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SPECTRUM OF THE DIRICHLET LAPLACIAN IN A THIN CUBIC LATTICE

Lucas Chesnel1,* and Sergei A. Nazarov2

Abstract. We give a description of the lower part of the spectrum of the Dirichlet Laplacian in an
unbounded 3D periodic lattice made of thin bars (of width 𝜀 ≪ 1) which have a square cross section.
This spectrum coincides with the union of segments which all go to +∞ as 𝜀 tends to zero due to the
Dirichlet boundary condition. We show that the first spectral segment is extremely tight, of length
𝑂(𝑒−𝛿/𝜀), 𝛿 > 0, while the length of the next spectral segments is 𝑂(𝜀). To establish these results, we
need to study in detail the properties of the Dirichlet Laplacian 𝐴Ω in the geometry Ω obtained by
zooming at the junction regions of the initial periodic lattice. This problem has its own interest and
playing with symmetries together with max–min arguments as well as a well-chosen Poincaré–Friedrichs
inequality, we prove that 𝐴Ω has a unique eigenvalue in its discrete spectrum, which generates the first
spectral segment. Additionally we show that there is no threshold resonance for 𝐴Ω, that is no non
trivial bounded solution at the threshold frequency for 𝐴Ω. This implies that the correct 1D model of
the lattice for the next spectral segments is a system of ordinary differential equations set on the limit
graph with Dirichlet conditions at the vertices. We also present numerics to complement the analysis.
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1. Introduction

With the profusion of works related to graphene in physics, an important effort has been made in the
mathematical community to understand the asymptotic behaviour of the spectrum of the Dirichlet operator in
quantum waveguides made of thin ligaments, of characteristic width 𝜀≪ 1, forming unbounded periodic lattices.
Various geometries have been considered and we refer the reader to [15,18,23,24] for review works. To address
such problems, the general approach can be summarized as follows. Using the Floquet–Bloch–Gelfand theory
[16,25,26,50], one shows that the spectrum of the operator in the periodic domain has a band-gap structure, the
bands being generated by the eigenvalues of a spectral problem set on the periodicity cell with quasi-periodic
boundary conditions involving the Floquet–Bloch parameter. The first step consists in applying techniques of
dimension reduction to derive a 1D model for this spectral problem on the periodicity cell. Then one studies
precisely this 1D model depending on the Floquet–Bloch parameter to get information on the spectral bands.

Let us mention that in the past, slapdash and casual conclusions have been made concerning the 1D model
problem. This model consists of ordinary differential equations on the ligaments obtained when taking 𝜀 → 0
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Figure 1. Left: unbounded periodic cubic lattice made of thin bars of width 𝜀 with square
cross-sections. Right: geometry Ω of the near field, aka boundary layer, problem at the junction
regions.

supplemented by transmission conditions at the nodes of the graph. Certain authors have inappropriately applied
Pauling’s model [46] and imposed Kirchoff transmission conditions at the nodes. These Kirchoff conditions boil
down to impose continuity of the field and zero outgoing flux (the sum of the derivatives of the field along the
outgoing directions at the node vanishes). This is correct for the Laplacian with Neumann boundary conditions
(BC) and has been rigorously justified in [17,27,47]. However it has been shown by Grieser [17] (see also [29,30])
that for the Dirichlet problem, in general the right conditions to impose at the nodes are Dirichlet ones. More
precisely, it has been proved in [17] that the transmission conditions to impose depend on the existence or
absence of so-called threshold resonances for the near field operator defined as the Laplacian in the geometry
obtained when zooming at the junction regions (named Ω in the sequel, see Fig. 1 right). We say that there
is a threshold resonance if there is a non zero bounded function which solves the homogeneous problem at the
frequency coinciding with the bottom of the essential spectrum (the threshold) of the Laplace operator. For
the Neumann problem, the threshold is Λ† = 0 and there is a threshold resonance because the constants solve
−∆𝑢 = 0 in Ω + Neumann BC. Due to this property, one must impose Kirchoff conditions at the nodes. For the
Dirichlet problem, the essential spectrum starts at a positive threshold Λ† > 0 and in general the only solution
to the problem

−∆𝑢 = Λ†𝑢 in Ω
𝑢 = 0 on 𝜕Ω

(1)

which remains bounded at infinity is zero, i.e. there is no threshold resonance. Because of this feature, one
usually imposes Dirichlet condition at the nodes of the 1D model (see (44) for the precise moment where this
pops up in the analysis below).

From there, some authors have worked to establish rigorous results showing the absence of non zero bounded
solution to (1). First, different planar quantum waveguides made of T-, X- and Y-shaped junctions of thin
ligaments have been considered e.g. in [33, 35, 36, 39, 43–45]. In these articles, additionally it has been proved
that the near field operator in Ω, depending on the considered geometry, may have discrete spectrum (one
or several eigenvalues below the essential spectrum). When the latter exists, the low-frequency range of the
spectrum in the periodic domain is not described by the above mentioned 1D model with Dirichlet conditions
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Figure 2. Examples of T- and X-shaped 2D geometries.

at the nodes. Instead, the first spectral bands, their number being equal to the multiplicity of the discrete
spectrum, are generated by functions which are localized at the junction regions. Let us mention that for
certain exceptional geometries, for example for a sequence of angles 𝛼 in the central domain of Figure 21, one
may have non zero solutions to (1) which remain bounded at infinity, i.e. existence of threshold resonance. In
these situations, at least if the dimension of the space of bounded solutions to (1) is one, the good 1D model
describing the spectral bands which are not associated with the discrete spectrum in Ω, has certain Kirchoff
transmission conditions at the nodes which depend on the geometry (see also [2, 13, 14]). We emphasize that
this leads to very different spectra for the operator in the periodic medium. More precisely, when there is no
threshold resonance, the bands of the spectrum in the periodic material become very small as 𝜀 → 0 and the
spectral gaps enlarge. In other words, the spectrum becomes rather sparse, for most of the spectral parameters
waves cannot propagate and the limit 1D ligaments are disconnected. This is what we will obtain below in our
configuration. On the other hand, when Problem (1) admits a space of dimension one of bounded solutions, the
spectral bands in the periodic material are much larger.

Afterwards, 3D geometries were considered in [6] (see also the corresponding note [5]). In these articles, the
authors consider quantum waveguides for which the near field domain Ω is a cruciform junction of two cylinders
whose cross section coincides with the unit disc. The passage from the planar case to the spatial case requires
certain non obvious adaptations of the methods. In particular the characterization of the discrete spectrum of
the near field operator and the proof of absence of threshold resonances are much more involved. In the present
work, we study an even more intricate 3D geometry for which the near field geometry is the union of three
waveguides. Rather precise Poincaré–Friedrichs estimates are required to prove that the discrete spectrum of the
near field operator contains exactly one eigenvalue and to show that at the threshold, zero is the only bounded
solution. This work also complements the study of [6] thanks to the numerical experiments. Let us mention that
the cruciform junction of two 3D cylinders with square cross section reduces to a 2D problem in a X-shaped
geometry (see again Fig. 2 right) and due to factoring out, is of no interest.

The outline is as follows. First we describe the problem, introduce the notation and present the main results.
Then we study the discrete spectrum of the near field operator. In Section 4, we demonstrate the absence of
threshold resonance for the near field operator. Section 5 is dedicated to the analysis of the main theorem of
the article (Thm. 2.4) with the derivation of asymptotic models for the spectral bands in the original periodic
domain. Finally we show some numerics to complement the results and conclude with some appendix containing
the proof of two lemmas needed in Sections 3 and 4.

1This also occurs in the X-shaped junction of Figure 2 right when rotating one of the two branches, see [12].
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2. Notation and main results

For 𝑗 = 1, 2, 3, introduce the cylinder with square cross section

𝐿𝑗 :=
{︀
𝑥 := (𝑥1, 𝑥2, 𝑥2) ∈ R3 | |𝑥𝑘| < 1/2 for 𝑘 ∈ {1, 2, 3} ∖ {𝑗}

}︀
(2)

and for 𝜀 > 0 small, 𝑚,𝑛 ∈ Z := {0,±1,±2, . . .}, set

𝐿𝑚𝑛𝜀
1 :=

{︀
𝑥 ∈ R3 | |𝑥2 −𝑚| < 𝜀/2, |𝑥3 − 𝑛| < 𝜀/2

}︀
𝐿𝑚𝑛𝜀

2 :=
{︀
𝑥 ∈ R3 | |𝑥1 −𝑚| < 𝜀/2, |𝑥3 − 𝑛| < 𝜀/2

}︀
𝐿𝑚𝑛𝜀

3 :=
{︀
𝑥 ∈ R3 | |𝑥1 −𝑚| < 𝜀/2, |𝑥2 − 𝑛| < 𝜀/2

}︀
.

Finally define the unbounded periodic domain

Π𝜀 :=
⋃︁

𝑚,𝑛∈Z
𝐿𝑚𝑛𝜀

1 ∪ 𝐿𝑚𝑛𝜀
2 ∪ 𝐿𝑚𝑛𝜀

3

(see Fig. 1 left). Consider the Dirichlet spectral problem for the Laplace operator

−∆𝑢𝜀 = 𝜆𝜀 𝑢𝜀 in Π𝜀

𝑢𝜀 = 0 on 𝜕Π𝜀.
(3)

The variational form associated with this problem writes∫︁
Π𝜀

∇𝑢𝜀 · ∇𝑣𝜀 d𝑥 = 𝜆𝜀

∫︁
Π𝜀

𝑢𝜀𝑣𝜀 d𝑥, ∀𝑣𝜀 ∈ H1
0(Π𝜀). (4)

Here H1
0(Π𝜀) stands for the Sobolev space of functions of H1(Π𝜀) which vanish on the boundary 𝜕Π𝜀. Classically

(see e.g. [10], Sect. 10.1), the variational problem (4) gives rise to an unbounded, positive definite, selfadjoint
operator 𝐴𝜀 in the Hilbert space L2(Π𝜀), with domain D(𝐴𝜀) ⊂ H1

0(Π𝜀). Note that this operator is sometimes
called the quantum graph Laplacian [9,47]. The fact that 𝜕Π𝜀 is not smooth implies that D(𝐴𝜀) is a larger space
than H2(Π𝜀). Singular decompositions for the elements in D(𝐴𝜀) involve both edge and polyhedron singularities.
The first ones can be obtained explicitly while the second have to be estimated (cf. [22]). However we will not
need them in our work. Since Π𝜀 is unbounded, the embedding H1

0(Π𝜀) ⊂ L2(Π𝜀) is not compact and 𝐴𝜀

has a non empty essential component 𝜎𝑒(𝐴𝜀) ([10], Thm. 10.1.5). Actually, due to the periodicity, we have
𝜎𝑒(𝐴𝜀) = 𝜎(𝐴𝜀). The Gelfand transform (see the surveys [25,32] and books [26,50])

