automatically whereas engineering a handcrafted contour detector that takes it into account
would be very difficult.

Our alignment method was able to align geospatial products very robustly despite
the size and modality mismatch. The combination of modalities that achieved the best
median precision was Pléiades/DOP, which was coherent with the small gap between these
two modalities. The worst combination of modalities in terms of the median precision
was Miranda/KOMPSAT-5. This may derive from the comparatively poor resolution and
dynamic range of our KOMPSAT-5 images. As well, we chose a larger local descriptor
footprint for KOMPSAT-5 than for the other modalities, which may have led to less spatially
accurate local descriptors. We can order the combinations of modalities as follows in terms
of median precision:

• Pléiades + DOP < Miranda + DOP < Miranda + KOMPSAT-5
• Pléiades + DOP < Pléiades + KOMPSAT-5 < Miranda + KOMPSAT-5.

Our optical images appeared to be systematically more adequate for alignment than
our SAR images. In terms of precision, using OpenStreetMap as a reference was nearly as
good as using our optical imagery and was significantly better than using our SAR imagery.

Examining the unsuccessful alignment experiments, we identified the following failure
modes: objects unseen at training, temporal inconsistency and poor focusing. A Pléiades
crop whose alignment failed contained fields covered by farming tarpaulins unseen at
training. A Miranda crop whose alignment failed contained electric lines. They were
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unseen at training and exhibited some overlap. A Miranda crop whose alignment failed
contained hills and was poorly focused.

4. Discussion
4.1. Relation to Image Retrieval

Image retrieval is the task of searching in a database an image that is most similar to
a query image. The similarity between a query image and a database image is measured
using global image descriptors. Pattern matching can be thought of as image retrieval. In
our method, the global descriptor associated with an image is the concatenation of all the
local descriptors, and the similarity metric of global descriptors is the squared L2 norm.
With traditional NCC and MI methods, the global descriptor associated with an image is the
image itself, and the similarity metric of global descriptors is the NCC or the MI. However,
with typical image retrieval systems, the global descriptor is obtained by a more complex
aggregation of local descriptors, typically via a bag of visual words (BOVW) [37,38] or via
a vector of locally aggregated descriptors (VLAD) [39,40].

We are not aware of an image retrieval system that has been experimentally demon-
strated to work on such a challenging multimodal dataset as ours. There is little work on
multimodal remote sensing image retrieval [41,42], and remote sensing image retrieval
systems are generally tested on databases of a few tens of thousands of images. In our
method, the distance between two global descriptors is the average point-to-point dissimi-
larity of the two images, as measured by local descriptors. This property might be lost if
the local descriptors were aggregated by a complex process. The matching performance
would probably be reduced, and the behavior of the algorithm would be less intuitive.
Even if the local descriptors were aggregated by a complex process, we could still not
simultaneously improve execution time and memory use, since our local descriptors are
shared among global descriptors so that a map of global descriptors and a map of local
descriptors would occupy the same volume of memory (provided that the sampling step is
the same and that the global and local descriptors have the same dimension). Conversely,
our method would perform poorly as an image retrieval method since we generally want
image retrieval to be based on content independently of the location of that content within
the image. However, a contribution of image retrieval systems to our method could be to
use binary code descriptors since they may be more computationally efficient [42].

4.2. Class of Transformations

In our experiments, the retrieved coordinate mapping was a translation. In the con-
text of aerial navigation, the class of transformations between the query and reference
geospatial products may be greater than or different from the translations. The translations
are sufficient for optical imaging if the altitude and orientation are known, assuming a
downward-looking camera. Since our descriptors are covariant with rotation (i.e., the
reference and query descriptors still match if their reference and query local raster patches
are simultaneously rotated), the class of rigid transforms SE(2) can be handled straight-
forwardly by testing different orientations of the map, at the price of an execution time
multiplied by the number of orientations considered. Similarly, the descriptors can be made
covariant to scale over some range of scales by training the description models over this
range of scales. Using the descriptors’ covariance, at the price of an increased execution
time and an increased size of the alignment data, we can estimate a plane similitude from
Sim(2). Finally, although too computationally expensive for real-time use, another way
to handle other classes of transformations is to extract new local features from resampled
local raster patches. The two approaches can be combined in order to reduce the number of
descriptors extractions.

4.3. Real-Time Use

A piece of alignment data cannot be built in real time, at least not with the computa-
tional power available on an embedded system or on a desktop computer. However, once
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the alignment data are built, the alignment can be inferred fast enough for use with the
autonomous navigation of an aerial platform such as a missile or a drone.

4.4. Similarity Metric

In this work, the local descriptors were compared with the L2 norm. The fact that it is
unbounded may be detrimental to the alignment success rate. In future works, we shall
investigate the use of a bounded local-descriptor similarity metric function such as the
composition of the scalar product and the sigmoid or the cosine similarity.

5. Conclusions

We proposed and evaluated a generic system for aligning geospatial products with
different modalities. Our system can be extended to new data modalities simply by defining
a patch-rendering process. This spares the difficult, time-consuming and unnecessary task
of engineering a custom algorithm tailored for a specific modality combination. This system
could be applied to the self-localization and autonomous navigation of aerial devices such
as missiles and drones.
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