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Abstract. In this paper, we study the stabilizability of the Kawahara equa-

tion in a bounded interval (0, L) by a saturated internal control and boundary
feedback control. We prove the exponential stabilization of the correspond-

ing closed-loop system. We first show the well-posedness of the closed-loop

system using linear, nonlinear semigroup theory and fixed-point arguments.
Next, we prove two stabilization results by means of interior-saturating feed-

back and boundary-saturated feedback as well, using observability inequalities
and certain unique continuation principle.

1. Introduction and main results.

1.1. System under study. Let us consider the following nonlinear Kawahara
equation

∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu+ f1(t, x) = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = f2(t), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(1)

with p ∈ [1, 2), and the functions f1 and f2 are the controls acting internally and
through the boundary conditions, respectively. The objective of this work is to
show the exponential stabilization of (1) by acting with either internal or boundary
controls, in the case where these controls are subject to saturation.
The Kawahara equation ∂tu + ∂xu + ∂3xu − ∂5xu + up∂xu = 0 is a fifth-order, non-
linear one-dimensional equation, and is typically used to model the propagation
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of small-amplitude long waves in fluid dynamics, water waves, plasma dynamics,
among other dispersive phenomena (see [19, 18, 14] and the references therein). This
equation can also be considered as an extension of the Korteweg-de Vries equation
(KdV), including high order dispersion effects. It has been studied as a fifth-degree
KdV equation and singularly perturbed KdV equation in [2, 31] respectively. Dis-
covered in 1972 by Kawahara [19], it was also obtained by Hasimoto for shallow
water systems in 1970 [17]. Since then, the Kawahara equation has been a subject
of study from different points of view. Recently, the control and stabilization prop-
erties have attracted the attention of the control community. Let us provide a brief
overview of this subject.

As far as we know, the first works dealing with these kinds of control problems
for Kawahara equation were [39, 40, 41]. In these works, the stabilization of global
solutions of the linear Kawahara equation using localized damping was addressed
following the ideas presented in the works [33, 30], where similar problems were
analyzed for the KdV equation. These results were then extended to the nonlinear
Kawahara equation, with the nonlinearity u∂xu. In [1], a similar problem was stud-
ied for the generalized Kawahara equation with the nonlinearity up∂xu for p ∈ [1, 4).
It is important to note that in [1], the energy of solutions decay exponentially for
arbitrary initial data in L2(0, L) for p ∈ [1, 2]. However, this decay was only proved
for small initial data if p ∈ (2, 4). Internal and boundary delayed stabilization
problems for the Kawahara equation were considered in [10, 12, 5]. The exponen-
tial stability was shown using multipliers, Lyapunov functionals, and compactness
ideas. In the work [4], the authors investigate the exponential stability issue of the
Kawahara equation with feedback consisting of damping and finite memory terms
acting in the boundary. Exponential stabilization of the Kawahara equation with
distributed infinite memory has been addressed in [3]. We also mention [6], where
Massera’s theorems were obtained, [11], where the internal null controllability was
shown via Carleman estimates, [9], where controllability in weighted Sobolev spaces
was proved, and [7, 8], where the control with overdetermination condition was con-
sidered.

As we already mentioned, the focus of this paper is to analyze the case of satu-
rated controllers. Saturation in control systems is related to the fact that in most
real-life applications, the actuators are subject to constraints, limitations due to
physical, economical, operational reasons, etc. It is well-known that even in the
finite-dimensional case the introduction of saturation in the controller could desta-
bilize the system [37, Example 1.1], making the saturated control problem a chal-
lenging task. In the finite-dimensional framework, the stability analysis could be
done by studying an appropriate Lyapunov function and a sector condition related
to the saturation map [36, 37, 38].

With respect to saturation in infinite-dimensional control systems, there is not
a general method to tackle these problems. Noteworthy works include [32] where
the stabilization of a one dimensional wave equation was considered with saturated
internal and boundary controls. In this work, stability results were proved by using
Lyapunov functions and LaSalle’s invariance principle. In the case of parabolic
equations in [21], several results are collected in the one-dimensional case. The
principal idea is to decompose the system into its stable and stable parts via a
spectral approach. The unstable finite dimensional part is tackled as in [37], and
for the remaining part, an appropriated Lyapunov function is considered. In the
case of KdV-type equations, the approach is to follow the ideas of the works [33, 30]
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and to prove the exponential stability via compactness arguments. This requires,
in particular, the use of unique continuation results for nonlinear PDEs. In this
direction, we mention the works [22, 23, 28, 25]. This work can be considered
a continuation of the works [23, 25], where saturated stabilization problems were
analyzed for the KdV equation. In this sense, we extend these ideas to a high order
dispersive equation. Moreover, we address a slightly more general nonlinearity.

1.2. Setting of the problem. This paper deals with the feedback stabilization
of the system (1) by means of saturated control acting in-domain or through a
boundary action. In this work, we consider two types of saturation function sat
which can be given by the following. Let M > 0 be the saturation level. We define

satloc(s) =

{
s, if |s| ≤M,

Msgn(s), if |s| ≥M,
(2)

and the second one is

sat2(s) =

{
s, if ∥s∥L2(0,L) ≤M,

sM
∥s∥L2(0,L)

, if ∥s∥L2(0,L) ≥M.
(3)

1.2.1. Internal control. We start by describing the case where the control action is
in-domain.
∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu+ sat(a(x)u(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(4)
where a ∈ L∞(0, L) is a nonnegative localized function given by1

a1 ≥ a(x) ≥ a0 > 0 on ω ⊂ [0, L], ω is a nonempty open subset of [0, L]. (5)

1.2.2. Boundary control. In this work, we also explore the case where the saturated
actuator is at the boundary, consider the following equation:

∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(6)

where |α| < 1.

Remark 1.1. It is important to remark that in the case of internal control, we can
deal with both types of saturation satloc and sat2 while in the boundary case, we
only analyze satloc.

Remark 1.2. In the boundary case, an alternative formulation could be adding
the saturation term as follows

∂2xu(t, L) = αsatloc(∂
2
xu(t, 0)), t ∈ (0,∞).

1For instance we can take a1 = ∥a∥∞.
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The results obtained in this work can be easily adapted to this case with no major
differences. Observe that these cases are not equivalent; for instance, for s such
that |s| > M > |αs| we have

αs = satloc(αs) ̸= αsatloc(s) =Mαsgn(s).

The main objective of this paper is to show the exponential stability of (4) and (6)
in the presence of saturated control. More precisely, we investigate the semiglobal
exponential stabilization result (see Theorem 3.5) for the Kawahara equation (4)
with internal saturation. That means, for any r > 0, we can find a positive number
µ(r) > 0 such that the energy

E(t) =
1

2

∫ L

0

u(t, x)2dx

of the solution of (4) decays exponentially with a rate µ(r), provided the initial
data satisfying the following smallness assumption ∥u0∥L2(0,L) ≤ r. For the satu-

rated boundary feedback case, we study local exponential stabilization result (see
Theorem 2.11) for the system (6) with |α| < 1. That is, there exist positive con-
stants r, µ, C > 0 such that whenever ∥u0∥L2(0,L) ≤ r, the solution of (6) satisfies

∥u(t, ·)∥L2(0,L) ≤ Ce−µt ∥u0∥L2(0,L) , ∀t ≥ 0. (7)

Our study is based on deriving appropriate observability inequalities for the sat-
urated systems. These inequalities are obtained using compactness ideas and Car-
leman estimates. We also put special emphasis on the global well-posedness of the
associated systems. Indeed, as we can observe from the definition of the saturation
maps (2) and (3), if the argument of the map is small enough (in the appropriated
norms), then the saturation is not really active. For instance, this was one of the
main points in [28].

The structure of this paper is the following: In Section 2, we study the well-
posedness result and exponential stabilizability associated with (6). Section 3 dis-
cusses the existence, uniqueness and stability analysis for the Kawahara equation (4)
with internal saturation. At the end, we conclude the paper with some additional
remarks and open questions.

2. Boundary saturation. This section is devoted to the well-posedness and sta-
bility analysis of the Kawahara equation with saturated boundary feedback. At
first, we show the existence and uniqueness of the system (6) with the saturated
feedback at the boundary. We will follow the work [25] (see also [26]).

2.1. Well-posedness. First, we consider the system (6) without the internal non-
linearity, and we prove the well-posedness based on nonlinear semigroup theory.
Then, we will add an internal source term in order to take in account the nonlinear
term up∂xu. Consider the system


∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(8)
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Let Ab : D(Ab) → L2(0, L) the nonlinear operator defined by

Abw := −w′ − w′′′ + w′′′′′ (9)

D(Ab) = {w ∈ H5(0, L) ∩H2
0 (0, L) : w

′′(L) = satloc(αw
′′(0))}.

Note that the operator Ab is nonlinear by the action of the boundary saturation.
Following [25, 22], we show that Ab is a closed, dissipative operator and that for
some λ > 0, D(Ab) ⊂ R(I − λAb), where I : L2(0, L) → L2(0, L), is the identity
operator and R denotes the range of a operator. The following result ensures the
existence of mild and strong solutions for (8).

