
HAL Id: hal-04315073
https://hal.science/hal-04315073

Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining representation formalisms for reasoning upon
mathematical knowledge

Mathieu D’aquin, Renata Bunoiu, Horatiu Cirstea, Michel Lenczner, Jean
Lieber, Frédéric Zamkotsian

To cite this version:
Mathieu D’aquin, Renata Bunoiu, Horatiu Cirstea, Michel Lenczner, Jean Lieber, et al.. Combin-
ing representation formalisms for reasoning upon mathematical knowledge. K-CAP ’23: Knowl-
edge Capture Conference 2023, Dec 2023, Pensacola FL USA, United States. pp.180-187,
�10.1145/3587259.3627549�. �hal-04315073�

https://hal.science/hal-04315073
https://hal.archives-ouvertes.fr

Combining Representation Formalisms for Reasoning upon
Mathematical Knowledge

Mathieu d’Aquin
mathieu.daquin@loria.fr

LORIA - Université de Lorraine,
CNRS, Inria

Vandœuvre-lès-Nancy, France

Renata Bunoiu
renata.bunoiu@univ-lorraine.fr

Université de Lorraine, CNRS, IECL
Metz, France

Horatiu Cirstea
horatiu.cirstea@loria.fr

LORIA - Université de Lorraine,
CNRS, Inria

Vandœuvre-lès-Nancy, France

Michel Lenczner
michel.lenczner@univ-fcomte.fr

FEMTO-ST - UTBM, ENSMM, UFC,
CNRS

Besançon, France

Jean Lieber
jean.lieber@loria.fr

LORIA - Université de Lorraine,
CNRS, Inria

Vandœuvre-lès-Nancy, France

Frédéric Zamkotsian
frederic.zamkotsian@lam.fr

LAM - Aix Marseille Université,
CNRS, CNES

Marseille, France

ABSTRACT
Knowledge in mathematics (definitions, theorems, proofs, etc.) is
usually expressed in a way that combines natural language and
mathematical expressions (e.g. equations). Using an ontology for-
malism such as OWL DL is well-suited for formalizing the natural
language part, but complex mathematical expressions can be better
handled by symbolic computation systems. We examine this repre-
sentation issue and propose an original extension of OWL DL by
call formulas, i.e., formulas from which assertions can be drawn
thanks to calls to external functions. Using this formalism makes it
possible to classify a mathematical problem defined by its relations
to instances and classes and by some mathematical expressions: if
a theorem for solving this problem is represented in the knowledge
base, it can be retrieved, and thus, the problem can be solved by
applying this theorem. We describe an inference algorithm and
discuss its properties as well as its limitations. Indeed, the pro-
posed extension, algorithm, and implementation represent a first
step towards a combined formalism for representing mathematical
knowledge, with some open issues regarding the representation of
more complex problems: the resolution of multiscale, multiphysics
cases in physics are foreseen.

KEYWORDS
knowledgemodeling, knowledge representation,mathematical knowl-
edge

ACM Reference Format:
Mathieu d’Aquin, Renata Bunoiu, Horatiu Cirstea, Michel Lenczner, Jean
Lieber, and Frédéric Zamkotsian. 2023. Combining Representation For-
malisms for Reasoning upon Mathematical Knowledge . In Proceedings of
The Twelfth International Conference on Knowledge Capture (KCAP 2023).
ACM, New York, NY, USA, 8 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA
© 2023 Association for Computing Machinery.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Knowledge representation usually starts with deciding on a formal-
ism to be used. Different languages and paradigms might indeed
be better suited for certain tasks or certain types of knowledge [4].
Description logics and ontologies, for example, are more often used
to represent conceptual knowledge, for reasoning tasks such as
classification, and in contexts where the exchange of knowledge
and interoperability are important. In other cases, other logics or
approaches focused on computational aspects can be favored. How-
ever, in relatively complex domains, multiple representation for-
malisms might be required to fully capture the knowledge needed
for a given task.

This work originates from a project in such a domain, as a col-
laboration between physicists, mathematicians, and computer sci-
entists in modeling the physical properties and behavior of arrays
of micro-mirrors (see, for example, [5]). Arrays of micro-mirrors
are optical devices permitting the development of breakthrough in-
struments for Earth and Universe Observation. These components
are made of a high number of micron-scale tiltable mirrors and are
controlled electrostatically. Predicting the actual position of each
mirror with respect to the behavior of the neighboring mirrors is
a complex case involving multiscale, multiphysics systems. These
issues have been addressed thanks to the mathematical principles
of asymptotic analysis of partial differential equations, and have
been studied through term rewriting tools in order to represent
both knowledge of the models and of the computations applicable
to them [1, 2, 10].

However, there are a number of aspects for which symbolic
computation formalisms are insufficient (or inefficient). These spe-
cific aspects relate mostly to knowledge useful to recognize the
situations in which specific computations are needed, particular
resolution strategies should be applied, or a given theorem holds.
The goal of this study is to examine how to organize mathematical
knowledge in order to be able to select relevant modules (repre-
senting, for example, theorems) of a symbolic computation system,
when a mathematical problem is raised (it is noteworthy that the
goal is not to reason within mathematical knowledge).

To illustrate this, we consider (here and in the rest of this pa-
per) an example simpler than the differential equations eventually

https://orcid.org/0000-0001-7276-4702
https://orcid.org/0000-0001-6324-5847
https://orcid.org/0000-0001-5105-5931
https://orcid.org/0000-0002-6761-9516
https://orcid.org/0000-0002-5547-6466
https://orcid.org/0009-0005-3362-2177
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA d’Aquin et al.

targeted by this approach: the resolution of a second-degree polyno-
mial equation such as 2𝑥2 + 3𝑥 + 1 = 0. There are different methods
to achieve this, which might apply in different cases, and even be-
fore starting to solve it, a system aiming to support the resolution
of mathematical problems would first have to recognize that the
aforementioned expression: 1- is an equation, 2- is a polynomial
equation, 3- is a polynomial equation of degree 2. It might then, for
example, calculate the discriminant of the equation to determine
whether it has one, two, or no real solutions.

Even for such a simple example, the knowledge manipulated can
be seen as having some conceptual aspects (a polynomial equation
is a kind of equation, a second-degree polynomial equation, a.k.a.
a quadratic equation, has a discriminant, etc.) and some computa-
tional aspects (how to obtain the degree of a polynomial equation,
how to calculate the discriminant of a quadratic equation, etc.).

