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Couégnata, Andrew Kingd, Olivier Catya, Sébastien Denneulinc, Éric Martina
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Abstract

3D woven composites are often modelled using homogenisation whose foun-

dation requires the validity of scale separation — microstructure scale much

smaller than any other scales from part geometry, manufacture or loading —

often violated in reality. Modelling has then to be confronted with experimental

data representative of actual service conditions. A high-temperature multiaxial

thermomechanical test is carried out on an L-shaped specimen. It is followed

by synchrotron X-ray tomography and infrared thermography. The coupling of

the complex geometry and weaving pattern, and a non-homogeneous thermal

field, induces a very irregular stress field inside the sample, generating locally

unusual loading configurations. Integrated digital volume correlation provides

a fine identification of the material parameters of an image-based mesoscale

model. Most involved parameters are identified with good precision, including

tow shear moduli. The model is able to describe the sample deformation in the

elastic domain accurately.
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1. Introduction

To reduce the impact of air traffic on the environment, aircraft manufac-

turers aim to enhance engine efficiency by increasing the service temperature

in the combustion chamber. This upgrade requires materials sustaining high

thermomechanical performances up to 1500°C [1]. 3D-woven SiC/SiC ceramic

matrix composites (CMCs) are very promising as they exhibit excellent struc-

tural properties at high temperatures [2]. The woven structure makes those

materials resistant to impact and delamination [3]. For aeronautical parts with

intricate geometry, complex woven structures are designed to resist multiaxial

non-homogeneous loadings [4]. A thorough understanding of thermomechanical

behaviour, especially for critical areas, is required to design, model and certify

such parts [5].

Recent studies bring out the determining influence of the micro- and

mesostructure of SiC/SiC CMCs on their local or overall behaviour [6, 7]. Nu-

merous works propose suitable micro-to-meso homogenisation [8, 9], and mi-

crostructure influence is well understood for regular geometries, typically coupon

samples or weaving patterns [10]. Image-based models can reproduce the be-

haviour of materials presenting complex microstructure [11, 12], and homogeni-

sation procedures have been developed [13]. Stochastic generation of elementary

cells representative of the fibre distribution inside the tows allows taking into ac-

count the heterogeneity at the micro-scale [14]. Nevertheless, for meso-to-macro

homogenisation, defining a representative volume element is not always possible.

Indeed, most actual parts have complex shapes (e.g. aeronautical parts such as

turbine blades or containment rings) [15]. In such parts, the CMC displays large

microstructure changes (e.g. bending with high curvature, changes in weaving

patterns) — the fabric can even be non-periodic. Moreover, the characteristic

lengths of the loading (e.g. T/‖∇T‖ for thermal gradient, 1/‖∇ε‖ for strain),
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which are closely linked to the geometry, can also become smaller than the puta-

tive representative volume element length. Theoretically, usual homogenisation

approaches reach their limits. The mesostructure is critical, and its influence is

not properly characterised yet. The lack of experimental procedures to assess

the representativity of image-based models is one of the main impediments to

their further deployment for industrial uses. This study aims to validate (or

invalidate) the use of homogenisation procedures out of their secured field of

application. It is then crucial to confront the model and the experiment.

An experimental procedure has been developed to characterise complex-

shaped samples. To challenge current model hypotheses, geometry needs to

be 3D, and the thermomechanical loadings have to be heterogeneous. Such

tests require innovative instrumentation. X-ray tomography is a tool capable of

accessing the material mesostructure [16]. It provides a 3D image of the X-ray

absorption coefficient. Local damage due to loading can be observed and mea-

sured by conducting in-situ experiments instrumented by tomography [17]. This

technique is especially efficient in observing cracking (localisation, morphology,

etc.), provided the crack opening is greater than the voxel scale. Tensile tests

have already shown the capability of such an approach for the study of CMCs

at high temperatures [18, 19]. During in-situ tests, X-ray tomography coupled

with Digital Volume Correlation (DVC) gives access to the displacement field in

the bulk of the sample [20, 21, 22]. From either measured strains or DVC resid-

uals, cracks can be detected even with subvoxel openings. The displacement

field is computed relying on the texture of the volume, which is nothing but

the mesostructure of the woven sample. This mesostructure limits the accuracy

and resolution of the DVC-computed displacement field [23]. A relevant way

to bypass this limitation is to take into account the sample model during DVC

computation performing integrated -DVC (IDVC) [24]. For thermomechanical

experiments, infrared thermography can provide the surface temperature field

to be used as thermal boundary conditions for IDVC [25].

The present paper details the identification of mesoscale material parame-

ters of an image-based model that conforms to the actual mesostructure using
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in-situ experiments. The purpose is to understand better the behaviour of gen-

uine CMC parts under complex loading. Experiments were carried out on a

dedicated thermomechanical testing machine, described in [4], on the PSICHE

beamline at synchrotron SOLEIL. The sample was subjected to severe thermal

gradients and multiaxial loadings. Based on a self-calibrated projection model,

infrared images are cast on the sample 3D finite-element mesh surfaces [26]. The

high load capacity of the testing machine required the presence of stiff columns

that partly obscured the projections (radiographs). Nevertheless, using a tai-

lored reconstruction procedure and artefact corrections, one could successfully

reconstruct high-quality 3D images [27]. The present study exploits such images.