Proposition 2.1. Let u0 ∈ L2(0, L) and |α| < 1, then there exists a unique mild
solution u ∈ C([0,∞), L2(0, L)) of (8). If u0 ∈ D(Ab), this solution is strong
and u ∈ C([0,∞), D(Ab)) ∩ C1((0,∞), L2(0, L)). Moreover, for T > 0 and u0 ∈
L2(0, L), the following estimate follows

∥u0∥2L2(0,L) ≤
1

T
∥u∥2L2((0,T ),L2(0,L)) + ∥∂2xu(·, 0)∥2L2(0,T ). (10)

Proof. Ab is a closed operator. Consider the operator A0
b : D(A0

b) → L2(0, L)

defined by A0
bw := Abw, where D(A0

b) = {w ∈ H5(0, L) ∩H2
0 (0, L) : w

′′(L) = 0}.
Then, clearly A0

b is a closed operator. Similarly, by [20, Page 91] the operator satloc
satisfies

∀(s, s̃) ∈ R2, |satloc(s)− satloc(s̃)| ≤ |s− s̃| . (11)

Thus, satloc is a Lipschitz continuous function and hence the operator Ab is closed.
Ab is dissipative. Let w, v ∈ D(Ab), then after some integration by parts and
(11) we have

⟨Abw −Abv, w − v⟩L2(0,L) =

∫ L

0

(−w′ − u′′′ + w′′′′′ + v′ + v′′′ − v′′′′′)(w − v)dx

=
1

2

[
(satloc(αw

′′(0))− satloc(αv
′′(0)))2

−(w′′(0)− v′′(0))2
]

≤α
2 − 1

2
(w′′(0)− v′′(0))2 ≤ 0,

from where we obtain that Ab is dissipative.
For λ > 0 small enough, D(Ab) ⊂ R(I − λAb). Take λ > 0, thenD(Ab) ⊂ R(I−
λAb), is equivalent to given w ∈ D(Ab) find v ∈ D(Ab) such that (I − λAb)v = w.

Define λ̃ =
1

λ
, then we have to find solutions v ∈ D(Ab) of{
λ̃v + v′ + v′′′ − v′′′′′ = λ̃w,

v(0) = v(L) = v′(0) = v′(L) = 0, v′′(L) = satloc(αv
′′(0)).

(12)

Consider the operator T : H3(0, L) → L2(0, L) defined by T (y) = z, where z is the
solution of{

λ̃z + z′ + z′′′ − z′′′′′ = λ̃w,

z(0) = z(L) = z′(0) = z′(L) = 0, z′′(L) = satloc(αy
′′(0)).

(13)

Lemma 2.2. For all w ∈ D(Ab), the operator T is well-defined, i.e., for all y ∈
H3(0, L), there exists a unique solution to (13).
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The proof of Lemma 2.2 is given in the Appendix A. Let us show that T has a
fixed point. Take C > 0 to be chosen later and define the convex set

KC = {z ∈ H2
0 (0, L) : ∥z∥H2

0 (0,L)
≤ C}. (14)

As H2
0 (0, L) is compactly embedded in L2(0, L), the set KC is a bounded set in

H2
0 (0, L) and relatively compact in L2(0, L). Furthermore, as KC is closed in

L2(0, L), we can deduce that KC is compact in L2(0, L). Our idea now is to apply
the Schauder fixed point theorem [13, Theorem B.19]. Thus, we have to prove the
following lemma

Lemma 2.3. There exists C > 0 such that T (H3(0, L)) ⊂ KC .

Proof. Multiplying (13) by z and integrating on (0, L) we get after some integration
by parts

λ̃

∫ L

0

z2dx+
1

2
z′′(0)2 =

1

2
satloc(αy

′′(0))2 + λ̃

∫ L

0

wzdx.

Then, using the definition of satloc given in (2) and Cauchy-Schwartz, we obtain

λ̃

2
∥z∥2L2(0,L) ≤

M2

2
+
λ̃

2
∥w∥2L2(0,L). (15)

Multiplying (13) by xz and integrating on (0, L) we get after some integration by
parts

λ̃

∫ L

0

xz2dx+
3

2

∫ L

0

(z′)2dx+
5

2

∫ L

0

(z′′)2dx =
1

2

∫ L

0

z2dx+
L

2
sat(αy′′(0))2

+ λ̃

∫ L

0

xwzdx,

3

2
∥z′∥2L2(0,L)+

5

2
∥z′′∥2L2(0,L) ≤

(
Lλ̃

2
+

1

2

)
∥z∥2L2(0,L)+

LM2

2
+
Lλ̃

2
∥w∥2L2(0,L), (16)

and hence using (15) and (16) we conclude, ∥z′′∥2L2(0,L) ≤ C, where C > 0 only

depends on the level of saturationM , L, λ̃ and w which ends the proof of Lemma 2.3.

Using the Schauder fixed point theorem, we manage to find v ∈ H3(0, L) solution
of (12), we get v ∈ D(Ab) using that the boundary conditions and w ∈ D(Ab). We
conclude that for all λ > 0, D(Ab) ⊂ R(I − λAb). Using [24, Theorem 4.2] Ab

is the generator of a semigroup of contractions S(t), t > 0. By [24, Theorem 4.5]
for all T > 0, u0 ∈ D(Ab), u = S(t)u0 ∈ C([0, T ];D(Ab)) ∩ C1((0, T );L2(0, L)) is
a strong solution to (8). Moreover, by [24, Theorem 4.10] this solution is unique.
Also, we can deduce that for all T > 0, for all u0 ∈ L2(0, L), there exists a unique
mild solution of (8) u ∈ C([0, T ];L2(0, L)).
To deduce (10), and multiply (8) by (T − t)u and integrate (0, T ) × (0, L), after
some integration by parts we get

T

∫ L

0

u20dx+

∫ T

0

(T − t)
[
satloc(∂

2
xu(t, 0))

2 − ∂2xu(t, 0)
2
]
dt =

∫ T

0

∫ L

0

u2dxdt,

using (11) we obtain (10). The result can be extended by density to mild solutions.
Therefore, the proof of Proposition 2.1 is finished.
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Next, we study the well-posedness of the system (8) with an extra source term
f . 

∂tu+ ∂xu+ ∂3xu− ∂5xu = f, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(17)

Formally, this system can be seen as ∂tu = Abu + f . The following result can be
obtained using [29, Theorem 10.1, Theorem 10.2].

Proposition 2.4. Let u0 ∈ L2(0, L), |α| < 1, f ∈ L1((0,∞), L2(0, L)), then
there exists a unique mild solution u ∈ C([0,∞), L2(0, L)) of (17). Moreover,
if u0 ∈ D(Ab) and f ∈ W 1,1((0,∞), L2(0, L)) this solution is strong and u ∈
C([0,∞), L2(0, L)), u(t, ·) ∈ D(Ab), for all t ≥ 0 and u ∈ C1((0,∞), L2(0, L)).

In order to deal with the nonlinear term up∂xu, we show that mild solutions
of (17) have an extra regularity. Consider the space BT = C([0, T ], L2(0, L)) ∩
L2((0, T ), H2(0, L)), endowed with the norm

∥u∥2BT
= ∥u∥2C([0,T ],L2(0,L)) + ∥u∥2L2((0,T ),H2(0,L)).

Proposition 2.5. Let u0 ∈ L2(0, L), |α| < 1, f ∈ L1((0, T ), L2(0, L)) and T > 0,
consider u ∈ C([0, T ], L2(0, L)), the restriction of the solution of (17) on [0, T ],
then u ∈ BT . Moreover, the following estimate holds,

∥u∥BT
≤ C(1 +

√
T )
(
∥u0∥L2(0,L) + ∥f∥L1((0,T ),L2(0,L))

)
. (18)

Proof. Suppose u is a strong solution of (17), let T > 0 and 0 ≤ s ≤ T . Multiplying
the first equation of (17) by u and integrating on (0, s)× (0, L), we get after some
integration by parts

1

2

∫ L

0

u(s, x)2dx+
1

2

∫ s

0

(
∂2xu(t, 0)

2 − sat(α∂2xu(t, 0))
2
)
dt =

1

2

∫ L

0

u20dx

+

∫ s

0

∫ L

0

fudxdt.

(19)
Note that for all s ∈ [0, T ]∫ s

0

∫ L

0

fudxdt ≤
∫ T

0

∥u(t, ·)∥L2(0,L)∥f(t, ·)∥L2(0,L)dt

≤ ∥u∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L)).

