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Abstract

Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor
air at the home address. We aimed to compare exposure models differing in their ability to account
for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We
recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global
Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine
particles (PM> 5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO5)
was assessed using passive air samplers (n=10). Outdoor concentrations of NO,, and PM> 5 were
estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h
per day at home. Considering only outdoor levels, for estimates at the home address, the
correlation between the estimate using the nearest background air monitoring station and the
estimate from the dispersion model was high (r=0.93) for PM, 5 and moderate (r=0.67) for NO,.
The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS
data (r=0.77) than the model ignoring space-time activity (r=0.93). PM, 5 outdoor levels were not
to moderately correlated with estimates from the model incorporating indoor measurements and
space-time activity (r=—0.10 to 0.47), while NO, personal levels were not correlated with outdoor
levels (r=—0.42 to 0.03). In this urban area, accounting for space-time activity little influenced
exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed
to strongly modify them.

Keywords

Exposure assessment; Air pollutants; Space-time activity; Global Positioning System; Indoor
environment; Pregnancy

Address all correspondence to: SLAMA Rémy, Centre de Recherche Inserm-UJF U823, Institut Albert Bonniot, UJF Site Santé, BP
170 - La Tronche - 38042 GRENOBLE Cedex 9 - France. Tel.: 04 76 54 94 02. Fax: 04 76 54 94 14. remy.slama@ujf-grenoble.fr.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Marion et al. Page 2

INTRODUCTION

Epidemiological studies have suggested adverse effects of outdoor air pollution during
pregnancy on maternal and fetal health events such as pre-eclampsia, preterm birth, low
birth weight, cardiac congenital malformations and intra-uterine growth retardation (Madsen
etal., 2010; Pedersen et al., 2014, 2013; Salam et al., 2005; Shah and Balkhair, 2011; Slama
etal., 2007a, 2007b; Vrijheid et al., 2011). This literature has some limitations, in particular
in terms of exposure assessment.

Various approaches have been used to estimate exposure to atmospheric pollutants in these
epidemiological studies. Many studies used air quality monitoring stations to assign
exposure levels to large population, using data from the monitoring station closest to the
subject’s home address (Ritz and Yu, 1999). More recently, land-use regression (LUR)
(Nethery et al., 2008b; Pedersen et al., 2013; Sellier et al., 2014; Slama et al., 2007a) and
dispersion models (Wu et al., 2009) have been applied.

Improving the spatial resolution of exposure models may be of limited relevance if no effort
is made to assess accurately where study subjects spend their time. However, so far, a
person’s activity throughout the day has rarely been taken into account in the exposure
models used in epidemiological publications (Aguilera et al., 2009; de Nazelle et al., 2013;
Nethery et al., 2014; Slama et al., 2008). Space-time activity data can be collected by
interviews, diaries, as well as Global Positioning System (GPS) tracking data (Wu et al.,
2010). Activity diaries are easy to implement but may suffer from recall errors, they require
cumbersome post-processing by the research team (e.g., to geocode data) and do not easily
allow considering exposures during commuting. GPS devices can now also be used.
Advantages of using GPS devices include light weight, small size, non-obtrusive and
continuous measurements (Schutz and Chambaz, 1997); the potential limitations include
geolocalization errors and the fact that GPS devices often fail to record position indoors
(particularly in concrete buildings) and in dense urban areas (Gerharz et al., 2013; Maddison
and Ni Mhurchu, 2009), resulting in the need for a data cleaning step. GPS devices and
diaries should not be opposed, but can be used simultaneously to complement each other.
Personal exposures are also greatly influenced by levels of air pollutant in indoor
environments, where people from industrialized countries spend about 80% of their time
(Gauvin et al., 2002; Nethery et al., 2008a). In a study of pregnant women conducted in
Sabadell, Spain, personal NO, levels were more influenced by indoor than by outdoor NO,
levels (Valero et al., 2009). For 24-hour measurement periods in the general population,
correlations between indoor and outdoor fine particles (PM, 5) concentrations of 0.80 and
0.68 were reported in Amsterdam and Helsinki, respectively (Brunekreef et al., 2005), while
correlations of 0.63 were reported between indoor and outdoor PM> 5 concentrations for 2-
day measurements and of 0.53 for nitrogen dioxide (NO,) concentrations for 7-day
measurements among pregnant women in Barcelona (Schembari et al., 2013). Correlations
may be different according to the study area, ventilation rate, and to whether one considers
short or long time periods of exposure, as the contribution of temporal variations to the
overall variability in exposure is smaller when longer time periods are considered.
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Poor spatial resolution of environmental models, lack of consideration of space-time activity
and of indoor air levels might have a strong impact in terms of exposure misclassification.
However the relative contribution of these parameters to exposure misclassification has little
been assessed (Brunekreef et al., 2005; Dias and Tchepel, 2014; Nethery et al., 2008b;
Schembari et al., 2013). Studies simultaneously using several exposure models have
demonstrated that the amplitude of the measurement error may be large (Avery et al., 2010;
Lepeule et al., 2010; Nethery et al., 2008b; Sellier et al., 2014). Exposure misclassification
can strongly bias estimated dose-response functions (depending on its nature) and impact
statistical power (de Klerk et al., 1989).

Our objective was to compare different approaches allowing to characterize exposure to
PM5 5 and NO, among pregnant women. More specifically, we compared air pollutant
exposures assessed by various exposure models that differed by their ability to take into
account the spatial variations of the pollutants concentrations, subjects' space-time activity
and PMy, 5 indoor air levels. A secondary aim was to illustrate the impact on the estimated
exposures of cleaning the GPS data used to characterize space-time activity.