In this paper, we present a logic (OWL DLcall) to combine
knowledge representation formalisms, which we design as an ex-
tension of the description logic underlying OWL DL [9] with calls
to external symbolic computation engines. While calls to external
functions have been present in knowledge representation systems
in the past (see, for example, [3]), our extension is designed to enable
an inference algorithm, which is described here with a discussion on
its formal properties. We also discuss the proposed implementation
of this algorithm, illustrated with a simple example in mathematics
using a popular symbolic computation tool (the Sympy Python li-
brary1). It shows that the current version of OWL DLcall, as a first
attempt to combine multiple representation formalisms for mathe-
matical knowledge, can already handle a large class of problems.
We, however, also discuss its limitations and the way in which it
will need to evolve in order to support more complex problems.

After a reminder on OWL DL (§2), an example of a represen-
tation of a simple mathematical problem is detailed (§3), leading
to a new representation formalism (§4). The paper ends with a
discussion and a conclusion (§5).

2 BACKGROUND ON OWL DL
This paper uses and extends the description logic SROIQ(D) that
is assimilated to theW3C recommendation OWL DL in its version 2.
In this section, only a fragment of this logic is presented, restricted
to the needs of the paper.

Throughout the paper, classical notions in mathematics are used.
In particular, N and R are the sets of natural numbers and real num-
bers,N∗ = N\ {0}, R∗ = R\ {0}, and ⟦𝑎, 𝑏⟧ =

{
𝑛 ∈ N

�� 𝑎 ≤ 𝑛 ≤ 𝑏
}

for 𝑎, 𝑏 ∈ N.

Concrete domains (datatypes). Concrete domains in OWL DL
corresponds to XML schema built-in datatypes, e.g. bool, float,
unsigned int, etc. With 𝜏 one of these datatypes, the concrete
domain associated to 𝜏 is given by the ordered pair (Δ𝜏 ,Φ𝜏) where
Δ𝜏 is the set of values of type 𝜏 (e.g. Δunsigned int = N) and Φ𝜏
is a countable set of symbols that represent some subsets of Δ𝜏 :
for 𝜎 ∈ Φ𝜏 , this subset of Δ𝜏 is denoted by 𝜎𝜏 . In particular, if
𝑣 ∈ Δ𝜏 , {𝑣} ∈ Φ𝜏 represents the singleton {𝑣}𝜏 = {𝑣}, and ⊤𝜏 ∈ Φ𝜏
represents the set of all values of the concrete domain: (⊤𝜏)𝜏 = Δ𝜏 .

1https://www.sympy.org

2.1 Syntax
Four pairwise disjoint and countable sets of symbols are assumed to
be given:AC (set of atomic concepts, a.k.a. atomic classes), OP (set
of object properties, a.k.a. roles), DP (set of datatype properties),
and I𝑛𝑠 (set of instances). Moreover, each datatype property 𝑝 ∈
DP is associated to a datatype 𝜏 called range of 𝑝; 𝑝 is called a
𝜏-property in the following. Finally, a property is an element of
OP ∪ DP.

A concept is either an atomic concept or an expression of one
of the following forms (where 𝐶 and 𝐷 are concepts, 𝑟 ∈ OP,
𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ I𝑛𝑠 , 𝑝 is a 𝜏-property, and 𝜎 ∈ Φ𝜏): ⊤, ⊥, 𝐶 ⊓ 𝐷 ,
∃𝑟 .𝐶 , (≤ 1 𝑟), {𝑎1, 𝑎2, . . . , 𝑎𝑛}, ∃𝑝.𝜎 . The notation (= 1 𝑟) is used as
an abbreviation for (≤ 1 𝑟) ⊓ ∃𝑟 .⊤.

A formula of OWL DL is either a terminological formula (usually
expressing general knowledge) or an assertion (usually expressing
ground facts). A terminological formula is an expression of one of
the following forms (𝐶 and𝐷 are concepts, 𝑝1 and 𝑝2 are properties):
𝐶 ⊑ 𝐷 ,𝐶 ≡ 𝐷 , and 𝑝1 ⊑ 𝑝2. An assertion is an expression of one of
the following forms (𝐶 is a concept, 𝑟 is an object property, 𝑎 and
𝑏 are two instances, 𝑝 is a 𝜏-property, and 𝑣 ∈ Δ𝜏): 𝐶 (𝑎), 𝑟 (𝑎, 𝑏),
𝑝 (𝑎, 𝑣).

2.2 Semantics
An interpretation I is an ordered pair (ΔI , ·I) where ΔI is a
nonempty set and ·I maps:
• An atomic concept 𝐴 to a subset 𝐴I of ΔI ,
• An object property 𝑟 to a subset 𝑟I of ΔI × ΔI (i.e. 𝑟I is a
binary relation on ΔI),
• A 𝜏-property 𝑝 to a partial function 𝑝I : ΔI → Δ𝜏 , and
• An instance 𝑎 to an element 𝑎I of ΔI .

·I is extended on all concepts as follows:

⊤I = ΔI ⊥I = ∅

(𝐶 ⊓ 𝐷)I = 𝐶I ∩ 𝐷I

(∃𝑟 .𝐶)I =

{
𝑥 ∈ ΔI

���� there exists 𝑦 ∈ ΔI
such that (𝑥,𝑦) ∈ 𝑟I and 𝑦 ∈ 𝐶I

}
(≤ 1 𝑟)I =

{
𝑥 ∈ ΔI

���� there exists at most one 𝑦 ∈ ΔI
such that (𝑥,𝑦) ∈ 𝑟I

}
{𝑎1, 𝑎2, . . . , 𝑎𝑛}

I = {𝑎I1 , 𝑎
I
2 , . . . , 𝑎

I
𝑛 }

(∃𝑝.𝜎)I =
{
𝑥 ∈ ΔI

�� 𝑝I (𝑥) is defined and 𝑝I (𝑥) ∈ 𝜎𝜏
}

Given an interpretation I and a formula 𝜑 , I satisfies 𝜑 (denoted
by I |= 𝜑) is defined as follows:
• I |= 𝐶 ⊑ 𝐷 if 𝐶I ⊆ 𝐷I,
• I |= 𝐶 ≡ 𝐷 if 𝐶I = 𝐷I,
• I |= 𝑝1 ⊑ 𝑝2 if 𝑝I1 ⊆ 𝑝I2 ,
• I |= 𝐶 (𝑎) if 𝑎I ∈ 𝐶I,
• I |= 𝑟 (𝑎, 𝑏) if (𝑎I , 𝑏I) ∈ 𝑟I,
• I |= 𝑝 (𝑎, 𝑣) if (𝑎I , 𝑣) ∈ 𝑝I.