𝑢𝜀(𝑥) ↦→ 𝑈𝜀(𝑥, 𝜂) =
1

(2𝜋)3/2

∑︁
𝜄∈Z3

𝑒𝑖𝜂·𝜄𝑢𝜀(𝑥+ 𝜄), 𝜂 = (𝜂1, 𝜂2, 𝜂3),

changes Problem (3) into a spectral problem set in the periodicity cell

𝜔𝜀 := 𝜔𝜀
1 ∪ 𝜔𝜀

2 ∪ 𝜔𝜀
3 with

𝜔𝜀
1 := (−1/2; 1/2)× (−𝜀/2; 𝜀/2)2

𝜔𝜀
2 := (−𝜀/2; 𝜀/2)× (−1/2; 1/2)× (−𝜀/2; 𝜀/2)
𝜔𝜀

3 := (−𝜀/2; 𝜀/2)2 × (−1/2; 1/2).
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This problem, which involves quasi-periodic boundary conditions at the faces located at 𝑥1 = ±1/2, 𝑥2 = ±1/2,
𝑥3 = ±1/2, writes

−∆𝑈𝜀(𝑥, 𝜂) = Λ𝜀 𝑈𝜀(𝑥, 𝜂) 𝑥 ∈ 𝜔𝜀

𝑈𝜀(𝑥, 𝜂) = 0 𝑥 ∈ 𝜕𝜔𝜀 ∩ 𝜕Π𝜀

𝑈𝜀(−1/2, 𝑥2, 𝑥3, 𝜂) = 𝑒𝑖𝜂1𝑈𝜀(+1/2, 𝑥2, 𝑥3, 𝜂) (𝑥2, 𝑥3) ∈ (−𝜀/2; 𝜀/2)2

𝜕𝑥1𝑈
𝜀(−1/2, 𝑥2, 𝑥3, 𝜂) = 𝑒𝑖𝜂1𝜕𝑥1𝑈

𝜀(+1/2, 𝑥2, 𝑥3, 𝜂) (𝑥2, 𝑥3) ∈ (−𝜀/2; 𝜀/2)2

𝑈𝜀(𝑥1,−1/2, 𝑥3, 𝜂) = 𝑒𝑖𝜂2𝑈𝜀(𝑥1,+1/2, 𝑥3, 𝜂) (𝑥1, 𝑥3) ∈ (−𝜀/2; 𝜀/2)2

𝜕𝑥2𝑈
𝜀(𝑥1,−1/2, 𝑥3, 𝜂) = 𝑒𝑖𝜂2𝜕𝑥2𝑈

𝜀(𝑥1,+1/2, 𝑥3, 𝜂) (𝑥1, 𝑥3) ∈ (−𝜀/2; 𝜀/2)2

𝑈𝜀(𝑥1, 𝑥2,−1/2, 𝜂) = 𝑒𝑖𝜂3𝑈𝜀(𝑥1, 𝑥2,+1/2, 𝜂) (𝑥1, 𝑥2) ∈ (−𝜀/2; 𝜀/2)2

𝜕𝑥3𝑈
𝜀(𝑥1, 𝑥2,−1/2, 𝜂) = 𝑒𝑖𝜂3𝜕𝑥3𝑈

𝜀(𝑥1, 𝑥2,+1/2, 𝜂) (𝑥1, 𝑥2) ∈ (−𝜀/2; 𝜀/2)2.

(5)

One can show that (5) is formally selfadjoint for any value of the dual variable 𝜂 ∈ R3 of the Gelfand transform.
Additionally it is 2𝜋-periodic with respect to each of the 𝜂𝑗 because the transformation 𝜂𝑗 ↦→ 𝜂𝑗 + 2𝜋 leaves
invariant the quasiperiodicity conditions. For any 𝜂 ∈ [0; 2𝜋)3, the spectrum of (5) is discrete, made of a non-
decreasing positive sequence of eigenvalues

0 < Λ𝜀
1(𝜂) ≤ Λ𝜀

2(𝜂) ≤ · · · ≤ Λ𝜀
𝑝(𝜂) ≤ . . .

where the Λ𝜀
𝑝(𝜂) are counted according to their multiplicity. The functions

𝜂 ↦→ Λ𝜀
𝑝(𝜂)

are continuous ([20], Chap. 9) so that the sets

Υ𝜀
𝑝 =

{︀
Λ𝜀

𝑝(𝜂), 𝜂 ∈ [0; 2𝜋)3
}︀

(6)

are connected compact segments. Finally, according to the theory (see again [16,25,26,32,50]), the spectrum of
the operator 𝐴𝜀 has the form

𝜎(𝐴𝜀) =
⋃︁

𝑝∈N*
Υ𝜀

𝑝

where N* := {1, 2, . . .}. At this stage, we see that to clarify the behaviour of the spectrum of 𝐴𝜀 with respect
to 𝜀→ 0+, we need to study the dependence of the Υ𝜀

𝑝 with respect to 𝜀.
As already mentioned in the introduction, the analysis developed for example in [17, 31, 36] shows that the

asymptotic behaviour of the Υ𝜀
𝑝 with respect to 𝜀 depends on the features of the Dirichlet Laplacian in the

geometry obtained when zooming at the junction region of the periodicity cell 𝜔𝜀. More precisely, introduce the
unbounded domain

Ω := 𝐿1 ∪ 𝐿2 ∪ 𝐿3 (7)

(see Fig. 1 right) where the 𝐿𝑗 are the cylinders with unit square cross section appearing in (2). In Ω, consider
the Dirichlet spectral problem for the Laplace operator

−∆𝑣 = 𝜇 𝑣 in Ω
𝑣 = 0 on 𝜕Ω

(8)

which is now independent of 𝜀. We denote by 𝐴Ω the unbounded, positive definite, selfadjoint operator naturally
associated with this problem defined in L2(Ω) and of domain D(𝐴Ω) ⊂ H1

0(Ω). Its essential spectrum 𝜎𝑒(𝐴Ω)
occupies the ray [2𝜋2; +∞) and the threshold point Λ† := 2𝜋2 is the first eigenvalue of the Dirichlet Laplacian
in the cross sections of the branches of Ω (which are unit squares). The main goal of this article is to show the
following results.
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Theorem 2.1. The discrete spectrum of the operator 𝐴Ω contains exactly one eigenvalue 𝜇1 ∈ (0; 2𝜋2).

Remark 2.2. Numerically, in Section 6, we find 𝜇1 ≈ 12.9 ≈ 1.3𝜋2. Note that the eigenfunctions associated
with 𝜇1 decay at infinity as 𝑂(𝑒−

√
2𝜋2−𝜇1 |𝑥𝑗 |) in 𝐿𝑗 , 𝑗 = 1, 2, 3.

As classical in literature, we shall say that there is a threshold resonance for Problem (8) if there is a non
trivial function which solves (8) with the threshold value 𝜇 = 2𝜋2 of the spectral parameter.

Theorem 2.3. There is no threshold resonance for Problem (8).

From Theorems 2.1 and 2.3, we will derive the final result for the spectrum of 𝐴𝜀 in the initial unbounded
periodic lattice.

Theorem 2.4. For 𝑘 ∈ N*, let Υ𝜀
𝑘 = [𝑎𝜀

𝑘−; 𝑎𝜀
𝑘+], with 𝑎𝜀

𝑘− ≤ 𝑎𝜀
𝑘+, be the spectral band in (6). There are some

(real) constants 𝑐1 > 0, 𝑐− < 𝑐+, 𝐶𝑘 > 0, 𝛿 > 0 and 𝜀𝑘 > 0 such that we have
Case 𝑘 = 1: ⃒⃒⃒

𝑎𝜀
1± −

(︁
𝜀−2𝜇1 ± 𝜀−2𝑒−

√
2𝜋2−𝜇1/𝜀𝑐1

)︁⃒⃒⃒
≤ 𝐶1 𝑒

−(1+𝛿)
√

2𝜋2−𝜇1/𝜀, ∀𝜀 ∈ (0; 𝜀1];

Case 𝑘 = 𝑞 + 3𝑝 with 𝑝 ∈ N, 𝑞 ∈ {2, 3, 4}:⃒⃒
𝑎𝜀

𝑘± −
(︀
𝜀−22𝜋2 + (𝑝+ 1)2𝜋2 + 𝜀(𝑝+ 1)2𝑐±

)︀⃒⃒
≤ 𝐶𝑘 𝜀

1+𝛿, ∀𝜀 ∈ (0; 𝜀𝑘].

Here 𝜇1 appears in Theorem 2.1 and 𝑐±, 𝛿 are independent of 𝑘.

Let us comment this statement. First, as already mentioned in the introduction, the spectrum of the operator
𝐴𝜀 goes to +∞ as 𝜀 → 0. Additionally this spectrum becomes very sparse. Indeed Theorem 2.4 implies the
following results. The length of the spectral bands (wave passing zones) are infinitesimal as 𝜀→ 0. More precisely,
asymptotically Υ𝜀

1 becomes of length 2𝜀−2𝑒−
√

2𝜋2−𝜇1/𝜀𝑐1 while Υ𝜀
𝑞+3𝑝, 𝑝 ∈ N, 𝑞 ∈ {2, 3, 4}, becomes of length

𝜀(𝑝 + 1)2|𝑐+ − 𝑐−|. Moreover, between the bands Υ𝜀
1 and Υ𝜀

2, there is a gap (wave stopping zone), that is a
segment of spectral parameters 𝜆𝜀 such that waves cannot propagate, of size 𝑂(𝜀−2(2𝜋2 − 𝜇1)) while between
Υ𝜀

𝑞+3𝑝 and Υ𝜀
𝑞+3(𝑝+1), the gap is asymptotically of size 𝜋2(2𝑝+ 3). Therefore the main message here is that in

the thin lattice Π𝜀 the propagation of waves is hampered and occurs for very narrow intervals of frequencies.

3. Properties of the discrete spectrum of 𝐴Ω

The goal of this section is to prove Theorem 2.1. We start by showing that the discrete spectrum of 𝐴Ω is
non empty (for related multidimensional problems, see [34]).

Proposition 3.1. The discrete spectrum of 𝐴Ω has at least one eigenvalue.

Proof. Define the 2D X-shaped geometry Ω2𝐷 := Ω2𝐷
1 ∪ Ω2𝐷

2 with Ω2𝐷
1 := R × (−1/2; 1/2) and Ω2𝐷

2 :=
(−1/2; 1/2)× R (see Fig. 2 right). According to [3, 48] (see also [37], Thm. 2.1 as well as the discussion at the
end of this proof), we know that the Dirichlet Laplacian in Ω2𝐷 admits exactly one eigenvalue 𝜇2𝐷 below the
continuous spectrum [𝜋2; +∞). Let 𝜙 ∈ H1

0(Ω2𝐷) be a corresponding eigenfunction. In the domain Ω ⊂ R3

introduced in (7), consider the function 𝑣 such that

𝑣(𝑥1, 𝑥2, 𝑥3) = 𝜙(𝑥1, 𝑥2) cos(𝜋𝑥3) in 𝐿1 ∪ 𝐿2, 𝑣(𝑥1, 𝑥2, 𝑥3) = 0 in Ω ∖ 𝐿1 ∪ 𝐿2.

