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A µ-analysis based approach to probabilistic delay margin analysis
of uncertain linear systems*

Franca Somers1, Clément Roos1, Francesco Sanfedino2, Samir Bennani3 and Valentin Preda3

Abstract— Monte Carlo and deterministic µ-analysis are
well known tools in aerospace industry for Validation and
Verification (V&V) purposes. On the one hand, Monte Carlo
analysis can provide an accurate measure of probability for
sufficiently frequent phenomena. Nevertheless, it is often time-
consuming and may fail to compute worst-case stability margins
and performance levels. Deterministic µ-analysis, on the other
hand, cannot miss worst-case scenarios. But in the absence of
a measure of probability, a control system may be invalidated
on the basis of extremely rare events. About twenty years ago,
probabilistic µ-analysis was therefore introduced to bridge the
analysis gap between both techniques. It combines efficient µ-
based algorithms with a branch-and-bound scheme to explore
the whole uncertainty domain, also considering probability
distributions on the uncertain parameters. In this context, this
paper describes a novel algorithm for probabilistic delay margin
analysis, which provides upper and lower bounds on the proba-
bility of an uncertain system violating a desired delay margin.

I. INTRODUCTION

Time delays occur in almost every control engineering
problem, and generally have a significant impact on system
behavior. Most studies, including this work, focus on con-
stant time delays. A wide variety of analysis techniques are
available in both the time and frequency domains.

Time domain techniques mainly use Lyapunov–Krasovskii
functionals or Lyapunov–Razumikhin functions [1]. These
approaches are based on the classical Lyapunov theory,
and aim at constructing nontraditional energy-storage func-
tions/functionals for time-delay closed-loop systems. Much
literature deals with deterministic linear time-invariant (LTI)
problems in presence as well as absence of uncertainty, see
e.g. [2], [3]. The use of Lyapunov function(al)s usually leads
to criteria that can be expressed in terms of Linear Matrix
Inequalities (LMI) and solved with dedicated solvers.

Frequency domain approaches are generally based on
the small-gain theorem and use µ-based techniques [4] or
Integral Quadratic Constraints (IQC) [5]. First, µ-analysis
makes use of the structured singular value µ to study
robust stability and performance problems accounting for the
structure of the uncertainties in linear models. Examples of
application to uncertain time-delay systems can be found
in [6] and [7]. Then, IQC analysis can be interpreted as
the combination of (scaled) small gain techniques, mainly
µ-analysis, and positivity/passivity techniques which study
the interconnection of a linear operator with a non-linearity
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(”Lur’e problem”). It is used to study robust stability and per-
formance properties of uncertain, time-varying and nonlinear
systems. Some applications of IQC to robustness analysis of
time-delay systems can be found in [5] and [8].

Most frequency domain approaches require to replace
the constant delay element e−sτ , where s is the Laplace
variable and τ the considered time delay in seconds, with
a rational expression. This step has a major influence on
the conservatism of the analysis. In some studies, time-delay
elements are eliminated by covering their value sets with unit
disks, which leads to overly conservative results [9]. Other
approaches replace the exponential term by Padé approxi-
mations [10], Taylor series expansions [11] or the Laguerre
formula [12]. . . The accuracy of these approximations can of-
ten be improved by introducing more complexity. In contrast,
an exact representation of the time delay effects is proposed
in [7]. The replacement function has the same properties
(unit gain and phase varying linearly with frequency) as the
actual time delay. The price to pay is the introduction of a
parameter with frequency dependent bounds.

With this literature review in mind, let us now describe
the context and the motivations of this work. Due to
their simplicity, Monte Carlo (MC) simulations [13] have
long been the preferred Verification and Validation (V&V)
approach in the industry. They can provide an accurate
measure of probability for sufficiently frequent phenomena.
Nevertheless, they are often time-consuming and may fail to
compute worst-case stability margins and performance levels.
In contrast, deterministic simulation-free techniques such as
µ and IQC analysis have reached a good level of maturity.
Unlike MC simulations, rare scenarios are no longer missed,
but their probability of occurrence is not measured. Analysis
results can therefore be overly conservative [14] and a control
system may be invalidated on the basis of very rare and
therefore extremely unlikely events [15]. So there is a real
need to develop new methods to fill the gap between MC
simulations and worst-case analysis. The work presented in
this paper seeks precisely to make a step in this direction.