Exploiting the considerable amount of data provided by full-field measure-

ments is quite challenging. An original IDVC procedure was therefore developed

to identify parameters of a model enabling, in turn, its validation.

The procedure is described in section 2: the construction of the model is

detailed, together with the identification method. Section 3 presents the identi-

fication results of a high-temperature test on an L-shaped sample. In section 4,

the quality of the results and the relevance of the chosen model are discussed.

Concluding remarks and perspectives are proposed in section 5.

2. IDVC procedure

2.1. In-situ experiment

The test is an in-situ corner bending test, described in detail in a companion

paper [4]. The sample is an L-shaped corner. Its inner radius is 4 mm. The long

arm is 27 mm, the short one 12 mm, with a section of 4.15×3 mm2 (Fig. 1a). The

long arm is clamped during the experiment. First, a thermal loading is applied

by heating the outer surface of the long arm (using a resistor) to generate a high

temperature gradient in the zone of interest (Fig. 1b and 1c). Once the sample

reaches the prescribed temperature, a mechanical load is applied incrementally

in the −z-direction, up to rupture, by an alumina punch on the short arm

(Fig. 1b).
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Figure 1: L-shaped sample. (a) Tomography of the full sample. (b) Zone of the sample visible during the test

(the short arm a); the mechanical loading is applied by the punch b, the thermal loading is applied by the

SiC/SiC resistor c. (c) Thermal field at the first loading step (°C)

An infrared camera is set up such that its optical axis is perpendicular to

the tomograph X-ray axis. A set of thermographies is acquired during the to-

mographic scan while the sample is rotating, giving access to the thermal field

of all the sample surfaces. The tests are carried out on the PSCHE beamline

at synchrotron SOLEIL with a pink beam centred around 40 keV and at a res-

olution of 3.14 µm. Those acquisition conditions provide a sufficient texture for

DVC (i.e. grey-level variations in the tomographic images), a good description

of the mesostructure of the sample and a large enough field of view to observe

the whole zone of interest. The resolution of infrared images is 217 µm. For

more details about the acquisition conditions, the reader is referred to [4].

Tomographic and thermographic acquisitions are performed at the initial

state at room temperature, after the heating step and at each loading step.
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2.2. Thermomechanical model

The structure of woven-SiC/SiC composites is complex (Fig. 2). The studied

material is produced by Safran Ceramics. At the mesoscale, two constituents

are generally distinguished [4]:

• the tow, composed of Hi-Nicalon-S SiC fibres, coated by a boron nitride

interphase and the intra-tow SiC matrix, both elaborated by Chemical

Vapor Infiltration [18];

• the SiC matrix which is elaborated in two steps (SiC slurry cast and metal

Si Melt Infiltration (MI) [28]) and thereby contains several phases (SiC,

Si and SiC powder embedded in metal Si) and has an overall porosity of

about 5% [4].

Those phases are considered homogeneous, the identified mesoscale properties

are thereby effective properties which will depend on the microstructure. The

mesopores are explicitly considered on the model because their repartition is

not homogeneous in the material, at least at the considered imaging scale. The

micro-cracks and porosity are assumed to be more diffuse and integrated into

the matrix effective mesoscale properties. Moreover, their very small size and

aperture prevent their observation. They are thus not considered explicitly, but

from their contribution to the effective elastic properties of the matrix phase.

The woven pattern, a custom 3D interlock, has a prominent influence on the

thermomechanical behaviour of the composite. The image-based model deployed

in the following aims to reproduce this effect.

As described in Appendix A, a sample woven structure is characterised ex-

plicitly by textile descriptors: neutral fibres of tows and several sections having

a polygonal geometry. A descriptive geometrical model of the preform can then

be built. The present study chose to resort to an idealised description of the

weaving based on a simulation of the preform shaping process. The matrix

geometry (overall sample shape and mesoscale pore distribution) is extracted

from the tomography and integrated into the model. The simulated weaving

does not match the actual mesostructure perfectly. Nevertheless, the possibility
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Figure 2: Microstructure of the studied SiC/SiC composite (courtesy of V. Mazars, this image is reproduced

from [6]).

of using a simulated model instead of the actual sample microstructure is an

attractive supplementary feature of the proposed methodology. The validation

of the preform shaping simulation is also an important issue, although it is not

addressed in the present paper.

The composite elementary constituents are assumed to have a linear thermo-

elastic behaviour in the ranges of temperature and strain applied. The matrix

is isotropic, and the tows are transversely isotropic. They are both considered

homogeneous, and the properties of all tows are chosen identical. Table 1 in-

ventories the whole set of the constituent material properties and the notations

used hereafter. As the thermal gradient in the sample is important, the varia-

tion of the properties with temperature has to be considered. In the considered

temperature range (room temperature up to 1200°C), the SiC properties vary

linearly [29]. This observation is extended to the properties of tows. Properties

are then considered at the two bound temperatures. As the anisotropy of the

expansion coefficient of tows is low and its value is close to the matrix one, it is

considered that the expansion coefficients of the tows are equal to that of the

matrix k11 = k22 = k. Indeed, the two expansion coefficients of the tows, k11

and k22, have very low sensitivities and induce ill-conditioning of the identifi-

cation problem, as explained in Appendix C. Therefore, 18 mesoscale material

parameters in total need to be identified.