Using the above equation, (11), (19), we get for all s ∈ [0, T ],

1

2

∫ L

0

u(s, x)2dx+ Cα

∫ s

0

∂2xu(t, 0)
2dt ≤1

2

∫ L

0

u20dx

+ ∥u∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L)),

(20)

where Cα =
1− |α|2

2
> 0. Taking the supremum for s ∈ [0, T ], and with Young’s

inequality, we get
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∥u∥2C([0,T ],L2(0,L))+

∫ T

0

∂2xu(t, 0)
2dt ≤ C

(
∥u0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
. (21)

Let us multiply the first equation of (17) by xu and integrate on (0, T ) × (0, L).
Performing integration by parts, we observe

1

2

∫ L

0

xu(T, ·)2dx+
3

2

∫ T

0

∫ L

0

∂xu
2dxdt+

5

2

∫ T

0

∫ L

0

∂2xu
2dxdt =

1

2

∫ L

0

xu20dx

+
1

2

∫ T

0

∫ L

0

u2dxdt+
L

2

∫ T

0

satloc(α∂
2
xu(t, 0))

2dt+

∫ T

0

∫ L

0

xufdxdt.

(22)
Note that ∫ T

0

∫ L

0

u2dxdt ≤ T∥u∥2C([0,T ],L2(0,L))

and ∫ T

0

∫ L

0

xufdxdt ≤ L∥u∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L)).

Using the above two inequalities (21) and (22), we derive

∥∂2xu∥2L2((0,T ),L2(0,L)) ≤ C(1 + T )
(
∥u0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
, (23)

where C > 0 does not depend on T . Thus u ∈ L2((0, T ), H2(0, L)). Joining (21)
and (23) we deduce (18).

Before going to prove the global well-posedness result for the nonlinear system
(6), we first state some important estimates related to the nonlinear term and whose
proof can be founded in [34, Lemma 2.3, Lemma 2.4]:

Proposition 2.6. Let u ∈ BT . Then for 1 ≤ p ≤ 2, up∂xu ∈ L1((0, T ), L2(0, L))
and the map u ∈ BT 7→ up∂xu ∈ L1((0, T ), L2(0, L)) is continuous. Moreover, there
exists C > 0 such that, for any u, v ∈ BT

∥up∂xv∥L1((0,T ),L2(0,L)) ≤ C(T (2−p)/4 +
√
T )∥u∥pBT

∥v∥BT
. (24)

∥up∂xu− vp∂xv∥L1((0,T ),L2(0,L)) ≤C(T (2−p)/4 +
√
T )
(
∥u∥BT

∥v∥p−1
BT

+∥v∥pBT
+ ∥u∥pBT

)
∥u− v∥BT

.
(25)

We conclude this subsection by proving the global well-posedness result for non-
linear equation (6).

Theorem 2.7. Let u0 ∈ L2(0, L) and |α| < 1, then there exists a unique mild
solution u ∈ C([0,∞), L2(0, L)) ∩ L2(0,∞, H2(0, L)) of (6).

Proof. Let u0 ∈ D(Ab) and R, θ > 0 to be chosen later. Consider the ball
BBθ

(0, R) := {v ∈ Bθ, ∥v∥Bθ
≤ R}. Then BBθ

(0, R) is a complete metric space. Let
us introduce the map Φ : Bθ 7→ Bθ, defined by Φ(v) = u, where u solves


∂tu+ ∂xu+ ∂3xu− ∂5xu = −vp∂xv, (t, x) ∈ (0, θ)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0, θ),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0, θ),

u(0, x) = u0(x), x ∈ (0, L).
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We observe first that Φ is well-defined, since by Proposition 2.6 vp∂xv ∈ L1((0, θ),
L2(0, L)). By Proposition 2.5 and Proposition 2.6 we get

∥Φ(v)∥Bθ
≤C(1 +

√
θ)
(
∥u0∥L2(0,L) + ∥vp∂xv∥L1((0,θ),L2(0,L))

)
≤C1(1 +

√
θ)∥u0∥L2(0,L) + C2(θ

(2−p)/4 +
√
θ)∥v∥p+1

BT
,

for some C1, C2 > 0. Then taking R = 3C1∥u0∥L2(0,L) and θ > 0 small enough
such that C2(θ

2−p
4 +

√
θ)Rp <

1

3
,

(1 +
√
θ) < 2,

we have that ∥Φ(v)∥Bθ
≤ R and thus Φ maps BBθ

(0, R) into itself. Let us take v1,
v2 ∈ BBθ

(0, R), and consider w = u1 − u2 = Φ(v1) − Φ(v2). We observe that w
solves

∂tw + ∂xw + ∂3xw − ∂5xw = f, (t, x) ∈ (0, θ)× (0, L),

w(t, 0) = w(t, L) = ∂xw(t, 0) = ∂xw(t, L) = 0, t ∈ (0, θ),

∂2xw(t, L) = h, t ∈ (0, θ),

w(0, x) = 0, x ∈ (0, L),

where f = −vp1∂xv1 + vp2∂xv2 and h = satloc(α∂
2
xu1(t, 0)) − satloc(α∂

2
xu2(t, 0)).

Similar integration by parts as in Proposition 2.5 allows to write

∥w∥Bθ
≤ C

(
∥h∥L2(0,θ) + ∥f∥L1((0,θ),L2(0,L)

)
. (26)

Our idea is to obtain an estimate of ∥h∥L2(0,θ). Proceeding as (19) we obtain

1

2

∫ L

0

w(θ, ·)2dx+
1

2

∫ θ

0

(∂2xw(t, 0)
2 − h(t)2)dt =

∫ θ

0

∫ L

0

fwdxdt.

Thanks to (11), we get

∥h∥L2(0,θ) =
∥∥satloc(α∂2xu1(·, 0))− satloc(α∂

2
xu2(·, 0))

∥∥
L2(0,θ)

≤ ∥α∂2xu1(·, 0)− α∂2xu2(·, 0)∥L2(0,θ)

≤ |α|∥∂2xw(·, 0)∥L2(0,θ),

which implies

1

2

∫ L

0

w(θ, ·)2dx+ Cα

∫ θ

0

∂2xw(t, 0)
2dt ≤

∫ θ

0

∫ L

0

fwdxdt,

where Cα is same as mentioned in (20). Thus by Young’s inequality we have
∥w∥C([0,θ],L2(0,L)) ≤ C∥f∥L1((0,θ),L2(0,L), then by the above inequality

∥h∥L2(0,θ) ≤ |α|∥∂2xw(·, 0)∥L2(0,θ) ≤ C∥f∥L1((0,θ),L2(0,L).

Using this estimate in (26) we obtain

∥Φ(v1)− Φ(v2)∥Bθ
= ∥w∥Bθ

≤ C∥f∥L1((0,θ),L2(0,L)

= C∥vp1∂xv1 − vp2∂xv2∥L1((0,θ),L2(0,L).

Finally, by Proposition 2.6

∥Φ(v1)− Φ(v2)∥Bθ
≤C3(θ

(2−p)/4 +
√
θ)
(
∥v1∥Bθ

∥v2∥p−1
Bθ

+ ∥v1∥pBθ

+∥v2∥pBθ

)
∥v1 − v2∥Bθ

,
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for some C3 > 0. Then, taking θ > 0, small enough such that 3C3(θ
(2−p)/4 +√

θ)Rp < 1, we get that Φ is a contraction, and by the Banach fixed point theorem
and a density argument, we deduce the local in time well-posedness.
To conclude the global well-posedness result since the energy of the system is de-
creasing, we only need some global a priori estimates. Let T > 0 and u be a strong
solution of (6). Multiplying (6) by u and integrating over (0, L) × (0, s), we get
after some integration by parts

1

2

∫ L

0

u(s, ·)2dx+
1

2

∫ s

0

(
∂2xu(t, 0)

2 − sat(α∂2xu(t, 0))
2
)
dt =

1

2

∫ L

0

u20dx.

Using (2) we derive

1

2

∫ L

0

u2(s, ·)dx+ Cα

∫ s

0

∂2xu(t, 0)
2dt ≤ 1

2

∫ L

0

u20dx, (27)

where Cα is the same as mentioned in (20). Next, taking the supremum for s ∈ [0, T ]
in (27),

∥u∥2C([0,T ],L2(0,L)) ≤ ∥u0∥2L2(0,L). (28)

On the other hand, taking s = T in (27),∫ T

0

∂2xu(t, 0)
2dt ≤ 1

2
C−1
α ∥u0∥2L2(0,L). (29)

Let us multiply the first equation of (6) by xu and integrate on (0, L)× (0, T ),

1

2

∫ L

0

xu2(T, ·)dx+
3

2

∫ T

0

∫ 1

0

∂xu
2dxdt+

5

2

∫ T

0

∫ L

0

∂2xu
2dxdt =

1

2

∫ L

0

xu20(x)dx

+
1

p+ 2

∫ T

0

∫ L

0

up+2dxdt+
1

2

∫ T

0

∫ L

0

u2dxdt+
L

2

∫ T

0

∂2xu(t, 0)
2dt.

For the term involving

∫ T

0

∫ L

0

u2dxdt∫ T

0

∫ L

0

u2(t, x)dx ≤ T∥u∥2C([0,T ],L2(0,L)).

