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Pose from Shape: Deep Pose Estimation for Arbitrary 3D Objects

Most deep pose estimation methods need to be trained for specific object instances or categories. In this work we propose a completely generic deep pose estimation approach, which does not require the network to have been trained on relevant categories, nor objects in a category to have a canonical pose. We believe this is a crucial step to design robotic systems that can interact with new objects "in the wild" not belonging to a predefined category. Our main insight is to dynamically condition pose estimation with a representation of the 3D shape of the target object. More precisely, we train a Convolutional Neural Network that takes as input both a test image and a 3D model, and outputs the relative 3D pose of the object in the input image with respect to the 3D model. We demonstrate that our method boosts performances for supervised category pose estimation on standard benchmarks, namely Pascal3D+, ObjectNet3D and Pix3D, on which we provide results superior to the state of the art. More importantly, we show that our network trained on everyday man-made objects from ShapeNet generalizes without any additional training to completely new types of 3D objects by providing results on the LINEMOD dataset as well as on natural entities such as animals from ImageNet. Our code and model is avalaible at http://imagine.enpc.fr/~xiaoy/PoseFromShape/.

Introduction

Imagine a robot that needs to interact with a new type of object not belonging to any predefined category, such as a newly manufactured object in a workshop. Using existing singleview pose estimation approaches for this new object would require stopping the robot and training a specific network for this object before taking any further action. Here we propose an approach that can directly take as input a 3D model of the new object and estimate the pose of the object in images relatively to this model, without any additional training procedure. We argue that such a capability is necessary for applications such as robotics "in the wild", where new objects of unfamiliar categories can occur routinely at any time and have to be manipulated or taken into account for action. It also applies to virtual reality with similar circumstances.

To overcome the fact that deep pose estimation methods were category-specific, i.e., predicted different orientations according to object category, recent works [START_REF] Grabner | 3D pose estimation and 3D model retrieval for objects in the wild[END_REF][START_REF] Zhou | Starmap for categoryagnostic keypoint and viewpoint estimation[END_REF] have proposed to perform category-agnostic pose estimation on rigid objects, producing a single prediction. However, [START_REF] Grabner | 3D pose estimation and 3D model retrieval for objects in the wild[END_REF] only evaluated on object categories that were included in the training data, while [START_REF] Zhou | Starmap for categoryagnostic keypoint and viewpoint estimation[END_REF] required the testing categories to be similar to the training data. On the contrary, we want to stress that our method works on novel objects that can be widely different from those seen at training time. For example, we can train only on man-made objects, but still be able to estimate the pose of animals such as horses, whereas not a single animal has been seen in the training data (cf. Fig. 1 and3). Our method is similar to category-agnostic approaches in that it only produces one pose prediction and does not require additional training to produce predictions on novel categories. However, it is also instance-specific, because it takes as input a 3D model of the object of interest. Indeed, our key idea is that viewpoint is better defined for a single object instance given its 3D shape than for whole object categories. Our work can be viewed as leveraging the recent advances in deep 3D model representations [START_REF] Ruizhongtai | PointNet: Deep learning on point sets for 3D classification and segmentation[END_REF][START_REF] Ruizhongtai | PointNet++: Deep hierarchical feature learning on point sets in a metric space[END_REF][START_REF] Su | Multiview convolutional neural networks for 3d shape recognition[END_REF] for the problem of pose estimation. We show that using 3D model information also boosts performances on known categories, even when the information is only approximate, as in the Pascal3D+ [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF] dataset.

When an exact 3D model of the object is known, as in the LINEMOD [START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF] dataset, stateof-the-art results are typically obtained by first performing a coarse viewpoint estimation and then applying a pose-refinement approach, typically matching rendered images of the 3D model to the target image. Our method is designed to perform the coarse alignment. Poserefinement can be performed after applying our method using a classical approach based on ICP or the recent DeepIM [START_REF] Li | DeepIM: Deep iterative matching for 6D pose estimation[END_REF] method. Note that while DeepIM only performs refinement, it is similar to our work in the sense that it is category agnostic and leverages some knowledge of the 3D model, using a view rendered in the estimated pose, to predict its pose update.