However efficient and accurate they may be, LMI-based
time-domain approaches seem difficult to implement at the
present time when it comes to be fast while analyzing
realistic systems characterized by high-dimensional models
with multiple uncertainties. On the other hand, frequency-
domain approaches such as µ and IQC analysis have shown
their ability to handle some real-world systems. IQC analysis
has the advantage of being able to deal with uncertainties,
time-varying parameters and non-linearities at the same time.
But it can be conservative and usually requires to use an



LMI solver, which significantly impacts the computational
time as already highlighted above. On the opposite, µ-
analysis is restricted to the analysis of uncertain systems, but
guaranteed and very accurate bounds on stability margins and
performance levels can usually be obtained very quickly [16].
And probabilistic µ-analysis has even been identified for
many years as a serious candidate to the analysis of rare
events [17], [14]. A significant effort has been made in
recent years to propose new probabilistic µ tools, which are
both versatile and computationally efficient [18], [19]. The
objective of this paper is now to focus on delay margin.
Considering the aforementioned literature review on time-
delay systems and V&V needs, it seems relevant to propose
a µ-analysis based approach to probabilistic delay margin
analysis, able to compute tight bounds on the probability of
delay margin violation for linear systems in the presence of
parametric uncertainties with given probability distributions.

The paper is organized as follows. The considered problem
is first stated in Section II. Section III gives a brief overview
to the proposed solution. The main theoretical results are then
detailed in Section IV, as well as a practical algorithm. The
potential of this algorithm is finally evaluated in Section V.

II. PROBLEM STATEMENT

Let us consider the following continuous-time uncertain
LTI system: {

ẋ = A(δ)x+B(δ)u

y = C(δ)x+D(δ)u
(1)

The real uncertain parameters δ = (δ1, . . . , δN ) are bounded
and without loss of generality normalized, so that the whole
set of admissible uncertainties is covered when δ ∈ Bδ =
[−1 1]

N . They are independent random variables, whose
probability density functions f are supported on the bounded
interval [−1 1]. It is assumed that A(δ), B(δ), C(δ), D(δ)
are polynomial or rational functions of the δi and that
system (1) can be transformed into a Linear Fractional Rep-
resentation (LFR) as shown in Fig. 1: the uncertainties are
separated from the nominal LTI system M(s) and isolated
in a block-diagonal operator ∆ = diag(δ1In1

, . . . , δNInN
) ∈

Rp×p, where Ini is the ni × ni identity matrix. The set
of matrices with the same block-diagonal structure as ∆ is
denoted ∆. Let B∆ = {∆ ∈ ∆ : δi ∈ Bδ} and D∆ = {∆ ∈
∆ : δi ∈ D} be the subsets of ∆ corresponding to Bδ and
to a given box D ∈ Bδ respectively.

Fig. 1: Linear Fractional Representation (LFR)

In this work, system (1) and Fig. 1 describe the control
loop opened at the place where the delay margin should

be computed. The closed-loop interconnection is therefore
recovered by applying a unit negative feedback between y
and u, i.e. by setting G(s) = 1 in Fig. 2.

Fig. 2: Feedback loop for delay margin analysis

Using these notations, probabilistic delay margin analysis can
be formalized as follows:

Problem 2.1: Compute the probability P
ϕ

∆,f (M(s)) that
the delay margin is smaller than a given threshold ϕ when
∆ ∈ B∆ for the negative feedback loop obtained by
connecting y to u in Fig. 1.
So, P

ϕ

∆,f (M(s)) is the probability that the interconnection
of Fig. 2 is not stable for all G(s) = e−τs, τ ∈ [0 ϕ]. A
control system can then be rejected or validated depending
on whether P

ϕ

∆,f (M(s)) does or does not exceed a given
threshold ϵ. A practical approach is presented in Section IV
to compute tight bounds on P

ϕ

∆,f (M(s)) for Single-Input
Single-Output (SISO) systems, i.e. when u ∈ R and y ∈ R.
The global underlying idea is now summarized in Section III.