The used macroscale mesh does not describe the mesostructure explicitly

(Fig. 3a). A local homogenisation is required. The effective properties of each
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description T (°C) initial estimated uncertainty

E (GPa) matrix Young’s modulus 20 310 304 2

1200 276 202 5

ν matrix Poisson’s ratio 20 0.17 0.17 1 × 10−4

1200 0.17 0.17 6 × 10−5

k (K−1) matrix coefficient of 20 4.7 × 10−6 4.16 × 10−6 1 × 10−8

thermal expansion 1200 9 × 10−6 8.74 × 10−6 3 × 10−8

E11 (GPa) tow longitudinal Young’s 20 320 320 3

modulus 1200 306 303 5

E22 (GPa) tow transverse Young’s 20 146 127 2

modulus 1200 120 122 2

G12 (GPa) tow shear modulus 20 59.6 60 5

1200 47.6 54 6

G23 (GPa) tow shear modulus 20 64.8† 47 2

1200 64.8† 44 4

ν12 tow Poisson’s ratio 20 0.176 0.17 3 × 10−2

1200 0.175 0.17 3 × 10−2

ν23 tow Poisson’s ratio 20 0.15 0.12 4 × 10−2

1200 0.137 0.12 4 × 10−2

Table 1: Thermomechanical properties of the meso-constituents. Initial values are from [30] and †[15]. The

identified values are the IDVC result. Comments on the computation and the meaning of the displayed

uncertainties can be found in Appendix D
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element are computed from the properties of the constituents it contains using

an equivalent laminate model using the procedure detailed in Appendix A. It

results in a field of stiffness and thermal dilatation tensors different to each

other. The number of macroscale parameters is huge, but for a given geometry,

they depend on a limited number of mesoscale parameters.

x
y

z

(a)

x
y

z Σ

u

γ

θd

e

(b)

Figure 3: Model of the sample. (a) Mesostructure and the macroscale mesh (mesh size 252 µm), the colours

refer to the elementary constituents. (b) Boundary conditions, the bottom surface Σ is not a free surface, and

its rigid body motion and dilatation are computed from DVC. The loading applied by the punch is displayed in

red and parameterised by {u, d, e, θ, γ}

The sample is clamped in its lower part. In the model, the bottom surface

of the mesh, Σ, is assumed to be subjected only to rigid-body displacement

and thermal dilatation (Fig. 1c). Those parameters are determined by standard

DVC over a zone of interest surrounding this surface. The loading is applied to

the short arm with a punch. The punch geometry was chosen to be flat, and it

is assumed that the entire lower surface of the punch is in contact with the sam-

ple. The temperature field is re-projected from multi-view infrared acquisition

(Fig. 1c). It was shown to remain constant in time during an acquisition [4],

and it is used as Dirichlet thermal boundary conditions applied to the model

surface.
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2.3. Identification procedure

The experimental protocol aims to identify the best meso-constituent mate-

rial parameters of the image-based model (listed in Table 1) to fit the observed

behaviour. It is then used to validate the modelling choice.

DVC consists in computing the displacement field between two tomographic

images based on their texture and assuming grey level conservation [22]. With

global DVC, the displacement field is expressed on a kinematic basis, itself

supported by a finite element mesh. The exploited image texture of the to-

mographic reconstruction is directly the contrast of the microstructure without

any further alteration. In the considered composites, the tows are not uniformly

distributed, and the major axes of the tow sections have lengths of the same

order of magnitude as the thickness of the part. In classical DVC, the mesh

should be very coarse. A more tailored basis can be used. IDVC directly uses

a kinematic basis composed of the sensitivity fields with respect to the param-

eters of the sample model [31]. Among full-field measurement-based methods,

IDVC is the best identification procedure to minimise the uncertainty of the

identified parameters, provided the model accurately describes the sample and

its boundary conditions [24].

Appendix B details the IDVC procedure and its implementation in our par-

ticular case. In essence, IDVC aims to find the set of parameters that minimises

the norm of this DVC residual (i.e. the difference between the reference image

and the deformed image corrected by the current estimation of the displacement

field). A Gauss-Newton algorithm is used. The residual is projected onto the

vector space generated by the sensitivity fields of the parameters. The respective

amplitude of those projections provides the estimate of the incremental correc-

tion of the parameters. The convergence criterion is defined using the norm of

this incremental correction, ensuring the stationarity of the solution. As long as

the material can be considered linear thermo-elastic, its properties do not vary

from one acquisition step to another. It is, therefore, relevant to perform only

one minimisation embracing all the steps in a so-called spatiotemporal approach.
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3. Results

3.1. Model validation

This approach is valid as long as the thermo-elastic model remains relevant.