METHODS

Population sample

This study is based on SEPAGES-feasibility cohort (Suivi de I’Exposition a la Pollution
Atmosphérique durant la Grossesse et Effets sur la Santé; Assessment of air pollution
exposure during pregnancy and effect on health). SEPAGES is a couple-child cohort on pre-
and postnatal environmental determinants of fetus and infant development and health. In the
feasibility study, women with singleton pregnancy living in Grenoble were recruited in
obstetrical practices before 17 gestational weeks (calculated from the date of the last
menstrual period) between July 2012 and July 2013. Grenoble is a flat urban area of about
670,000 inhabitants surrounded by the Alps, with a marine West Coast climate, a warm
summer and no dry season. The inclusion criteria were that women had to be 18 years old or
more, speak and write French, plan to give birth in one of the four maternity wards of the
Grenoble urban area, and to be enrolled in the French social security system. The study was
approved by the relevant ethical committees (CPP, Comité de Protection des Personnes Sud-
Est; CNIL, Commission Nationale de I'Informatique et des Libertés; CCTIRS, Comité
Consultatif sur le Traitement de I'Information en matiére de Recherche dans le domaine de
la Santé; ANSM, Agence Nationale de sécurité du Médicament et des produits de sante). All
participating women and their partners gave informed written consent for their own
participation.

Study design

At each trimester of pregnancy, measurements of space-time activity and air pollution were
performed for 7 consecutive days. Women were asked to carry a GPS device and filled in a
detailed activity diary (n=40); a subsample of women were asked to carry a NO, passive
sampler (n=10) and have a personal PM, 5 monitor installed in their home (n=9).
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Space-time activity assessment

During one week at each trimester, pregnant women filled in a detailed activity diary to
record their locations (home indoor/outdoor; work indoor/outdoor; other indoor/outdoor)
and transport mode (Supplementary Figure A.1). We manually geocoded the home and work
addresses using the free on-line French cadastral maps (http://www.cadastre.gouv.fr/)
(Jacquemin et al., 2013).

During the same three weeks, women carried a GPS device (GlobalSat model DG-100 for
94% of the measurement weeks, or smartphone Samsung Galaxy ACE2 with airplane mode
turned on, which recorded their position every 30 s and 1 s, respectively). Women were
asked to carry the GPS device constantly with them when they were not home.

GPS data were cleaned in three main steps: (1) cleaning based on speed: if the speed
estimated between two consecutive GPS records was larger than 170 km/h (maximum speed
of regional trains), the second point was considered an outlier and deleted; (2) imputation of
missing data: to handle the issue of GPS not working for a duration of up to 4 h, we replaced
missing data using the last non-missing coordinate, provided that the next non-missing
coordinate was located within 100 m from the first next recorded location; (3) cleaning of
locations close to the home address (“Home buffer”): during daytime, all points located
within a 100-meter buffer from home were replaced by the home address; this distance was
increased to 200 m at night. This was meant to account for the GPS signal “bouncing”,
which happens when the GPS device is inside a building. Moreover, when the first point of
the day was inside the home buffer, we considered that the woman had spent her night at
home (from midnight); similarly, if the last GPS point of the day was inside the buffer, we
considered that the woman stayed home until midnight. When we did not have information
for the entire night, we assumed that the woman was home from 10 p.m to 6 a.m.

Pollutants concentrations

We considered two pollutants: PM5 5 and NO,. Hourly PM> 5 and NO, measurements of the
monitoring station closest to the volunteer's home address were used as a first approach.
There were three ambient monitoring stations measuring NO, and one background station
measuring PM 5 in the Grenoble urban area.

PM, 5 and NO», yearly concentrations were also obtained with a finer spatial resolution by
combining two dispersion models developed for the year 2012, one covering the Grenoble
urban area with a fine spatial resolution (10x10 meter grid, SIRANE model), and one
covering the rural areas of Rhéne-Alpes region (Figure 1), with a kilometric resolution
(PREVALP model) (Soulhac et al., 2012, 2011). To obtain hourly concentrations at each
location, we applied a previously defined approach relying on the hourly measurements
from a background monitoring station (Lepeule et al., 2010; Pedersen et al., 2013; Slama et
al., 2007a): we multiplied the yearly levels at each location by an hourly ratio Choyry/
Cyearly: Were Chourly and Cyearly corresponded to hourly concentrations and annual mean
concentration respectively, both observed during the year 2012 in “Grenoble les Frénes”
background station.
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The same weeks the women carried the GPS device, a subsample of 10 non-smoking
pregnant women carried (hanging on their bag or clothes) a NO, passive air sampler
(Passam tube, Passam AG, Ménnedorf, Switzerland). The air sampler collected NO, by
molecular diffusion along an inert tube to an absorbent (triethanolamine); the concentration
of NO, was later determined by spectrophotometrical method (Hafkenscheid et al., 2009).

For 9 non-smoking pregnant women of the same subsample, we measured indoor PM,, 5 at
home during the same weeks of the second and third trimesters of pregnancy when the GPS
device was carried, using environment monitors (pDR1500, Thermo Fisher Scientific,
Massachusetts, USA), estimating mass concentration by nephelometry. The device installed
in the main room about one meter above the floor recorded indoor concentration every 10
min over the measurement week.

Exposure models

From the above mentioned measurements, we developed 8 models to characterize exposure
to PM5 5 and NO, (Table 1).