III. OVERVIEW OF THE PROPOSED SOLUTION

During the past 5 years, a significant effort has been put
in the development of probabilistic µ theory and its imple-
mentation in the Stochastic Worst Case Analysis Toolbox
(STOWAT) [18]. Stability and H∞ performance were studied
first [20], [21], followed by gain/phase/disk margins [19].
The novelty of this paper lies in the introduction of a delay
margin analysis algorithm to solve Problem 2.1, and to enrich
this set of probabilistic µ-based tools.

Probabilistic µ-analysis builds upon classical µ. A pre-
liminary step is therefore to transform the interconnection of
Fig. 2 into an LFR, which requires to replace the exponential
delay G(s) = e−τs with a rational function Φ(α). A simple
but exact representation is proposed in Section IV-A, in the
sense that it has the same properties (unit gain and phase
varying linearly with frequency) as the actual time delay.
This is the first main contribution of the paper.

From an algorithmic point of view, probabilistic µ-analysis
combines classical µ-based tools with a branch-and-bound
(B&B) algorithm to explore the whole uncertainty domain
Bδ . The delay margin is first computed at the center of Bδ ,
i.e. for ∆ = 0. If it is larger (resp. smaller) than the desired
threshold ϕ, it is then checked whether the delay margin
requirement is satisfied (resp. violated) on the entire domain
Bδ using sufficient conditions involving µ upper bound
computations (see Propositions 4.1 and 4.3 in Sections IV-B
and IV-C). If this cannot be guaranteed, Bδ is finally parti-
tioned into smaller boxes and this process is repeated until



each box has guaranteed sufficient/insufficient margin, or is
small enough to be neglected (see Section IV-D). Guaranteed
upper and lower bounds on the exact probability of delay
margin violation P

ϕ

∆,f (M(s)) are finally obtained, based on
the probability distributions of the uncertain parameters δ,
thus solving Problem 2.1.

A major difficulty with respect to the gain/phase/disk
margins considered in [19] is that the aforementioned exact
rational representation of the delay function introduces a
parameter with frequency-dependent bounds that adds to the
uncertainties already present in ∆. An algorithm is proposed
in Section IV-B to take this dependence on frequency into
account, which is not possible with state-of-the-art µ-based
tools. This is the second main contribution of the paper. As
explained in Section IV-C, this exact representation can for
the moment only be used for the delay margin satisfaction
test, and its applicability to the violation test remains an
open issue currently under investigation. A second-order
Padé approximation is therefore introduced in Section IV-
A and used in a more classical way to perform the delay
margin violation test in Section IV-C.

IV. PROBABILISTIC DELAY MARGIN

A. Interconnection for delay margin analysis

The negative feedback loop of Fig. 2 is first built from the
LFR of Fig. 1. G(s) represents a time-delay τ ∈ [0 ϕ]:

G(s) = e−τs (2)

and the nominal closed-loop uncertain system is obtained
for τ = 0, i.e. G(s) = 1. G(s) does not have a rational
dependence on τ . Therefore, it should first be replaced with
a rational expression to be able to build an LFR and apply
robustness tools such as µ-analysis. Two expressions are
used: one to check whether the delay margin is larger than ϕ
over an entire box D ⊂ Bδ (satisfaction test, see Section IV-
B) and the other to check whether it is lower than ϕ (violation
test, see Section IV-C).