We have ∫︁
Ω

|∇𝑣|2 d𝑥 =
∫︁

𝐿1∪𝐿2

|∇𝑣|2 d𝑥 = −
∫︁

𝐿1∪𝐿2

∆𝑣𝑣 d𝑥 =
(︀
𝜇2𝐷 + 𝜋2

)︀ ∫︁
Ω

𝑣2 d𝑥.
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But according to the max–min principle (cf. [10], Thm. 10.2.2), we know that

inf 𝜎(𝐴Ω) = inf
𝑤∈H1

0(Ω)∖{0}

∫︁
Ω

|∇𝑤|2 d𝑥∫︁
Ω

𝑤2 d𝑥
· (9)

Inserting the above 𝑣 in the right hand side of (9), we deduce that the discrete spectrum of 𝐴Ω contains an
eigenvalue below 𝜇2𝐷 + 𝜋2.

We end this proof by describing the elegant trick proposed in [3,48] to show the existence of an eigenvalue in
the discrete spectrum of the Dirichlet Laplacian in Ω2𝐷. Consider the square coloured in dark gray of Figure 2
right. It has side

√
2. Therefore the first eigenvalue of the Dirichlet Laplacian in this geometry is equal to 𝜋2.

Hence, in any domain containing strictly this square and included in Ω2𝐷, the first eigenvalue of the Dirichlet
Laplacian is strictly less than 𝜋2. Extending a corresponding eigenfunction by zero to Ω2𝐷 and using the max–
min principle, we infer that the discrete spectrum of the Dirichlet Laplacian in Ω2𝐷 is not empty. �

It remains to show that the discrete spectrum of 𝐴Ω has at most one eigenvalue. To proceed, first we establish
a result of symmetry.

Lemma 3.2. Let 𝑣 ∈ H1
0(Ω) be an eigenfunction of the operator 𝐴Ω associated with an eigenvalue 𝜇 < 2𝜋2.

Then 𝑣 is symmetric with respect to the three planes (𝑂𝑥2𝑥3), (𝑂𝑥3𝑥1), (𝑂𝑥1𝑥2).

Proof. We present the proof of symmetry with respect to the plane (𝑂𝑥2𝑥3). The two other symmetries can be
established similarly. Introduce the function 𝜙 such that

𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑣(𝑥1, 𝑥2, 𝑥3)− 𝑣(−𝑥1, 𝑥2, 𝑥3).

Our goal is to prove that 𝜙 ≡ 0. Set Ω+
1 := {(𝑥1, 𝑥2, 𝑥3) ∈ Ω |𝑥1 > 0}. The function 𝜙 satisfies −∆𝜙 = 𝜇𝜙 in

Ω+
1 and 𝜙 = 0 on 𝜕Ω+

1 . Therefore we have∫︁
Ω+

1

|∇𝜙|2 d𝑥 = 𝜇

∫︁
Ω+

1

𝜙2 d𝑥. (10)

Define the domains

𝐿+
1 := {𝑥 ∈ 𝐿1 |𝑥1 > 1/2}
𝑆2 := {𝑥 ∈ 𝐿2 |𝑥1 > 0} = Ω+

1 ∩ 𝐿2

𝑆3 := {𝑥 ∈ 𝐿3 |𝑥1 > 0} = Ω+
1 ∩ 𝐿3

𝑆±2 := {𝑥 ∈ 𝑆2 | ± 𝑥2 > 1/2}
𝑆±3 := {𝑥 ∈ 𝑆3 | ± 𝑥3 > 1/2}
𝑄+

1 :=
{︀
𝑥 ∈ R3 | 0 < 𝑥1 < 1/2, |𝑥2| < 1/2, |𝑥3| < 1/2

}︀
= 𝑆2 ∩ 𝑆3

(see the exploded-view drawing of Fig. 3 left). Using the Poincaré inequality in a section of 𝐿+
1 , which is a unit

square, and then integrating with respect to the 𝑥1 variable, first we find

2𝜋2

∫︁
𝐿+

1

𝜙2 d𝑥 ≤
∫︁

𝐿+
1

|∇𝜙|2 d𝑥. (11)

In 𝑆±2 , 𝑆±3 , since the transverse section is smaller than in 𝐿+
1 , we have better estimates, namely

5𝜋2

∫︁
𝑆±2

𝜙2 d𝑥 ≤
∫︁

𝑆±2

(𝜕𝑥1𝜙)2 + (𝜕𝑥3𝜙)2 d𝑥, 5𝜋2

∫︁
𝑆±3

𝜙2 d𝑥 ≤
∫︁

𝑆±3

(𝜕𝑥1𝜙)2 + (𝜕𝑥2𝜙)2 d𝑥. (12)
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Figure 3. Left: exploded-view drawing of Ω+
1 . Right: exploded-view drawing of Ω+.

The difficulty to complete the proof however is that in 𝑄+
1 , using a 1D Poincaré inequality with respect to the

𝑥1 variable, we can simply get

𝜋2

∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑄+
1

(𝜕𝑥1𝜙)2 d𝑥. (13)

This is enough to conclude directly that 𝜙 ≡ 0 when 𝜇 ∈ (0;𝜋2) but not in the general situation 𝜇 ∈ (0; 2𝜋2) that
we wish to deal with. Therefore we have to refine the strategy. What we will do is to exploit the “extra” terms
coming from the efficiency of estimates (12) to control the L2-norm of 𝜙 in 𝑄+

1 . More precisely, the Lemma 5.1
of [6] that we recall in appendix (Lem. A.1) guarantees that for a given 𝑎 > 0, we have the Poincaré–Friedrichs
inequality

𝜅(𝑎)
∫︁ 1/2

0

𝜑2 d𝑡 ≤
∫︁ +∞

0

(𝜕𝑡𝜑)2 d𝑡+ 𝑎2

∫︁ +∞

1/2

𝜑2 d𝑡, ∀𝜑 ∈ H1(0; +∞), (14)

where 𝜅(𝑎) is the smallest positive root of the transcendental equation

√
𝜅 tan

(︂√
𝜅

2

)︂
= 𝑎. (15)

In particular, solving (15) with 𝑎 = 𝜋
√︀

5/2, we find 𝜅(𝑎) > 𝜋2/2. Therefore, using (14), we can write

𝜋2

2

∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑆2

(𝜕𝑥2𝜙)2 d𝑥+
5𝜋2

2

∫︁
𝑆+

2 ∪𝑆−2

𝜙2 d𝑥 (16)

as well as
𝜋2

2

∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑆3

(𝜕𝑥3𝜙)2 d𝑥+
5𝜋2

2

∫︁
𝑆+

3 ∪𝑆−3

𝜙2 d𝑥. (17)

Then inserting (12) in (16), (17) and summing up the resulting estimates, we obtain

𝜋2

∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑆2

(𝜕𝑥2𝜙)2 d𝑥+
1
2

∫︁
𝑆+

2 ∪𝑆−2

(𝜕𝑥3𝜙)2 d𝑥+
∫︁

𝑆3

(𝜕𝑥3𝜙)2 d𝑥+
1
2

∫︁
𝑆+

3 ∪𝑆−3

(𝜕𝑥2𝜙)2 d𝑥

+
1
2

∫︁
𝑆+

2 ∪𝑆−2 ∪𝑆+
3 ∪𝑆−3

(𝜕𝑥1𝜙)2 d𝑥. (18)
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On the other hand, equation (12) also yields

2𝜋2

∫︁
𝑆+

2 ∪𝑆−2 ∪𝑆+
3 ∪𝑆−3

𝜙2 d𝑥 ≤
1
2

∫︁
𝑆+

2 ∪𝑆−2 ∪𝑆+
3 ∪𝑆−3

(𝜕𝑥1𝜙)2 d𝑥+
1
2

∫︁
𝑆+

2 ∪𝑆−2

(𝜕𝑥3𝜙)2 d𝑥+
1
2

∫︁
𝑆+

3 ∪𝑆−3

(𝜕𝑥2𝜙)2 d𝑥. (19)

Finally, summing up (11), (13), (18) and (19), we get

2𝜋2

∫︁
Ω+

1

𝜙2 d𝑥 ≤
∫︁

Ω+
1

|∇𝜙|2 d𝑥.

This estimate together with the identity (10) imply 𝜙 ≡ 0. �

We can now establish the main result of this section.

Proof of Theorem 2.1. From Proposition 3.1, we know that there is at least one eigenvalue 𝜇1 of 𝐴Ω below 2𝜋2.
Assume that 𝐴Ω has a second eigenvalue 𝜇2 such that 𝜇2 < 2𝜋2. Set Ω+ := {𝑥 ∈ Ω |𝑥1 > 0, 𝑥2 > 0, 𝑥3 > 0}
(see Fig. 3 right). Then according to the result of symmetry of Lemma 3.2, the problem

−∆𝑣 = 𝜇𝑣 in Ω+

𝑣 = 0 on Σ0 := 𝜕Ω ∩ 𝜕Ω+

𝜕𝑛𝑣 = 0 on 𝜕Ω+ ∖ Σ0

admits the two eigenvalues 𝜇1, 𝜇2. Besides, from the max–min principle ([10], Thm. 10.2.2), we have

𝜇2 = max
𝐸⊂E1

inf
𝑤∈𝐸∖{0}

∫︁
Ω+
|∇𝑤|2 d𝑥∫︁

Ω+
𝑤2 d𝑥

where E1 denotes the set of subspaces of H1
0(Ω+; Σ0) := {𝜙 ∈ H1(Ω+) |𝜙 = 0 on Σ0} of codimension one. In

particular, we have

𝜇2 ≥ inf
𝑤∈𝐸∖{0}

∫︁
Ω+
|∇𝑤|2 d𝑥∫︁

Ω+
𝑤2 d𝑥

(20)

with 𝐸 = {𝜙 ∈ H1
0(Ω+; Σ0) |

∫︀
𝑄+ 𝜙d𝑥 = 0}, 𝑄+ := (0; 1/2)3. However from the Poincaré inequality, we can

write for 𝑤 ∈ 𝐸 ∖ {0},

2𝜋2

∫︁
Ω+∖𝑄+

𝑤2 d𝑥 ≤
∫︁

Ω+∖𝑄+
|∇𝑤|2 d𝑥 (21)

and there holds, according to the max–min principle,

inf
𝑤∈𝐸∖{0}

∫︁
𝑄+
|∇𝑤|2 d𝑥∫︁

𝑄+
𝑤2 d𝑥

= 4𝜋2 (22)

because the first positive eigenvalue of the Neumann Laplacian in 𝑄+ is equal to 4𝜋2. Using (21) and (22) in
(20) leads to 𝜇2 ≥ 2𝜋2 which contradicts the initial assumption. Therefore 𝐴Ω cannot have two eigenvalues
below the essential spectrum. �
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4. Absence of threshold resonance

In this section, we establish Theorem 2.3. To proceed, we apply the tools of [4, 45] that we recall now. For
𝑅 ≥ 1/2 and 𝑗 = 1, 2, 3, define the truncated cylinder

𝐿𝑅
𝑗 := {𝑥 ∈ 𝐿𝑗 | |𝑥𝑗 | < 𝑅}

and set Ω𝑅 := 𝐿𝑅
1 ∪ 𝐿𝑅

2 ∪ 𝐿𝑅
3 . In Ω𝑅, consider the spectral problem with mixed boundary conditions

−∆𝑣 = 𝜇𝑣 in Ω𝑅

𝑣 = 0 on 𝜕Ω𝑅 ∩ 𝜕Ω
𝜕𝑛𝑣 = 0 on 𝜕Ω𝑅 ∖ 𝜕Ω

(23)

where 𝑛 stands for the outer unit normal to 𝜕Ω𝑅. Set H1
0(Ω𝑅; 𝜕Ω𝑅 ∩𝜕Ω) := {𝜙 ∈ H1(Ω𝑅) |𝜙 = 0 on 𝜕Ω𝑅 ∩𝜕Ω}

and finally denote by 𝐵𝑅 the unbounded operator associated with (23) of domain D(𝐵𝑅) ⊂ H1
0(Ω𝑅; 𝜕Ω𝑅∩𝜕Ω).