For the term involving

∫ T

0

∫ L

0

up+2(t, x)dxdt, observe that

1

p+ 2

∫ T

0

∫ L

0

up+2dxdt ≤ 1

p+ 2

∫ T

0

∥u(t, ·)∥pL∞(0,L) ∥u(t, ·)∥
2
L2(0,L) dt

≤ 2p/2

p+ 2

∫ T

0

∥∂xu(t, ·)∥p/2L2(0,L) ∥u(t, ·)∥
2+p/2
L2(0,L) dt.

Therefore using (28) we have

1

p+ 2

∫ T

0

∫ L

0

up+2dxdt ≤ C
2p/2

p+ 2
∥u0∥2+p/2L2(0,L)

∫ T

0

∥∂xu(t, ·)∥p/2L2(0,L) dt

≤ C
2p/2T 1−p/4

p+ 2
∥u0∥2+p/2L2(0,L)

(∫ T

0

∥∂xu(t, ·)∥2L2(0,L) dt

)p/4

≤ CpT∥u0∥
8+2p
4−p

L2(0,L) +
1

2

(∫ T

0

∥∂xu(t, ·)∥2L2(0,L) dt

)
, (30)
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for some positive constant Cp depending on p and C. Thus, from (28), (29) and
Young’s inequality we derive∫ T

0

∫ 1

0

∂xu
2dxdt+

∫ T

0

∫ L

0

∂2xu
2dxdt ≤ Cp

[
(1 + T )∥u0∥2L2(0,L) + T∥u0∥

8+2p
4−p

L2(0,L)

]
.

(31)
Finally, with (28) and (31) and arguing by density, the proof of Theorem 2.7 is
finished.

2.2. Exponential stabilization. In this part we prove our main result with re-
spect to the exponential stability of system (6). The proof is based on showing an
appropriate observability inequality, using a contradiction argument and compact-
ness ideas. The main difference in the proof of internal and boundary saturation is
that for the boundary case we first prove such an observability inequality by analyz-
ing system (8) and then we pass to the fully nonlinear system (6) by a perturbation
approach. Due to this argument, our exponential stability result for (6) is of local
nature. On the other side, in the proof of the observability inequality for (4), we
work directly with the nonlinear system, which allows us to obtain a semiglobal ex-
ponential stability result. In what follows, we consider here the classical L2-energy,

E(t) =
1

2

∫ L

0

u(t, x)2dx. (32)

We are now going to prove the exponential stabilization result for the case of
boundary saturation, that is the system (6). In this case, the following unique
continuation property is crucial in the proof

Lemma 2.8. ([5, Lemma 4.3]) Let L > 0, if λ, ψ ∈ C×H5(0, L) satisfies
λψ(x) + ψ′(x) + ψ′′′(x)− ψ′′′′′(x) = 0, x ∈ (0, L)

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0,

ψ′′(0) = ψ′′(L) = 0,

(33)

then ψ ≡ 0.

Remark 2.9. This lemma was recently proved in [5] using complex analysis tools.
For a sake of completeness, we explain here some ideas. By extending ψ to the
whole space R we obtain that u satisfies

λψ + ψ′ + ψ′′′ − ψ′′′′′ = −ψ′′′′(0)δ′0 + ψ′′′′(L)δ′L − ψ′′′(0)δ0 + ψ′′′(L)δL, in S ′(R).

It can be shown that λ = ir, r ∈ R, thus taking the Fourier transform of the above
expression we get

iψ̂(ξ) = f(ξ, L) =
α1iξ − α2iξe

−iξL + α3 − α4e
−iξL

ξ5 + ξ3 − ξ + r
.

Therefore, the existence of a non-trivial ψ satisfying (33) is related to the analyticity
of f(ξ, L). This question was studied in [5] by analyzing the possibility to build a
Möbius transformation (see also [15] where several other cases have been studied).

For a strong solution of (6) (or (8)) performing integration by parts, we get using
|α| < 1

Ė(t) =
1

2

(
satloc(α∂

2
xu(t, 0))

2 − ∂2xu(t, 0)
2
)
≤ −Cα∂2xu(t, 0)2 ≤ 0. (34)
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Thus, the energy is a non-increasing function of time. In fact, we will prove that the
energy decays exponentially to 0. Our approach will be based on an observability
inequality for the system (8).

Proposition 2.10. Let L > 0, |α| < 1 and u0 ∈ L2(0, L). For any solution u of
(8), the following inequality holds:∫ L

0

u20dx ≤ Cobs

∫ T

0

∂2xu(t, 0)
2dt, (35)

for some Cobs > 0, that does not depend on u0.

Proof. In order to prove the observability inequality, we follow [33] and use a con-
tradiction argument. Let us suppose that (35) is false, then there exists (un0 )n∈N ⊂
L2(0, L) such that∫ L

0

(un0 )
2dx = 1, and

∫ T

0

∂2,nx u(t, 0)2dt −→ 0

when n → ∞ and where un is the associate solution of (8) with initial data un0 .
Using (18) with f = 0 we get that (un)n∈N is bounded in L2((0, T ), H2(0, L)).
Then as ∂tu

n = −∂xun − ∂3xu
n + ∂5xu

n, we can see that (∂tu
n)n∈N is bounded in

L2((0, T ), H−3(0, L)), thus by Aubin-Lions lemma (un)n∈N is relatively compact in
L2((0, T ), L2(0, L)), therefore we can assume that un −→ u in L2((0, T ), L2(0, L)).
Using (10) we derive that (un0 )n∈N is a Cauchy sequence in L2(0, L) . Let u0 =
limn→∞ un0 , then ∫ L

0

u20dx = 1, and

∫ T

0

∂2xu(t, 0)
2dt = 0.

Thus, as satloc(0) = 0, we conclude that u solves the following linear equation:
∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, 0) = ∂2xu(t, L) = 0, t ∈ (0,∞).

(36)

But by Lemma 2.8 we can show that there is no function satisfying this system
and ∥u0∥L2(0,L) = 1, which gives us the contradiction and finishes the proof of
Proposition 2.10.

Next, we prove our main result related to the exponential stability in the bound-
ary saturated case.

Theorem 2.11. Let L > 0, |α| < 1 and u0 ∈ L2(0, L). For any solution u of (8),
the energy of the system decays exponentially to zero i.e, there exists C, γ > 0 such
that E(t) ≤ CE(0)e−γt, for all t ≥ 0. Moreover, if ∥u0∥L2(0,L) ≤ ε for ε > 0 small
enough, the same property holds for (6).

Proof. Let u0 ∈ D(Ab), using (34) and (11) we get for a strong solution of (8)

Ė(t) ≤ −Cα∂2xu(t, 0)2,

thus we can see

E(T )− E(0) ≤ −Cα
∫ T

0

∂2xu(t, 0)
2dt.



STABILIZATION OF KAWAHARA WITH SATURATED FEEDBACK 13

Using the last expression, (34) and (35) we get

E(T ) ≤ E(0) ≤ Cobs

∫ T

0

∂2xu(t, 0)
2dt ≤ Cobs

Cα
(E(0)− E(T )),

which implies that

E(T ) ≤ γE(0), with γ =
Cobs

Cα + Cobs
< 1. (37)

As (8) is invariant by translation in time and repeating this argument on [(m −
1)T,mT ] for m = 1, 2, · · · to obtain,

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0).

Hence, we have E(mT ) ≤ e−µmTE(0) where µ =
1

T
ln
(

1
γ

)
> 0. Let t > 0 then

there exists m ∈ N∗ such that (m − 1)T < t ≤ mT , and then using again the
non-increasing property of the energy, we get

E(t) ≤ E((m− 1)T ) ≤ e−µ(m−1)TE(0) ≤ 1

γ
e−µtE(0).

Finally, we conclude the exponential stability of (8) by a density argument.

Now we study the nonlinear case, note that(6) is also invariant by translation in
time; thus, to prove the stability, the objective is to show that (37) holds for u
solution of (6) if the initial data is small enough. This idea was used in several
works, for instance, [25, 27]. Let ∥u0∥L2(0,L) ≤ ϵ for ϵ > 0 to fix later. Take u the
solution of (6), then we can split u as u = u+ ũ, where

∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

and 
∂tũ+ ∂xũ+ ∂3xũ− ∂5xũ = up∂xu, (t, x) ∈ (0,∞)× (0, L),

ũ(t, 0) = ũ(t, L) = ∂xũ(t, 0) = ∂xũ(t, L) = 0, t ∈ (0,∞),

∂2xũ(t, L) = h(t), t ∈ (0,∞),

ũ(0, x) = 0, x ∈ (0, L).

where h(t) = satloc(α∂
2
xu(t, 0))− satloc(α∂

2
xu(t, 0)). Next, we observe that

∥u(T, ·)∥L2(0,L) ≤ ∥u(T, ·)∥L2(0,L) + ∥ũ(T, ·)∥L2(0,L). (38)

From the other side as u satisfies (8), we get using (37) and u(0, x) = u0(x) that
there exists γ < 1 such that

∥u(T )∥L2(0,L) ≤ γ∥u0∥L2(0,L). (39)

For ũ, by (18) and Proposition 2.6,

∥ũ(T, ·)∥L2(0,L) ≤ ∥ũ∥C([0,T ],L2(0,L)) ≤ C∥up∂xu∥L1((0,T ),L2(0,L)) ≤ C∥u∥p+1
BT

,

using (28)-(31), we derive

∥u∥p+1
BT

≤ C

(
∥u0∥p+1

L2(0,L) + ∥u0∥
(4+p)(p+1)

4−p

L2(0,L)

)
.
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Thus, we get for ũ

∥ũ(T, ·)∥L2(0,L) ≤
(
C∥u0∥pL2(0,L) + C∥u0∥

p(6+p)
4−p

L2(0,L)

)
∥u0∥L2(0,L).