The transformation used for the delay margin satisfaction
test is based on the same idea as in [7], but it is much
simpler. G(s) has a unitary gain and introduces a frequency-
dependent phase shift equal to −τω at the frequency ω. The
delay margin is thus guaranteed to be larger than ϕ if the
system remains stable for any phase shift in the interval
I = [−min(ϕω, 2π) 0] at the frequency ω. In this context,
G(s) can be replaced with any rational expression Φ(α) such
that |Φ(α)| = 1, and whose phase ∠Φ(α) covers the interval
I when α covers [0 αmax(ω)]. The following choice is made:

Φ(α) =
2jα2 − 2(1 + j)α+ 1

−2jα2 − 2(1− j)α+ 1
(3)

for which:

αmax =


1− β −

√
1 + β2

2
if ω < π/ϕ

0.5 if ω = π/ϕ

1− β +
√
1 + β2

2
if ω > π/ϕ

(4)

and β = tan −min(ϕω,2π)
2 . To get equation (4), just note that:

∠Φ(α) = 2 arctan
2α(α− 1)

1− 2α
(5)

which gives for α = αmax:

tan
∠Φ(αmax)

2
= β =

2αmax(αmax − 1)

1− 2αmax
(6)

and finally 2α2
max+2(β− 1)αmax−β = 0. The motivation

for this choice of Φ(α) is that ∠Φ(α) and αmax(ω) are
simple functions with a smooth behavior, as shown in Fig. 3.

0 0.5 1

-2

-

0

0 / 2 /
0
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1

Fig. 3: Φ(α) and αmax(ω) used for the satisfaction test

Standard matrix manipulations based on the Redheffer star
product allow to equivalently transform the interconnection
of Fig. 2, where G(s) is replaced with Φ(α), into that of
Fig. 4, where ∆m = αI2, α ∈ [0 αmax(ω)], contains a
single parameter with frequency dependent bounds. Note that
a rational function Φ(α) of degree 1 in α would lead to a
simpler LFR, where α is not repeated in ∆m. This is however
not possible here. α would indeed tend to ±∞ to allow
∠Φ(α) to cover [−2π 0], but the µ-based tools used in the
sequel require the ∆ block of the LFR to be bounded.

Fig. 4: Transformation of the interconnection of Fig. 2

For the delay margin violation test, the exponential
term (equation 2) is replaced by a Padé approximation,
whose order is chosen based on a balance between accuracy,
complexity and validity. Indeed, the higher the order, the
better the accuracy, but the larger the number of repetitions
of τ in the resulting LFR. Moreover, the negative phase
shift caused by the approximation should be less in absolute
value than the one induced by the true time delay for all
frequencies, as clarified in Section III.C, and this property
may not be satisfied for all orders. In view of these elements,
replacing G(s) by a second-order Padé approximation:

Ψ(s) =
(τs)2 − 6τs+ 12

(τs)2 + 6τs+ 12
(7)

appears to be a good compromise. It has indeed been
observed in practice that the first-order approximation is not
accurate enough, whereas the second-order one is usually



sufficient, as shown in Section V. Moreover, the second-order
Padé approximation satisfies the condition on the phase.
The use of a higher-order approximation does not raise any
technical difficulty, provided that the condition on the phase
is satisfied. To equivalently transform the interconnection of
Fig. 2, where G(s) is replaced with Ψ(s), into that of Fig. 4,
where ∆m = τI2, τ ∈ [0 ϕ], an approach similar to the one
used for first order Padé approximations in [10] is applied.

B. Checking stability margin satisfaction on a box

Let us consider a box D ∈ Bδ and the exact char-
acterization (3) of the delay function. The interconnection
N(s)−diag (∆, αI2) ,∆ ∈ D∆, of Fig. 4 is normalized and
equivalently replaced by Ñ(s) − diag (∆̃, αI2), ∆̃ ∈ B∆.
Checking whether the delay margin requirement is satisfied
on the entire box D can then be done using the necessary
and sufficient condition of Proposition 4.1.

Proposition 4.1: The delay margin is larger than ϕ on a
given box D ⊂ Bδ if and only if the interconnection Ñ(s)−
diag (∆̃, αI2) is stable ∀∆̃ ∈ B∆ and ∀α ∈ [0 αmax(ω)].