The sufficient condition provided by Pankrashkin ([45], Thm. 3) (see also the criterion given by Bakharev
and Nazarov ([4], Thm. 3)) guarantees that there is no threshold resonant for Problem (8) if there exists some
𝑅 ≥ 0 such that the second eigenvalue 𝜇𝑅

2 of 𝐵𝑅 satisfies 𝜇𝑅
2 > 2𝜋2.

Therefore from now our goal is to show that the second eigenvalue of 𝐵𝑅 is larger than 2𝜋2 (Proposition 4.2
below). We start with a result of symmetry similar to Lemma 3.2.

Lemma 4.1. For 𝑅 large enough, if 𝑣 ∈ H1
0(Ω𝑅; 𝜕Ω𝑅 ∩ 𝜕Ω) is an eigenfunction of the operator 𝐵𝑅 associated

with an eigenvalue 𝜇 ≤ 2𝜋2, then 𝑣 is symmetric with respect to the planes (𝑂𝑥2𝑥3), (𝑂𝑥3𝑥1), (𝑂𝑥1𝑥2).

Proof. The demonstration follows the lines of the one of Lemma 3.2. However we write the details for the sake
of clarity. We focus our attention on the symmetry with respect to the plane (𝑂𝑥2𝑥3), the two other ones being
similar. Introduce the function 𝜙 such that

𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑣(𝑥1, 𝑥2, 𝑥3)− 𝑣(−𝑥1, 𝑥2, 𝑥3).

We wish to show that 𝜙 ≡ 0. Set Ω𝑅+
1 := {𝑥 ∈ Ω𝑅 |𝑥1 > 0}. We have∫︁

Ω𝑅+
1

|∇𝜙|2 d𝑥 = 𝜇

∫︁
Ω𝑅+

1

𝜙2 d𝑥. (24)

Define the domains

𝐿𝑅+
1 :=

{︀
𝑥 ∈ 𝐿𝑅

1 |𝑥1 > 1/2
}︀

𝑆𝑅
2 :=

{︀
𝑥 ∈ 𝐿𝑅

2 |𝑥1 > 0
}︀

= Ω𝑅+
1 ∩ 𝐿𝑅

2

𝑆𝑅
3 :=

{︀
𝑥 ∈ 𝐿𝑅

3 |𝑥1 > 0
}︀

= Ω𝑅+
1 ∩ 𝐿𝑅

3

𝑆𝑅±
2 :=

{︀
𝑥 ∈ 𝑆𝑅

2 | ± 𝑥2 > 1/2
}︀

𝑆𝑅±
3 :=

{︀
𝑥 ∈ 𝑆𝑅

3 | ± 𝑥3 > 1/2
}︀
.

In 𝐿𝑅+
1 the Poincaré inequality gives

2𝜋2

∫︁
𝐿𝑅+

1

𝜙2 d𝑥 ≤
∫︁

𝐿𝑅+
1

|∇𝜙|2 d𝑥. (25)

On the other hand, in 𝑄+
1 = (0; 1/2)× (−1/2; 1/2)2 there holds

𝜋2

∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑄+
1

(𝜕𝑥1𝜙)2 d𝑥. (26)
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The Lemma A.2 in appendix (see also Lem. 5.1 of [6]) guarantees that for 𝑅 > 1/2 and 𝑎 > 0, we have

𝜅(𝑎,𝑅)
∫︁ 1/2

0

𝜑2 d𝑡 ≤
∫︁ 𝑅

0

(𝜕𝑡𝜑)2 d𝑡+ 𝑎2

∫︁ 𝑅

1/2

𝜑2 d𝑡, ∀𝜑 ∈ H1(0;𝑅), (27)

where 𝜅(𝑎,𝑅) > 0 converges to the constant 𝜅(𝑎) appearing in (15) as 𝑅 → +∞. For 𝑎 = 𝜋
√︀

5/2, as already
said, one finds 𝜅(𝑎) > 𝜋2/2. Introduce 𝛿 > 0 such that 𝜅(𝜋

√︀
5/2) > 𝜋2/2 + 𝛿. We know that there is 𝑅0 large

enough such that we have 𝜅(𝜋
√︀

5/2, 𝑅) > 𝜋2/2 + 𝛿/2 for all 𝑅 ≥ 𝑅0. We infer that we have

𝜋2 + 𝛿

2

∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑆𝑅
2

(𝜕𝑥2𝜙)2 d𝑥+
5𝜋2

2

∫︁
𝑆𝑅+

2 ∪𝑆𝑅−
2

𝜙2 d𝑥 (28)

and
𝜋2 + 𝛿

2

∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑆𝑅
3

(𝜕𝑥3𝜙)2 d𝑥+
5𝜋2

2

∫︁
𝑆𝑅+

3 ∪𝑆𝑅−
3

𝜙2 d𝑥. (29)

But from the Poincaré inequality in the transverse section of 𝑆𝑅±
2 , 𝑆𝑅±

3 , we know that

5𝜋2

∫︁
𝑆𝑅±

2

𝜙2 d𝑥 ≤
∫︁

𝑆𝑅±
2

(𝜕𝑥1𝜙)2 + (𝜕𝑥3𝜙)2 d𝑥, 5𝜋2

∫︁
𝑆𝑅±

3

𝜙2 d𝑥 ≤
∫︁

𝑆𝑅±
3

(𝜕𝑥1𝜙)2 + (𝜕𝑥2𝜙)2 d𝑥. (30)

Inserting (30) in (28), (29) and summing up the resulting estimates, we obtain(︀
𝜋2 + 𝛿

)︀ ∫︁
𝑄+

1

𝜙2 d𝑥 ≤
∫︁

𝑆𝑅
2

(𝜕𝑥2𝜙)2 d𝑥+
∫︁

𝑆𝑅
3

(𝜕𝑥3𝜙)2 d𝑥+
1
2

∫︁
𝑆𝑅+

2 ∪𝑆𝑅−
2

(𝜕𝑥3𝜙)2 d𝑥

+
1
2

∫︁
𝑆𝑅+

3 ∪𝑆𝑅−
3

(𝜕𝑥2𝜙)2 d𝑥+
1
2

∫︁
𝑆𝑅+

2 ∪𝑆𝑅−
2 ∪𝑆𝑅+

3 ∪𝑆𝑅−
3

(𝜕𝑥1𝜙)2 d𝑥. (31)

On the other hand, equation (30) also yields

2𝜋2

∫︁
𝑆𝑅+

2 ∪𝑆𝑅−
2 ∪𝑆𝑅+

3 ∪𝑆𝑅−
3

𝜙2 d𝑥 ≤
1
2

∫︁
𝑆𝑅+

2 ∪𝑆𝑅−
2 ∪𝑆𝑅+

3 ∪𝑆𝑅−
3

(𝜕𝑥1𝜙)2 d𝑥

+
1
2

∫︁
𝑆𝑅+

2 ∪𝑆𝑅−
2

(𝜕𝑥3𝜙)2 d𝑥+
1
2

∫︁
𝑆𝑅+

3 ∪𝑆𝑅−
3

(𝜕𝑥2𝜙)2 d𝑥. (32)

Finally, summing up (25), (26), (31) and (32), we get

𝛿

∫︁
𝑄+

1

𝜙2 d𝑥+ 2𝜋2

∫︁
Ω𝑅+

1

𝜙2 d𝑥 ≤
∫︁

Ω𝑅+
1

|∇𝜙|2 d𝑥.

This estimate together with the identity (24) imply
∫︀

𝑄+
1
𝜙2 d𝑥 = 0 and so 𝜙 ≡ 0 in 𝑄+

1 . From the unique

continuation principle, this gives 𝜙 ≡ 0 in Ω𝑅+
1 . �

Proposition 4.2. For 𝑅 large enough, the second eigenvalue 𝜇𝑅
2 of 𝐵𝑅 satisfies 𝜇𝑅

2 > 2𝜋2.

Proof. One applies Lemma 4.1 to reduce the analysis to Ω𝑅+ := {𝑥 ∈ Ω𝑅 |𝑥1 > 0, 𝑥2 > 0, 𝑥3 > 0}. Here in
particular we use the assumption that 𝑅 is large enough. The rest of the proof is completely similar to the one
of Theorem 2.1. �

5. Model problems for the spectral bands

In this section, we establish Theorem 2.4 and obtain models for the spectral bands Υ𝜀
𝑝 appearing in (6). We

recall that the spectrum of 𝐴𝜀 is such that 𝜎(𝐴𝜀) =
⋃︀

𝑝∈N* Υ𝜀
𝑝.
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5.1. Study of ϒ𝜀1
By definition, we have

Υ𝜀
1 = {Λ𝜀

1(𝜂), 𝜂 ∈ [0; 2𝜋)3} (33)

where Λ𝜀
1(𝜂) is the first eigenvalue of (5). Therefore our goal is to obtain an asymptotic expansion of Λ𝜀

1(𝜂) with
respect to 𝜀 as 𝜀→ 0+.