Finally, as ∥u0∥L2(0,L) ≤ ϵ we deduce from (38)

∥u(T, ·)∥L2(0,L) ≤ ∥u(T, ·)∥L2(0,L) + ∥ũ(T, ·)∥L2(0,L)

≤ γ∥u0∥L2(0,L) + (Cϵp + Cϵ
p(6+p)
4−p )∥u0∥L2(0,L)

= (γ + Cϵp + Cϵ
p(6+p)
4−p )∥u0∥L2(0,L).

We conclude by choosing ϵ > 0 small enough such that γ̃ = γ + Cϵp + Cϵ
p(6+p)
4−p <

1.

3. Internal Saturation. In this section, we discuss the stability analysis of the
Kawahara equation (4) with internal saturated feedback. We will follow the works
[22, 23, 28] to study the stabilization result. As before, we first show the well-
posedness of the internal system. Then, using the multiplier approach, we prove
the exponential stability of the system.

3.1. Well-posedness with internal feedback. In this section, we study the
global well-posedness of (4), some of the computations are quite similar to those
exposed in Section 2.1 for that we focus on the main difference.

3.1.1. Well-posedness of linear system. Let us first investigate the well-posedness of
the linear Kawahara system, i.e., when we drop the nonlinear internal terms up∂xu
and sat(au):
∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(40)
Thus we write the above system as:{

u̇(t) = Au(t), t > 0,

u(0) = u0,
(41)

where the operator A can be written as

Au = −u′ − u′′′ + u′′′′′

with the domain

D(A) =
{
u ∈ H5(0, L) ∩H2

0 (0, L) : uxx(L) = 0
}
.

Remark 3.1. Observe that contrary to the case of boundary saturation, we first
analyze a system which is linear so that we use linear semigroup theory for the study
of (40). In what follows, we add the nonlinear terms as source terms. In the case
of boundary saturation, this strategy is not too clear, and for that reason we just
dropped the internal nonlinear term, and we used nonlinear semigroup arguments.
That made the well-posedness of (40) easier than the boundary case.
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It can be checked that the operator A and its adjoint operator

A∗u = u′ + u′′′ − u′′′′′

with the domain

D(A∗) =
{
u ∈ H5(0, L) ∩H2

0 (0, L) : uxx(0) = 0
}
,

are both dissipative. Therefore, by the Lumer-Philips theorem, it follows that A
generates a strongly continuous semigroup of contraction {S(t)}t≥0, (see [39, 41]
for details). Hereinafter, we have the following well-posedness result for the linear
Kawahara system (see [39, Theorem 2.1]):

Theorem 3.2. Let us take u0 ∈ D(A). Then the system (40) possesses a unique
strong solution u ∈ C([0, T ];D(A) ∩ C1(0, T ;L2(0, L)). If the initial data u0 ∈
L2(0, L), the unique mild solution of (40) lies in C([0, T ];L2(0, L))∩L2(0, T ;H2(0, L)).
Moreover, we have a generic positive constant C > 0 such that the solution satisfies
the following estimates

• ∥u∥C([0,T ];L2(0,L)) + ∥u∥L2(0,T ;H2(0,L)) ≤ C ∥u0∥L2(0,L),

•
∥∥∂2xu(·, 0)∥∥L2(0,T )

≤ C ∥u0∥L2(0,L) .

Next, we study the well-posedness result for the linear Kawahara equation with
a source term:
∂tu+ ∂xu+ ∂3xu− ∂5xu = f, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(42)
Thus, we write the above system in the form of an abstract nonhomogeneous evo-
lution equation: {

u̇ = Au+ f, t > 0,

u(0) = u0.
(43)

By classical semigroup theory result, it follows that for any f ∈ L1
loc(0,∞;L2(0, L)),

the solution of the system (43)

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds

belongs to C([0,∞);L2(0, L)). Moreover, for any T > 0 we have the following
continuity estimate:

∥u∥C([0,T ];L2(0,L)) ≤
(
∥u0∥L2(0,L) + ∥f∥L1(0,T ;L2(0,L))

)
. (44)

We also have the following estimates:

Theorem 3.3. Let us take f ∈ L1(0, T ;L2(0, L)). Then, the solution u satisfies
the following estimates

∥u∥BT
+
∥∥∂2xu(·, 0)∥∥L2(0,T )

≤ C(1 +
√
T )
(
∥u0∥L2(0,L) + ∥f∥L1((0,T );L2(0,L))

)
. (45)

Proof. First, we multiply the equation (42) by u and integrate it over (0, t)× (0, L)
and next we perform integration by parts to get:∫ 1

0

u2(t, x)dx+

∫ t

0

∂2xu(s, 0)ds ≤ 2

∫ t

0

∥f(t, ·)∥L2(0,L) ∥u(t, ·)∥L2(0,L) + ∥u0∥2L2(0,L)
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≤ 2∥u∥C([0,T ];L2(0,L))∥f∥L1((0,T );L2(0,L)) + ∥u0∥2L2(0,L)

Taking supremum over [0, T ] and using (44) we have

∥u∥2C([0,T ];L2(0,L)) +
∥∥∂2xu(·, 0)∥∥2L2(0,T )

≤ C
(
∥u0∥2L2(0,L) + ∥f∥2L1((0,T );L2(0,L))

)
.

(46)
Similarly, multiplying xu in the equation (42) and doing a similar type of energy
estimate as [39, Lemma 2.1], we can include the norm ∥u∥L2(0,T ;H2(0,L)) in the above

estimate. Thus, the proof is complete.

Now we are in a position to prove the global well-posedness result for the system
(4).

Theorem 3.4. Let u0 ∈ L2(0, L). Then there exists a unique mild solution u ∈
C([0,∞);L2(0, L)) ∩ L2(0,∞);H2(0, L) of (4). Moreover, for any T > 0, there
exists C > 0, such that the solution of the system (4) satisfies the following:

∥u∥2L2(0,T ;H2(0,L)) ≤ C

(
∥u0∥2L2(0,L) + T ∥u0∥

8+2p
4−p

L2(0,L)

)
, (47)∥∥∂2xu(·, 0)∥∥L2(0,L)

≤ C ∥u0∥L2(0,L) , (48)

∥u0∥2L2(0,L) ≤
1

T

∫ T

0

∫ L

0

u2(t, x)dxdt+

∫ T

0

|∂2xu(t, 0)|2dt

+ 2

∫ T

0

∫ L

0

sat(a(x)u(t, x))u(t, x)dxdt. (49)

Proof. Let u0 ∈ D(A) and R, θ > 0 to be chosen later. Consider again the ball
BBθ

(0, R) := {v ∈ Bθ, ∥v∥Bθ
≤ R}. Let Ψ, the map defined by Ψ : Bθ 7→ Bθ,

Ψ(v) = u, where u solves
∂tu+ ∂xu+ ∂3xu− ∂5xu = −vp∂xv − sat(a(x)v(t, x)), (t, x) ∈ (0, θ)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, ∂2xu(t, L) = 0, t ∈ (0, θ),

u(0, x) = u0(x), x ∈ (0, L).

Observe that Φ is well-defined, since by Proposition 2.6 vp∂xv ∈ L1((0, θ);L2(0, L))
and by [22, Proposition 3.4]

∥sat(av)∥L1((0,θ);L2(0,L) ≤ 3
√
La1

√
θ∥v∥Bθ

.

By Theorem 3.3, Proposition 2.6 and the above inequality we get

∥Φ(v)∥Bθ
≤C1(1 +

√
θ)∥u0∥L2(0,L) + C2(θ

(2−p)/4 +
√
θ)∥v∥p+1

BT
+ C2

√
θ∥v∥BT

,

for some C1, C2 > 0. Then taking R = 3C1∥u0∥L2(0,L) and θ > 0 small enough
such that C2(θ

2−p
4 Rp +

√
θRp +

√
θ) <

1

3
,

(1 +
√
θ) < 2,

we have that ∥Ψ(v)∥Bθ
≤ R and thus Φ maps BBθ

(0, R) into itself. Let us take v1,
v2 ∈ BBθ

(0, R), and consider w = u1 − u2 = Ψ(v1) − Ψ(v2). Following the same
idea as in the boundary saturation case, we obtain

∥Ψ(v1)−Ψ(v2)∥Bθ =∥w∥Bθ

≤C
(
∥f∥L1((0,θ),L2(0,L) + 3

√
La1

√
θ∥v1 − v2∥Bθ

)
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≤C
(
(θ(2−p)/4 +

√
θ)

(
∥v1∥Bθ∥v2∥

p−1
Bθ

+ ∥v1∥pBθ
+ ∥v2∥pBθ

)
+3

√
La1

√
θ
)
∥u− v∥Bθ .