Proposition 4.1 requires solving a non-standard µ-analysis
problem, where the bound on α is frequency-dependent. A
classical approach is to reduce the whole frequency range
to a finite grid (ωk)k. α is then normalized at each ωk,
i.e. α = αmax(ωk)

2 (δm + 1), δm ∈ [−1 1], resulting in a
fully normalized interconnection Ñ(s) − diag (∆̃, δmI2). It
is finally checked if µ(Ñ(jωk)) ≤ 1 for all k (due to
NP-hardness, an upper bound µ(Ñ(jωk)) is computed in
practice, see [22]). But this strategy is doomed to fail. When
the box D gets closer to the limit between the domains of
delay margin satisfaction and violation, the peak value of
µ(Ñ(jω)) tends to 1 and the risk of missing critical fre-
quencies where µ > 1 increases. Adding more frequencies to
the grid can be tempting, but the computational time quickly
becomes prohibitive. Moreover, several tests have shown that
all frequencies where µ > 1 always end up being missed,
thus leading to the erroneous claim that the delay margin
requirement is met. A better approach uses the Hamiltonian-
based algorithm of [23], which computes a guaranteed µ
upper bound over an entire frequency interval. A three-step
strategy is proposed here, as detailed in Algorithm 1. The
method of [23] is first applied at a given frequency ωk

assuming that all uncertainties have constant bounds, which
leads to an initial interval [ωmin ωmax] including ωk on
which µ(Ñ(jω)) ≤ 1 (step 1). But α has an increasing
frequency-dependent upper bound, as shown in Fig. 3 (right).
Therefore, ωmin is an admissible lower bound on the validity
interval for the considered delay margin problem, but it can
be further decreased (step 2). On the opposite, ωmax is
too large and is reduced by means of a dichotomic search
(step 3). Algorithm 1 is repeated until the union of all validity
intervals covers the whole frequency range, which guarantees
that the delay margin is larger than ϕ, or until an ωk is found
such that µ(Ñ(jωk)) > 1. In the latter case, either the delay
margin is not larger than ϕ, or the µ upper bound is too
conservative to prove the converse.

Algorithm 1 Validity interval [ωmin ωmax] around ωk

Step 1 - Initialization:
1) select an unevaluated frequency ωk and normalize

α at ωk to get the fully normalized interconnection
Ñ(s)− diag (∆̃, δmI2), ∆̃ ∈ B∆, δm ∈ [−1 1]

2) check whether µ(Ñ(jωk)) ≤ 1
3) if not then STOP else use [23] to compute an

initial interval [ωmin ωmax] around ωk on which
µ(Ñ(jω)) ≤ 1

Step 2 - Lower bound improvement:
initialization: set ωtest = ωk

while ωtest − ωmin > ϵ do
1) set ωtest = ωmin

2) normalize α at ωtest and compute Ñ(s)
3) use [23] to compute an interval [ω1 ω2] around ωtest

on which µ(Ñ(jω)) ≤ 1
4) set ωmin = ω1

end while
Step 3 - Upper bound improvement:
initialization: set ωlow = ωk and ωhigh = ωmax

while ωhigh − ωlow > ϵ do
1) set ωtest =

(ωhigh+ωlow)
2

2) normalize α at ωtest and compute Ñ(s)
3) check if the D and G scaling matrices associated to

the µ upper bound of step 1 are still valid at ωlow

4) if valid then
• use [23] to determine the validity interval [ω1 ω2]
• if ω2 > ωtest then set ωmax = ωtest and ωlow =

ωtest else set ωhigh = ωtest

end while

C. Checking stability margin violation on a box

The Padé approximation (7) of the delay function is
now used. The interconnection N(s) − diag (∆, τI2) ,∆ ∈
D∆, τ ∈ [0 ϕ], of Fig. 4 is normalized and equivalently
replaced by Ñ(s)− diag (∆̃, δmI2), ∆̃ ∈ B∆, δm ∈ [−1 1],
i.e. τ = ϕ

2 (δm+1). Proposition 4.2 then provides a sufficient
condition to check whether the delay margin requirement is
violated on the entire box D ⊂ Bδ .