Our core contributions are as follows:

• To the best of our knowledge, we present the first deep learning approach to categoryfree viewpoint estimation, which can estimate the pose of any object conditioned only on its 3D model, whether or not it is similar to objects seen at training time.

• We can learn with and use "shapes in the wild", whose reference frame do not have to be consistent with a canonical orientation, simplifying pose supervision.

• We demonstrate on a large variety of datasets [START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF][START_REF] Sun | Pix3D: Dataset and methods for single-image 3d shape modeling[END_REF][START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF][START_REF] Xiang | ObjectNet3D: A large scale database for 3D object recognition[END_REF] that adding 3D knowledge to pose estimation networks provides performance boosts when applied to objects of known categories, and meaningful performances on previously unseen objects.

Related Work

In this section, we discuss pose estimation of a rigid object from a single RGB image first in the case where the 3D model of the object is known, then when the 3D model is unknown.

Pose estimation explicitly using object shape. Traditional methods to estimate the pose of a given 3D shape in an image can be roughly divided into feature-matching methods and template-matching methods. Feature-matching methods try to extract local features from the image, match them to the given object 3D model and then use a variant of PnP algorithm to recover the 6D pose based on estimated 2D-to-3D correspondences. Increasingly robust local feature descriptors [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Pavlakos | 6-dof object pose from semantic keypoints[END_REF][START_REF] Tola | Daisy: An efficient dense descriptor applied to wide-baseline stereo[END_REF][START_REF] Tulsiani | Viewpoints and keypoints[END_REF] and more effective variants of PnP algorithms [START_REF] Ferraz | Very fast solution to the PnP problem with algebraic outlier rejection[END_REF][START_REF] Lepetit | EPnP: An accurate O(n) solution to the PnP problem[END_REF][START_REF] Li | A robust O(n) solution to the perspective-n-point problem[END_REF][START_REF] Zheng | Revisiting the PnP problem: A fast, general and optimal solution[END_REF] have been used in this type of pipeline. Pixel-level prediction, rather than detected features, has also been proposed [START_REF] Brachmann | Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image[END_REF]. Although performing well on textured objects, these methods usually struggle with poorly-textured objects. To deal with this type of objects, template-matching methods try to match the observed object to a stored template [START_REF] Hinterstoisser | Gradient response maps for real-time detection of textureless objects[END_REF][START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF][START_REF] Li | Deformable registration using edge-preserving scale space for adaptive image-guided radiation therapy[END_REF][START_REF] David | Fitting parameterized three-dimensional models to images[END_REF]. However, they perform badly in the case of partial occlusion or truncation. More recently, deep models have been trained for pose estimation from an image of a known or estimated 3D model. Most methods estimate the 2D position in the test image of the projections of the object 3D bounding box [START_REF] Grabner | 3D pose estimation and 3D model retrieval for objects in the wild[END_REF][START_REF] Oberweger | Making deep heatmaps robust to partial occlusions for 3D object pose estimation[END_REF][START_REF] Rad | BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth[END_REF][START_REF] Bugra Tekin | Real-time seamless single shot 6D object pose prediction[END_REF] or object semantic keypoints [START_REF] Georgakis | Matching RGB images to CAD models for object pose estimation[END_REF][START_REF] Pavlakos | 6-dof object pose from semantic keypoints[END_REF] to find 2D-to-3D correspondences and then apply a variant of the PnP algorithm, as feature-matching methods. Once a coarse pose has been estimated, deep refinement approaches in the spirit of template-based methods have also been proposed [START_REF] Li | DeepIM: Deep iterative matching for 6D pose estimation[END_REF][START_REF] Manhardt | Deep modelbased 6D pose refinement in RGB[END_REF].