Therefore, our analysis is performed over all data collected prior to the first

visible sign of damage. The measured temperature and displacement fields of

the elastic step of the test are displayed in Figure 4. The temperature fields are

directly a projection of the infra-red images onto the sample mesh. The “mea-

sured” displacement fields are computed with the model using the identified set

of parameters. Only thermal loading is applied during the first step (a), and

the sample expands. As the thermal loading does not evolve much during the

test, the displacement field at this step gives an insight of the thermal-induced

displacement all along the test. The mechanical loading is applied during the

following steps (b) to (d), and the sample bends about the x-axis. The am-

plitude of the thermal-expansion-induced displacement is relatively important

compared to the mechanical one. On the thermal field, the effect of the con-

tact with the punch, acting as a heat sink, explained the temperature variation

between steps (a) and (b).

The identification procedure is initialised with material properties extracted

from the literature (Table 1). The displacement field determined by the first

finite element simulation provides the initial residual. If the model perfectly

reproduces the measured displacement field, those residuals should reduce to

noise images. The image textures should not be detectable. In practice, identi-

fication procedures, such as IDVC, reduce the kinematic basis drastically. The

new parametric basis limits the solution to relevant ones.

Figure 5a corresponds to the heating step (without any mechanical loading),

and Figure 6a to the first mechanical loading step (resp. step (a) and (b) of

Figure 4). The remaining texture on the residual field traduces the local error on

the simulated displacement field. The grey level amplitude is irrelevant per se,

but the patterns provide the mismatches between the model and the experiment.

In Figure 6, a porosity is marked with an arrow in the (x, y)-plane. It displays
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Figure 4: High-temperature corner bending test. In the force/displacement curve, the acquisition steps are

marked by letters (a is the heating step; b, c, d, e and f are the mechanical loading steps). The temperature

field and z-component of the displacement field are issued from the FE simulation with identified material

parameters. Only elastic steps are considered here.
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two lunulae, one positive and one negative, meaning the recalled position of this

porosity is false. A displacement along y is missing.

However, the overall displacement is rather well determined with the initial

parameters. The chosen model and properties are suitable as they already

account well for the kinematics from the tomographic data. The identification

procedure aims to fine-tune the material properties to minimise these residual

fields further.

The norm of the residual (i.e. the root mean square of the residual field)

provides global information about the mismatch between the two images. Its

variation is a good indicator for comparing several models and parameters. The

residual norm with the identified set of parameters should be lower than the

initial one.

3.2. Identification of the material parameters

Table 1 gathers the results of the identification of thermo-elastic material

properties for a high-temperature test. In general, the differences between op-

timised and initial values are relatively low. However, substantial differences

have to be noticed.

The initial choice of the matrix Young’s modulus was overestimated, whereas

the thermal expansion coefficient was underestimated. Considering the matrix

as homogeneous at the mesoscale is daring, given its actual heterogeneity. In-

deed, due to the woven-structure shaping, some regions between and inside tows

are difficult to infiltrate and present shrinkage cracks and micro-pores. Although

the resolution of the tomography is not sufficient to observe them, such cracks

are expected within the slurry cast sintered matrix [32]. IDVC, by identifying

the effective mesoscale properties, allows for taking into account the softening of

the matrix induced by the micro-porosity and micro-cracks. Furthermore, the

estimation of the mesoscale porosity is imperfect. As an ideal woven structure

is used to build the model, which is not a perfect match to the real structure in

places, the porosity map obtained from tomography intersects some tows. So

as not to break their continuity, those pores are omitted, thereby reducing the
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Figure 5: Grey level residual field, ρ, for the heating step: (a) initial state ‖ρ‖ = 5.54× 103; (b) converged state

‖ρ‖ = 4.28× 103. Some ring artefacts are pointed out by the arrow in the (x, y)-plane at the converged state.
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Figure 6: Grey level residual field, ρ, for the first loading step: (a) initial state ‖ρ‖ = 5.66× 103; (b) converged

state ‖ρ‖ = 4.95× 103. In (x, y)-planes, arrows mark the position of a mismatching pore.
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actual porosity of the sample. The insufficient knowledge of the micro-structure

of the matrix could explain the initial overestimation of Young’s modulus E.

The rather large correction of high-temperature E can result from the presence

of the metallic Si phase. The properties of this metallic phase vary much more

with the temperature than those of the SiC ceramic phase.

The initial values of tow properties are the effective parameters proposed

in [30], which stem from homogenising unidirectional tows. Only the fibre, the

interphase and the intra-tow matrix are considered during the homogenisation.

Regarding the longitudinal properties of tows, the final values remain close to

the initial ones. The fibres dominate the longitudinal properties. They are thus

less sensitive to microporosity. The elementary homogenisation to determine

them is efficient. Although homogenisation is rather coarse, the results appear

to be accurate despite the high tow curvature in the elbow of the sample. For

the transverse properties, particularly the shear modulus G23, identified values

are significantly lower than their initialisation. Micro-mechanical simulations

of tows show that their porosity substantially impacts their transverse proper-

ties [33]. The underestimation of porosity and intra-tow matrix discontinuity

could be responsible for the initial overestimation of the transverse properties.

As pointed out in [4], the infiltration of our samples is not perfect, and the tow

porosity may be a little higher in bulk than near the specimen surface.