- Station-based static outdoor model (MI): exposure corresponded to the trimester-specific
average of the hourly measurements of atmospheric pollutants by the background air
monitoring station closest to the volunteer's home address (using QGIS 2.2.0-Valmiera).
Model M1 was a purely temporal model for PM, 5 since it relied on a unique station.

- Dispersion-based static outdoor model (M2): exposure corresponded to the estimate from
the dispersion model at the home address. Compared to M1, M2 had a much finer spatial
resolution.

- Space-time activity outdoor models (M3 and M4): we averaged outdoor air pollution levels
estimated from the dispersion model at each location where the woman spent time. Space-
time activity was either based on raw (M3) or cleaned (M4) GPS data. M3 and M4 were
used to evaluate the impact of integrating space-time activity compared to M2.

- GPS and diary space-time activity model (M5): since the procedure used to clean GPS data
in model M4 still left missing data, we further used the data from the diary filled in by the
pregnant women during the week of measurements to locate women at home or at work
when GPS data were missing.

- Static indoor model (M6, PM5, 5 only): exposure corresponded to the average of indoor
PM, 5 levels estimated by the home active PM, 5 sampler.

- Dynamic model taking into account outdoor and indoor concentrations of air pollutants
(M7, PM5, 5 only): concentration corresponded to a time-weighted average of indoor levels
(when the woman was home; M6) and seasonalized outdoor levels from dispersion models
(when the woman was outside home); space-time activity was assessed using clean GPS
data and data from the diary filled in by the pregnant women (M5). M7, which incorporates
indoor levels and fine-scale outdoor levels, corresponded to what we expected to be the best
approach model.
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- Personal passive air sampler (M8, NO, only): exposure corresponded to the mean
concentration of NO, estimated by the passive air sampler carried by the woman during 7
consecutive days.

For models M2 to M8, after having estimated pregnant women’s exposures at each week of
measurement, we converted all exposures to trimester estimates using data from the
Grenoble background monitoring station “Grenoble les Frénes” to calculate a temporal ratio
Ctrimester/ Cweekly: Where Cirimester COrresponded to the mean concentration of atmospheric
pollutants during the trimester of pregnancy and Cyyeekiy corresponded to the mean
concentration during the week of measurement; consequently, the models' estimates were
meant to represent each trimester of pregnancy (92 days for trimesters 1 and 2) which are of
relevance for further studies of birth outcomes in relation to atmospheric pollution.

Statistical analysis

RESULTS

We considered 4 time windows of exposure: the entire pregnancy and each trimester of the
pregnancy; for indoor PM5 5 levels (M6 and M7), no data for trimester 1 were available.
Mean, standard deviation and 25t 50, 75t percentiles of each model's estimates were
reported. Scatter plots were used for visual comparison of the models' estimates. We
compared the estimates from the various exposure models using Spearman's rank correlation
coefficients (r) and paired t-tests. We also assessed the concordance between exposure
estimates categorized in tertiles through Kappa coefficient (K). All descriptive statistics,
Spearman'’s rank correlation coefficients and concordances between exposure estimates
during weeks of measurements without temporal adjustment for trimester are presented in
the supplementary data. Analyses were performed with STATA 12 (StataCorp. 2011. Stata
Statistical Software: Release 12. College Station, TX).

Study population

Among the 40 women recruited in SEPAGES-feasibility cohort, 31 women had GPS
tracking data for all trimesters (78%), 5 for two trimesters (13%) and 4 for one trimester
only (10%). All trimesters were not completed for all women because of the woman being
included too late for trimester 1 measurements (n=4), giving up or being lost to follow-up
(n=4), or being hospitalized (n=1). Two women (5%) changed home during pregnancy, one
of which moved out of the Grenoble urban area, impeding further assessment of exposure.
The characteristics of the study population are described in Table 2. Volunteers were all in a
relationship, their median age was 30 years (251, 75M percentiles: 27, 32); most of them
(60%) were nulliparous, employed (88%) and with a high socio-professional status (70%).
The volunteers” home was on average 2.1 km (standard deviation, SD: 1.6 km) and 3.5 km
(SD: 2.2 km) away from the nearest background station measuring NO, and PM 5,
respectively; they were on average 514 m (SD: 460 m) distant from the nearest major road
(including expressway, primary/secondary highway and arterial road).

Environ Int. Author manuscript; available in PMC 2016 March 03.
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Impact of improving the spatial resolution of models on exposure estimates

Mean pregnancy exposure levels, as estimated from the static outdoor model relying only on
the nearest background air monitoring station (M1), were 17.8 pg/m3 for PM, 5 (SD: 2.5
pg/m3; Table 3) and 24.1 ug/m3 for NO, (SD: 5.8 ug/m3; Table 4). The outdoor static model
relying on the dispersion modeling (M2) yielded higher average levels (18.5 ug/m3, SD: 2.6
pg/m3 for PM, 5: 29.0 ug/m3, SD: 4.5 pg/m3 for NO,; p<0.001), compared to M1.
Improving the spatial resolution of the outdoor model had a minor impact for PM5 5 and a
moderate impact for NOs: the correlations between the entire pregnancy estimates from
models M1 and M2 were 0.93 for PM, 5 (p<0.001; Table 5) and 0.67 for NO5 (p<0.001;
Table 6).