Pick 𝜂 ∈ [0; 2𝜋)3. Let 𝑢𝜀(·, 𝜂) be an eigenfunction associated with Λ𝜀
1(𝜂). As a first approximation when

𝜀→ 0+, it is natural to consider the expansions

Λ𝜀
1(𝜂) = 𝜀−2𝜇1 + . . . , 𝑢𝜀(𝑥, 𝜂) = 𝑣1(𝑥/𝜀) + . . . (34)

where 𝜇1 ∈ (0; 2𝜋2) stands for the eigenvalue of the discrete spectrum of the operator 𝐴Ω introduced in Theo-
rem 2.1 and 𝑣1 ∈ H1

0(Ω) is a corresponding eigenfunction normalized in L2(Ω). Indeed, inserting (𝜀−2𝜇1, 𝑣1(·/𝜀))
in Problem (5) only leaves a small discrepancy on the square faces of 𝜕𝜔𝜀 because 𝑣1 is exponentially decaying
at infinity. Let us write more precisely the decomposition of 𝑣1 at infinity for further usage. To proceed and
keep short notation, we shall work with the coordinates (𝑧𝑗 , 𝑦𝑗), 𝑗 = 1, . . . , 6, such that

𝑧1 = 𝑥1, 𝑦1 = (𝑥2, 𝑥3);
𝑧2 = 𝑥2, 𝑦2 = (𝑥3, 𝑥1);
𝑧3 = 𝑥3, 𝑦3 = (𝑥1, 𝑥2);

𝑧4 = −𝑥1, 𝑦4 = (𝑥2,−𝑥3);
𝑧5 = −𝑥2, 𝑦5 = (𝑥3,−𝑥1);
𝑧6 = −𝑥3, 𝑦6 = (𝑥1,−𝑥2).

(35)

We also define for 𝑗 = 1, . . . , 6, the branch

L𝑗 := {𝑥 ∈ Ω | 𝑧𝑗 > 1/2}.

Then Fourier decomposition together with the result of symmetry of Lemma 3.2 and the fact that 𝜇1 is a simple
eigenvalue2 guarantee that for 𝑗 = 1, . . . , 6, we have

𝑣1(𝑥) = 𝐾 𝑒−𝛽1𝑧𝑗 𝑈†(𝑦𝑗) +𝑂
(︀
𝑒−𝛽2𝑧𝑗

)︀
in L𝑗 as 𝑧𝑗 → +∞.

Here 𝐾 > 03 is independent of 𝑗, 𝛽1 :=
√︀

2𝜋2 − 𝜇1, 𝛽2 :=
√︀

5𝜋2 − 𝜇1 and

𝑈†(𝑠1, 𝑠2) = 2 cos(𝜋𝑠1) cos(𝜋𝑠2). (36)

The first model (34) is simple but does not comprise the dependence with respect to 𝜂. To improve it, consider
the more refined ansätze

Λ𝜀
1(𝜂) = 𝜀−2𝜇1 + 𝜀−2𝑒−𝛽1/𝜀𝑀(𝜂) + . . . , 𝑢𝜀(𝑥, 𝜂) = 𝑣1(𝑥/𝜀) + 𝑒−𝛽1/𝜀𝑉 (𝑥/𝜀, 𝜂) + . . . (37)

where the quantities 𝑀(𝜂), 𝑉 (·, 𝜂) are to determine. Inserting (37) into (5), first we obtain that 𝑉 (·, 𝜂) must
satisfy

−∆𝑉 (·, 𝜂)− 𝜇1𝑉 (·, 𝜂) = 𝑀(𝜂)𝑣1 in Ω
𝑉 (·, 𝜂) = 0 on 𝜕Ω.

(38)

In order to have a non zero solution to (38), we must look for a 𝑉 (·, 𝜂) which is growing at infinity. Due to (38),
the simplest growth that we can allow is

𝑉 (𝑥, 𝜂) = 𝐵𝑗 𝑒
𝛽1𝑧𝑗 𝑈†(𝑦𝑗) +𝑂(𝑒−𝛽1𝑧𝑗 ) in L𝑗 as 𝑧𝑗 → +∞

2This is needed to show that 𝐾 is the same in the branches L𝑗 , 𝑗 = 1, . . . , 6.
3This follows from the Krein–Rutman theorem which ensures that we can take 𝑣1 positive in Ω and from the fact that only the

first mode in the Fourier decomposition in each of the branches is positive.
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where the 𝐵𝑗 are some constants. Then the quasi-periodic conditions satisfied by 𝑢𝜀(·, 𝜂) at the faces located at
𝑥1 = ±1/2, 𝑥2 = ±1/2, 𝑥3 = ±1/2 (see (5)) lead us to choose the 𝐵𝑗 such that

𝐾 +𝐵4 = 𝑒𝑖𝜂1(𝐾 +𝐵1)
𝐾 −𝐵4 = 𝑒𝑖𝜂1(−𝐾 +𝐵1)

𝐾 +𝐵5 = 𝑒𝑖𝜂2(𝐾 +𝐵2)
𝐾 −𝐵5 = 𝑒𝑖𝜂2(−𝐾 +𝐵2)

𝐾 +𝐵6 = 𝑒𝑖𝜂3(𝐾 +𝐵3)
𝐾 −𝐵6 = 𝑒𝑖𝜂3(−𝐾 +𝐵3).

Solving these systems, we obtain 𝐵𝑗 = 𝐾 𝑒−𝑖𝜂𝑗 , 𝐵𝑗+3 = 𝐾 𝑒+𝑖𝜂𝑗 for 𝑗 = 1, 2, 3. Now since 𝜇1 is a simple
eigenvalue of 𝐴Ω, multiplying (38) by 𝑣1, integrating by part in Ω𝑅 and taking the limit 𝑅→ +∞, we find that
there is a solution if and only if the following compatibility condition

𝑀(𝜂)‖𝑣1‖2L2(Ω) = −2𝛽1𝐾
2

3∑︁
𝑗=1

𝑒𝑖𝜂𝑗 + 𝑒−𝑖𝜂𝑗 ⇔ 𝑀(𝜂) = −4𝛽1𝐾
2

3∑︁
𝑗=1

cos(𝜂𝑗)

is satisfied. This defines the value of 𝑀(𝜂) in the expansion (37). From (33), we deduce that as 𝜀 tends to zero,
the bounds of Υ𝜀

1 = [𝑎𝜀
1−; 𝑎𝜀

1+] admit the asymptotics

𝑎𝜀
1± = 𝜀−2𝜇1 ± 𝜀−2𝑒−

√
2𝜋2−𝜇1/𝜀𝑐1 + . . .

with 𝑐1 = 12𝛽1𝐾
2. Note that we decided to focus on a rather formal presentation above for the sake of

conciseness. We emphasize that all these results can be completely justified by proving rigorous error. This has
been realized in detail in [39–41] for similar problems and can be repeated with obvious modifications.

5.2. Study of ϒ𝜀𝑘, 𝑘 ≥ 2

We turn our attention to the asymptotics of the spectral bands of higher frequency

Υ𝜀
𝑘 =

{︀
Λ𝜀

𝑘(𝜂), 𝜂 ∈ [0; 2𝜋)3
}︀
, 𝑘 ≥ 2, (39)

as 𝜀 → 0+. Pick 𝜂 ∈ [0; 2𝜋)3 and introduce 𝑢𝜀(·, 𝜂) an eigenfunction associated with Λ𝜀
𝑘(𝜂). In the sequel, to

simplify, we remove the subscript 𝑘 and do not indicate the dependence on 𝜂. As a first approximation when
𝜀→ 0+, we consider the expansion

Λ𝜀 = 𝜀−22𝜋2 + 𝜈 + . . . , 𝑢𝜀(𝑥) = 𝑣𝜀(𝑥) + . . . (40)

with 𝑣𝜀 of the form

𝑣𝜀(𝑥) =

𝛾±1 (𝑥1)𝑈†(𝑥2/𝜀, 𝑥3/𝜀) in 𝜔𝜀±
1 := {𝑥 ∈ 𝜔𝜀

1 | ± 𝑥1 > 𝜀/2},
𝛾±2 (𝑥2)𝑈†(𝑥3/𝜀, 𝑥1/𝜀) in 𝜔𝜀±

2 := {𝑥 ∈ 𝜔𝜀
2 | ± 𝑥2 > 𝜀/2},

𝛾±3 (𝑥3)𝑈†(𝑥1/𝜀, 𝑥2/𝜀) in 𝜔𝜀±
3 := {𝑥 ∈ 𝜔𝜀

3 | ± 𝑥3 > 𝜀/2},

where the functions 𝛾±𝑗 , 𝑗 = 1, 2, 3, are to determine (𝑈† is defined in (36)). Inserting (40) into Problem (5), we
obtain for 𝑗 = 1, 2, 3,

𝜕2
𝑠𝛾

+
𝑗 + 𝜈𝛾+

𝑗 = 0 in (0; 1/2)
𝜕2

𝑠𝛾
−
𝑗 + 𝜈𝛾−𝑗 = 0 in (−1/2; 0)
𝛾−𝑗 (−1/2) = 𝑒𝑖𝜂𝑗𝛾+

𝑗 (+1/2)
𝜕𝑠𝛾

−
𝑗 (−1/2) = 𝑒𝑖𝜂𝑗𝜕𝑠𝛾

+
𝑗 (+1/2).

(41)

To define the 𝛾±𝑗 uniquely, we need to complement (41) with some conditions at the origin. To proceed, we match
the behaviour of the 𝛾±𝑗 with the one of some inner field expansion of 𝑢𝜀. More precisely, in a neighbourhood of
the origin we look for an expansion of 𝑢𝜀 of the form

𝑢𝜀(𝑥) = 𝑊 (𝑥/𝜀) + . . . (42)
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with 𝑊 to determine. Inserting (42) and (40) in (5), we find that 𝑊 must satisfy

∆𝑊 + 2𝜋2𝑊 = 0 in Ω
𝑊 = 0 on 𝜕Ω. (43)

Now we come to the point where Theorem 2.3 appears in the analysis. Indeed it guarantees that the only
solution of (43) which is bounded at infinity is the null function. Therefore we take 𝑊 ≡ 0 and impose

𝛾±𝑗 (0) = 0. (44)

Then solving the spectral problem (41), (44), we obtain

𝜈 = (𝑝+ 1)2𝜋2 for 𝑝 ∈ N,
𝛾+

𝑗 (𝑠) = sin((𝑝+ 1)𝜋𝑠)
𝛾−𝑗 (𝑠) = −𝑒𝑖𝜂𝑗 sin((𝑝+ 1)𝜋𝑠).

