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ABSTRACT

This study compares two approaches for simulating synthetic
aperture radar (SAR) images. The first approach uses a condi-
tional Generative Adversarial Network (cGAN) to learn sta-
tistical image distributions from optical images. In a second
approach, we generate SAR images using a electromagnetic
simulator taking into input material maps obtained by seg-
menting optical images. We propose two metrics to evaluate
the quality of the simulation. We evaluate the methods on ex-
isting Sentinel-1 SAR images of France using the DREAM
database. The results suggest that the physical simulator with
automatically created material maps is better suited for gener-
ating realistic SAR images compared to the cGAN approach,
even if a lot of work remains to be done on the complexity of
the description of the scene.

Index Terms— Simulation, Radar, Deep Learning, Re-
mote sensing, Semantic segmentation

1. INTRODUCTION

Radar images have diverse applications in civil, industrial,
and defense sectors, such as land surveillance and mapping.
Simulating radar images is crucial for generating large quanti-
ties of SAR images for deep learning, evaluating algorithmic
performance, and meeting specific acquisition conditions.

Simulation tools face significant challenges in balancing
computational complexity, fidelity to physics, and image size.
Several tools exist for solving Maxwell’s equations, such as
RaySAR [1] which uses ray tracing to account for topography
and interactions, CohRaS [2] which utilizes coherence simu-
lation, and EMPRISE (www.emprise-em.fr) developed in On-
era [3]. EMPRISE is capable of generating high-resolution
images over large areas and in various operational scenar-
ios. This capability is achieved through a combination of
two modules. The first module accurately describes the Radar
Cross Section (RCS) of objects by utilizing their detailed 3D
mesh and material properties. The second module generates
speckle zones by employing curves that describe the variation
of σ0 with respect to incidence angle and polarization. How-
ever, this simulation tool faces two significant challenges: en-
suring the electromagnetic model is accurately represented in

the resulting image, and properly describing the input data
for the simulator. In the case of the EMPRISE simulator, the
input is typically a manual annotation of the scene from an
optical image. This study aims to replace this process with an
automatic algorithm and evaluate the quality of the resulting
simulation product.

We propose two approaches to automatically simulate
SAR images, depicted in Figure 1. The first one uses a
conditional generative adversarial network (cGAN) architec-
ture to simulate a SAR image from its optical equivalent,
without taking into account the physics. The second ap-
proach involves automatic segmentation of an optical image
to generate a scene description, which can be used within our
physical simulation tool EMPRISE.

In section 2, we describe the methods used for the simula-
tion and the performance evaluation, including the implemen-
tation of the metrics. In section 3, we present the main results
of our approaches before concluding.
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Fig. 1. Block diagram of the two SAR image simulation
methods. Below: in GRD geometry with cGan; Up: in SLC
geometry with EMPRISE

2. METHODS

2.1. Simulation Frameworks

2.1.1. Fully supervised simulation

To generate a SAR image from an optical image, we train a
cGAN using a Pix2Pix architecture [4]. The cGAN incorpo-
rates an additional condition, such as a reference image or la-



bel, to guide the generation process. Specifically, we use the
Pix2Pix architecture [4] to learn the mapping between opti-
cal and SAR domains, resulting in realistic SAR images from
corresponding optical images.

2.1.2. EMPRISE-based simulation

Our second approach, based on hybrid simulation, utilizes the
EMPRISE simulator which requires a material map as input
for scene simulation. To generate the material map, we pro-
pose assigning a label to each pixel in an image through se-
mantic segmentation. In recent years, deep learning, particu-
larly convolutional neural networks (CNNs), has emerged as
the dominant paradigm for image semantic segmentation [5].
U-Net [6], a CNN specifically designed for biomedical image
segmentation, has become a popular choice for this task. We
train a U-Net-based neural network on both the optical image
and OpenStreetMap (OSM) data rasterized in the DREAM
database and used as classification labels. Once the segmen-
tation map S is obtained, it is used as input for automati-
cally simulating SAR images with the EMPRISE simulator.
Each label of S is assigned a backscatter curve for each class
type, which is parameterized by the local incidence angle and
acquisition frequency. This allows us to generate simulated
SAR images with accurate backscatter properties for each la-
beled class in the material map.