4. Discussion

A complex test, such as the presented corner bending test, is an excellent way

to access a large set of material properties. As the loading state of the sample

varies from one area to the next, most constitutive parameters influence the

observed displacement fields. This loading heterogeneity should be contrasted

with standard approaches where each property is evaluated with a dedicated

test. Not only does the proposed procedure reduce the time and effort of a

complete experimental campaign, but it also avoids sample variability, which

may affect the interpretation.
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The influence of each parameter can be evaluated by considering the diagonal

terms of the Hessian matrix of the sensitivity matrix (Appendix D). The good

conditioning of the Hessian matrix allows one to judge the relevance of the

considered test to identify the sought parameters. Indeed, the conditioning

quantifies the relative influences of the least and the most sensitive combinations

of parameters.

The errors remaining after the identification are measured by the final resid-

ual. Two types of errors can be distinguished:

• the model error;

• the measurement uncertainty.

4.1. Model validation: considerations about model error

The model error is the gap between the actual sample behaviour and its sim-

ulated behaviour. It induces an error in the converged displacement estimation,

which appears distinctly in residual fields. In the present case, the model error

can be explained for the most part by the use of an ideal woven structure to

build the enriched macro-scale model of the sample instead of the actual one.

The homogenisation hypotheses are a potential source of error. As evoked in

Section 3.2, considering the matrix as a homogeneous media at the mesoscale is

a strong assumption. Similarly, assuming that all tows have the same properties

is an approximation.

Tomographic artefacts are an additional source of model error. Indeed, vol-

umes with artefacts do not faithfully reproduce the sample microstructure and

can affect DVC computation. Performing DVC, the grey levels of the image are

thus expected to be an intrinsic signature (X-ray absorption coefficient) of each

sample voxel. The grey level of a material point is assumed not to vary dur-

ing the test. However, scattering may induce deviation from such assumptions.

Most tomographic artefacts, namely missing-angle and ring artefacts, are static

in the detector frame and do not move as neighbouring material points from

one step to the next. It is essential to reduce these artefacts by pre-processing

the volumes [4, 27]. As they do not entirely vanish, some remain visible in
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the residual. For instance, some ring artefacts are visible in Figure 5b in the

(x, y)-plane.

Figure 5 shows the residual of the heating step at the beginning of the test.

The model adequately reproduces the displacement field induced by the ther-

mal expansion as the residual almost exclusively reveals noise and tomographic

artefacts.

Figure 6 corresponds to the first loading step. Even though the displacement

field is globally well estimated (the model captures the sample boundary motion

well), the woven structure appears in the residual. The model with identified

parameters does not perfectly describe the local deformation of the sample.

Nonetheless, the deviations from experimental data are low. The mismatch on

the sample edges can be measured to estimate the error in displacement using

the model with identified parameters. The good agreement between the model

and the experiment in this case, with high thermal gradients and important

microstructure variations, validates the relevance of using local homogenisation.

A way to improve the finite-element model could be to take into account

the true mesostructure, obtaining textile descriptors from the tomography of

the sample. In SiC/SiC composites, the contrast between matrix and fibres is

poor because both are made of silicon carbide. The segmentation of the woven

structure is thus difficult on fully elaborated materials. Bénézech and Couégnat

[34] proposed to perform this step before the infiltration of the matrix (on the

so-called woven preform). Unfortunately, in the present experiment, the woven

preform tomogram was unavailable.

4.2. Influence of parameters: considerations about uncertainties

The measurement uncertainty is induced by the noise on the raw measured

fields, i.e. the noise level of the tomograms and the uncertainty of the force. The

noise of the tomograms is assumed to be white and Gaussian. It is estimated

as the variance of grey levels in a homogeneous area of the tomogram (in the

air surrounding the sample). The measurement uncertainty of the force is com-

puted from the manufacturer’s data about the acquisition chain (force sensor
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and acquisition device). The uncertainties displayed in Table 1 are computed

from the uncertainty of the experimental data as explained in Appendix D. It

corresponds to the uncertainty on the parameter if there were no model errors

and if all other parameters were set to their values. It is a lower bound of un-

certainties. To fully characterise the uncertainty, it is necessary to consider the

coupling between parameters and the full covariance matrix of the problem (or

its invariants, e.g. its eigenvalues).

Considering a sub-problem with two degrees of freedom, Figure 7 illustrates

the coupling of parameters for two pairs of parameters: (a) room-temperature

E and E11 (matrix and tow Young’s moduli, respectively) and (b) room-

temperature G12 and G23 (tow shear moduli). For the latter, the ellipse axes

are almost parallel to the basis axes, G12 and G23 are only slightly correlated.

Hence, the previous conservative estimates do coincide with the true uncer-

tainty. In contrast, the two parameters are very much correlated for the former.

The estimation of the uncertainty should take into account the coupling.

For the full problem, the uncertainty hyper-surface is a 22-dimension hyper-

ellipsoid whose full knowledge is necessary to assess the uncertainty of any

property which depends on any arbitrary combination of parameters. From

an engineering point of view, such a determination is impractical and difficult

to communicate. In practice, one generally aims to determine one parameter

considering all others as known. The uncertainty on that parameter is then the

intersection of the ellipsoid with the line describing the quantity of interest.

In a given experimental condition, with a given amount of data, the smaller

the number of identified parameters, the lower the uncertainty. With that in

mind, the proposed spatiotemporal approach is relevant. The material is as-

sumed linear elastic. The material parameters are thus independent of the

loading level and can be determined once for the entire test. The overall num-

ber of parameters to be identified is so substantially reduced.