Proposition 4.2: The delay margin is lower than ϕ on a
given box D ⊂ Bδ if ∀∆̃ ∈ B∆, ∃ δ̂m ∈ [−1 1] such that
the interconnection Ñ(s)− diag (∆̃, δ̂mI2) is unstable.

Proposition 4.2 cannot be directly evaluated using standard
µ-based tools and is therefore replaced by Proposition 4.3.

Proposition 4.3: The delay margin is lower than ϕ on
a given box D ⊂ Bδ if ∃ δ̂m ∈ [−1 1] such that the
interconnection Ñ(s)−diag (∆̃, δ̂mI2) is unstable ∀∆̃ ∈ B∆.

As suggested in [19], δ̂m is determined by study-
ing the stability of the nominal interconnection Ñ(s) −
diag (0p×p, δmI2). A finite number of values (δkm)k which
grid the interval [−1 1] are considered, and the one which
moves a pole of the interconnection the farthest in the right



half-plane is selected to be δ̂m. As δ̂m remains constant in
Proposition 4.3, it can be integrated into Ñ(s) to form a
reduced normalized interconnection Ñr(s)−∆̃, where Ñr(s)
is unstable. It is then sufficient to check whether this reduced
interconnection remains unstable ∀∆̃ ∈ B∆. This can be
done easily by determining with standard µ-based tools if
µ(Ñr(jω)) ≤ 1 on the whole frequency range.

Unlike the delay margin satisfaction test of Section IV-
B, some conservatism is introduced here. First, the Padé
approximation (7) is used instead of the exact delay (2).
This is admissible, since its phase is smaller in absolute
value than the one of G(s) for all frequencies. But unlike
Proposition 4.1, this makes the condition of Proposition 4.2
non-necessary. Higher-order Padé approximations can be
used to mitigate this conservatism, at the price of a slight
increase in the computational time. Second, δ̂m is fixed to a
constant value in Proposition 4.3, which makes the condition
even more non-necessary. But as the size of D decreases
along the iterations of the B&B algorithm (see Section IV-
D), it is reasonable to think that there is more and more
chance that a single value of δ̂m will fit.

Remark 4.1: The exact characterization (3) cannot be
used as for the satisfaction test. Indeed, the upper bound
αmax(ω) on α is frequency-dependent, and tends to 0 when
ω → 0. So δ̂m in Proposition 4.3 could not be constant and
would necessarily depend on ω. As a result, the state-state
matrices of Ñr(s) would also be frequency-dependent, thus
preventing to use the Hamiltonian-based approach of [23] in
Algorithm 1.

D. Algorithmic issues

The conditions for determining whether a given delay
margin requirement is satisfied (Proposition 4.1) or violated
(Proposition 4.3) on an entire box are embedded into the
same B&B algorithm as in [19], which is not reproduced here
for the sake of brevity. Bδ is divided into smaller and smaller
boxes until each box has guaranteed sufficient/insufficient
delay margin, or has a probability lower than a user-defined
threshold pmin. Before that, a preliminary stability analysis
should be performed with Algorithm 1 of [20], leading to:

Bδ = Ds ∪Ds ∪Dsu (8)

where Ds, Ds and Dsu are the domains of guaranteed
stability, guaranteed instability and undetermined stability
respectively. The delay margin can indeed only be evaluated
for stable systems, so the application of the delay margin
algorithm is restricted to Ds, leading to:

Ds = Dm ∪Dm ∪Dmu
(9)

where Dm, Dm and Dmu are the domains of guaranteed
delay margin satisfaction, guaranteed delay margin violation
and undetermined delay margin, with corresponding proba-
bilities p(Dm), p(Dm) and p(Dmu

). Combing (8) and (9),
the final partitioning of Bδ can be obtained as:

Bδ = Dm ∪Dm ∪Dmu ∪Ds ∪Dsu (10)

Guaranteed bounds on the exact probability P
ϕ

∆,f (M(s))
of delay margin violation are finally obtained, which solves
Problem 2.1:

p(Dm) ≤ P
ϕ
∆,f (M(s))≤ p(Dm) + p(Dmu)= p(Ds)− p(Dm)