2.2. Evaluation Frameworks

To evaluate the quality of simulated results, we propose ded-
icated metrics considering the specific statistical properties
of SAR. Previous literature commonly uses metrics like the
structural similarity index measure (SSIM) [4] and mean
square error (MSE) for image assessment. However, it is
important to note that speckle can cause MSE variations
even when comparing different real images of the same area.
Similarly, the SSIM may not accurately distinguish between
texture and statistical differences in images. In this study,
we propose two new metrics designed for SAR images to
address limitations in previous approaches. These metrics
offer a comprehensive evaluation of SAR simulations.

2.2.1. Speckle statistics

The first metric focuses on analyzing the statistical proper-
ties of speckle. When speckle satisfies Goodman’s model
assumptions [7], the second and third order log-cumulants
become independent of the first moment of the speckle dis-
tribution. To compare the micro-texture properties of two
speckle realizations, regardless of their mean values, we pro-
pose to compute the Bhattacharyya distance between the bi-
variate distribution of the log-cumulants κ2 and κ3 [8] and we
call this metrics BDLC. The distribution is estimated through
the joint histogram of these log-cumulants. We recommend
estimating the log-cumulant of the intensity distributions over

5x5 pixel estimation windows. To ensure that the estimated
Bhattacharyya distance is as independent as possible from
content of the image, we propose to estimate the histogram on
the support of [0, 5σκ2,L] and [µκ3,L−9σκ3,L, µκ3,L+9σκ3,L]
where µκi,L and σκi are respectively the theoretical mean and
theoretical standard deviation for κi(i = 2, 3) of a gamma
distribution. The number of bins required for histogram dis-
cretization is chosen to be equal to the square root of the
number of pixels in the considered area. We found that an
adequate image area size for calculating this criterion is ap-
proximately 90,000 pixels. With these parameters, the Bhat-
tacharyya distance established on these two statistical param-
eters can effectively distinguish different distributions such
as gamma distributions with different equivalent number of
looks L or distinguish gamma distribution with log-normal
and inverse gamma.

2.2.2. Bright scatterer detection and matching

We introduce our second evaluation process, which aims to
identify bright scatterers in the scene. These scatterers are
characterized by their high reflectivity, typically resulting
from the material or geometric structure of objects. Our ap-
proach involves comparing the presence of these bright scat-
terers in both real and simulated images. To achieve this, we
propose a multiscale detection method inspired by the work
of Armand and Lopes [9]. This method entails computing
intensity averages over central and peripheral neighborhoods.
By employing various neighborhood sizes, we are able to
detect bright scatterers at different scales. For each detection
involving a set of related pixels, we retain only the pixel with
the highest value, resulting in a refined final detection.

We introduce three metrics for comparing the sets of
points extracted from both the real and simulated images.
These metrics include the Chamfer distance [10], the recall
comparing at a fixed matching distance of N pixels with the
true image as the reference, called RBMP for Recall-Based
Matching Performance, and the minimum matching distance
required to attain a recall score of 0.9 with the simulated
image as the reference called 90RD.

The Chamfer distance can be interpreted as the average
distance between two point clouds. When the points in the
simulated image closely match those in the real image, the
Chamfer distance will be small. Conversely, if no bright
points are detected in the simulated image, the distance will
be infinite, indicating a lack of correspondence between the
two point clouds.

The recall measures the ability of our simulator to accu-
rately locate and match real points in the simulated image.
It calculates the percentage of real points that have a corre-
sponding point in the simulated image within a certain dis-
tance threshold, fixed here to N=5 pixels. A high recall in-
dicates accurate localization and matching of the simulated
image. The distance to a fixed recall score, assesses the abil-



ity of our simulator to reproduce the points present in the real
image. It returns the maximum distance threshold required to
match 90% of the bright scatterers in the simulated image to
the points in the real image. A smaller distance indicates a
closer resemblance between the simulated points and the real
image. If the density of bright scatterers in the real image
deviates significantly from that of the simulated images, the
first and third metrics will reflect this discrepancy by increas-
ing their respective values.