The uncertainty obviously depends on the sensitivity of the displacement

field on the corresponding parameter. It traduces the capability of the IDVC

procedure to identify a particular parameter. Here, relative uncertainties vary
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Figure 7: Uncertainty ellipses (%) for some two-parameter problems. Each parameter is normalised by a

nominal value, typically its initial guess.

from 0.24% for room temperature expansion coefficient (k) to 33% for the tow

ν23 Poisson’s ratio. Such a large uncertainty means that the Poisson’s ratio

has basically no influence on the kinematics. Even a rough approximation of

this parameter provides a good description of the sample behaviour. This is

an additional motivation for carrying out a test representative of operating

conditions, whatever their complexity.

Here the temperature field is treated as exact, and thus the error in the

temperature measurement is not included in the uncertainty but the model

error.

4.3. Limitation of the IDVC algorithm

Such an approach is demanding in terms of computation time. The conver-

gence is slow. The IDVC itself requires about two hours for the high-temperature

test. The limiting step is the determination of sensitivity fields, which necessi-

tates as many finite-element simulations as parameters to identify. So increasing

the number of parameters of the model implies higher computation times. A

relatively complex thermo-elastic model is used here, and each simulation takes

about one minute. Using a more complex model, e.g. including damage, could

require high-performance computation setups.
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5. Conclusion

This work opens the way to fully characterise industrial parts rather than

samples of material lacking shape complexity. The proposed IDVC procedure,

based on a locally homogenised model, is applied to a sample that does not

fulfil the scale separation hypothesis. IDVC provides model validation, fine

identification of material parameters and uncertainty estimations. A corner

bending test proves to be well-suited to identify most of the thermo-elastic

parameters of the model.

The identification residuals highlight a good agreement between the pro-

posed model and experiment, proving the capability of a macroscale locally-

homogenised model to accurately describe the thermomechanical behaviour of

SiC/SiC CMCs up to damage occurrence and despite the complex shape of the

sample. The deformation of a 10 mm-long sample is reproduced with a precision

of about 20 µm.

A set of nine material parameters is identified. Considering the gap between

the initial guess and the estimated parameters, the quality of usual hypotheses

about elementary properties, which is generally the weak point of homogenised

models, can be assessed. Most of the identified parameters are close to the initial

ones. It means, for instance, that a common homogenisation to compute tow

properties already provides a good approximation of effective behaviour even if

those tows present a large curvature. Nonetheless, the tow transverse properties

were initially overestimated. This is likely due to neglecting intra-tow micro-

pores. The sensitivity fields highlight the influence of the identified parameters

in the given loading configuration. As expected, the matrix properties have

a first-order influence on the behaviour in the elastic domain, and so do the

longitudinal and transverse tow Young’s moduli. On the other hand, the tow

Poisson’s ratios appear to have a weak effect.

The part geometry renders its manufacturing delicate. For instance, the

fibre volume fraction or Si fraction in the matrix may differ from the one ex-

pected during the initial design. The identified parameters provide — for the
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studied sample and the considered model — the best description of the sample

behaviour. The model needs to be validated by further experimental studies for

design or certification purposes. This procedure — or a similar one — should

be extended to other test configurations to fully validate the modelling choices

(varying loading, geometry and weaving of the sample). Then, the model and

the identified material parameters could be used to design and dimension parts.
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Appendices

A. Image-based model and homogenisation procedure

The objectives are, on the one hand, to build a model taking the sam-

ple mesostructure into account and, on the other hand, to keep some freedom

in terms of element sizes. A macroscale model is enriched by computing the

material properties from the mesoscale constituent properties using a local ho-

mogenisation procedure.

A simulation of the forming of the weaving pattern provides the sample tow

geometry as textile descriptors (neutral fibres and sections of the tows, using the

formalism proposed by [34]), displayed in Figures A1a and A1b. Thanks to those

descriptors, each tow and each tow segment are labelled. Two volume images

are built using those labels as grey levels (Fig. A1c). The images represent the

geometry of the weaving pattern. The labels are resp. related to a table of

phases and a table of orientations.

The overall infiltrated sample shape is determined thanks to the tomography,

and so is the mesopores distribution [4]. Tomography provides the geometry of

the matrix as a binarised image (Fig. A1d). A new image is built by summing

the weaving pattern and the matrix images (Fig. A1e). It represents the spatial

distribution of the different phases. The mesopores are considered in the model

only when they do not intersect the idealised woven structure. From this image,

a mesoscale mesh is formed using the CGal toolbox [35]. The mesh contains

345 000 nodes and is composed of tetrahedral elements.

At the mesoscale, tows are assumed to be transverse-isotropic and homo-

geneous. The matrix is supposed to be isotropic and homogeneous. The in-

terfaces between tows and matrix are assumed to be perfect (no de-cohesion

is considered). The interface nodes are shared by the two surrounding phases

ensuring the displacement continuity between the phases. The pores are con-

sidered isotropic with a very low Young’s modulus. The mesoscale properties

are recalled in Table 1.