A knowledge base is a finite set of formulas of the considered
logic. For a knowledge base B and an interpretation I, I |= B if
I |= 𝛼 for each 𝛼 ∈ B. B is satisfiable if there is an interpretation I
such that I |= B. Given a formula 𝜑 of OWL DL, B entails 𝜑 (noted
B |= 𝜑) if for every interpretation I such that I |= B, I |= 𝜑 .

https://www.sympy.org

Representing Mathematical Knowledge KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA

An ontology is a knowledge base containing only terminological
formulas.

2.3 Some practical notations
The following notions do not add to the expressivity of the logic
but are useful for giving readable notations and are used in the
remainder of the paper.

Domains. Let 𝑟 be an object property, and 𝐷 be a concept. The
sentence “𝐷 is a domain of 𝑟” expresses informally the formula
∃𝑟 .⊤ ⊑ 𝐷 . Therefore, the fact that an interpretation I satisfies
this formula means that, for 𝑥,𝑦 ∈ ΔI , if (𝑥,𝑦) ∈ 𝑟I then 𝑥 ∈ 𝐷I .
𝐷 is qualified as a domain of 𝑟 . In general, there is no unicity of the
domain of a property: if𝐷 is a domain of 𝑟 and if 𝐸 is a superconcept
of 𝐷 (i.e. 𝐷 ⊑ 𝐸 is entailed by the current ontology) then 𝐸 is also a
domain of 𝑟 .

Similarly, the sentence “𝐷 is a domain of 𝑝”, for a 𝜏-property 𝑝

expresses informally the formula ∃𝑝.⊤𝜏 ⊑ 𝐷 , and 𝐷 is qualified as
a domain of 𝑝 .

Functional object property. Let 𝑟 be an object property. The sen-
tence “𝑟 is functional” expresses informally the formula⊤ ⊑ (≤ 1 𝑟).
Therefore, the fact that an interpretation I satisfies this formula
means that, for 𝑥,𝑦1, 𝑦2 ∈ ΔI , if (𝑥,𝑦1) ∈ 𝑟I and (𝑥,𝑦2) ∈ 𝑟I then
𝑦1 = 𝑦2.

It is recalled that, in this paper, we consider every datatype
property as functional.

Property chains. A property chain is an expression of the form
𝑟1;𝑟2; . . . ;𝑟𝑛;𝑝 (with 𝑛 ∈ N) where 𝑟1, 𝑟2, . . . , 𝑟𝑛 are object prop-
erties and 𝑝 is a property. The first purpose of this notion in this
paper is to be used as a syntactic abbreviation for some assertions.
Let 𝑎 be an instance and 𝑣 be an instance if 𝑝 is an object property,
or an element of Δ𝜏 if 𝑝 is a 𝜏-property. Then, that 𝑎 is related to 𝑣
by the property chain 𝑟1;𝑟2; . . . ;𝑟𝑛;𝑝 can be expressed as

(∃𝑟1 .∃𝑟2 ∃𝑟𝑛 .∃𝑝.{𝑣}) (𝑎)

For the sake of readability, this assertion is abbreviated by

(𝑟1;𝑟2; . . . ;𝑟𝑛;𝑝) (𝑎, 𝑣)

Let 𝑝𝑐 = 𝑟1;𝑟2; . . . ;𝑟𝑛;𝑝 . A concept 𝐷 is a domain of 𝑝𝑐 if 𝐷 is a
domain of 𝑟1 if 𝑛 ≥ 1, and of 𝑝 if 𝑛 = 0. If 𝑝 is a 𝜏-property then the
range of 𝑝𝑐 is 𝜏 , and, for an interpretation I, (𝑝𝑐)I denotes the set
of (𝑥, 𝑣) ∈ ΔI × Δ𝜏 such that 𝑥 is related to 𝑣 by the composition
of 𝑟I1 , 𝑟I2 , . . . , 𝑟I𝑛 , and 𝑝I .

3 A SIMPLE EXAMPLE
This section shows how to represent the concept corresponding to
the problem of solving a second-degree equation, as well as two
methods to solve instances of such a problem in our framework. By
“represent”, what is meant here is to describe it in a way that enables
recognizing a particular problem to correspond to the resolution
of a second degree equation and infer the method(s) which can be
used to solve it. This simple example is here to point out modeling
and representation issues, without the need to understand complex
mathematics.

3.1 Definitions and theorems related to second
degree equations

In this section, the notions to be represented are highlighted by
bold italics typesetting.

Definitions. Solving an equation is a problem consisting in
finding the (possibly empty and possibly infinite) set of bindings of
the unknowns of an equation that satisfy the equality given by
the equation. A second degree equation on R is an equation with
one unknown, say 𝑥 , of the form 𝑃 (𝑥) = 𝑄 (𝑥) where 𝑃 and 𝑄 are
two polynomials such that the degree of the polynomial 𝑄 − 𝑃 is
equal to 2.

Here is an example of a second degree equation solving problem:

Solve

an equation of second degree︷ ︸︸ ︷
𝑥2 + 2 = −3𝑥︸ ︷︷ ︸

an equality of the form 𝑃 (𝑥) = 𝑄 (𝑥)

with unknown 𝑥

︸ ︷︷ ︸
a problem of solving an equation of second degree

(1)

The solution of this equation is 𝑆 = {{𝑥 = −2}, {𝑥 = −1}}.
Here is another example of a second degree equation solving

problem:

Solve 𝑡2 + 4𝑡 + 1 = 0 with unknown 𝑡 (2)

The solution of this equation is 𝑆 = {{𝑡 = −2−
√
3}, {𝑡 = −2+

√
3}}.

Two methods for solving a second degree equation are presented
below. The first one is simpler but is not complete, in the sense that
it can fail: it succeeds for the problem (1) but fails for the problem (2).
The second one is complete but is (a little bit) less simple. In both
methods, the unknown is denoted by 𝑥 and the equality is of the
form 𝑃 (𝑥) = 𝑄 (𝑥). Let 𝑅 = 𝑄 − 𝑃 : the equality is then equivalent to
𝑅(𝑥) = 0. Let (𝑎, 𝑏, 𝑐) ∈ R3 such that 𝑅 = 𝑎𝑋 2 + 𝑏𝑋 + 𝑐 (with 𝑎 ≠ 0
since the degree of the equation is 2). A precondition for applying
both methods is that it is established that this equation is a second
degree equation.