Then, taking θ > 0, small enough such that C
(
(θ(2−p)/4 +

√
θ)Rp + 3

√
La1

√
θ
)
<

1, we get that Ψ is a contraction, and by the Banach fixed point theorem and a
density argument, we deduce the local in time well-posedness. To conclude the
global well-posedness result, since the energy of the system is decreasing, we need
some a priori estimates. Let T > 0 and u be a strong solution of (4). Multiplying
the equation (4) by u and integrating on [0, L] we have after integration by parts
and boundary data

1

2

d

dt

∫ L

0

u2dx+
1

2
∂2xu(t, 0)

2 +

∫ L

0

sat(a(x)u(t, x))u(t, x)dx = 0. (50)

Integrating over [0, T ] and using the fact that sat is an odd function, one can prove
the estimate (48). Similarly to (28), integrating (50) over [0, s] we can show that

∥u∥2C([0,T ];L2(0,L)) ≤ ∥u0∥2L2(0,L). (51)

Multiplying the first equation of (4) by xu and taking integration on both sides
over [0, T ] × (0, L), applying successive integration by parts and using boundary
conditions, we obtain

1

2

∫ L

0

xu2(T, ·)dx+
3

2

∫ T

0

∫ L

0

u2xdx+
5

2

∫ T

0

∫ L

0

u2xxdxdt+

∫ T

0

∫ L

0

xusat(au)dxdt

=
1

2

∫ L

0

xu20(·)dx+
1

2

∫ T

0

∫ L

0

u2dxdt+
1

p+ 2

∫ T

0

∫ L

0

up+2dxdt.

Noting the fact sat is an odd function, using (51) and following the computations
of (30) we finally have (47).
Next multiplying first equation of (4) by (T − t)u and taking integration over [0, L]
on both sides, we write∫ L

0

(T − t)u∂tudx+

∫ L

0

(T − t)u∂xudx+

∫ L

0

(T − t)u∂3xudx−
∫ L

0

(T − t)u∂5xudx

+

∫ L

0

(T − t)u∂xudx+

∫ L

0

(T − t)sat(a(x)u(t, x))u(t, x)dx = 0.

(52)

Integrating over [0, T ] we have

1

2

∫ T

0

∫ L

0

u2dxdt− T

2

∫ L

0

u20dx+
1

2

∫ T

0

(T − t)∂2xu(t, 0)
2dt

+

∫ T

0

∫ L

0

(T − t)sat(a(x)u(t, x))u(t, x)dxdt = 0.

Thus we get the estimate (49).

3.2. Stability result. We pass now to study the case of internal saturation. We
are interested to prove the following exponential stabilization result:
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Theorem 3.5 (Semi global stabilization). Let us consider the system (4). Then
for any r > 0 there exists a constant µ(r) > 0 such that for any u0 ∈ L2(0, L)
satisfying ∥u0∥L2(0,L) ≤ r, the solution of (4) satisfy the following:

E(t) ≤ e−µtE(0),∀t ≥ 0,

where E(·) is defined in (32).

Before going to prove Theorem 3.5, first we state some useful results borrowed
from the article [23].

Lemma 3.6 ([23]). Let r > 0 and a : [0, L] 7→ R be a function which satisfies (5).
Let us define

k(r) = min

{
M

a1r
, 1

}
,

where M and a1 are defined in (2) and (5) respectively. The following two hold:

• For s ∈ L2(0, L) with ∥s∥L2(0,L) ≤ r, we have

(sat2(a(x)s(x))− k(r)a(x)s(x)) s(x) ≥ 0,∀x ∈ [0, L]. (53)

• For s ∈ L∞(0, L) with |s(x)| ≤ r, we have

(satloc(a(x)s(x))− k(r)a(x)s(x)) s(x) ≥ 0,∀x ∈ [0, L]. (54)

3.2.1. Proof of Theorem 3.5 with ω = [0, L] and sat = sat2. In this case, the

proof is direct. Indeed, thanks to the estimate (50), we have

1

2

d

dt

∫ L

0

u2dx ≤ −
∫ L

0

sat2(a(x)u(t, x))u(t, x)dx. (55)

Using (51), we have ∥u(t, ·)∥L2(0,L) ≤ r, where r > 0 be any number such that

∥u0∥L2 ≤ r. Applying first estimate (53) of Lemma 3.6 we deduce

1

2

d

dt

∫ L

0

u2dx ≤ −
∫ L

0

k(r)a0u
2(t, x)dx. (56)

Thus the proof is complete with µ = min{a0, k(r)}.

3.2.2. Proof of Theorem 3.5 with ω ⊂ [0, L] and sat = sat2. In this case, we

will use a contradiction argument as [34]. First, let us state a unique continuation
lemma for the Kawahara equation, which plays an integral part in the proof of
stabilization result:

Lemma 3.7 (Unique continuation principle, [16]). Let u0 ∈ L2(0, L) and u ∈ BT
be the solution of the equation
∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0, T )× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, L),

(57)
such that u(t, x) = 0,∀x ∈ ω,∀ t ∈ (0, T ), with ω ⊂ (0, L). Then, u(t, x) = 0,∀x ∈
(0, L),∀ t ∈ (0, T ).
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For the sake of completeness, we give a sketch of the proof of Lemma 3.7 in the
Appendix B.

Let us consider ∥u0∥L2(0,L) ≤ r. Using (51), we deduce

∥u(t, ·)∥L2(0,L) ≤ r, ∀t ≥ 0. (58)

Integrating (50) over [0, T ] we have∫ L

0

u2(T, ·)dx =

∫ L

0

u2
0dx−

∫ T

0

∂2
xu(t, 0)

2dt− 2

∫ T

0

∫ L

0

sat2(a(x)u(t, x))u(t, x)dxdt

(59)

As (58) holds, we apply the first part of Lemma 3.6, and deduce∫ L

0

u2(T, ·)dx ≤
∫ L

0

u20dx−
∫ T

0

∂2xu(t, 0)
2dt− 2

∫ T

0

∫ L

0

k(r)a(x)|u(t, x)|2dxdt.

(60)

Next, for the time being we assume the following result:

Lemma 3.8. Let us take T > 0 and let r be any positive number. Then for any
u0 ∈ L2(0, L), with ∥u0∥L2(0,L) ≤ r, the solution of the equation (4) satisfies the

following

∥u0∥2L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|u(t, x)|2dxdt

)
. (61)

Therefore combining (60) and (61), we finally have the existence of γ ∈ (0, 1)
such that

∥u(kT, ·)∥2L2(0,L) ≤ γk ∥u0∥2L2(0,L) ,∀ k ≥ 0. (62)

Using (51), we have ∥u(t, ·)∥2L2(0,L) ≤ ∥u(kT, ·)∥2L2(0,L) , where kT ≤ t ≤ (k + 1)T.

Finally, we obtain that

∥u(t, ·)∥L2(0,L) ≤
1

γ
e−µt ∥u0∥L2(0,L) ,∀ t ≥ 0, (63)

where µ = − log γ
T .

3.2.3. Proof of Lemma 3.8. Thanks to (49), we can claim that in order to prove
Lemma 3.8, it is enough to show that the following

∥u∥2L2(0,T ;L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|u(t, x)|2dxdt

)
,

(64)
for some C > 0, provided ∥u0∥L2(0,L) ≤ r. We prove this inequality by a contra-

diction approach. Suppose that (64) is not true. Hence, there exists a sequence of
functions un0 ∈ L2(0, L) with ∥un0∥L2(0,L) ≤ r and {un}n∈N ∈ BT be the correspond-

ing solution of the equation


(∂t + ∂x + ∂3

x − ∂5
x)u

n + unp∂xu
n + sat2(a(x)u

n(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

un(t, 0) = un(t, L) = ∂xu
n(t, 0) = ∂xu

n(t, L) = ∂2
xu

n(t, L) = 0, t ∈ (0,∞),

un(0, x) = un
0 (x), x ∈ (0, L),

(65)
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where p ∈ [1, 2), and

lim
n→∞

∥un∥2L2(0,T ;L2(0,L))(∫ T

0

|∂2xun(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a|un(t, x)|2dxdt

) = +∞. (66)

Also (51) gives that

∥un(t, ·)∥L2(0,L) ≤ r, ∀ t ≥ 0. (67)

Let us denote λn = ∥un∥L2(0,T ;L2(0,L)) and vn(t, x) =
un(t, x)

λn
. {λn}n∈N is a

bounded sequence by (67). Therefore it has a subsequence, denoted by {λn}n∈N
such that there exists λ ≥ 0 with

λn → λ as n→ ∞. (68)

Note that vn satisfies the following equation:
(∂t + ∂x + ∂3

x − ∂5
x)v

n + λnv
np∂xv

n +
sat2(a(x)λnv

n(t, x))