The macroscale mesh is also built using CGal, using the binarised tomogram
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(a)
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(c)

(d)

(e)

Figure A1: Building of the mesoscale image-based model. The textile descriptors of the fabric (a) and of the

geometry of the tows (b) are used to build 3D images of the weaving pattern (c). A binarised tomography (d)

gives the overall shape of the sample and so the geometry of the matrix. Addition of those two images, image

(e) describes the spatial distribution of the mesoscale components.

of the sample. It contains 4560 nodes. It faithfully reproduces the overall geom-

etry of the sample and is, by construction, in the same frame as the mesoscale

model. Macro-elements contain more than one phase (Fig. A2a, A2b and A2c).

The effective properties of each macro-element are computed from the properties

of the phases it contains using an equivalent laminate model. The macro-element

effective stiffness tensor, Ceff, and thermal expansion tensor, Keff, are then the

weighted means of the resp. tensors of each phase i (all the tensors expressed

in the global frame)

Ceff = τiCi Keff = τiKi (A1)

In practice, those properties are computed from tables containing the propor-

tion, τi, and orientation of each constituent of the macro-element using a dedi-

cated Abaqus UMAT (User-defined mechanical MATerial behaviour) [15]. This

UMAT also takes into account temperature dependence. Properties are as-

sumed to vary linearly with the temperature in the considered range. Each

macro-element has thus different properties. As an illustration, Figure A2d
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shows the fields of some components of Ceff. One can notice that the tow align-

ments appear on the field along their transverse direction. Mesostructure data

is transported into the macroscale model.

(a)

x y
z

(b)

(c)

(d)

150

250

350

C1111

C2222

C3333

(e)

Figure A2: Local meso-to-macro homogenisation. (a) Zoom on the mesoscale mesh, superimposed with the

image of the weaving pattern; (b) Macroscale mesh superimposed with the image of the mesostructure. The

mesoscale mesh (c), with a mesh size of 90 µm, is conformal, whereas the macroscale mesh (d), with a mesh

size of 225 µm, is not. (e) Fields of the three first diagonal components of the macroscopic effective stiffness

tensor Ceff (GPa) issued from the local homogenisation.

The macroscopic mesh size is a compromise between modelling and DVC

constraints. On the one hand, tomography texture imposes the minimal element

size for DVC. On the other, too large a size downgrades the quality of the local

homogenisation. Indeed, the hypothesis of the local equivalent-laminar model is

relevant only if the element contains, at most, one weft and one warp tows. The

tows have an ellipse shape with a major axis of about 600 µm and a minor axis

of about 200 µm. On a comparable SiC/SiC composite, a mesh size of 252 µm,

thus corresponding to the yarn thickness, is sufficient to bring to light the effect

of mesostructure heterogeneity on the elastic behaviour properly [15]. This size

is used to build the macroscale model. This last model has 13 680 degrees of
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freedom.

B. IDVC implementation

DVC is an imaging technique which aims to compute kinematic fields from

volume images (typically tomograms) acquired at different loading states [31]. It

consists in finding the displacement field, u, minimising the residual, ρ, between

two images, f and g

ρ (x,u) = f (x)− g (x + u (x)) (B1)

In the global formulation, the weak form of the problem is considered. The

displacement field is projected on a finite element basis u(x) = aiϕi(x) [36].

The problem is highly non-linear. It is solved using a Gauss-Newton algorithm.

The iterative correction, {δa} of the displacement field {a} is found by solving

[M ]{δa} = {b} (B2)

where [M ] is the DVC Hessian matrix


[M ] =

∫
tϕ t∇f∇fϕdx

{b} =

∫
tϕ t∇fρdx

(B3)

IDVC uses a more suited kinematic basis by integrating a model [37]. In the

present case, the model presented in Appendix A is used. The parameters of the

model, {p} — or a normalisation, {p̃}, of them (see Appendix C) — are then

the new unknowns of the problem. IDVC is thus an identification procedure.

A convenient and lowly-intrusive way to integrate the model is to pass through

the sensitivity field of the parameters

{Sp̃i
} =

∂{a}
∂p̃i

(B4)
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{Sp̃i} is the displacement field induced by an incremental variation of p̃i. A new

Gauss-Newton procedure is set, solving at each iteration

t
[S][M ][S]{δp̃} =

t
[S]{b} (B5)

where [S] is the concatenation of all the sensitivity fields.

Other measurement modalities can be integrated into the identification pro-

cedure. In the presented case, the force is also used. The increment, {δp̃} is

computed by solving

[H] {δp̃} = {c}
t Sa

SF




M

2σ2
f

0(N×1)

0(1×N)
1

σ2
F


 Sa

SF

 {δp̃} =

t Sa

SF




b

σ2
f

∆F

σ2
F


(B6)

where [Sa] and [SF ] are resp. the displacement and force sensitivity fields; σf

the noise level of the images, σF , the uncertainty on the force; and ∆F , the

difference between the measured force and the force computed with the current

parameters {p}.
The thermal field is also considered in the identification procedure. Weak

coupling is assumed because the strains are low in SiC/SiC composites. The

measured temperature field — i.e. re-projected from the infrared images using

the procedure detailed in [26] — is used as boundary conditions in the finite-

element model.