The first method is called find an obvious solution. It consists
in the following steps:
(S1) For 𝑥1 ∈ {−2,−1, 0, 1, 2} perform the test 𝑅(𝑥1) = 0.
(S2) If all the answers to this test are false then the method fails.
(S3) Otherwise, with 𝑥1 the smallest value satisfying this test, let

𝑥2 = −𝑏𝑎 −𝑥1. Then, the solution is 𝑆 = {{𝑥 = 𝑥1}, {𝑥 = 𝑥2}}.
The theorem associated with this method states that when this
method does not fail, its result is the actual solution of the equation.

The second method is called use the discriminant. It consists
in the following steps:
(S1) Compute Δ = 𝑏2 − 4𝑎𝑐 .
(S2) If Δ < 0 then the solution is 𝑆 = ∅.
(S3) Otherwise, 𝑆 =

{{
𝑥 = −𝑏−

√
Δ

2𝑎

}
,

{
𝑥 = −𝑏+

√
Δ

2𝑎

}}
(if Δ = 0, 𝑆

contains one binding if Δ > 0, 𝑆 contains two bindings).

3.2 Partial representation in description logic
In this section, the notions and statements involved in the resolu-
tion of a second degree equation are partially represented in the
description logic OWL DL. For the sake of simplicity, we use our

KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA d’Aquin et al.

own vocabulary, even though we could have used established on-
tologies for representingmathematical notions [7]. First, the general
knowledge expressed by terminological formulas is presented:

• Solving an equation is a problem and it is associated with
an equation.

1. EquationSolving ⊑ Problem ⊓ ∃hasEquation.Equation
• An equation with one real unknown is an equation that has
exactly one unknown such that this unknown is of type real.

2. Equation1RealUnknown ≡ Equation ⊓
(= 1 hasUnknown) ⊓ ∃hasUnknown.∃hasType.{real}

• A polynomial equation is necessarily an equation with one
real unknown.

3. PolynomialEquation ⊑ Equation1RealUnknown
• An equation of second degree is a polynomial equation of
degree 2.2

4. Equation2ndDegree ≡ PolynomialEquation ⊓ ∃degree.{2}
• The method based on finding an obvious solution suited to
the equation of second degree can be tried.

5. EquationSolving ⊓ ∃hasEquation.Equation2ndDegree ⊑
∃hasSolvingMethod.{findObviousSolEqDeg2}

• The method based on a discriminant for solving an equation
of second degree can be tried.

6. EquationSolving ⊓ ∃hasEquation.Equation2ndDegree ⊑
∃hasSolvingMethod.{useDiscriminant}

Then, the two problems of the previous section are described by
assertions:

• The first problem is a problem of solving equations.
7. EquationSolving(pb1)
• This problem is associated to an equation with one real
unknown.

8. hasEquation(pb1, eq1)
9. Equation1RealUnknown(eq1)
• This equality is based on the equality 𝑥2 + 2 = −3𝑥 and its
unkown’s name is “𝑥”.

10. hasEquality(eq1, "x ** 2 + 2 = -3 * x")
11. (hasUnknown;hasName) (eq1, "x")
• For the other problem, pb2, the assertions are the same, after
substitutions of pb1 with pb2 and eq1 with eq2, with the
exception of the two last formulas which become:

12. hasEquality(eq2, "t ** 2 + 4 * t + 1 = 0")
(hasUnknown;hasName) (eq2, "t")

3.3 Remainder of the representation by external
functions

The knowledge base B§3.2 described in the previous section is insuf-
ficient to identify the two problems pb1 and pb2 as problems o solv-
ing a second degree equation. In other words, for pb ∈ {pb1, pb2}:

B§3.2 ̸ |=
(
EquationSolving ⊓
∃hasEquation.Equation2ndDegree

)
(pb)

2The degree of a polynomial equation 𝑃 (𝑥) = 𝑄 (𝑥) is the degree of𝑄 − 𝑃 .

Indeed, the base contains neither the knowledge that enables to
identify the equations as being polynomial, nor to obtain the de-
grees of these equations. These inferences are based on expression
handling, for which external computation is better suited.

Two functions are assumed to be implemented in
Sympy (i.e. Python with the Sympy library, but it could be
in another programming language): isAPolEquation and
degreeOfAPolynomialEquation. The inputs of both functions are
strings representing Sympy expressions. The former outputs the
Boolean true iff this expression is one of a polynomial expression.
The latter outputs the degree of a polynomial equation.

3.4 Connecting representation entities of the
two languages

Connections between OWL DL and Sympy have to be made since:

(C1) The function isAPolEquationwritten in Sympy can be used
to properly classify the equations eq1 and eq2 under the
concept PolynomialEquation, i.e. to be able to infer the
assertions PolynomialEquation(pb) for pb ∈ {pb1, pb2}.

(C2) The function degreeOfAPolynomialEquation written in
Sympy can be used in order to infer the assertions
degree(eq1, 2) and degree(eq2, 2).

From the description logic perspective, isAPolEquation and
degreeOfAPolynomialEquation are considered external functions,
regardless of the way they are implemented.

The connection (C1) is represented in the proposed approach by
the following formula:

13.

isAPolynomialEquation ⊒
call(function = "isAPolEquation @ Sympy",

params = [hasEquality, hasUnknown;hasName],

domain = Equation1RealUnknown,

range = bool)

The feature function of the call indicates the function name
and the system under which this function has to be executed (here,
Sympy). The feature params is associated with a list of property
chains that indicate how the parameters of the function can be re-
lated to an instance of the domain (here, Equation1RealUnknown).
The function has two arguments: the first one is the equality ex-
pression of the instance equation and the second one is the name of
the unknown of the instance equation, both interpreted as strings
by Sympy.

Formula 13 belongs to OWL DLcall which is an extension of
OWL DL proposed in Section 4. Intuitively, this formula means that
if eq is inferred to be an instance of Equation1RealUnknown for
which the equality and the name of the unknown are two identified
strings, then the function isAPolEquation can be triggered with
these strings as parameters and, if 𝑣 is the Boolean returned by this
function, the assertion isAPolynomialEquation(eq, 𝑣) is inferred.

The idea is that with the formulas of B§3.2, the above call for-
mula and the additional OWL DL formula

14.
PolynomialEquation ≡ Equation1RealUnknown ⊓

∃isAPolynomialEquation.{true}

Representing Mathematical Knowledge KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA

it can be entailed that eq1 and eq2 are instances of
PolynomialEquation (provided that the call to Sympy of the func-
tion isAPolynomialEquation returns the expected value3).