(45)

Note that 𝜈 is a triple eigenvalue (geometric multiplicity equal to three) because the problems (41), (44) for
𝑗 = 1, 2, 3 are uncoupled. Additionally 𝜈 is independent of 𝜂 ∈ [0; 2𝜋)3. This latter fact is not completely
satisfactory and in the sequel we wish to improve the model obtained above. Let us refine the expansion
proposed in (40) and work with

Λ𝜀 =
2𝜋2

𝜀2
+ (𝑝+ 1)2𝜋2 + 𝜀𝜈 + . . . , 𝑢𝜀(𝑥) =

(︀
𝑎1𝛾

±
1 (𝑥1) + 𝜀𝛾±1 (𝑥1)

)︀
𝑈†(𝑥2/𝜀, 𝑥3/𝜀) + . . . in 𝜔𝜀±

1(︀
𝑎2𝛾

±
2 (𝑥2) + 𝜀𝛾±2 (𝑥2)

)︀
𝑈†(𝑥3/𝜀, 𝑥1/𝜀) + . . . in 𝜔𝜀±

2(︀
𝑎3𝛾

±
3 (𝑥3) + 𝜀𝛾±3 (𝑥3)

)︀
𝑈†(𝑥1/𝜀, 𝑥2/𝜀) + . . . in 𝜔𝜀±

3 .

(46)

Here 𝑎 := (𝑎1, 𝑎2, 𝑎3) ∈ R3, 𝜈 as well as the 𝛾±𝑗 , 𝑗 = 1, 2, 3, are to determine. Since we are working with
eigenfunctions, we can impose the normalization condition 𝑎2

1 + 𝑎2
2 + 𝑎2

3 = 1. Inserting (46) into Problem (5)
and extracting the terms in 𝜀, we get for 𝑗 = 1, 2, 3,

𝜕2
𝑠𝛾

+
𝑗 + (𝑝+ 1)2𝜋2𝛾+

𝑗 = −𝜈𝑎𝑗𝛾
+
𝑗 in (0; 1/2)

𝜕2
𝑠𝛾
−
𝑗 + (𝑝+ 1)2𝜋2𝛾−𝑗 = −𝜈𝑎𝑗𝛾

−
𝑗 in (−1/2; 0)

𝛾−𝑗 (−1/2) = 𝑒𝑖𝜂𝑗𝛾+
𝑗 (+1/2)

𝜕𝑠𝛾
−
𝑗 (−1/2) = 𝑒𝑖𝜂𝑗𝜕𝑠𝛾

+
𝑗 (+1/2).

(47)

To define properly the 𝛾±𝑗 , we need to add to (47) conditions at the origin. To identify them, again we match
with the behaviour of some inner field representation of 𝑢𝜀. In a neighbourhood of the origin we look for an
expansion of 𝑢𝜀 of the form

𝑢𝜀(𝑥) = 𝜀�̃� (𝑥/𝜀) + . . . . (48)

Inserting (48) and (46) in (5), we find that �̃� must satisfy (43). The only non-zeros functions which solve this
problem are growing at infinity. We impose linear growth and consider the solutions �̃�𝑗 , 𝑗 = 1, . . . , 6, with the
expansions

�̃�𝑗(𝑥) =
(𝑧𝑗 +𝑀𝑗𝑗)𝑈†(𝑦𝑗) + . . . in L𝑗 as 𝑧𝑗 → +∞

𝑀𝑗𝑘 𝑈†(𝑦𝑘) + . . . in L𝑘 as 𝑧𝑘 → +∞, 𝑘 ̸= 𝑗.
(49)

Here we use the coordinates (𝑧𝑗 , 𝑦𝑗) introduced in (35). Note that at infinity �̃�𝑗 is growing only in the branch
L𝑗 . Let us explain how to show the existence of these functions (see [42], Chap. 4, Prop. 4.13 for more details).
Introduce some 𝜓 ∈ C∞(R) such that 𝜓(𝑠) = 1 for 𝑠 > 1 and 𝜓(𝑠) = 0 for 𝑠 ≤ 1/2. Then for 𝑗 = 1, . . . , 6, define
𝑓𝑗 such that 𝑓𝑗(𝑥) = (∆ + 2𝜋2)(𝜓(𝑧𝑗) 𝑧𝑗𝑈†(𝑦𝑗)). Observe that 𝑓𝑗 is compactly supported. Then the theory of
Chapter 5 from [42] together with Theorem 2.3 above ensure that there is a solution to the problem

∆�̂�𝑗 + 2𝜋2�̂�𝑗 = −𝑓𝑗 in Ω
�̂�𝑗 = 0 on 𝜕Ω
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which is bounded at infinity. Finally we take �̃�𝑗 such that �̃�𝑗(𝑥) = 𝜓(𝑧𝑗) 𝑧𝑗𝑈†(𝑦𝑗) + �̂�𝑗(𝑥). The coefficients
𝑀𝑗𝑘 form the so-called polarization matrix

M := (𝑀𝑗𝑘)1≤𝑗,𝑘≤6 (50)

which is real and symmetric even in non symmetric geometries (see [42], Chap. 5, Prop. 4.13 and [39–41]).
For the functions 𝛾±𝑗 in (45), we have the Taylor expansion, as 𝑠→ 0,

𝛾+
𝑗 (𝑠) = 0 + (𝑝+ 1)𝜋𝑠+ · · · = 𝜀(𝑝+ 1)𝜋

𝑠

𝜀
+ . . . ,

𝛾−𝑗 (𝑠) = 0− 𝑒𝑖𝜂𝑗 (𝑝+ 1)𝜋𝑠+ · · · = −𝜀𝑒𝑖𝜂𝑗 (𝑝+ 1)𝜋
𝑠

𝜀
+ . . . . (51)

Comparing (51) with (49) leads us to choose �̃� in the expansion 𝑢𝜀(𝑥) = 𝜀�̃� (𝑥/𝜀) + . . . (see (48)) such that

�̃� = (𝑝+ 1)𝜋
3∑︁

𝑗=1

𝑎𝑗

(︁
�̃�𝑗 + 𝑒𝑖𝜂𝑗�̃�3+𝑗

)︁
.

This sets the constant behaviour of �̃� at infinity and we now match the later with the behaviour of the 𝛾±𝑗 at
the origin to close system (47). This step leads us to impose

𝛾+
1 (0) = (𝑝+ 1)𝜋

3∑︁
𝑗=1

𝑎𝑗

(︀
𝑀𝑗1 + 𝑒𝑖𝜂𝑗𝑀3+𝑗1

)︀
; 𝛾−1 (0) = (𝑝+ 1)𝜋

3∑︁
𝑗=1

𝑎𝑗

(︀
𝑀𝑗4 + 𝑒𝑖𝜂𝑗𝑀3+𝑗4

)︀
;

𝛾+
2 (0) = (𝑝+ 1)𝜋

3∑︁
𝑗=1

𝑎𝑗

(︀
𝑀𝑗2 + 𝑒𝑖𝜂𝑗𝑀3+𝑗2

)︀
; 𝛾−2 (0) = (𝑝+ 1)𝜋

3∑︁
𝑗=1

𝑎𝑗

(︀
𝑀𝑗5 + 𝑒𝑖𝜂𝑗𝑀3+𝑗5

)︀
; (52)

𝛾+
3 (0) = (𝑝+ 1)𝜋

3∑︁
𝑗=1

𝑎𝑗

(︀
𝑀𝑗3 + 𝑒𝑖𝜂𝑗𝑀3+𝑗3

)︀
; 𝛾−3 (0) = (𝑝+ 1)𝜋

3∑︁
𝑗=1

𝑎𝑗

(︀
𝑀𝑗6 + 𝑒𝑖𝜂𝑗𝑀3+𝑗6

)︀
.

Equations (47), (52) form a boundary value problem for a system of ordinary differential equations. For this
problem, there is a kernel and a co-cokernel. In order to have a solution, some compatibility conditions must be
satisfied. Multiplying (47) by 𝛾±𝑗 and integrating by parts, we find that they are verified if

𝜕𝑠𝛾
+
𝑗 (0) 𝛾+

𝑗 (0)− 𝜕𝑠𝛾
−
𝑗 (0) 𝛾−𝑗 (0) = −𝜈𝑎𝑗

(︃∫︁ 0

−1/2

⃒⃒
𝛾−𝑗
⃒⃒2

d𝑠+
∫︁ 1/2

0

⃒⃒
𝛾+

𝑗

⃒⃒2
d𝑠

)︃

for 𝑗 = 1, 2, 3 (note that we used that 𝛾±𝑗 (0) = 0 according to (44)). Since 𝜕𝑠𝛾
+
𝑗 (0) = (𝑝 + 1)𝜋 and 𝜕𝑠𝛾

−
𝑗 (0) =

−(𝑝+ 1)𝜋𝑒−𝑖𝜂𝑗 , this gives

2(𝑝+ 1)2𝜋2

(︃
3∑︁

𝑘=1

𝑎𝑘

(︀
𝑀𝑘𝑗 + 𝑒𝑖𝜂𝑘𝑀3+𝑘𝑗

)︀
+ 𝑒−𝑖𝜂𝑗

3∑︁
𝑘=1

𝑎𝑘

(︀
𝑀𝑘3+𝑗 + 𝑒𝑖𝜂𝑘𝑀3+𝑘3+𝑗

)︀)︃
= −𝜈𝑎𝑗 .

In a more compact form and by rewriting the dependence with respect to 𝜂, we obtain

2(𝑝+ 1)2𝜋2A(𝜂)𝑎⊤ = −𝜈(𝜂)𝑎⊤, (53)

with

A(𝜂) := Θ(𝜂)MΘ*(𝜂) ∈ C3×3, Θ(𝜂) :=

⎛⎝ 1 0 0 𝑒−𝑖𝜂1 0 0
0 1 0 0 𝑒−𝑖𝜂2 0
0 0 1 0 0 𝑒−𝑖𝜂3

⎞⎠, Θ*(𝜂) = Θ(𝜂)
⊤
.



3266 L. CHESNEL AND S.A. NAZAROV

Above we used that the polarization matrix M defined in (50) is real and symmetric. By solving the spectral
problem (53), we get the values for 𝜈(𝜂) and 𝑎. Once 𝜈(𝜂) and 𝑎 are known, one can compute the solution to
the system (47), (52) to obtain the expressions of the 𝛾𝑗(𝜂). This ends the definition of the terms appearing in
the expansions (46). Let us exploit and comment these results.

– First, observe that the 𝜈(𝜂) are real. Indeed, since M is real and symmetric, we infer that A(𝜂) is hermitian.
– We have obtained

Λ𝜀(𝜂) = 𝜀−22𝜋2 + (𝑝+ 1)2𝜋2 + 𝜀𝜈(𝜂) + . . . . (54)

Note that in this expansion, the third term, contrary to the first two ones, depends on 𝜂. In order to isolate
the dependence with respect to 𝑝, let us denote by 𝜈1(𝜂), 𝜈2(𝜂), 𝜈3(𝜂) the three eigenvalues of the problem

A(𝜂)𝑎⊤ = −𝜈(𝜂)𝑎⊤. (55)

We number them so that
𝜈1(𝜂) ≤ 𝜈2(𝜂) ≤ 𝜈3(𝜂).