Impact of incorporating space-time activity on exposure estimates

Mean pregnancy exposures incorporating space-time activity assessed using raw GPS data
(M3) were 18.0 pg/m?3 (SD: 3.4 pg/m3) for PM, 5 and 29.6 pg/m3 (SD: 6.3 pg/m3) for NO,.
On average, 70% (SD: 24%) of raw GPS data were missing (Supplementary Table A.5).
After deleting the GPS data considered as outliers (1,562 data out of the 680,040 raw GPS
points, 0.23%), and imputing missing values with our cleaning algorithm, the proportion of
missing points decreased to 31% (SD: 11%; model M4). The outdoor exposure model
incorporating space-time activity with the cleaned GPS data (M4) had estimated pregnancy
levels of 18.6 ug/m3 (SD: 2.8 pg/m?3) for PM, 5 (Table 3) and 27.7 pg/m?3 (SD: 4.8 pg/m3)
for NO, (Table 4). The correlation coefficients between M4 and M3 estimates were 0.77
(p<0.001) for PM5 5 and 0.90 (p<0.001) for NO,.

The GPS data cleaning process had a rather strong impact on the exposure estimates: the

correlations between models M2 and M4 (using clean GPS data) were 0.93 for PM> 5 and
0.94 for NO, (p<0.001; Figure 2), while the correlations between M2 and M3 (using raw
GPS data) were lower (0.77 for PM5 5 and 0.83 for NO»; p<0.001).

The median time spent at home averaged over the entire pregnancy and estimated from the
activity diary was 16.3 h per day (25™, 75t percentiles: 14.8 h, 18.2 h). The estimate based
on the clean GPS data was lower (median, 13.4 h; 25™, 75! percentiles: 11.7 h, 14.7 h),
possibly as a consequence of GPS data being more frequently missing when subjects were
home. Time spent at home estimated using information from diary filled in by the volunteers
increased from 15.0 and 15.2 h per day in trimesters 1 and 2 to 18.1 h in trimester 3, when
maternity leave usually starts in France (Supplementary Table A.5).

Combining the information from diaries filled in by the volunteers to clean GPS data (M5)
further decreased the proportion of missing data on space-time activity to 7% of the
measurement weeks (SD: 6%); the median time spent at home, as estimated from clean GPS
data combined to diaries, was 18.5 h (25t, 75t percentiles: 16.9 h, 19.7 h; M5;
Supplementary Table A.5). The mean pregnancy levels estimated by this model were 18.5
pg/m3 (SD: 2.6 pg/m3) for PM, 5 and 28.9 pg/m3 (SD: 4.6 pg/m?3) for NO,. This model had
a high correlation with the static dispersion model at the home address (M2) (0.97 for PM5 5
and 0.98 for NO,; p<0.001; Figure 3), showing little impact of the incorporation of space-
time activity on exposure estimates.
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For both pollutants, results by trimester of preghancy were similar to those for the entire
pregnancy (Table 3Table 4Table 5Table 6).

Compared to models temporally-corrected (converted to trimester estimates; Table 3 for
PM, 5; Table 4 for NO,), models M1 to M5 (outdoor models) without temporal adjustment
had higher variability, while models M6 to M8 (including indoor or personal measurements)
had a smaller variability (Supplementary Table A.1 for PM5 5 and Table A.2 for NO»).
Correlations between week-specific models (Supplementary Table A.3 for PM, 5 and Table
A.4 for NO,) were higher than the correlations between trimester-specific models (Table 5
for PM,, 5; Table 6 for NO,), as a consequence of temporal variations having a greater
influence on week-specific compared to trimester specific models.

Impact of incorporating indoor PM5 5 levels on exposure estimates

The median duration of time spent at home for the 9 non-smoking women in which indoor
PM, 5 levels were assessed during the second and third trimesters was 19.2 h per day (251",
75! percentiles: 17.5 h, 19.8 h), as estimated from the clean GPS data and the activity diary.
Supplementary Figure A.3 displays the PM5 5 home levels during one week for one subject.
The weekly home average indoor PM 5 level (model M6) was 16.8 pg/m3 (SD: 4.8 ug/m3;
Table 3). The correlation between the average of the second and third trimesters estimates
from the outdoor static dispersion model at the home address (M2) and home indoor levels
averaged during these two trimesters (M6) was 0.50 (p=0.17; Table 5).

PM, 5 mean pregnancy level estimated using clean GPS data and incorporating indoor levels
when the woman was home and outdoor estimates when she was outside (M7), which we
considered our “best approach model” for PM, s, was 18.8 pg/m3 (SD: 3.5 ug/m?3).
Correlations between M7 and estimates based on the average of the entire pregnancy from
both models using clean GPS data were 0.25 for M4 (p=0.52) and 0.47 for M5 (p=0.21),
(Figure 4), while the correlations between M7 and the static outdoor models were 0.40 for
M1 (p=0.29) and 0.35 for M2 (p=0.36), showing that incorporating indoor levels strongly
modified the estimated exposure.

Personal versus modeled NO-, levels

The mean NO» concentration estimated by the personal passive air samplers carried by 10
non-smoking women was 23.9 pg/m3 (SD: 4.9 pg/m3; M8). In this subsample, 7 women out
of 10 used gas-stove for cooking at home during the period of measurements; in this group
NO, levels tended to be higher (28.6 pg/m3, SD: 3.0 pg/m3; n=7) than in the group not using
gas for cooking (22.3 pg/m3, SD: 2.6 ug/m3; n=3; p=0.02). Personal NO, measurements
(M8) were not correlated with models based on outdoor NO, levels without space-time
activity (r=0.03 for M1, p=0.93; and r=—0.16 for M2, p=0.65) and, if anything, tended to be
negatively correlated with models incorporating space-time activity with clean GPS data (r=
-0.42 for M4, p=0.23; r=—-0.39 for M5, p=0.26; Figure 5).