The connection (C2) is represented in the proposed approach in
a similar way:

15.

degreePolynomialEquation ⊒
call(function = "degreeOfAPolynomialEquation @ Sympy",

params = [hasEquality, hasUnknown;hasName],

domain = PolynomialEquation,

range = unsigned int)
With the two call formulas in this section, the formulas in B§3.2,
and the following additional formula:

16.
Equation2ndDegree ≡ PolynomialEquation ⊓

∃degreePolynomialEquation.{2}
it can be entailed that eq1 and eq2 are instances of
Equation2ndDegree and, therefore, the following assertions

17. hasSolvingMethod(pb1, findObviousSolEqDeg2)
18. hasSolvingMethod(pb1, useDiscriminant)
19. hasSolvingMethod(pb2, findObviousSolEqDeg2)
20. hasSolvingMethod(pb2, useDiscriminant)

are consequences ofB§3.4, i.e. the union ofB§3.2 and of the formulas
of the current section, under the assumption of the correct execution
of the function in Sympy.

4 REPRESENTING MATHEMATICAL
KNOWLEDGE IN OWL DLcall

This section presents the proposed approach for representing math-
ematical knowledge. First, the logic OWL DLcall is presented (§4.1).
Then, an algorithm for the inferences in this logic is described (§4.2).
Section 4.3 presents the implementation of the algorithm and some
discussion on the practical and methodological aspects of using
OWL DLcall. Finally, Section 4.4 studies the issue of more complex
examples that require an extension of this formalism.

4.1 OWL DLcall
The syntax of formulas is the same as for OWL DL, with the fol-
lowing additional terminological formula construct:
𝑝 ⊒ call(function = 𝑓 , params = 𝐿𝑃𝐶, domain = 𝐷, range = 𝜏)

where
• 𝜏 is a datatype and 𝑝 is a 𝜏-property;
• 𝐷 is a concept;
• 𝐿𝑃𝐶 is a list of 𝑛𝑎 property chains, 𝐿𝑃𝐶 =

[𝑝𝑐1, 𝑝𝑐2, . . . , 𝑝𝑐𝑛𝑎] such that, for 𝑘 ∈ ⟦1, 𝑛𝑎⟧, 𝐷 is a
domain of 𝑝𝑐𝑘 and 𝑝𝑐𝑘 is a 𝜏𝑘 -property;
• 𝑓 is a string providing access to an external function (e.g.
the code or a URL to a service), this function having 𝑛𝑎

arguments and being denoted by 𝑓 in the following;
• The types of the parameters of 𝑓 are 𝜏1, 𝜏2, . . . , 𝜏𝑛𝑎 (in this
order) and the type of its output is 𝜏 ;
• The execution of 𝑓 (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎), for 𝑣𝑘 ∈ Δ𝜏𝑘 (𝑘 ∈
⟦1, 𝑛𝑎⟧), is assumed to always terminate and may fail
to return an answer in which case, this is denoted

3This is shown at the end of Section 4.1 for eq1.

by 𝑓 (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎) = failure. Moreover, two calls
𝑓 (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎) with the same parameter values are as-
sumed to return the same result; in particular, if one call
fails, the other one also fails.

In the following, this construct is often given with the following
abbreviated form:

𝑝 ⊒ call(𝑓 , 𝐿𝑃𝐶, 𝐷, 𝜏)
Such a formula is called a call formula. Other formulas are quali-

fied as call-free.
Let I = (ΔI , ·I) be an interpretation, I satisfies the formula

𝑝 ⊒ call(𝑓 , 𝐿𝑃𝐶, 𝐷, 𝜏) if, for every (𝑥, 𝑣) ∈ ΔI × Δ𝜏 ,

if

(a) 𝑥 ∈ 𝐷I and
(b) for every 𝑘 ∈ ⟦1, 𝑛𝑎⟧ there exists 𝑣𝑘 such that
(𝑥, 𝑣𝑘) ∈ (𝑝𝑐𝑘)I , and 𝑓 (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎) = 𝑣 (and is
therefore different from failure).

then 𝑝I (𝑥) = 𝑣 .
Now, as an illustration, it is proven, under the assumption that

the Sympy function isAPolEquation is correctly implemented and
that its implementation never fails, that

B§3.4 |= PolynomialEquation(eq1)
Let I be an interpretation satisfying all the formulas of B§3.4. Let
𝑥 = eq1I , 𝑣1 = "x ** 2 + 2 = -3 * x", 𝑣2 = "x", and 𝑓 =

isAPolEquation. The execution of 𝑓 (𝑣1, 𝑣2) returns True and since
I satisfies formulas 9, 10, and 11, it comes that:

(a) 𝑥 ∈ Equation1RealUnknownI and
(b) (𝑥, 𝑣1) ∈ hasEqualityI ,
(𝑥, 𝑣2) ∈ (hasUnknown;hasName)I .

Therefore, according to the semantics of call formulas, it can be
inferred that (𝑥, true) ∈ isAPolynomialEquationI . Finally, since
I satisfies formula 14, it comes that 𝑥 ∈ PolynomialEquationI ,
i.e. I |= PolynomialEquation(eq1), which ends the proof.

4.2 An inference algorithm for OWL DLcall

The inference algorithm presented in this section is based on an
inference engine for OWL DL that is assumed to always terminate
(e.g. Hermit [6]). This algorithm simply consists in (1) inferring
a set of assertions 𝑝 (𝑎, 𝑣) from the formulas based on calls for a
given instance 𝑎, (2) adding these assumptions to the knowledge
base (for all instances 𝑎) and making OWL DL inferences on the
updated knowledge base. Step (1) is detailed in Algorithm 1. Step (2)
is detailed in Algorithm 2.

Properties of the algorithm. The study of the inference algorithm
under general assumptions remains to be done. However, a study
has been carried out under the following assumptions:
(A1) Satisfiability of the knowledge baseB given as parameter (i.e.

existence of an interpretation I that satisfies all the call-free
formulas and all the call formulas);

(A2) Functionality of the object properties involved in the chain
properties of a call formula (i.e. for all call formula 𝑝 ⊒
call(𝑓 , 𝐿𝑃𝐶, 𝐷, 𝜏)), the object properties occurring in each
property chain of 𝐿𝑃𝐶 are functional).