Pose estimation not explicitly using object shape. In recent years, with the release of large-scale datasets [START_REF] Geiger | Are we ready for autonomous driving? the KITTI vision benchmark suite[END_REF][START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF][START_REF] Sun | Pix3D: Dataset and methods for single-image 3d shape modeling[END_REF][START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF][START_REF] Xiang | ObjectNet3D: A large scale database for 3D object recognition[END_REF], data-driven learning methods (on real and/or synthetic data) have been introduced which do not rely on an explicit knowledge of the 3D models. These can roughly be separated into methods that estimate the pose of any object of a training category and methods that focus on a single object or scene. For category-wise pose estimation, a canonical view is required for each category with respect to which the viewpoint is estimated. The prediction can be cast as a regression problem [START_REF] Massa | Crafting a multi-task CNN for viewpoint estimation[END_REF][START_REF] Osadchy | Synergistic face detection and pose estimation with energy-based models[END_REF][START_REF] Penedones | Improving object classification using pose information[END_REF], a classification problem [START_REF] Elhoseiny | A comparative analysis and study of multiview CNN models for joint object categorization and pose estimation[END_REF][START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF][START_REF] Tulsiani | Viewpoints and keypoints[END_REF] or a combination of both [START_REF] Rıza | Densereg: Fully convolutional dense shape regression in-the-wild[END_REF][START_REF] Li | A unified framework for multi-view multi-class object pose estimation[END_REF][START_REF] Siddharth Mahendran | A mixed classification-regression framework for 3D pose estimation from 2D images[END_REF][START_REF] Mousavian | 3D bounding box estimation using deep learning and geometry[END_REF]. Besides, Zhou et al. directly regress category-agnostic 3D keypoints and estimate a similarity between image and world coordinate systems [START_REF] Zhou | Starmap for categoryagnostic keypoint and viewpoint estimation[END_REF]. Following the same strategy, it is also possible to estimate the pose of a camera with respect to a single 3D model but without actually using the 3D model information. Many recent works have applied this strategy to recover the full 6-DoF pose for object [START_REF] Kehl | SSD-6D: Making RGB-based 3D detection and 6D pose estimation great again[END_REF][START_REF] Li | A unified framework for multi-view multi-class object pose estimation[END_REF][START_REF] Mousavian | 3D bounding box estimation using deep learning and geometry[END_REF][START_REF] Henning Tjaden | Real-time monocular pose estimation of 3D objects using temporally consistent local color histograms[END_REF][START_REF] Xiang | PoseCNN: A convolutional neural network for 6D object pose estimation in cluttered scenes[END_REF] and camera re-localization in the scene [START_REF] Kendall | Geometric loss functions for camera pose regression with deep learning[END_REF][START_REF] Kendall | PoseNet: A convolutional network for real-time 6-DOF camera relocalization[END_REF]. In this work, we propose to merge the two lines of work described above. We cast pose estimation as a prediction problem, similar to deep learning methods that do not explicitly leverage viewpoint information. However, we condition our network on the 3D model of a single instance, represented either by a set of views or a point cloud, allowing our network to rely on the exact 3D model, similarly to the feature and template matching methods. To the best of our knowledge, we are the first to combine image and shape information as input to a network to estimate the relative orientation of the depicted object with respect to the shape.

Network Architecture and Training

Our approach consists in extracting deep features from both the image and the shape, and using them jointly to estimate a relative orientation. An overview is shown in Fig. 2. In this section, we present in more details our architecture, our loss function and our training strategy, as well as a data augmentation scheme specifically designed for our approach.

Feature extraction. The first part of the network consists of two independent modules: (i) image feature extraction and (ii) 3D shape feature extraction. For image features, we use a standard CNN, namely ResNet-18 [START_REF] He | Deep residual learning for image recognition[END_REF]. For 3D shape features, we experimented with two approaches depicted in Fig. 2(b) which are state-of-the-art 3D shape description networks.

First, we used the point set embedding network PointNet [START_REF] Ruizhongtai | PointNet: Deep learning on point sets for 3D classification and segmentation[END_REF], which has been successfully used as a point cloud encoder for many tasks [START_REF] Engelmann | Exploring spatial context for 3D semantic segmentation of point clouds[END_REF][START_REF] Groueix | AtlasNet: A papier-mâché approach to learning 3D surface generation[END_REF][START_REF] Charles R Qi | Frustum pointnets for 3D object detection from RGB-D data[END_REF][START_REF] Wang | Dynamic graph CNN for learning on point clouds[END_REF][START_REF] Xu | Pointfusion: Deep sensor fusion for 3D bounding box estimation[END_REF].