3. RESULTS

3.1. Our global Approach

We evaluate the performance of our two simulation ap-
proaches on Sentinel-1 images, using a Sentinel-2 opti-
cal image as input. However, comparing the results is not
straightforward due to differences in simulation geometries.
Specifically, for the cGAN approach, we simulate images
in the terrain-corrected Ground Range Detected (GRD) ge-
ometry, which allows for a direct transfer from the optical
images. On the other hand, EMPRISE generates images in
the antenna reference frame, resulting in Single Look Com-
plex (SLC) products. Despite these differences, we analyze
the simulation results using our proposed metrics, as shown
in Figure 3.

In both of our approaches, we rely on the DREAM
database [11]. DREAM is a multimodal database contain-
ing optical images from Sentinel-2, material map composed
of 7 different labels extracted from OSM, and SAR images
from Sentinel-1 acquired within less than 10 days apart from
the optical images. To validate the hybrid simulations, we
also download Single Look Complex (SLC) images corre-
sponding to the same products than the initial GRD images.

Figure 2 consists of a real Sentinel-1 image on the left,
a cGAN-simulated image on the right, and an EMPRISE-
simulated image in the center after automated segmentation
and rescaled to the same squared grid for consistency. In a
qualitative assessment, the overall results appear to be more
realistic with cGAN. However, our metrics will provide a
more accurate and detailed evaluation of these simulations.

3.2. Accuracy of statistics

Taking into account the entire image footprint, both the cGAN
and EMPRISE approaches closely approximate the speckle
distributions observed in real images. However, at the local
level, this is no longer the case for cGAN.

Specifically, in the case of EMPRISE, the log-cumulant
diagrams exhibit remarkable similarity between the real and
simulated data. Conversely, cGAN fails to adequately capture
the microtexture. In Figure 3, the example diagram clearly il-
lustrates that the points in the log-cumulants plane for cGAN
are considerably less dispersed around the theoretical value,
indicating a notable deviation from the desired representation.

Simu
Metrics

BDLC Chamfer 90RD RBMP

EMPRISE 0.013 16.86 43.57 24.27%
cGAN 1.81 inf inf 0%

Table 1. Evaluation metrics for simulation results

Furthermore, a complementary parametric analysis of EM-
PRISE indicates that the fidelity of the simulation depends
much more on the number of materials used, and especially
on the attribution of their electromagnetic properties, than on
the performance of the U-Net segmentation.

3.3. Accuracy of bright points

Both types of simulators struggle to retrieve bright scatterers.
cGAN fails to generate any bright point. For this simulation
scenario, the Chamfer distance thus is infinite. This issue may
be attributed to the convolutional filters used in conjunction
with the loss functions, which tend to smooth the results at
finer scales, hindering the representation of locally higher in-
tensities. The EMPRISE approach performs slightly better
with a Chamfer distance of 21 pixels. It produces an excess
of bright points, due to the selection of a material for urban
areas with inadapted directivity. The attribution of electro-
magnetic behaviors to labels plays a critical role in achieving
an adequate number of bright points. More accurate model-
ing would require either the use of more materials or the use
of object with RCS computed from canonical mechanisms.

The table 1 gathers all the criteria computed on the rela-
tive test dataset for the U-net and cGAN learning methods. It
should be noted that it is not possible to compare the BDLC
criterion in this situation, as it depends on the equivalent num-
ber of looks, which differs in our two cases (L=4.4 for the
GRD data of cGAN, and L=1 for the SLC data of EMPRISE).

4. CONCLUSION

In conclusion, two approaches are proposed and tested to sim-
ulate SAR images from optical data. The first approach uses
a cGAN while the second approach uses a physical simulator
based on electromagnetic simulation of segmented areas and
the 3D geometry of the terrain. We propose metrics to eval-
uate the simulation results, showing that EMPRISE is better
at reproducing local statistics, while both approaches strug-
gle to retrieve bright scatterers. Future progress should focus
on assigning materials to segmented areas through supervi-
sion and adding specific 3D object modeling, rather than im-
proving segmentation accuracy. Diffusion networks could be
used to guide physical simulation by distributing these spe-
cific objects, such as vehicles or urban details, with realistic
distributions.



Fig. 2. Left: initial real Sentinel-1 image. Middle: EMPRISE-simulation approach. Right: cGAN approach
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Fig. 3. Metric results on simulated (on the top) and real (on the bottom) SLC (on the right) and GRD (on the left) images.
Display of 2D histograms of κ2 and κ3 cumulants of a forest area (red) on the four images as well as bright scatterers detection
on a city area (blue).
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