First, it can be noted that under assumption (A1) if two call formulas
enable to infer respectively 𝑝 (𝑎, 𝑣1) and 𝑝 (𝑎, 𝑣2) then 𝑣1 and 𝑣2

KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA d’Aquin et al.

inputs • B: a knowledge base of OWL DLcall,
• 𝑎: an instance,
• cache: a dictionary whose keys are pairs (Γ, 𝑏) where
Γ = (𝑝 ⊒ call(𝑓 , 𝐿𝑃𝐶, 𝐷, 𝜏)) is a call formula and 𝑏 is an
instance, and values are assertions of the form 𝑝 (𝑏, 𝑣)
(cache stores the value of previous calls and is initially
empty).

effect cache is updated.
output A set of assertions 𝑝 (𝑎, 𝑣) entailed by B thanks to

external function calls.
function assertionsEntailedByCalls(B, 𝑎, cache):
A ← ∅
Bcall ← the set of call formulas of B
BnoCall ← B \ Bcall

C ←
{
(𝑝 ⊒ call(𝑓 , 𝐿𝑃𝐶, 𝐷, 𝜏)) ∈ Bcall | BnoCall |= 𝐷 (𝑎)

}
for Γ = (𝑝 ⊒ call(𝑓 , 𝐿𝑃𝐶, 𝐷, 𝜏)) ∈ C do
if the access to cache with key (Γ, 𝑎) fails then
𝑛𝑎 ← length of 𝐿𝑃𝐶
Let 𝑝𝑐1, 𝑝𝑐2, . . . , 𝑝𝑐𝑛𝑎 be such that 𝐿𝑃𝐶 = [𝑝𝑐1, 𝑝𝑐2, . . . , 𝑝𝑐𝑛𝑎]

parameter-tuples←
{
(𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎)

���� BnoCall |= 𝑝𝑐𝑖 (𝑎, 𝑣𝑖)
for 𝑖 ∈ ⟦1, 𝑛𝑎⟧}

}
newAssertions← ∅
for (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎) ∈ parameter-tuples do
𝑣 ← 𝑓 (𝑣1, 𝑣2, . . . , 𝑣𝑛𝑎)
if 𝑣 ≠ failure then
𝛼 ← 𝑝 (𝑎, 𝑣)
if BnoCall ̸ |= 𝛼 then
newAssertions← newAssertions ∪ {𝛼}
end
end
end
A ← A ∪ newAssertions
BnoCall ← BnoCall ∪ newAssertions
cache(Γ, 𝑎) ← newAssertions
Remark: if newAssertions = ∅, the cache retains the
fact that no new assertion has been entailed from Γ
about 𝑎.
end
end
return A

Algorithm 1: Computing assertions entailed by call formulas.

input B: a knowledge base of OWL DLcall,
effect B is enriched with all the assertions deduced from the calls.
function enrichByAssertionsInferredFromCalls(B):
Ins← the set of instances occurring in B
cache← empty dictionary
repeat
𝑠 ← cardB
for each instance 𝑎 occurring in B do
B ← B ∪ assertionsEntailedByCalls(B, 𝑎, cache)
end
until cardB = 𝑠;

Algorithm 2: Enriching the knowledge base with assertions
coming from calls.

must be equal: in this paper, datatype properties are assumed to
be interpreted as partial functions, therefore 𝑣1 ≠ 𝑣2 would lead to
inconsistency. For instance, two methods for finding the degree of
a polynomial equation have to lead to the same result when neither
of them fail, otherwise, B would be inconsistent.

Under assumptions (A1) and (A2), the process always terminates.
This is a consequence of (1) the fact that there is a finite number
of pairs (Γ, 𝑎) where Γ is a call formula of B and 𝑎 is an instance
occurring in B, (2) the OWL DL inference engine and the called
functions always terminate.

The algorithm is sound: if 𝑝 (𝑎, 𝑣) is an assertion added to B by
this algorithm then Binit |= 𝑝 (𝑎, 𝑣), where Binit is the value of B
at the start of the algorithm (it does not add assertion that are not
logically inferable from the knowledge base). This follows from the
definition of the satisfaction of call formulas by interpretations.

Finally, it remains to be proven that the algorithm is complete in
the following sense: for any formula 𝜑 of OWL DL, if Binit |= 𝜑 in
the logic OWL DLcall then Bfinal |= 𝜑 in the logic OWL DL (i.e.
without taking into account call formulas), whereBinit andBfinal
are the values of B before and after the application of Algorithm 2.
In particular, this means that if an assertion 𝑝 (𝑎, 𝑣) (where 𝑝 is a
𝜏-property) can be inferred from Binit using one or several call
formulas but cannot be inferred from Binit without call formulas,
then it can be inferred from Bfinal without call formula. Therefore,
once Algorithm 2 is applied, the call formulas are useless until new
formulas are added to the knowledge base.

Towards an improvement of the algorithm. This algorithm is based
on an eager evaluation: all the calls to external functions that can be
made are actually made. Now, a given query to the inference engine
may not necessarily require all these calls. Therefore, triggering
calls only when they are needed, according to the principle of lazy
evaluation, would be beneficial in terms of computing time.

4.3 Using OWL DLcall in practice
A first implementation of the algorithm described above is available
online4, together with the ontology and call formulas for the run-
ning example used in this article. This Python implementation relies
on the OwlReady2 library5 to manipulate knowledge in OWL DL
and for interactions with the Hermit reasoner [6], and on SymPy to
implement external functions based on symbolic computation. In
practice, the tool takes as input an ontology that includes the defini-
tion of call formulas. It outputs a set of RDF triples corresponding to
the assertions generated as results of executing the functions associ-
ated with those call formulas whenever relevant (i.e., the assertions
that complete the ontology so that all inferences derivable from it
based on OWL DLcall can be obtained by a standard description
logic reasoner). Therefore, taking inspiration from this example,
a user might define new concepts of problems, the parts of their
definitions that require computation, and the corresponding call
formulas, so as to enable inferences combining both description
logic reasoning and symbolic computation.

From a knowledge representation point of view, the following
question must be raised: Given a mathematical piece of knowledge
to be formalized, what parts of it should be represented in OWL DL
4https://github.com/mdaquin/OWLDLcall/
5https://pypi.org/project/owlready2/

https://github.com/mdaquin/OWLDLcall/
https://pypi.org/project/owlready2/

Representing Mathematical Knowledge KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA

and what part should be represented by external functions? In the
example of Section 3, the choice consisted in leaving to the external
functions the handling of mathematical expressions and keeping
in OWL DL all the conceptual notions, that are usually expressed
in natural language using a mathematical terminology. This seems
to be a sensible approach to answer this representation question
in general but, in some situations, this criterion may not be so
simple to apply, for example, when the same theorem is expressed
differently (with more or less formal parts) in two textbooks in
mathematics. Therefore, this methodological question is likely to
require more in-depth studies in the future.