Second, we tried to represent the shape using rendered views, similar to [START_REF] Su | Multiview convolutional neural networks for 3d shape recognition[END_REF]. Virtual cameras are placed around the 3D shape, pointing towards the centroid of the model; the associated rendered images are taken as input by CNNs, sharing weights for all viewpoints, which extract image descriptors; a global feature vector is obtained by concatenation. We considered variants of this architecture using extra input channels for depth and/or surface normal orientation but this did not improve our results significantly. Ideally, we would consider viewpoints on the whole sphere around the object with any orientation. In practice however, many objects have a strong bias regarding verticality and are generally seen only from the side/top. In our experiments, we thus only considered viewpoints on the top hemisphere and sampled evenly a fixed number of azimuths and elevations.

Orientation estimation. The object orientation is estimated from both the image and 3D shape features by a multi-layer perceptron (MLP) with three hidden layers of size 800-400-200. Each fully connected layer is followed by a batch normalization, and a ReLU activation.

As output, we estimate the three Euler angles of the camera, azimuth (azi), elevation (ele) and in-plane rotation (inp), with respect to the shape reference frame. Each of these angles q 2 E = {azi, ele, inp} is estimated using a mixed classification-and-regression approach, which computes both angular bin classification scores and offset information within each bin. Concretely, we split each angle q 2 E uniformly in L q bins. For each q -bin l 2 {0, L q 1}, the network outputs a probability pq,l 2 [0, 1] using a softmax non-linearity on the q -bin classification scores, and an offset d q ,l 2 [ 1, 1] relatively to the center of q -bin l, obtained by a hyperbolic tangent non-linearity. The network thus has 2 ⇥ (L azi + L ele + L inp ) outputs.

Loss function. As we combine classification and regression, our network has two types of outputs (probabilities and offsets), that are combined into a single loss L that is the sum of a cross-entropy loss for classification L cla and Huber loss [START_REF] Peter | Robust estimation of a location parameter[END_REF] for regression L reg .

More formally, we assume we are given training data (x i , s i , y i ) N i=1 consisting of input images x i , associated object shapes s i and corresponding orientations y i = (y i,q ) q 2E . We convert the value of the Euler angles y i,q into a bin label l i,q encoded as a one-hot vector and relative offsets d i,q within the bins. The network parameters are learned by minimizing:

L = N Â i=1 Â q 2E L cla ⇣ l i,q , pq (x i , s i ) ⌘ + L reg ⇣ d i,q , d q ,l i,q (x i , s i ) ⌘ , (1) 
where pq (x i , s i ) are the probabilities predicted by the network for angle q 2 E, input image x i and input shape s i , and d q ,l i,q (x i , s i ) the predicted offset within the ground truth bin.

Data augmentation. We perform standard data augmentation on the input images: horizontal flip, 2D bounding box jittering, color jittering.

In addition, we introduce a new data augmentation, specific to our approach, designed to avoid the network to overfit the 3D model orientation, which is usually consistent in training data since most models are aligned. On the contrary, we want our network to be category-agnostic and to always predict the pose of the object with respect to the reference 3D model. We thus add random rotations to the input shapes, and modify the orientation labels accordingly. In our experiments, we restrict our rotations to azimuth changes, again because of the strong verticality bias in the benchmarks, but could theoretically apply it to all angles. Because of objects with symmetries, typically at 90°or 180°, we also restrict azimuthal randomization to a uniform sampling in [ 45°, 45°], which allows to keep the 0°b ias of the annotations. See supplementary material for details and parameter study.

Implementation details. For all our experiments, we set the batch size as 16 and trained our network using the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a learning rate of 10 4 for 100 epochs then 10 5 for an additional 100 epochs. Compared to a shape-less baseline method, the training of our method with the shape encoded from 12 rendered views is about 8 times slower, on a TITAN X GPU.

Experiments

Given an RGB image of an object and a 3D model of that object, our method estimates its 3D orientation in the image. In this section, we first give an overview of the datasets we used, and explain our baseline methods. We then evaluate our method in two test scenarios: object belonging to a category known at training time, or unknown.