DISCUSSION

To our knowledge this study is one of the first to compare air pollution exposure models
combining modeled outdoor air pollution levels, GPS-based space-time activity data and
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indoor and personal air pollution measurements among pregnant women. Improving the
spatial resolution of the outdoor environmental model (between M1 and M2) had a minor
impact for PM5 5 and a moderate impact for NO,. The proportion of missing data was high
in raw GPS data; we proposed a simple algorithm allowing to clean these data. Integrating
the space-time activity (after cleaning) to the outdoor exposure model modified to a very
limited extent PM> 5 and NO, exposure levels estimated at the home addresses, as shown by
the very high correlations between estimates from M2 and M5 models. Models using
outdoor levels of air pollutants (M1 to M5; without considering M3) were weakly to
moderately correlated (r=0.25 to 0.47; n=9) with models incorporating PM, 5 indoor
measurements (M7) and not correlated (r=—0.42 to 0.03; n=10) with NO, measurements
from personal passive air samplers (M8).

Impact of improving the spatial resolution of models on exposure estimates

The correlation between PM, 5 exposure estimates from both static models (model M1,
relying only on values estimated with the nearest background air monitoring station, and M2
using the dispersion model estimate at the home address) was high. This correlation tended
to be lower for NO, estimates, which may be explained by the stronger spatial variability of
NO, compared to PM, 5 concentrations as estimated by the dispersion model in the urban
area (interquartile range on annual concentration on the dispersion model during the year
2012: 0.6 pug/m3 for PM5 5 and 3.1 pg/m3 for NO,). These results are in line with a study in
two other French metropolitan areas which reported correlations between home’s nearest air
quality monitoring station and dispersion model's estimates of 0.63 to 0.71 for NO»,
depending of the buffer size around monitoring stations (1 to 5 km); and of 0.81 to 0.85 for
PM1 (no estimate was provided for PM, 5) (Sellier et al., 2014). Other studies reported a
limited spatial variability for PM5 5 across urban areas (Eeftens et al., 2012; Martuzevicius
et al., 2004), while a higher spatial variability was found for NO, (Cyrys et al., 2012). In this
context of very low spatial contrasts for PM, s, it is not surprising that time (of the
measurement period) rather than location drives the estimated levels. Coherently,
correlations between week-specific models were higher than correlations between trimester-
specific models. An explanation is that the contribution of temporal variations to the overall
variability in exposure is smaller when longer time periods are considered.

We seasonalized estimates using the hourly concentration of pollutants from the
representative background monitoring station, assuming that the variation of air pollutants
over time was spatially homogeneous (Lepeule et al., 2010; Slama et al., 2007a).

Impact of incorporating space-time activity on exposure estimates

Our model using outdoor air pollution at the home address (M2) was highly correlated with
the two models incorporating clean GPS data (M4 and M5). This can be explained by the
relatively high proportion of time spent at home by the pregnant women (77% as estimated
by combining GPS and diary data, M5), which limits any impact of outdoor exposures at
other locations than home. These results are in agreement with one Canadian study on
pregnant women which used GPS-based space-time activity, LUR models and ambient
monitoring data; the correlations between the model using the full GPS route data and the
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model using only home locations were high for NO, NO,, PM> 5 (r=0.83-0.92 according to
pollutant; n=35) (Nethery et al., 2008b).

In our study, for some women the GPS device stopped to record the position for a moment
during the day, typically when women were indoors, which is a well-known limitation of
GPS devices (Maddison and Ni Mhurchu, 2009) not embedded in smartphones. The overall
average of missing values in the raw GPS data was high (70%), as a result of the high
proportion of time spent indoors by the pregnant women. Geolocalization errors are
generally larger in indoors environments than outdoors (Beekhuizen et al., 2013; Elgethun et
al., 2003; Schutz and Chambaz, 1997; Wu et al., 2010). We implemented a simple algorithm
to impute missing GPS points, which decreased the average of missing values to 31% of the
measurement weeks. Previous studies used various cleaning algorithms (Breen et al., 2014;
Dias and Tchepel, 2014; Gerharz et al., 2013; Maddison et al., 2010; Nethery et al., 2008b;
Wiehe et al., 2008). One study replaced missing data using the last value carried forward
provided the next value was within 100 m of the last value (Maddison et al., 2010). Another
study assigned all GPS points within 350 m of residence as home (Nethery et al., 2008b). In
our study we used both of the aforementioned approaches for missing data imputation, with
the difference that the accuracy of our devices allowed us to decrease the buffer around the
home to 100 m for the day and 200 m for the night. Two studies built an algorithm that
considered a measurement as valid depending on the number of satellites from which the
GPS received a signal and on the dilution of precision value (Breen et al., 2014; Dias and
Tchepel, 2014); in our study we did not have access to this information. Developing a
cleaning algorithm might seem cumbersome but it allows automatization of the cleaning
process; even if the use of GPS tracking data showed a limited impact on the exposure
model using only home addresses, it allows us to develop a more dynamic and realistic
model for the estimation of exposure to atmospheric pollutants. The model using the clean
GPS data (M4) better correlated with the model not accounting for space-time activity (M1
and M2) than the one using the raw GPS data (M3). This illustrates that the GPS data
cleaning process, which leads to a strong increase in the estimated proportion of time spent
home, is an important step in the estimation of exposure to atmospheric pollutants. In our
setting, examination of the correlations between the various models suggests that the use of
raw GPS data induced more exposure misclassification in the outdoor estimates than the
estimates totally ignoring space-time activity.