Remark that the 𝜈𝑗 are independent of 𝑝. Define the quantity

ℵ :=
3⋃︁

𝑗=1

{︀
𝜈𝑗(𝜂), 𝜂 ∈ [0; 2𝜋)3

}︀
. (56)

Since Υ𝜀
𝑘 = [𝑎𝜀

𝑘−; 𝑎𝜀
𝑘+] = {Λ𝜀

𝑘(𝜂), 𝜂 ∈ [0; 2𝜋)3}, this analysis shows that for 𝑘 = 𝑞 + 3𝑝 with 𝑝 ∈ N,
𝑞 ∈ {2, 3, 4}, as 𝜀→ 0+, we have the asymptotics

𝑎𝜀
𝑘± = 𝜀−22𝜋2 + (𝑝+ 1)2𝜋2 + 𝜀(𝑝+ 1)2𝑐± + . . .

with 𝑐− = 2𝜋2 minℵ, 𝑐+ = 2𝜋2 maxℵ.
– Due to the symmetries of Ω, M is of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝑚 𝑡⊥𝑚 𝑡⊥𝑚 𝑡𝑚 𝑡⊥𝑚 𝑡⊥𝑚
𝑡⊥𝑚 𝑟𝑚 𝑡⊥𝑚 𝑡⊥𝑚 𝑡𝑚 𝑡⊥𝑚
𝑡⊥𝑚 𝑡⊥𝑚 𝑟𝑚 𝑡⊥𝑚 𝑡⊥𝑚 𝑡𝑚
𝑡𝑚 𝑡⊥𝑚 𝑡⊥𝑚 𝑟𝑚 𝑡⊥𝑚 𝑡⊥𝑚
𝑡⊥𝑚 𝑡𝑚 𝑡⊥𝑚 𝑡⊥𝑚 𝑟𝑚 𝑡⊥𝑚
𝑡⊥𝑚 𝑡⊥𝑚 𝑡𝑚 𝑡⊥𝑚 𝑡⊥𝑚 𝑟𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(57)

where 𝑟𝑚, 𝑡𝑚, 𝑡⊥𝑚 are real coefficients. For 𝜂 = (0, 0, 0), we find that the eigenvalues of (55) are

2𝑟𝑚 + 2𝑡𝑚 + 8𝑡⊥𝑚, 2𝑟𝑚 + 2𝑡𝑚 − 4𝑡⊥𝑚, 2𝑟𝑚 + 2𝑡𝑚 − 4𝑡⊥𝑚.

For 𝜂 = (𝜋, 𝜋, 𝜋), we obtain
2𝑟𝑚 − 2𝑡𝑚, 2𝑟𝑚 − 2𝑡𝑚, 2𝑟𝑚 − 2𝑡𝑚.

In the numerics of Section 6.2, we compute M. From the values of 𝑟𝑚, 𝑡𝑚, 𝑡⊥𝑚 obtained in (67), we find for
example

2𝑟𝑚 + 2𝑡𝑚 + 8𝑡⊥𝑚 ̸= 2𝑟𝑚 − 2𝑡𝑚.

This shows that the set ℵ appearing in (56) has a non empty interior, i.e. that 𝑐− < 𝑐+. Additionally, since
𝜈1(𝜋) = 𝜈2(𝜋) = 𝜈3(𝜋) and the 𝜈𝑗 depend continuously on 𝜂, we deduce that ℵ is a connected segment. This
is obtained in the numerics of Section 6.2 (see (68)) and due to the symmetries of 𝜔𝜀, this was somehow
expected.

Finally, let us mention again that all the formal presentation above can be justified rigorously by a direct
adaptation of the proofs of error estimates presented in [39–41].
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6. Numerics

6.1. Spectrum of 𝐴Ω

We start the numerics by computing the spectrum of the operator 𝐴Ω defined after (8). More precisely, in
order to approximate also the eigenvalues which are embedded in the essential spectrum of 𝐴Ω and to reveal
complex resonances which would be located close to the real axis, we work with Perfectly Matched Layers
[8, 11, 21] (see also the techniques of analytic dilatations [1, 7, 28, 49]). For 𝜃 ∈ (0;𝜋/2) and 𝐿 > 1/2, define the
complex valued parameters

𝛼𝜃
1 =

1 for |𝑥1| ≤ 𝐿

𝑒−𝑖𝜃 for |𝑥1| > 𝐿
, 𝛼𝜃

2 =
1 for |𝑥2| ≤ 𝐿

𝑒−𝑖𝜃 for |𝑥2| > 𝐿
, 𝛼𝜃

3 =
1 for |𝑥3| ≤ 𝐿

𝑒−𝑖𝜃 for |𝑥3| > 𝐿.

Here the coefficient 𝜃 will drive the rotation of the essential spectrum while 𝐿 marks the beginning of the PML
region. Then consider the spectral problem

−𝛼𝜃
1

𝜕

𝜕𝑥1

(︂
𝛼𝜃

1

𝜕𝑢

𝜕𝑥1

)︂
+ 𝛼𝜃

2

𝜕

𝜕𝑥2

(︂
𝛼𝜃

2

𝜕𝑢

𝜕𝑥2

)︂
+ 𝛼𝜃

3

𝜕

𝜕𝑥3

(︂
𝛼𝜃

3

𝜕𝑢

𝜕𝑥3

)︂
= Λ𝑢 in Ω

𝑢 = 0 on 𝜕Ω.
(58)

Denote by 𝐴Ω
𝜃 the unbounded operator associated with (58). Observe that 𝐴Ω

𝜃 is not selfadjoint due to the
complex parameters 𝛼𝜃

𝑗 . However the theory guarantees that the real eigenvalues of 𝐴Ω
𝜃 coincide exactly with

the real eigenvalues of 𝐴Ω. What is interesting is that one can show that the essential spectrum of 𝐴Ω
𝜃 , that is

the values of Λ such that 𝐴Ω
𝜃 − Λ Id : D(𝐴Ω

𝜃 ) → L2(Ω) is not Fredholm, corresponds to the set⋃︁
𝑚,𝑛∈N*

{︀
𝜋2
(︀
𝑚2 + 𝑛2

)︀
+ 𝑡 𝑒−2𝑖𝜃, 𝑡 ≥ 0

}︀
,

so that the real eigenvalues of 𝐴Ω
𝜃 are isolated in the spectrum. As a consequence, we can compute them by

truncating the branches of Ω at a certain distance without producing spectral pollution. Then we approximate
the spectrum in this bounded geometry by using a classical P1 finite element method. We construct the matrices
with the library Freefem++ [19] and compute the spectrum with Matlab4.

In Figure 4, we display in the complex plane the approximation of the spectrum of 𝐴Ω
𝜃 obtained with this

approach. We observe that the branches of essential spectrum of 𝐴Ω
𝜃 are discretized. This is due to the fact that

the approximated problem is set in finite dimension. Moreover, we note that 𝐴Ω
𝜃 , and so 𝐴Ω, have eigenvalues

on the real line. In accordance with Theorem 2.1, we find exactly one eigenvalue 𝜇1 ≈ 12.9 ≈ 1.3𝜋2 on the
segment (0;𝜋2). We also note the presence of eigenvalues embedded in the essential spectrum for the operator
𝐴Ω. For the first one, we get 𝜇2 ≈ 46.7 ≈ 4.7𝜋2. Let us mention that in the 2D X-shaped geometry of Figure 2
right, embedded eigenvalues were observed in [48].

In Figure 5, we represent an eigenfunction (trapped mode) associated with the eigenvalue 𝜇1 of the discrete
spectrum of 𝐴Ω. As guaranteed by Lemma 3.2, we observe that it is indeed symmetric with respect to the planes
(𝑂𝑥2𝑥3), (𝑂𝑥3𝑥1), (𝑂𝑥1𝑥2).

6.2. Polarization matrix and threshold scattering matrix for the operator 𝐴Ω

In this section, we explain how to compute the polarization matrix M in (50) and whose properties allow one
to assess the second corrector term in the expansion Λ𝜀 = 𝜀−22𝜋2 + (𝑝 + 1)2𝜋2 + 𝜀𝜈 + . . . of the eigenvalues
generating the spectral bands Υ𝜀

𝑘, 𝑘 ≥ 2. We work in the geometry Ω defined in (7) and study the problem (8)
at the threshold, namely

∆𝑣 + 2𝜋2𝑣 = 0 on Ω
𝑣 = 0 on 𝜕Ω. (59)

4Matlab, http://www.mathworks.com/.

http://www.mathworks.com/


3268 L. CHESNEL AND S.A. NAZAROV

Figure 4. Approximation of the spectrum of 𝐴Ω
𝜃 for 𝜃 = 𝜋/4 (𝐿 = 1/2).

Figure 5. Eigenfunction associated with the eigenvalue 𝜇1: cuts 𝑥1 = 0 (left) and 𝑥2 = 0 (right).

To obtain M, we will first compute the so-called threshold scattering matrix that we define now. In L𝑗 , 𝑗 =
1, . . . , 6, set

𝑤±𝑗 (𝑥) =
𝑧𝑗 ∓ 𝑖
√

2
𝑈†(𝑦𝑗).

Let us work again with the function 𝜓 ∈ C∞(R) introduced after (49) such that 𝜓(𝑠) = 1 for 𝑠 > 1 and 𝜓(𝑠) = 0
for 𝑠 ≤ 1/2. For 𝑗 = 1, . . . , 6, define 𝜓𝑗 such that 𝜓𝑗(𝑥) = 𝜓(𝑧𝑗 , 𝑦𝑗) (observe that 𝜓𝑗 is non zero only in the
branch L𝑗). For 𝑗 = 1, . . . , 6, the theory of Chapter 5 from [42] guarantees that problem (59) admits a solution
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with the decomposition

𝑣𝑗 = 𝜓𝑗 𝑤
−
𝑗 +

6∑︁
𝑘=1

𝜓𝑘 𝑠𝑗𝑘 𝑤
+
𝑘 + �̃�𝑗 , (60)

where the 𝑠𝑗𝑘 are complex numbers and the �̃�𝑗 decay exponentially at infinity. The matrix

S := (𝑠𝑗𝑘)1≤𝑗,𝑘≤6

is called the threshold scattering matrix. It is symmetric but not necessarily hermitian (S = S⊤) and unitary
(S S⊤ = Id). It is known (see relation (7.9) in [38]) that M coincides with the Cayley transform of S, i.e. we
have

M = 𝑖(Id + S)−1(Id− S). (61)

Note that one can show that we have dim ker (Id + S) = dim (B/Btr) (the quotient space) where B denotes
the space of bounded solutions of (59) and Btr the space of trapped modes of (59). For the proof, we refer the
reader for example to Theorem 1 in [36]. Since Theorem 2.3 ensures that B reduces to the null function, we
infer that Id + S is invertible which guarantees that M is well defined via formula (61). Additionally, due to the
symmetries of Ω, S is of the form ⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑟 𝑡⊥ 𝑡⊥ 𝑡 𝑡⊥ 𝑡⊥