Datasets. We experimented with four main datasets. Pascal3D+ [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF], ObjectNet3D [START_REF] Xiang | ObjectNet3D: A large scale database for 3D object recognition[END_REF] and Pix3D [START_REF] Sun | Pix3D: Dataset and methods for single-image 3d shape modeling[END_REF] feature various objects in various environments, allowing benchmarks for object pose estimation in the wild. On the contrary, LINEMOD [START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF] focuses on few objects with little environment variations, targeting robotic manipulation. Pascal3D+ and Object-Net3D only provide approximate models and rough alignments while Pix3D and LINEMOD offer exact models and pixelwise alignments. We also used ShapeNetCore [START_REF] Angel | ShapeNet: An Information-Rich 3D Model Repository[END_REF] for training on synthetic data, with SUN397 backgrounds [START_REF] Xiao | SUN database: Large-scale scene recognition from abbey to zoo[END_REF], and tested on Pix3D and LINEMOD. Unless otherwise stated, ground-truth bounding boxes are used in all experiments. We compute the most common metrics used with each dataset: Acc p 6 is the percentage of estimations with rotation error less than 30°; MedErr is the median angular error (°); ADD-0.1d is the percentage of estimations for which the mean distance of the estimated 3D model points to the ground truth is smaller than 10% of the object diameter; ADD-S-0.1d is a variant of ADD-0.1d used for symmetric objects where the average is computed on the closest point distance. More details on the datasets and metrics are given in the supplementary material.

Baselines. A natural baseline is to use the same architecture, data and training strategy as for our approach, but without using the 3D shape of the object. This is reported as 'Baseline' in our tables, and corresponds to the network of Fig. 2 without the shape encoder shown in light blue. We also report a second baseline, aiming at evaluating the importance of the precision of the 3D model for our approach to work. We used exactly our approach, but at testing time we replaced the 3D shape of the object in the test image by a random 3D shape of the same category. This is reported as 'Ours (RS)' in the tables.

Pose estimation on supervised categories

We first evaluate our method in case the categories of tested objects are covered by training data. We show that leveraging the 3D model of the object clearly improves pose estimation.

We evaluate our method on ObjectNet3D, which has the largest variety of object categories, 3D models and images. We report the results in Table 1 (top). First, an important result is that using the 3D model information, whether via a point cloud or rendered views, provides a very clear boost of the performance, which validates our approach. Second, results using rendered multiple views (MV) to represent the 3D model outperform the point-cloudbased (PC) representation [START_REF] Ruizhongtai | PointNet: Deep learning on point sets for 3D classification and segmentation[END_REF]. We thus only evaluated Ours(MV) in the rest of this section. Third, testing the network with a random shape (RS) in the category instead of the ground truth shape, implicitly providing class information without providing fine-grained 3D information, leads to results better than the baseline but worst than using the ground truth model, demonstrating our method ability to exploit fine-grained 3D information. Finally, we found that even our baseline model already outperformed StarMap [START_REF] Zhou | Starmap for categoryagnostic keypoint and viewpoint estimation[END_REF], mainly because of five categories (iron, knife, pen, rifle, slipper) on which StarMap completely fails, likely because a keypoint-based method is not adapted for small and narrow objects. ) ) )

Xiang [START_REF] Xiang | ObjectNet3D: A large scale database for 3D object recognition[END_REF] Table 3: Pose estimation on Pix3D [START_REF] Sun | Pix3D: Dataset and methods for single-image 3d shape modeling[END_REF]. Right table compares to [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF][START_REF] Sun | Pix3D: Dataset and methods for single-image 3d shape modeling[END_REF], that only test bin success on 2 angles (24 azimuth bins and 12 elevation bins).

We then evaluate our approach on the standard Pascal3D+ dataset [START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF]. Results are shown in Table 2 (top). Interestingly, while our baseline is far below state-of-the-art results, adding our shape analysis network provides again a very clear improvement, with results on par with the best category-specific approaches, and outperforming category agnostic methods. This is especially impressive considering the fact that the 3D models provided in Pascal3D+ are only extremely coarse approximations of the real 3D models. Again, as can be expected, using a random model from the same category provides intermediary results between the model-less baseline and using the actual 3D model.