λn
= 0, (t, x) ∈ (0,∞)× (0, L),

vn(t, 0) = vn(t, L) = ∂xv
n(t, 0) = ∂xv

n(t, L) = ∂2
xv

n(t, L) = 0, t ∈ (0,∞),

∥vn∥L2(0,T ;L2(0,L) = 1,

(69)

and also by (66) we further have(∫ T

0

|∂2xvn(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a|vn(t, x)|2dxdt

)
→ 0 as n→ ∞. (70)

In addition, using (49), we have that {∥vn(0, ·)∥L2(0,L)}n∈N is a bounded sequence

and due to the following∥vn∥2L2(0,T ;H2(0,L)) ≤ C

(
∥vn(0, ·)∥2L2(0,L) + T ∥vn(0, ·)∥

8+2p
4−p

L2(0,L)

)
,

∥vn(t, ·)∥L2(0,L) ≤ ∥vn(0, ·)∥
L2(0,L)

,
(71)

the sequence {vn}n∈N is bounded in the space L2(0, T ;H2(0, L)) and L∞([0, T ];
L2(0, L)). Therefore there exists a subsequence still denoted by {vn}n∈N and a
function v ∈ L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)) such that{

vn
∗
⇀ v in L∞(0, T ;L2(0, L))

vn ⇀ v in L2(0, T ;H2(0, L))
(72)

To derive the equation satisfied by v, we need to pass the limit in (69) and thus, in
the following steps, we need to take care of the convergence of the terms related to
the nonlinearity.
First of all, we have

∥vnp∂xvn∥L1((0,T ),L2(0,L)) ≤ C(T (2−p)/4 +
√
T )∥vn∥pBT

∥vn∥BT
≤ C. (73)

In the next step, we prove that {(vn)p+1}n∈N is bounded in L2(0, T ;L2(0, L)).∫ T

0

∫ L

0

(vn)2p+2dxdt ≤ ∥vn∥2L2(0,T ;H1(0,L)) ∥v
n∥3+ϵL∞(0,T ;L2(0,L) ≤ C, (74)

where p = 1 + ϵ, 0 < ϵ < 1. This shows that {vnp∂xvn}n∈N is bounded in the
space L2(0, T ;H−1(0, L)) ⊂ L2(0, T ;H−3(0, L)). Also, we know that {∂5xvn}n∈N
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is bounded in L2(0, T ;H−3(0, L)). Furthermore, it is easy to check the following
estimate (see [23, Lemma 3.2] for more details)∥∥∥∥sat2(a(x)λnvn(t, x))λn

∥∥∥∥
L2(0,T ;L2(0,L))

≤ C ∥vn∥L2(0,T ;H1(0,L)) . (75)

Thus combining all the above arguments ((71)-(75)), we can deduce that that

∂tv
n = −

(
∂xv

n + ∂3xv
n − ∂5xv

n + λnv
np∂xv

n +
sat2(a(x)λnv

n(t, x))

λn

)
is bounded in L2(0, T ;H−3(0, L)) (as each term on the right side of the above
identity lies in the same).

Lemma 3.9. Lions-Aubin lemma, [35, Corollary 4] Let us consider three Banach
spaces X ⊂ B ⊂ Y, with X,Y are reflexive, X is compactly embedded in B and B
is continuously embedded in Y. Then the following two embedding{

u ∈ L2(0, T ;X) | ut ∈ L2(0, T ;Y )
}
↪→ L2(0, T ;B){

u ∈ L∞(0, T ;X) | ut ∈ L2(0, T ;Y )
}
↪→ C([0, T ];B)

are compact.

Thanks to the Lions-Aubin lemma with the embedding H2(0, L) ⊂ L2(0, L) ⊂
H−3(0, L), {vn}n∈N is relatively compact in L2(0, T ;L2(0, L)). It follows that there
exists a subsequence, again denoted by {vn}n∈N such that vn → v in L2(0, T ;L2(0, L)).
This implies that vn → v a.e (t, x) ∈ (0, T ) × (0, L). Further, it is immediate to
have the following (vn)p+1 → vp+1 a.e. (t, x) ∈ (0, T )× (0, L).

Next, since {(vn)p+1}n∈N is bounded in L2(0, T ;L2(0, L)) (by the virtue of (74)),
there exists some h ∈ L2(0, T ;L2(0, L)) such that (vn)p+1 ⇀ h in L2(0, T ;L2(0, L)).
Uniqueness of limit gives h = vp+1 a.e. (see [34, Lemma 2.15]). As (vn)p+1 ⇀ vp+1

in L2(0, T ;L2(0, 1)), it is straightforward to note from the definition of distribution
that (vn)p+1 → vp+1 in D′((0, T ) × (0, L)). Taking the derivative with respect to
space, we further have λnv

np∂xv
n → λvp∂xv in D′((0, T )× (0, L)).

Furthermore, as {vn}n∈N and {∂tvn}n∈N are bounded in the spaces L∞(0, T ;L2(0, L))
and L2(0, T ;H−3(0, L)) respectively, using the embedding L2(0, L) ⊂ H−1(0, L) ⊂
H−3(0, L), we get by [35, Corollary 4], for a subsequence denoted by {vn}n∈N that
vn → v in C([0, T ];H−1(0, L)).

Thus in a nutshell, interpolation theory gives us the following

vn
∗
⇀ v in L∞(0, T ;L2(0, L))

vn ⇀ v in L2(0, T ;H2(0, L))

vn → v in L2(0, T ;L2(0, L))

vn → v in C([0, T ];H−1(0, L))

λnv
np∂xv

n → λvp∂xv in D′((0, T )× (0, L)).

(76)

Moreover, from (70) we deduce:(∫ T

0

|∂2xv(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|v(t, x)|2dxdt

)
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≤ lim inf
n→∞

(∫ T

0

|∂2xvn(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|vn(t, x)|2dxdt

)
= 0.

Therefore a(x)k(x)v = 0, x ∈ (0, L) and ∂2xv(·, 0) = 0, t ∈ (0, T ). This further
implies v = 0, x ∈ ω, t ∈ (0, T ). We also obtain the limit v solves the following
equation in the sense of distribution
∂tv + ∂xv + ∂3xv − ∂5xv + λvp∂xv = 0, (t, x) ∈ (0,∞)× (0, L),

v(t, 0) = v(t, L) = ∂xv(t, 0) = ∂xv(t, L) = ∂2xv(t, L) = 0, t ∈ (0,∞),

∥v∥L2(0,T ;L2(0,L)) = 1.

(77)
Thanks to the unique continuation principle Lemma 3.7, we have v = 0, x ∈ (0, L),
t ∈ (0, T ). This contradicts the fact, ∥v∥L2(0,T ;L2(0,L)) = 1. Therefore Lemma 3.8

holds.

3.2.4. Proof of Theorem 3.5 with ω ⊂ [0, L] and sat = satloc. We will prove the
exponential stabilization result Theorem 3.5 with sat = satloc as the same strategy
of above. It is clear that the stabilizability follows if we can prove the following
lemma:

Lemma 3.10. Let us take T > 0 and let r be any positive number. Then for any
u0 ∈ L2(0, L), with ∥u0∥L2(0,L) ≤ r, the solution of the equation (4) satisfies the

following

∥u0∥2L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

satloc(au(t, x))u(t, x)dxdt

)
.

(78)

Proof. Using (49), we can say that to prove Lemma 3.8, it is enough to show that
the following

∥u∥2L2(0,T ;L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

satloc(au(t, x))u(t, x)dxdt

)
,

(79)
for some C > 0, provided ∥u0∥L2(0,L) ≤ r. Using contradiction, we will prove the

estimate (79). If possible, let us assume that there exists a sequence of functions
un0 ∈ L2(0, L) with ∥un0∥L2(0,L) ≤ r and {un}n∈N ∈ BT be the corresponding solution

of the equation
(∂t + ∂x + ∂3

x − ∂5
x)u

n + unp∂xu
n + satloc(a(x)u

n(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

un(t, 0) = un(t, L) = ∂xu
n(t, 0) = ∂xu

n(t, L) = ∂2
xu

n(t, L) = 0, t ∈ (0,∞),

un(0, x) = un
0 (x), x ∈ (0, L),

(80)

where p ∈ [1, 2), and

lim
n→∞

∥un∥2L2(0,T ;L2(0,L))(∫ T

0

|∂2xun(t, 0)|2dt+ 2

∫ T

0

∫ L

0

satloc(au(t, x))u(t, x)dxdt

) = +∞. (81)

Thanks to (51), we obtain

∥un(t, ·)∥L2(0,L) ≤ r, ∀ t ≥ 0. (82)
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Also, using (49), we have that {vn(0, ·)}n∈N is a bounded sequence in L2(0, L) and
we further deduce

∥vn∥2L2(0,T ;H2(0,L)) ≤ C

(
∥vn(0, ·)∥2L2(0,L) + T ∥vn(0, ·)∥

8+2p
4−p

L2(0,L)

)
≤ Cr2 + CTr

8+2p
4−p .