Exposure to traffic-related air pollution during commuting also contributes to personal
exposures (Gulliver and Briggs, 2005). This exposure is related to the transportation mode;
car users tend to experience the highest exposure compared to walkers, bus or bike users (de
Nazelle et al., 2012; Zuurbier et al., 2010). Since GPS devices were not able to differentiate
travels by car, bus or other means of transportation, and since we could not assess personal
exposures while commuting, we assumed that the concentration of atmospheric pollutant
during commuting corresponded to the outdoor level, which has probably led to an
underestimation of the impact of exposures during commuting in our study.

The activity diary filled in by the volunteers allowed to further limit missing data on space-
time activity when the GPS device failed to geolocalize subjects. One limitation of paper
diaries is their inability to easily provide geolocalization during commuting, but we believe
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that they are a very relevant complement to the GPS data. Using WiFi-enabled smartphones
represents another option with an expected lower rate of missing values indoors compared to
the GPS devices we used. However, the use of smartphones not in the airplane mode may
raise data privacy issues (as the smartphone information may be collected) and possibly
ethical issues, as there is some concern regarding the possible health effects of
electromagnetic fields, particularly during pregnancy.

Impact of incorporating indoor PM5 5 levels on exposure estimates

In our study, indoor home PM,, 5 concentrations tended to be lower than outdoor
concentrations. Brunekreef et al. reported that in Helsinki and Amsterdam, the median
PM, 5 concentrations were lower indoor than outdoor (Brunekreef et al., 2005). One
Canadian study using the pDR1500 device in the measurement of personal PM 5 exposure
reported that the lowest concentrations were measured when participants were indoor at
home (Van Ryswyk et al., 2014). One study in Barcelona, Spain conducted on 54 pregnant
women reported a higher PM, 5 level indoors than outdoors (Schembari et al., 2013); this
result differs from our study and studies aforementioned, this might be explained by the
different climate and probably ventilation rate compared with Northern cities.

In our study, the correlation between outdoor PM> 5 estimates at the home address (M2) and
indoor home levels (M6) was low (in the 0.03-0.50 range). Similarly, the correlation
between the outdoor model incorporating space-time activity (M5) and the model further
integrating indoor measurements (M7) was low (in the —0.12-0.47 range). Both correlations
tended to be higher during the second trimester than the third; the longer time spent at home
during the third trimester may explain the weaker correlation between outdoor estimates and
estimates incorporating indoor levels. Given the limited sample size (n=9), these results
should be considered with caution. The study relying on 2-day indoors and outdoors PM5 5
measurements in 54 pregnant women living in Barcelona reported a strong correlation
between indoor and outdoor levels (Spearman’s rank correlation, 0.63) (Schembari et al.,
2013), which might be explained by the different climates, and by the fact that indoor and
outdoor measurements were performed with the same gravimetric devices.. These short-term
correlations (in which temporal variations have a strong impact) cannot be compared to our
longer-term estimates, which were the focus of our study because of the possible effects of
chronic exposure to air pollution during pregnancy.

The outdoor and indoor PM,, 5 estimates relied on different approaches, which may have
impacted between-model differences and their correlations. Outdoor concentrations were
obtained using gravimetric FDMS-TEOM monitors (Filter Dynamics Measurements
System-Tapered Element Oscillating Microbalance) which do not take the aqueous
component of PM into account (particle-associated water); indoor concentrations were
estimated using a nephelometric measurement which depends on humidity level (due to
water absorbed in the particles), and on the distribution of size, shape, and refractive index
of the particles, which varies according to sources (Cropper et al., 2013; Soneja et al., 2014;
Wallace et al., 2003). Moreover, nephelometric devices not using filters allowing explicit
weighing of PM5 5, as is the case of the device we used, make some assumptions on the size
and mass distribution of local PM, 5 which theoretically require calibration in each new
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micro-environment and may induce spurious differences with measurements from
monitoring stations. Besides differences in measurement techniques, there are real reasons
why outdoor PM, 5 levels and estimates incorporating indoor levels can differ; indoor PM; 5
levels are generally influenced by sources and activities such as cooking, candle burning,
smoking and by the type and frequency of ventilation (McCormack et al., 2008; Meng et al.,
2009), in addition to outdoor levels. We included non-smoking women possibly exposed to
environmental tobacco smoke, which constitutes a source of indoor pollution of fine
particles. Since outdoors and indoors PM> 5 may differ in physical and chemical nature
(Habre et al., 2014; Kelly and Fussell, 2012) and hence possibly in terms of health effects,
assessing exposure of PM5 5 through active air samplers, to collect and later chemically
analyze PM5 5, may be a good option when considering effects on a specific health
parameter. Alternatively, if one is not interested in indoor sources of PM, or considers that
they may have different health impact than PM from outdoor sources, then personal
monitoring may not be the right option, unless the personal monitor is used to derive
estimates of personal indoor and outdoor exposures separately (and additional information
on outdoor levels when the woman is home are available).

Our results, with former studies (Baxter et al., 2007; Ozkaynak et al., 2013), suggest that
reliance on outdoor levels only in environmental epidemiology implies a high degree of
exposure misclassification if PM; 5 as a whole (whatever their source) is the focus of the
study. This may particularly hold for pregnant women, who may have different activity
patterns and spend more time at home compared to the general population (Nethery et al.,
2008a, 2008c).