Finally, we report results on Pix3D in Table 3 (top). Similar to the other methods, our model was purely trained on synthetic data and tested on real data, without any finetuning. Again, we can observe that adding 3D shape information brings a large performance boost, from 23.9% to 36% Acc p 6 . Note that our method clearly improves even over categoryspecific baselines. We believe it is due to the much higher quality of the 3D models provided on Pix3D compared to ObjectNet3D and Pascal3D+. This hypothesis is supported by the fact that our results are much worse when a random model of the same category is provided.

These state-of-the-art results on the three standard datasets are thus consistent and validate (i) that using the 3D models provides a clear improvement (comparison to 'Baseline'), and (ii) that our approach is able to leverage the fine-grained 3D information from the 3D model (comparison to estimating with a random shape 'RS' in the category).

Pose estimation on novel categories

We now focus on the generalization to unseen categories, which is the main focus of our method. We first discuss results on ObjectNet3D and Pix3D. We then show qualitative results on ImageNet horses images and quantitative results on the very different LINEMOD dataset.

Our results when testing on new categories from ObjectNet3D are shown in Table 1 (bottom). We use the same split between 80 training and 20 testing categories as [START_REF] Zhou | Starmap for categoryagnostic keypoint and viewpoint estimation[END_REF]. As expected, the accuracy decreases for all methods when supervision is not provided on these latter categories. The fact that the Baseline performances are still much better than chance is accounted by the presence of similar categories is the training set. The advantage of our method is however even more pronounced than in the supervised case, and our multi-view approach (MV) still outperforms the point cloud (PC) approach by a small margin. Similarly, we removed from our ShapeNet [START_REF] Angel | ShapeNet: An Information-Rich 3D Model Repository[END_REF] synthetic training set the categories present in Pix3D, and reported in Table 3 (bottom) the results on Pix3D. Again, the accuracy drops for all methods, but the benefit from using the ground-truth 3D model increases.

In both ObjectNet and Pix3D experiments, the test categories were novel but still similar to the training ones. We now focus on evaluating our network, trained using synthetic images generated from man-made shapes from ShapeNetCore [START_REF] Angel | ShapeNet: An Information-Rich 3D Model Repository[END_REF], on completely different objects.

We first obtain qualitative results by using a fixed 3D model of horse from an online model repository [START_REF]Free3D. Free3d[END_REF] to estimate the pose of horses in ImageNet images. Indeed, compared to other animals, horses have more limited deformations. While this of course does not work for all images, the images for which the network provides the highest confidence are impressively good. On Figure 3, we show the most confident images for different poses, and we provide more results in the supplementary material. Note the very strong appearance gap between the rendered 3D models and the test images.

Finally, to further validate our network generalization ability, we evaluate it on the texture-less objects of LINEMOD [START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF], as reported in Table 4. This dataset focuses on Figure 3: Visual results of pose estimation on horse images from ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] using models from Free3D [START_REF]Free3D. Free3d[END_REF]. We rank the prediction for each orientation bin by the network prediction and show the first (best) results for various poses.
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Brachmann very accurate alignment, and most approaches propose to first estimate a coarse alignment and then to refine it with a specific method. Our method provides a coarse alignment, and we complement it using the recent DeepIM [START_REF] Li | DeepIM: Deep iterative matching for 6D pose estimation[END_REF] refinement approach. Our method yields results below the state of the art, but they are nevertheless very impressive. Indeed, our network has never seen objects any similar the LINEMOD 3D models during training, while all the other baselines have been trained specifically for each object instance on real training images, except SSD-6D [START_REF] Kehl | SSD-6D: Making RGB-based 3D detection and 6D pose estimation great again[END_REF] which uses the exact 3D model but no real image and for which coarse alignment performances are very low. Our method is thus very different from all the baselines in that it does not assume the test object to be available at training time, which we think is a much more realistic scenario for robotics applications. We actually believe that the fact our method provides a reasonable accuracy on this benchmark is a very strong result.
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Conclusion

We have presented a new paradigm for deep pose estimation, taking the 3D object model as an input to the network. We demonstrated the benefits of this approach in terms of accuracy, and improved the state of the art on several standard pose estimation datasets. More importantly, we have shown that our approach holds the promise of a completely generic deep learning method for pose estimation, independent of the object category and training data, by showing encouraging results on the LINEMOD dataset without any specific training, and despite the domain gap between synthetic training data and real images for testing.