𝑡⊥ 𝑟 𝑡⊥ 𝑡⊥ 𝑡 𝑡⊥

𝑡⊥ 𝑡⊥ 𝑟 𝑡⊥ 𝑡⊥ 𝑡

𝑡 𝑡⊥ 𝑡⊥ 𝑟 𝑡⊥ 𝑡⊥

𝑡⊥ 𝑡 𝑡⊥ 𝑡⊥ 𝑟 𝑡⊥

𝑡⊥ 𝑡⊥ 𝑡 𝑡⊥ 𝑡⊥ 𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(62)

where 𝑟, 𝑡, 𝑡⊥ are complex reflection and transmission coefficients. Therefore it is sufficient to compute 𝑣1.
To proceed, we shall work in the bounded domain Ω𝑅 (see before (23)) and impose approximated radiation
conditions on the artificial cuts. Denote by 𝑛 the outer unit normal to 𝜕Ω𝑅 and set

Γ1 := {𝑅} × (−1/2; 1/2)2, Γ2 := (−1/2; 1/2)× {𝑅} × (−1/2; 1/2), Γ3 := (−1/2; 1/2)2 × {𝑅}
Γ4 := {−𝑅} × (−1/2; 1/2)2, Γ5 := (−1/2; 1/2)× {−𝑅} × (−1/2; 1/2), Γ6 := (−1/2; 1/2)2 × {−𝑅}

Γ := ∪6
𝑗=1Γ𝑗 . On Γ1, according to (60), we have

𝜕𝑛(𝑣1 − 𝜓1𝑤
−
1 ) = 𝜕𝑧1(𝑣1 − 𝑤−1 ) = 2−1/2𝑟 𝑈† + . . .

where the dots stand for terms which are small for large values of 𝑅. On the other hand on Γ1, there holds

𝑣1 − 𝑤−1 = 2−1/2𝑟 (𝑅− 𝑖)𝑈† + . . . .

Therefore, this gives, still on Γ1,

𝜕𝑛𝑣1 =
𝑣1 − 𝑤−1
𝑅− 𝑖

+ 𝜕𝑧1𝑤
−
1 + · · · =

𝑣1

𝑅− 𝑖
+ 𝑤−1

(︂
1

𝑅+ 𝑖
−

1
𝑅− 𝑖

)︂
+ · · · =

𝑣1

𝑅− 𝑖
−

2𝑖
𝑅2 + 1

𝑤−1 + . . . . (63)

On Γ𝑗 , 𝑗 ̸= 1, the situation is simpler because 𝑣1 is outgoing in the corresponding branches and we have

𝜕𝑛𝑣1 =
𝑣1

𝑅− 𝑖
+ . . . . (64)
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Finally, using the Robin conditions (63), (64) as approximated radiation conditions, we consider the variational
formulation

Find 𝑣1 ∈ H1
0(Ω𝑅; 𝜕Ω𝑅 ∩ 𝜕Ω) such that for all 𝑣 ∈ H1

0(Ω𝑅; 𝜕Ω𝑅 ∩ 𝜕Ω)∫︁
Ω𝑅

∇𝑣1 · ∇𝑣 d𝑥−
1

𝑅− 𝑖

∫︁
Γ

𝑣1𝑣 d𝜎 − (2𝜋)2
∫︁

Ω𝑅

𝑣1𝑣 d𝑥 = −
2𝑖

𝑅2 + 1

∫︁
Γ1

𝑤−1 𝑣 d𝜎.
(65)

One can prove that 𝑣1 yields a good approximation of 𝑣1 with an error which is exponentially decaying with 𝑅.
In practice, we solve the problem (65) with a P1 finite element method thanks to Freefem++. Then replacing
𝑣1 by 𝑣1 in the exact formulas

𝑟 =
2

𝑅2 + 1

∫︁
Γ1

(𝑣1 − 𝑤−1 )𝑤−1 d𝜎, 𝑡 =
2

𝑅2 + 1

∫︁
Γ4

𝑣1 𝑤
−
4 d𝜎, 𝑡⊥ =

2
𝑅2 + 1

∫︁
Γ2

𝑣1 𝑤
−
2 d𝜎, (66)

we get an approximation of the threshold scattering matrix S given by (62). Finally with (61), we obtain an
approximation of the polarization matrix M which appears in the 3× 3 spectral problems (53).

Our computations give

𝑟 ≈ 0.66 + 0.11𝑖, 𝑡 ≈ 0.08− 0.70𝑖, 𝑡⊥ ≈ −0.08− 0.08𝑖.

The eigenvalues of S ∈ C6×6 are approximately equal to

0.44− 0.9𝑖 (simple), 0.9− 0.44𝑖 (double) and 0.58 + 0.81𝑖 (triple).

They have modulus one which is consistent with the fact that S is unitary. Moreover, we indeed observe that
they are different from −1 which is coherent with the discussion following (61) (absence of threshold resonance).
On the other hand, for the coefficients of M (see (57)), we get

𝑟𝑚 ≈ 0.08, 𝑡𝑚 ≈ −0.44, 𝑡⊥𝑚 ≈ −0.06. (67)

With these values, solving the 3×3 eigenvalue problem (55) for 𝜂 ∈ [0; 2𝜋)3, we find that the segment ℵ defined
in (56) satisfies

ℵ ≈ (−1.24; 1.04). (68)

Let us mention that the Robin conditions (63), (64) are rather crude approximations of the exact radiation
conditions. To get good errors estimates, we should take rather large values of 𝑅. However in practice, large 𝑅
are no so simple to handle and can create important numerical errors. Therefore a compromise must be found
and we take 𝑅 = 2.5. Admittedly, this point should more investigated.

Appendix A. Poincaré–Friedrichs inequalities

For the convenience of the reader, we reproduce here the Lemma 5.1 of [6].

Lemma A.1. Assume that 𝑎 > 0. Then we have the Poincaré–Friedrichs inequality

𝜅(𝑎)
∫︁ 1/2

0

𝜑2 d𝑡 ≤
∫︁ +∞

0

(𝜕𝑡𝜑)2 d𝑡+ 𝑎2

∫︁ +∞

1/2

𝜑2 d𝑡, ∀𝜑 ∈ H1(0; +∞), (A.1)

where 𝜅(𝑎) is the smallest positive root of the transcendental equation

√
𝜅 tan

(︂√
𝜅

2

)︂
= 𝑎. (A.2)
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Proof. For 𝑎 > 0, consider the spectral problem

−𝜕2
𝑡 𝜑+ 𝑎21(1/2;+∞)𝜑 = 𝜆(𝑎)1(0;1/2)𝜑 in (0; +∞)

𝜕𝑡𝜑(0) = 0
(A.3)

where 1(1/2;+∞), 1(0;1/2) stand for the indicator functions of the sets (1/2; +∞), (0; 1/2) respectively. Let us
equip H1(0; +∞) with the inner product

(𝜑, 𝜑′)𝑎 =
∫︁ +∞

0

𝜕𝑡𝜑𝜕𝑡𝜑
′ d𝑡+ 𝑎2𝜑𝜑′ d𝑡.

With the Riesz representation theorem, define the linear and continuous operator 𝑇 : H1(0; +∞) → H1(0; +∞)
such that

(𝑇𝜑, 𝜑′)𝑎 =
∫︁ 1/2

0

𝜑𝜑′ d𝑡.

With this definition, we find that (𝜆(𝑎), 𝜑) is an eigenpair of (A.3) if and only if we have

𝑇𝜑 =
(︀
𝜆(𝑎) + 𝑎2

)︀−1
𝜑.

Since 𝑇 is bounded and symmetric, it is self-adjoint. Additionally the Rellich theorem ensures that 𝑇 is compact.
This guarantees that the spectrum of (A.3) coincides with a sequence of positive eigenvalues whose only accu-
mulation point is +∞. Let us denote by 𝜅(𝑎) the smallest eigenvalue of (A.3). From classical results concerning
compact self-adjoint operators (see e.g. [10], Thm. 2.7.2), we know that(︀

𝜅(𝑎) + 𝑎2
)︀−1

= sup
𝜑∈H1(0;+∞), (𝜑,𝜑)𝑎=1

(𝑇𝜑, 𝜑)𝑎. (A.4)

Rearranging the terms, we find that (A.4) provides the desired estimates (A.1). Now we compute 𝜅(𝑎). Solving
the ordinary differential equation (A.3) with 𝜆(𝑎) = 𝜅(𝑎), we obtain, up to a multiplicative constant,

𝜑(𝑡) = cos
(︁√︀

𝜅(𝑎)𝑡
)︁

for 𝑡 ∈ (0; 1/2)
𝑐 𝑒−𝑎𝑡 for 𝑡 ≥ 1/2

where 𝑐 is a constant to determine. Writing the transmission conditions at 𝑡 = 1/2, we find that a non zero
solution exists if and only if 𝜅(𝑎) > 0 satisfies the relation (A.2). �

Lemma A.2. Assume that 𝑎 > 0 and 𝑅 > 1/2. Then we have the Poincaré–Friedrichs inequality

𝜅(𝑎,𝑅)
∫︁ 1/2

0

𝜑2 d𝑡 ≤
∫︁ 𝑅

0

(𝜕𝑡𝜑)2 d𝑡+ 𝑎2

∫︁ 𝑅

1/2

𝜑2 d𝑡, ∀𝜑 ∈ H1(0;𝑅), (A.5)

where 𝜅(𝑎,𝑅) is the smallest positive root of the transcendental equation

√
𝜅 tan

(︂√
𝜅

2

)︂
= 𝑎 tanh(𝑎(𝑅− 1/2)). (A.6)

Therefore, we have lim𝑅→+∞ 𝜅(𝑎,𝑅) = 𝜅(𝑎) where 𝜅(𝑎) is the constant appearing in Lemma A.1.

Proof. The demonstration is completely similar to the one of Lemma A.1 above. We find that the largest
constant 𝜅(𝑎,𝑅) such that (A.5) holds coincides with the smallest eigenvalue of the problem

−𝜕2
𝑡 𝜑+ 𝑎21(1/2;𝑅)𝜑 = 𝜅(𝑎,𝑅)1(0;1/2)𝜑 in (0;𝑅)
𝜕𝑡𝜑(0) = 𝜕𝑡𝜑(𝑅) = 0.
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Solving it, we find that if 𝜑 is a corresponding eigenfunction, up to a multiplicative constant, we have

𝜑(𝑡) =
cos(

√︀
𝜅(𝑎,𝑅)𝑡) for 𝑡 ∈ (0; 1/2)

𝑐 cosh(𝑎(𝑡−𝑅)) for 𝑡 ∈ (1/2;𝑅)

for some constant 𝑐. This times, writing the transmission conditions at 𝑡 = 1/2, we find that a non zero solution
exists when 𝜅(𝑎,𝑅) satisfies (A.6). Finally we obtain that 𝜅(𝑎,𝑅) → 𝜅(𝑎) because tanh(𝑎(𝑅 − 1/2)) in (A.6)
tends to 1 when 𝑅→ +∞. �
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