Personal versus modeled NO>, levels

For NO,, personal exposure assessed from a personal passive air sampler (M8) was poorly,
if at all, correlated with our model based on outdoor modeled values and incorporating
space-time activity but not considering indoor levels (M4 and M5), suggesting that personal
exposure cannot be estimated by outdoor levels in this setting. Again, this result was based
on a small population (n=10). The mean NO, concentration estimated by the personal
passive air samplers was lower than outdoor exposure estimates using space-time activity by
about 10%. This is consistent with a Canadian study on 62 pregnant women in which
personal NO, exposure decreased with increasing time spent at home and had a low
correlation with the value predicted at the home address (r=0.18 using LUR model; r=0.05
using outdoor monitoring stations) (Nethery et al., 2008b). Two other studies among
pregnant women conducted in Spanish cities assessed personal exposure to NO, and outdoor
levels of NO, using permanent monitoring stations; correlations were 0.58 for 1-week
sampling in Barcelona (Schembari et al., 2013) and 0.39 for a 48 h sampling in Sabadell
(\Valero et al., 2009).

In our study the use of a gas-stove was associated with a higher NO, personal level (based
on a small population). This is in agreement with previous studies reporting that gas cooking
influences personal NO, exposure (Kousa et al., 2001; Valero et al., 2009).
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Conclusion

Our results confirm that it is possible to use GPS tracking data to provide an individual
estimate of exposure to atmospheric pollutants, provided that GPS data are cleaned. In this
urban area, incorporation of space-time activity only very slightly modified the estimated
outdoor exposure to PM, 5 and NO». In a subgroup of subjects, exposure estimates
incorporating indoor levels were poorly correlated with the estimated exposure considering
only outdoor air pollutants, so that future studies interested in effects of chronic (as opposed
to short-term) exposure to PM, 5 and NO» from all sources altogether should consider
incorporating estimates of personal exposure or indoor levels.
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\| Legend
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Figure 1.

NO, mean annual estimated from dispersion models in Rhéne-Alpes region (left panel,
PREVALP dispersion model, 1 km grid) and the Grenoble urban area (right panel, SIRANE
dispersion model, 10 m grid), together with the volunteers' home addresses. Home address
locations were randomly moved by a few hundred meters to protect subjects' privacy.
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Scatter plots of model M4 (Dynamic outdoor model with clean GPS data) versus: A and B:
model M1 (Station-based static outdoor model); C and D: model M2 (Dispersion-based
static outdoor model); E and F: model M3 (Dynamic outdoor model with raw GPS data)
exposure estimates. Each point corresponds to the pregnancy average exposure (g/m3)

(N=40).
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Figure 3.
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Scatter plot of model M5 (Dynamic outdoor model with clean GPS data and diary) versus: A

and B: model M1 (Station-based static outdoor model); C and D: model M2 (Dispersion-

based static outdoor model); E and F: model M3 (Dynamic outdoor model with raw GPS

data); G and H: model M4 (Dynamic outdoor model with clean GPS data).Each point
corresponds to the pregnancy average exposure (ug/m3) (N=40).
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Figure4.
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PM, 5 exposure estimates — Scatter plots of model M7 (Dynamic indoor and outdoor model)
versus: A: model M1 (Station-based static outdoor model); B: model M2 (Dispersion-based
static outdoor model); C: model M3 (Dynamic outdoor model with raw GPS data); D: model
M4 (Dynamic outdoor model with clean GPS data); E: model M5 (Dynamic outdoor model
with clean GPS data and diary).Each point corresponds to the 2" and 3" trimester average
exposure (pg/m3) (N=9).

Environ Int. Author manuscript; available in PMC 2016 March 03.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Marion et al.

Figure5.
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NO, exposure estimates — Scatter plots of model M8 (Personal passive air sampler) versus:
A: model M1 (Station-based static outdoor model); B: model M2 (Dispersion-based static
outdoor model); C: model M3 (Dynamic outdoor model with raw GPS data); D: model M4
(Dynamic outdoor model with clean GPS data); E: model M5 (Dynamic outdoor model with

clean GPS data and diary).Each point corresponds to the pregnancy average exposure

(Hg/m?) (N=10).
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Table 2

Characteristics of the population of 40 pregnant women.

N %

Maternal age at conception

18-25 years 2 (5)

26-30 years 20  (50)

31-35 years 13 (33)

> 35 years 5 (12)
Weeks of amenorrhea at inclusion

< 12 weeks 11 (28)

12 weeks 22 (55)

13 - 18 weeks 7 (18)
Month of conception of the child

January-March 7 (18)

April-June 14 (35)

July-September 15 (38)

October-December 4 (10)
Mater nal parity beforetheindex pregnancy

0 24 (60)

1 child 12 (30)

2 children 4 (10)
Mater nal age at the end of education (years)

18 - 20 years old 3 8)

21 - 23 years old 17 (43)

23 - 25 years old 10 (25)

> 25 years old 4 (10)

Still studying 6 (15)
Marital status

In relationship (cohabitation, married) 40 (100)
Working status

Employed 35 (88)

Unemployed 2 (5

Unknown 3 (8)
Socio-professional status

High socio-professional status 28 (70)

Low socio-professional status 9 (23)

Unknown 3 (8)
Area of residence

Grenoble city center 17 (43)

Suburban area 23 (58)
Type of residence

House 7 (18)
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N %

Apartment 28 (70)

Unknown 5 (13)
Changed home during pregnancy

Yes 2 (5)

No 38 (95)
Gas-stove at home

Yes 21 (53)

No 15 (38)

Unknown 4 (10)
Maternal active smoking

Yes 6 (15)

No 31 (78)

Unknown 3 8)
Partner active smoking

Yes 8 (20)

No 25 (63)

Unknown 7 (18)
Number of trimesterswith GPStracking data

1 trimester 4 (10)

2 trimesters 5 (13)

3 trimesters 31 (78)
Indoor PM ;5 measur ements per for med 9 (23)
Per sonal NO, measurements (PASSAM sampler) performed 10 (25)
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Table 3

Maternal PM2.5 levels at each trimester and for the entire pregnancy estimated by the various exposure
models considered (ug/m3).