Figure 1 :

 1 Figure 1: Illustration of our approach. (a) Training data: 3D model, input image and pose annotation for everyday man-made object; (b) At testing time, pose estimation of any arbitrary object, even an unknown category, given a RGB image and the corresponding 3D shape.

Figure 2 :

 2 Figure 2: Overview of our method. (a) Given an RGB image of an object and its 3D shape, we use two encoders to extract features from each input, then estimate the orientation of the pictured object w.r.t. the shape using a classification-and-regression approach, predicting probabilities of angle bins l and bin offsets d , for azimuth, elevation and in-plane rotation. (b) For shape encoding, we encode a point cloud sampled on the object with PointNet (top), or we rendered images around the object and use a CNN to extract the features (bottom).
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Table 1 :

 1 Pose estimation on ObjectNet3D[START_REF] Xiang | ObjectNet3D: A large scale database for 3D object recognition[END_REF]. Train and test are on the same data as[START_REF] Zhou | Starmap for categoryagnostic keypoint and viewpoint estimation[END_REF]; for experiments on novel categories, training is on 80 categories and test is on the other 20. * Trained jointly for detection and pose estimation, tested using estimated bounding boxes. * 81 77 59 93 98 89 80 62 88 82 80 80 80.75 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6 Su [41] † 74 83 52 91 91 88 86 73 78 90 86 92 82.00 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7 Mousavian [31] 78 83 57 93 94 90 80 68 86 82 82 85 81.03 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1
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	Ours(MV,RS) 74 89 91 Ours(MV) 82 90 96	62 65	81 90 88 71 41 28 94 50 70 37 57 93 97 89 75 52 32 95 54 82 45 67	38 46	89 81 60 60 95 82 67 66	68 73
									category-agnostic network -test on novel categories ( ( (A A Ac c cc c c p 6	) ) )			
	Zhou [54]	37 69 19	52	73	-78 61 2	9	88 12 51 0	-	11	82 41 49 14	42
	Baseline Ours(PC)	56 79 26 63 85 84	53 51	77 86 83 51 4 16 90 42 65 2 34 85 83 83 61 9 35 92 44 80 8 39	22 20	86 43 50 35 87 56 71 39	50 59
	Ours(MV,RS) 60 88 84 Ours(MV) 65 90 88	60 65	76 91 82 61 2 26 90 46 73 13 45 84 93 84 67 2 29 94 47 79 15 54	28 32	79 59 61 36 89 61 68 39	58 62
		[images: 90,127, in the wild | objects: 201,888 | categories: 100 | 3D models: 791, approx. | align.: rough]	
	Pascal3D+ [48]	aero	bike	boat	bottle	bus	car	chair	dtable	mbike	sofa	train	tv	mean	aero	bike	boat	bottle	bus	car	chair	dtable	mbike	sofa	train	tv	mean
	Categ.-specific branches, supervised categ.		Acc p 6	(%)					MedErr (degrees)			
	Tulsiani [46]Pavlakos [34]* 81 78 44 79 96 90 80 --74 79 66 -8.0 13.4 40.7 11.7 2.0 5.5 10.4 -Grabner [10] 83 82 64 95 97 94 80 71 88 87 80 86 83.92 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9 -9.6 8.3 32.9 -
	Categ.-agnostic network, supervised categ.		Acc p 6	(%)					MedErr (degrees)			
	Grabner [10] Zhou [54]* Baseline Ours(MV,RS) 79 81 49 91 96 89 78 53 90 88 80 77 79.25 11.6 15.5 30.9 8.2 3.6 6.0 13.8 22.8 13.1 11.1 6.0 15.0 13.1 80 82 57 90 97 94 72 67 90 80 82 85 81.33 10.9 12.2 23.4 9.3 3.4 5.2 15.9 16.2 12.2 11.6 6.3 11.2 11.5 82 86 50 92 97 92 79 62 88 92 77 83 81.67 10.1 14.5 30.0 9.1 3.1 6.5 11.0 23.7 14.1 11.1 7.4 13.0 12.8 77 74 54 91 97 89 74 52 85 80 79 77 77.42 13.0 18.2 27.3 11.5 6.8 8.1 15.4 20.1 14.7 13.2 10.2 14.7 14.4 Ours(MV) 81 83 60 93 97 91 79 67 90 90 81 79 82.66 10.5 13.7 21.0 7.7 3.0 5.0 10.9 11.9 11.8 9.1 5.4 10.3 10.0