V. NUMERICAL RESULTS

The proposed algorithm has been implemented in the
STOWAT and is validated here on a simple satellite model
with two uncertainties, adapted from [4]. The low number
of uncertainties indeed allows the results to be represented
graphically, which enhances clarity. The satellite is repre-
sented as a symmetric cylinder spinning around the symme-
try axis z with a constant angular rate Ω. The angular rates
ωx and ωy around the x and y axes are controlled using
torques Tx and Ty . Let Ix, Iy = Ix and Iz be the inertia of
the satellite with respect to the x, y and z axes respectively.
The system rotational motion can be described by:{

Tx = Ixω̇x − ωyΩ(Ix − Iz)

Ty = Ixω̇y − ωxΩ(Iz − Ix)
(11)

Uniformly distributed uncertain parameters δ1 ∈ [−0.5, 2.5]
and δ2 ∈ [0, 2] are introduced, leading to:[

ω̇x

ω̇y

]
=

[
0 a
−a 0

][
ωx

ωy

]
+

[
δ1 0
0 δ2

] [
ux

uy

]
(12)

where ux = Tx

Ix
, uy =

Ty

Ix
. Two measures νx, νy are available:[

νx
νy

]
=

[
1 a
−a 1

] [
ωx

ωy

]
(13)

and a static controller K is applied:[
ux

uy

]
= −K

[
νx
νy

]
= −

[
1 0
0 1

] [
νx
νy

]
(14)

It is assumed in the sequel that a = 10. A preliminary
probabilistic stability analysis is performed on the uncertain
closed-loop system (12)-(14) using Algorithm 1 of [20]. The
first channel of the control loop is then opened, the second
one remaining closed. An LFR is obtained as in Fig. 1, where
u = ux and y = νx. A probabilistic delay margin analysis is
finally performed with ϕ = 0.2 using the proposed algorithm.
The B&B algorithm stops when p(D) ≤ pmin = 1/5000%
for all D ∈ L. It can be determined in a few seconds that:

1) 48.1% of the uncertainty domain [−0.5 2.5]× [0 2] is
guaranteed to be stable in closed loop,

2) the probability of delay margin violation satisfies
P

ϕ

∆,f (M(s)) ∈ [26.4% 28.2%].
Results are presented in Fig. 5 with the following color code:

• green: the delay margin is guaranteed to be ≥ ϕ,
• red: the delay margin is guaranteed to be < ϕ,
• blue: the delay margin is undetermined,
• orange: instability is guaranteed,
• gray: stability is undetermined.

A comparison is made with a classical grid-based approach:
• magenta: the delay margin is guaranteed to be ≥ ϕ,
• yellow: the delay margin is guaranteed to be < ϕ,
• black: the system is unstable.



Both analyses are in good agreement, but the STOWAT
provides guaranteed results on the whole uncertainty domain,
and not only for a finite number of points.

However, the second-order Padé approximation can some-
times lead to some conservatism. If the same analysis is
performed with ϕ = 0.4, a substantial part of the uncertainty
domain remains undetermined, as seen in Fig. 6 (blue region
in the area δ1 ∈ [0 1] and δ2 ∈ [0 0.75]). A comparison
with a grid-based approach indeed shows that in this region,
the system is unstable when perturbed by a true time delay
(upper plot), but remains stable when perturbed by a second-
order Padé approximation (lower plot). The conservatism
in this region cannot be reduced by changing the stopping
criterion of the B&B algorithm, but probably by considering
higher-order Padé approximations, at the price of a slight
increase in the computational time.

Fig. 5: Delay margin analysis with ϕ = 0.2s

VI. CONCLUSION

An algorithm for probabilistic delay margin analysis of
SISO systems has been outlined and integrated into the
STOWAT. Its capabilities and limitations have been pre-
sented through the application to a demonstrative bench-
mark. Follow-up research will focus on replacing the Padé
approximation-based violation test with an exact compu-
tational method, as it is already the case for the margin
satisfaction test, so as to reduce conservatism.
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