Model and exposur e window N mean SD (p25 p50 p75)
First trimester
M1. Station-based static outdoor model 36 185 51 (136 168 224)
M2. Dispersion-based static outdoor model 36 195 6.2 (141 170 239
M3. Dynamic outdoor model with raw GPS data 36 188 7.1 (142 164 222)
M4. Dynamic outdoor model with clean GPS data 36 195 59 (145 175 223)

M5. Dynamic outdoor model with clean GPS data and diary 36 19.7 6.2 (143 171 23.9)
Second trimester

syduosnuelA Joyiny sispun4 DA @doing ¢

M1. Station-based static outdoor model 38 177 6.4 (121 159 23.0)
M2. Dispersion-based static outdoor model 38 182 64 (124 162 237)
M3. Dynamic outdoor model with raw GPS data 38 177 74 (117 160 21.0)
M4. Dynamic outdoor model with clean GPS data 38 181 65 (124 163 241)
M5. Dynamic outdoor model with clean GPS data and diary 38 18.0 6.3 (125 153 23.7)
MB6. Static indoor model 8 165 71 (101 162 20.0)
M7. Dynamic indoor and outdoor model 9 177 61 (138 145 20.1)
Third trimester
M1. Station-based static outdoor model 33 178 6.8 (128 136 24.2)
M2. Dispersion-based model static outdoor model 33 188 69 (136 145 251)
M3. Dynamic outdoor model with raw GPS data 33 183 6.7 (141 159 225)
M4. Dynamic outdoor with clean GPS data 33 189 73 (135 151 25.7)
M5. Dynamic outdoor model with clean GPS data and diary 33 187 6.9 (13.6 14.6 254)
M6. Static indoor model 9 16.7 50 (147 192 19.6)
M7. Dynamic indoor and outdoor model 9 200 35 (182 20.7 22.0)

Entire pregnancy &

M1. Station-based static outdoor model 40 178 25 (164 183 19.6)
M2. Dispersion-based static outdoor model 40 185 26 (174 187 20.3)
M3. Dynamic outdoor model with raw GPS data 40 180 34 (158 176 20.1)
M4. Dynamic outdoor model with clean GPS data 40 186 28 (16.7 188 20.6)
M5. Dynamic outdoor model with clean GPS data and diary 40 185 2.6 (172 186 20.2)
M6. Static indoor model 9 16.8 48 (123 194 19.9)
M7. Dynamic indoor and outdoor model 9 188 35 (167 173 225)

a: Based on the average of the entire pregnancy for models M1 to M5, and on the average of 2nd and 3" trimesters for models M6 and M?.
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Table 4

Maternal NO2 levels at each trimester and for the entire pregnancy estimated by the various exposure models
considered (ug/m3).

m

=

_8 Model and exposur e window N mean SD (p25 p50 p75)
6 First trimester

o

< M1. Station-based static outdoor model 36 247 76 (199 241 275)
2 M2. Dispersion-based static outdoor model 36 294 58 (251 305 33.6)
% M3. Dynamic outdoor model with raw GPS data 36 293 76 (259 301 33.8)
% M4. Dynamic outdoor model with clean GPS data 36 278 56 (239 28.0 315)
S

‘j’; M5. Dynamic outdoor model with clean GPS data and diary 36  29.4 54 (261 301 33.2)
=1 M8. Personal passive air sampler 8 187 48 (157 180 20.9)
c_—; Second trimester

=

=z M1. Station-based static outdoor model 38 256 113 (153 26.8 31.6)
% M2. Dispersion-based static outdoor model 38 29.6 9.7 (195 309 38.0)
c

(8 M3. Dynamic outdoor model with raw GPS data 38 302 123 (21.8 259 38.6)
%- M4. Dynamic outdoor model with clean GPS data 38 283 99 (19.0 274 37.4)
[ond

%)

M5. Dynamic outdoor model with clean GPS data and diary 38  29.3 96 (20.0 279 387

M8. Personal passive air sampler 10 242 6.1 (203 241 28.0)
Third trimester
M1. Station-based static outdoor model 33 226 95 (16.6 18.0 27.8)
M2. Dispersion-based static outdoor model 33 279 83 (225 253 34.5)
M3. Dynamic outdoor model with raw GPS data 33 287 116 (198 285 35.3)
M4. Dynamic outdoor model with clean GPS data 33 270 85 (227 26.2 33.4)
M5. Dynamic outdoor model with clean GPS data and diary 33  27.8 84 (226 264 34.4)
MB8. Personal passive air sampler 9 277 103 (205 235 313)
Entire pregnancy
M1. Station-based static outdoor model 40 241 58 (19.7 237 28.9)
M2. Dispersion-based static outdoor model 40 29.0 45 (259 284 32.6)
M3. Dynamic outdoor model with raw GPS data 40 29.6 6.3 (255 289 331)
M4. Dynamic outdoor model with clean GPS data 40 277 48 (237 271 31.8)
M5. Dynamic outdoor model with clean GPS data and diary 40  28.9 46 (255 283 329)
M8. Personal passive air sampler 10 239 49 (205 234 26.6)

Models M6 and M7 are not mentioned as they are specific to PM2 5 exposure.
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