4.4 Towards more complex cases
In the previous sections, it has been explained how some mathemat-
ical problems, represented by instances pb of the Problem concept
can be solved thanks to the use of call-formulas in OWL DLcall.
Some mathematical problems, such as the ones arising in physics
for the modeling of micro-mirror arrays, are more complex in the
sense that they require the use of several definitions and theorems.
Provided that each of these definitions and theorems is triggered
by an instance and given a first instance pbinit, the idea is to use
call formulas to reify new instances (instead of datatype values).

Extension of the logic OWL DLcall. This extension consists in
considering the new call formulas

𝑟 ⊒ call(𝑓 , 𝐿𝑃𝐶, 𝐷, 𝑅)
with the following differences with the call formulas of the previous
sections:
• 𝑟 is an object property and 𝑅 is a concept;
• 𝑓 is interpreted in 𝑓 that returns a new instance inst (i.e. an
instance not occurring in the knowledge base) accompanied
by assertions associated to this instance;6
• In particular if the call formula is triggered on a instance
𝑎 of 𝐷 , then one of the new assertions is always 𝑟 (𝑎, inst)
(𝑅 is qualified as a range concept of 𝑟).

In what follows we use the following OWL DL formula, not
introduced before:

𝑟1;𝑟2; . . . ;𝑟𝑛 ⊑ 𝑠

where 𝑟1, 𝑟2, . . . , 𝑟𝑛 and 𝑠 are object properties. An interpreta-
tion I satisfies this formula if, for every pair of instances (𝑎, 𝑏),
I |= (𝑟1;𝑟2; . . . ;𝑟𝑛) (𝑎, 𝑏) entails I |= 𝑠 (𝑎, 𝑏).

Example. Let us consider the following problem:

pbinit = find the eigenvalues of the matrix𝑀 =

[
2 1
1 2

]
For solving this problem, the following definitions and theorems

are used:
(Def. 1) The characteristic polynomial of a square matrix𝑀 of order

𝑛 is the polynomial det(𝑋 · 𝐼𝑛 − 𝑀) (where 𝐼𝑛 is the unit
matrix of order 𝑛 and det(𝐴) is the determinant of a square
matrix 𝐴).

6Technically, adding these new assertions to the knowledge base does not keep the
equivalence (the knowledge base after this addition is not equivalent to the one before
it). However, the equivalence is recovered if new instances are considered as existential
variables (as in a skolemization process).

(Def. 2) The roots of a polynomial 𝑃 are the solutions of the polyno-
mial equation 𝑃 (𝑡) = 0 with unknown 𝑡 .

(Th. 1) The eingenvalues of a square matrix 𝑀 are the roots of its
characteristic polynomial.

— And the definitions and theorems of Section 3.
In the following, the principles for implementing this example in
the extended logic are outlined.

The definition of pbinit is based on the introduction of an in-
stance mat representing the matrix𝑀 :

21. FindingEigenValues ⊑ Problem;
22. FindingEigenValues(pbinit);
23. hasMatrix(pbinit, mat);
24. hasExpression(mat, "[[2, 1], [1, 2]]").
25. SquareMatrix(mat);7

Now, (Def. 1) can be formalized by:
26. hasCharacteristicPolynomial ⊒

call("computeCharPol", [hasExpression],
SquareMatrix, Polynomial).

using the Sympy function "computeCharPol".
From these formulas the following assertions can be inferred:
27. hasCharacteristicPolynomial(mat, inst1);
28. Polynomial(inst1);
29. hasExpression(inst1, "X ** 2 - 4 * X + 3").

Now, (Def. 2) can be formalized by:
30. hasEquation;hasSolutionSet ⊑ hasRootSet;
31. hasEquation ⊒

call("polToEquation", [hasExpression],
Polynomial, PolynomialEquation).

where the Sympy function "polToEquation" consists in substitut-
ing "X" by "t", concatenating " = 0" to a string and generating a
new instance and relevant assertions.

From this, the following assertions can be inferred:
32. hasEquation(inst1, inst2);
33. PolynomialEquation(inst2);
34. hasEquality(inst2, "t ** 2 - 4 * t + 3 = 0");
35. hasUnknown(inst2, "t").

The instance inst2 represents a second degree equation, which can
be solved using the principles described in Section 3: using a call
formula based on findObviousSolEqDeg2 leads to the solution set
{𝑡 = 1, 𝑡 = 3} represented by the instance inst3:

36. hasSolutionSet(inst2, inst3).
Now, (Th. 1) and the fact that the solution of a problem of finding
eigenvalues of a matrix is the set of these eingenvalues can be
expressed respectively by:

37. hasCharacteristicPolynomial;hasRootSet
⊑ hasSetOfEigenValues;

38. hasMatrix;hasRootSet ⊑ hasSolution.
from which it can be deduced that

39. hasSolution(pbinit, inst3)
which solves the problem.

7It is noteworthy that a call formula could be added to the knowledge base to make
this assertion inferable from assertion 24 and this call formula.

KCAP 2023, December 5 - 7, 2023, Pensacola, Florida, USA d’Aquin et al.

Algorithmic issues. The application of the algorithm presented
in Section 4.2 to this extension of OWL DLcall does not always
terminate as the example hereafter shows. Consider the formula
𝑟 ⊒ call(𝑓 , [𝑝],⊤, unsigned int) where 𝑝 is a 𝜏-property with
𝜏 = unsigned int, and 𝑓 associates to 𝑣 ∈ N an instance inst
together with the assertion 𝑝 (inst, 𝑣 + 1). Then, this call formula
and an assertion 𝑝 (𝑎, 0) generates an infinite sequence of assertions
𝑟 (𝑎, inst1), 𝑝 (inst1, 1), 𝑟 (inst1, inst2), 𝑝 (inst2, 2),
𝑟 (inst2, inst3), 𝑝 (inst3, 3), etc., hence the non-termination of
the algorithm.

Two directions of future work are considered in order to address
this termination issue. The first one is to examine whether the
inference relation in this logic is decidable and, if so, what algorithm
can be proposed (intuitively, using lazy evaluation seems to be a
good idea). The second one is to consider restrictions to ensure
termination, even with the algorithm presented in Section 4.2. A
possibility of such a restriction could be to have call formulas such
that the set of concepts that are domains or ranges of these formulas
are pairwise disjoint, which would avoid, at least, some loops.