The convergence criterion to reach stationarity is based on the norm, ‖δp̃‖,
of the increment of parameters. This norm should include the metric of the

problem

‖δp̃‖ =

√
t{δp̃}[H]{δp̃} (B7)

As [H] is the inverse of the covariance matrix of p̃, if this norm is inferior to

one, the variation of each parameter is inferior to its uncertainty (Appendix D).

This criterion is generally stricter than a criterion on residual stationarity.
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The computation of the sensitivity field is a time-consuming step. To speed

up the IDVC convergence, the sensitivity field is not updated at each iteration.

In between actual updates of all sensitivity fields (outer iterations), they are not

updated for several inner iterations. Finding a good balance between outer and

inner iterations allows for saving computation time. The criterion to update

sensitivity fields is based on the gap between the parameter value (when the

corresponding sensitivity was computed) and the current one.

In practice, sensitivity fields [Sa] and [SF ] are numerically computed using

the sample finite element model and using Abaqus. The sensitivity field com-

putation is parallelised. IDVC is performed using Correli1, namely the com-

putation of [M ] and {b}. The computations are performed on a Debian-Linux

workstation with 24 cores and 250 Go of RAM. Inner iterations take about

twenty seconds, and outer ones take ten minutes (using parallel computation

for sensitivity fields).

C. Sensitivity study

The sensitivity fields are the displacement fields resulting from an infinitesi-

mal change of one parameter, keeping all the others constant. As the parameters

have different natures and dimensions, the sensitivity fields exhibit broadly dis-

tributed orders of magnitude. As the identification problem is ill-posed, when

considering the original set of parameters {p}, this can lead to an ill-conditioning

of [H] (Eq. B6). A first step consists in normalising the parameters, such that

the incremental variation of the normalised set of parameter {p̃} induces sensi-

tivity fields of the same orders of magnitude. The normalisation choices depend

on the parameter natures and are given in Table C1.

Then, the eigenvalues and eigenvectors of [H] should be studied. Eigen-

vectors provide information on the possible coupling between parameters. The

components of the eigenvectors associated with the lowest eigenvalues have a

very low contribution to the sensitivity field. In the considered configuration,

1Correli is LMPS’s DIC and DVC toolbox.
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nature corresponding parameters, pi p̃i

modulus E, E11, E22, G12, G23
pi

pnom,i

Poisson’s ratio ν, ν12, ν23 pi

coefficient of thermal expansion k, k11, k22
∆T`

uref
pi

Table C1: Normalisation of the material parameters of the IDVC problem. ∆T is the temperature range of the

test, uref is a reference displacement, and ` is a characteristic length (here, ` is the diameter of the sample).

they have an insignificant influence on the behaviour of the sample. That is

why the two coefficients of thermal expansion of the tows are not considered in

the identification.

It is also interesting to consider the sensitivity field for themselves. The

sensitivities of the displacement field with respect to material properties are

considered hereafter. To appreciate the influence of one parameter, some exam-

ples of sensitivity fields are shown in Figure C1. The corresponding sensitivity

fields are relatively smooth even if the material properties are not spatially ho-

mogeneous. Sensitivities along the z-axis (Sz) have a very low magnitude for

most parameters. Indeed, the boundary conditions constrain the sample dis-

placement in this direction. In turn, Sz on those boundary conditions are very

high.

From one parameter to the next, the intensity of the sensitivity field may

vary by more than one order of magnitude. Moreover, some fields have a sim-

ilar pattern (e.g. room-temperature E and high-temperature E) and are only

distinguished by their intensity, leading to indetermination. Those two points

result in very poor conditioning of the identification problem.

D. Uncertainty computation

If the images are submitted to white Gaussian noise of standard deviation

σf and this noise is low compared to the grey level dynamics, the covariance of
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Ẽ11, 20°C

Sx

−45

−15.5

14

1.84

1.845

1.85

Sy

−2.8 · 10−4

−6 · 10−5

1.6 · 10−4

Sz

G̃12, 20°C

−2.9 · 10−2

6.049 · 10−2

0.15

Sx

−6 · 10−2

2 · 10−2

0.1

Sy

0

9 · 10−2

0.18

Sz

k̃, 20°C

Sx

−61

−21

19

2.49

2.495

2.5

Sy

−7.8 · 10−4

−2.4 · 10−4
Sz

ν̃12, 20°C

Figure C1: Some sensitivity fields cut in the median plane of the sample: displacement (µm) induced by a

variation of the normalised parameters of 1%.
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the displacement field, a, computed by DVC writes [38]

〈δa tδa〉 = 2σ2
f [M ]−1 (D1)

where [M ] is the DVC Hessian matrix (Eq. B3).

Excluding the model error, which is discussed in Section 4.1, the covariance

of the parameters, p̃, is

〈δp̃ tδp̃〉 = [H]−1 (D2)

Indeed, the IDVC Hessian matrix [H] already includes the noise level of the

images, σf , and the uncertainty of the force, σF (Eq. B6). In this paper, the

authors consider that the standard deviation of a parameter (i.e. the square

root of the corresponding diagonal term of [H]−1) is a good estimator of the

uncertainty induced by the uncertainties in the experimental data. Those values

are displayed in Table 1.
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Data availability

The raw data required to reproduce these findings cannot be shared at this

time due to legal reasons. The processed data required to reproduce these

findings cannot be shared at this time due to the same reasons.
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