[images:

[START_REF] Massa | Crafting a multi-task CNN for viewpoint estimation[END_REF]889

, in the wild | objects: 36,292 | categories: 12 | 3D models: 79, approx. | align.: rough]

Table 2 :

 2 Pose estimation on Pascal3D+[START_REF] Xiang | Beyond PASCAL: A benchmark for 3D object detection in the wild[END_REF]. * Trained using keypoints. † Not trained on ImageNet data but trained on ShapeNet renderings.

	Pix3D [42]	tool misc bcase wdrobe desk bed table sofa chair	mean			Pix3D [42]	chair
		category-specific networks -tested on supervised categories ( ( (A A Ac c cc c c p 6	) ) )	categ.-specific, supervised
	Georgakis [9]	-	-	-	-	34.9 50.8	-	-	31.2	-			# bins	24	12
	category-agnostic network -tested on supervised categories ( ( (A A Ac c cc c c p 6 2.2 9.8 10.8 0.6 30.0 36.8 17.3 63.8 43.6 23.9 Ours(MV,RS) 4.1 3.6 22.8 9.5 52.8 50.1 30.8 66.3 44.5 Baseline 31.6 Ours(MV) 6.5 19.7 34.6 10.2 56.6 59.8 40.8 70.0 52.4 38.9	) ) )	(% correct) azim. elev. Su [41] 40 37 Sun [42] 49 61 Baseline 51 64 Ours(MV) 54 65
			category-agnostic network -tested on novel categories ( ( (A A Ac c cc c c p 6	) ) )		
	Baseline	2.2 13.1 5.4 0.6 30.3 19.6 14.9 11.9 28.0	14.0			
	Ours(MV,RS) 3.0 5.9 4.5 5.2 44.7 31.5 24.1 48.5 33.9 Ours(MV) 10.9 13.1 22.3 6.6 52.0 55.3 35.6 64.6 35.8	22.4 32.9			

[images: 10,069, in the wild | objects: 10,069 | categ.: 9 | 3D models: 395, exact | align.: pixel]

  62.0 40.1 48.1 45.2 58.6 32.8 40.0 27.0 42.4 67.0 39.9 35.2 43.6 Tekin [43] 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 75.0 71.1 47.7 56.0 PoseCNN [50] † 27.8 68.9 47.5 71.4 56.7 65.4 42.8 98.3 95.2 50.9 65.6 70.3 54.6 62.7 PoseCNN [50] † + [25] † 76.9 97.4 93.5 96.6 82.1 95.0 77.7 97.0 99.4 52.7 98.3 97.5 87.8 88.6 instance/category-agnostic network -tested on novel models (ADD-0.1d)* w/o Ref. Ours ‡ 7.5 25.1 12.1 11.3 15.4 18.6 8.2 100 81.2 18.5 13.8 6.5 13.4 25.5 w/ Ref. Ours ‡ + DeepIM [25] † 59.1 63.8 40.0 50.8 54.1 75.3 48.6 100 98.7 49.8 49.5 55.3 50.4 61.2

	.3
	SSD-6D [17] ‡ BB8 [39] 27.9 w/ Ref. 0 Brachmann [1] 33.2 64.8 38.4 62.9 42.7 61.9 30.2 49.9 31.2 52.8 80.0 67.0 38.1 50.2 0.2 0.4 1.4 0.5 2.6 0 8.9 0 0.3 8.9 8.2 0.2 2.4 BB8 [39] 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7 SSD-6D [17] ‡ 65 80 78 86 70 73 66 100 100 49 78 73 79 79.0

[scenes: 13, artificially arranged | images: 13407 | objects: 13 | categ.: 13 | 3D models: 13, exact | align.: pixel]

Table 4 :

 4 Pose estimation on LINEMOD[START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF]. † Training also on synthetic data. ‡ Training only on synthetic data. * ADD-S-0.1d used for symmetric objects eggbox and glue.
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