Towards the representation and use of theorems in the domain of
the asymptotic analysis of partial differential equations. Although
the problems presented in this article are simple mathematical prob-
lems, the proposed approach has been developed with the goal to
be adapted to the complex domain of asymptotic analysis of partial
differential equations, a domain in which thousands of theorems
have been developed in the literature. At this stage, the authors are
convinced that at least a large proportion of such theorems can be
represented in OWL DLcall (with the extension presented in this
section). However, scalability is an issue that might appear when
actually dealing with an important number of theorems.

5 DISCUSSION AND CONCLUSION
This paper has presented a novel approach to the representation
of mathematical knowledge in a formalism extending OWL DL
by “call formulas”, i.e. formulas related to calls to external func-
tions (e.g. functions for handling mathematical expressions). The
necessity of such a formalism has emerged from the way mathe-
maticians express their knowledge, using both natural language
with a mathematical terminology and mathematical expressions.

The use of calls to external functions is not a new issue in the
realm of description logics and related formalisms, and it faces
two opposing constraints: (1) the theoretical ideal of having a fully
specified logic on which theoretical properties can be proven with-
out additional assumptions, (2) the practical expressivity (i.e. the
possibility of using all the required external functions).

The use of complex concrete domains as presented in [8] is more
on the side of (1) on the (1)–(2) spectrum. For such a concrete
domain 𝜏 = (Δ𝜏 ,Φ𝜏), 𝜎 ∈ Φ𝜏 represents a relation 𝜎𝜏 of Δ𝜏 that can
be binary, ternary, etc., and not only unary as in concrete domains of
OWLDL (in OWLDL, 𝜎𝜏 is a subset of Δ𝜏 hence a unary relation on
Δ𝜏). We have given up the idea of using complex concrete domains
because this approach would make it difficult (if not impossible) to
represent even simple examples of mathematical notions.

Our approach is more on the (2) side of the spectrum: prior-
ity has been given to expressiveness, and the study of theoretical
properties requires assumptions on the external functions, while

remaining more nuanced than previous attempts such as in KL-
ONE [3]. Indeed, KL-ONE enabled the definition of interpretative
hooks “in which direct instructions to the interpreter are expressed
in the language that implements the interpreter itself” without
any restriction, making it impossible to provide any theoretical
guarantee regarding the properties of the language.

It appears clearly throughout the paper that a lot of work remains
to be done in order to reach our goal: a general-purpose logic for
representing mathematical knowledge associated with a scalable
inference system. The current prototype can handle simple math-
ematical problems, but considering complex problems (involving,
in our setting, the creation of new instances during the inference
process) requires an extension of the logic that raises theoretical
and practical issues, as described in Section 4.4.

Another issue to be studied occurs when several paths exist in
order to solve a problem. In Section 3, each of the problems pb1
and pb2 can be solved using twomethods: findObviousSolEqDeg2
and useDiscriminant, but which one should be tried first? Being
able to infer from knowledge about mathematical problem-solving
strategies the priority with which to consider each method and
to use this priority in the inference algorithm constitutes another
direction for future work.

From an application point of view, our objective is to represent
and handle numerous theorems and their proofs in our target do-
main of asymptotic analysis of partial differential equations, in
order to solve practical problems in physics, e.g. modeling micro-
mirror arrays. Following this line, a (very) long-term future work
would be to solve problems of this domain for which no theorem is
available, by adapting some theorems (and their proofs) to such a
problem, according to the principles of case-based reasoning [11].

REFERENCES
[1] W. Belkhir, N. Ratier, D. D. Nguyen, N. B. T. Nguyen, M. Lenczner, and F. Zamkot-

sian. 2017. A tool for aided multi-scale model derivation and its application to the
simulation of a micro mirror array. In 2017 18th International Conference on Ther-
mal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics
and Microsystems (EuroSimE). IEEE, 1–8.

[2] W. Belkhir, N. Ratier, D. D. Nguyen, B. Yang, M. Lenczner, F. Zamkotsian, and
H. Cirstea. 2015. Towards an automatic tool for multi-scale model derivation
illustratedwith amicro-mirror array. In 17th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 47–54.

[3] R. Brachman, E. Ciccarelli, N. Greenfeld, and M. Yonke. 1978. KL-ONE reference
manual. Technical Report. BBN report.

[4] Ronald J. Brachman and Hector J. Levesque. 2004. Knowledge Representation and
Reasoning. Morgan Kaufmann.

[5] MD Canonica, F Zamkotsian, P Lanzoni, W Noell, and N De Rooij. 2013. The two-
dimensional array of 2048 tilting micromirrors for astronomical spectroscopy.
Journal of Micromechanics and Microengineering 23, 5 (2013), 055009.

[6] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. 2014. HermiT: an
OWL 2 reasoner. Journal of automated reasoning 53 (2014), 245–269.

[7] C. Lange. 2013. Ontologies and languages for representing mathematical knowl-
edge on the semantic web. Semantic Web 4, 2 (2013), 119–158.

[8] C. Lutz. 2003. Description Logics with Concrete Domains – A Survey. InAdvances
in Modal Logics Volume 4. King’s College Publications.

[9] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. 2009.
OWL 2 web ontology language profiles. W3C recommendation.

[10] D. D. Nguyen, W. Belkhir, N. Ratier, B. Yang, M. Lenczner, F. Zamkotsian, and
H. Cirstea. 2015. A multi-scale model of a micro-mirror array and an automatic
model derivation tool. In 16th Int. Conf. on Thermal, Mechanical and Multi-Physics
Simulation and Experiments in Microelectronics and Microsystems. IEEE, 1–9.

[11] C. K. Riesbeck and R. C. Schank. 1989. Inside Case-Based Reasoning. Lawrence
Erlbaum Associates, Inc., Hillsdale, New Jersey.

	Abstract
	1 Introduction
	2 Background on OWL DL
	2.1 Syntax
	2.2 Semantics
	2.3 Some practical notations

	3 A Simple Example
	3.1 Definitions and theorems related to second degree equations
	3.2 Partial representation in description logic
	3.3 Remainder of the representation by external functions
	3.4 Connecting representation entities of the two languages

	4 Representing Mathematical Knowledge in OWL DLcall
	4.1 OWL DLcall
	4.2 An inference algorithm for OWL DLcall
	4.3 Using OWL DLcall in practice
	4.4 Towards more complex cases

	5 Discussion and conclusion
	References