(83)
Using Poincare inequality, we have

∥un(t, ·)∥L∞(0,L) ≤ C ∥un∥H2(0,L) ∀ t ∈ [0, T ].

This further gives

∥un(·, x)∥2L2(0,T ) ≤ C1, (84)

where C1 = C2(Cr2 +CTr
8+2p
4−p ). Let us consider the subsets Ωi ⊂ [0, T ] defined as

Ωi = {t ∈ [0, T ] : ∥un(t, ·)∥L∞(0,L) > i}. (85)

Its complement is then given by

Ωci = {t ∈ [0, T ] : ∥un(t, ·)∥L∞(0,L) ≤ i}. (86)

Therefore we have

∥un∥2L2(0,T ;L∞(0,L)) ≥ ∥un∥2L2(Ωi;L∞(0,L)) ≥ i2µ(Ωi), (87)

where µ(Ωi) is the Lebesgue measure of the set Ωi. Next, using (84) we have µ(Ωi) ≤
C1

i2 . This implies that

max

{
T − C1

i2
, 0

}
≤ µ(Ωci ) ≤ T. (88)

Thanks to the estimate (54) of Lemma 3.6, we have∫ T

0

∫ L

0

satloc(au
n)undtdx =

∫
Ωi

∫ L

0

satloc(au
n)undtdx+

∫
Ωc

i

∫ L

0

satloc(au
n)undtdx

≥
∫
Ωc

i

∫ L

0

satloc(au
n)undtdx ≥

∫
Ωc

i

∫ L

0

ak(i)(un)2dtdx.

(89)

Let us denote λn = ∥un∥L2(0,T ;L2(0,L)) and vn(t, x) =
un(t, x)

λn
. {λn}n∈N is a

bounded sequence by (67). Therefore it has a subsequence, denoted by {λn}n∈N
such that there exists λ ≥ 0 with

λn → λ as n→ ∞. (90)

Note that vn satisfies the following equation:
(∂t + ∂x + ∂3

x − ∂5
x)v

n + λnv
np∂xv

n +
satloc(aλnv

n)

λn
= 0, (t, x) ∈ (0,∞)× (0, L),

vn(t, 0) = vn(t, L) = ∂xv
n(t, 0) = ∂xv

n(t, L) = ∂2
xv

n(t, L) = 0, t ∈ (0,∞),

∥vn∥L2(0,T ;L2(0,L) = 1,

(91)

and also by (81) and (89) and we further have(∫ T

0

|∂2xvn(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(i)a(x)|vn(t, x)|2dxdt

)
→ 0 as n→ ∞. (92)
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Moreover, it is easy to check the following estimate (see [23, Lemma 3.2])∥∥∥∥satloc(a(x)λnvn(t, x))λn

∥∥∥∥
L2(0,T ;L2(0,L))

≤ C ∥vn∥L2(0,T ;H1(0,L)) . (93)

Like previous section, we have that

∂tv
n = −

(
∂xv

n + ∂3xv
n − ∂5xv

n + λnv
np∂xv

n +
satloc(a(x)λnv

n(t, x))

λn

)
is bounded in L2(0, T ;H−3(0, L)). Thanks to the Lions-Aubin lemma with the
embedding H2(0, L) ⊂ L2(0, L) ⊂ H−3(0, L), {vn}n∈N is relatively compact in
L2(0, T ;L2(0, L)). It follows that there exists a subsequence, again denoted by
{vn}n∈N such that vn → v in L2(0, T ;L2(0, L)). Moreover with (92) we have

ak(i)v(t, x) = 0, ∀x ∈ (0, L),∀ t ∈ Ωci and ∂
2
xv(t, 0) = 0,∀ t ∈ (0, T ).

As k(i) is strictly positive, we further have v(t, x) = 0,∀x ∈ ω,∀ t ∈ ∪i∈N Ωci and
∂2xv(t, 0) = 0,∀t ∈ (0, T ). As µ(∪i∈N Ωci ) = T, we have v(t, x) = 0,∀x ∈ ω,∀ t ∈
∪i∈N Ωci and ∂2xv(t, 0) = 0,∀ t ∈ (0, T ). This implies that v(t, x) = 0,∀x ∈ ω with
almost every t ∈ (0, T ).We also obtain that the limit v solves the following equation
in the sense of distribution
∂tv + ∂xv + ∂3xv − ∂5xv + λvp∂xv = 0, (t, x) ∈ (0,∞)× (0, L),

v(t, 0) = v(t, L) = ∂xv(t, 0) = ∂xv(t, L) = ∂2xv(t, L) = 0, t ∈ (0,∞),

∥v∥L2(0,T ;L2(0,L)) = 1.

(94)
Using the unique continuation principle Lemma 3.7 for the Kawahara equation we
have v(t, x) = 0,∀x ∈ (0, L).Which is a contradiction. Hence the proof follows.

4. Conclusion and final comments. In this work, the exponential stabilization
of the nonlinear Kawahara equation was addressed. The control was considered
acting internally or in the boundary. In both cases, a global well-posedness result
was obtained. In the case of boundary saturation, a local exponential stability
result was derived while for the internal saturated actuator a semiglobal exponential
stability result was shown. The main strategies in the proof of those results were
observability inequalities, contradiction arguments, and compactness ideas. We
finish this work with several comments and remarks, in order:

4.1. Sign of the first-order derivative. One can wonder if our results are still
valid if we slightly modify our systems. This extension is, in fact not true in all the
cases. To fix ideas, consider the following equation

∂tu− ∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(95)

Observe that (95) it is almost the same equation as (6); the unique difference is
the sign of the first order derivative. If we reply the arguments in Theorem 2.11 to
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show exponential stability, we are asked to analyze the solutions of
∂tu− ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂2xu(t, 0) = ∂2xu(t, L) = 0, t ∈ (0,∞).

(96)

As we already mentioned, when we study whether the only solution to (96) is the
trivial one, a critical lengths phenomenon could appear. For instance, in [1] the
existence of a critical set N for a similar equation was shown. More specifically, by
considering the following constants

a =

√√
5 + 1

2
, b =

√√
5− 1

2
, A = C2 + C3, B = C2 − C3,

C2 = 1− e−aL, C3 = eaL − 1, C1 = −
(
1 +

a2

b2

)
A, C4 =

a2

b2
A, C5 = −a

b
B,

and the set

N =

{
L > 0 : eibL =

(
C4 + iC5

|C4 + iC5|

)2
}

⊂ R+.

The authors of [1] showed that if L ∈ N , then

ψ(x) = C1 + C2e
ax + C3e

−ax + C4 cos(bx) + C5 sin(bx) ̸≡ 0, x ∈ (0, L),

solves ψ′ − ψ′′′ − ψ′′′′′ = 0, with boundary conditions ψ(0) = ψ(L) = ψ′(0) =
ψ′(L) = ψ′′(0) = ψ′′(L) = 0.

It happens that for system (96), there is no critical lengths phenomenon. In
particular, the following result holds

Lemma 4.1. If λ, ψ ∈ C×H5(0, L) satisfies
λψ(x)− ψ′(x) + ψ′′′(x)− ψ′′′′′(x) = 0, x ∈ (0, L)

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0,

ψ′′(0) = ψ′′(L) = 0,

(97)

then ψ ≡ 0.

The proof of this lemma is given in Appendix C.
Now we consider the same equation, but we drop the first order term; i.e.,

∂tu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂2xu(t, 0) = ∂2xu(t, L) = 0, t ∈ (0,∞).

(98)

In [39, 40], it was shown that the set of critical lengths related to this equation
is empty. Therefore, we expect that our stability result by saturated boundary
feedback is still valid in this both context.
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In the case of internal saturation, the situation is better. Consider the following
system
∂tu+ η∂xu+ ∂3xu− ∂5xu+ up∂xu+ sat(a(x)u(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(99)
where η = 0,−1 and a ∈ L∞(0, L) satisfies (5). Straightforward modifications
of Theorem 3.4 allow us to show that there exists a unique mild solution u ∈
C([0,∞), L2(0, L)) ∩ L2(0,∞), H2(0, L) of (99). With respect to the stabilization,
following the proof of Theorem 3.5 we are asking to prove similar unique continua-
tion principle as Lemma 3.7, for a solution of
∂tu+ η∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0,∞),

u(t, x) = 0, (t, x) ∈ (0,∞)× ω,

u(0, x) = u0(x), x ∈ (0, L).

In particular, we can write

∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu = (1− η)∂xu.

Then, we can apply the Carleman estimate (100) and absorb the remaining right
hand-side terms by the left hand side terms. From where we can conclude the
semiglobal exponential stability of (99).

4.2. More general nonlinearities. In the introduction of this work, we mention
that in [1] the internal stabilization was studied in the case p ∈ [1, 4), but a smallness
condition in the initial data was required for p ∈ (2, 4). This is one of the main
reasons why we only considered the case p ∈ [1, 2). In fact, if the initial data is
too small, then by continuity, the solution remains small, which could imply that
sat(au) = au, then the system is not really saturated.

In the same direction, a natural question arises regarding the types of satu-
ration we can handle using this method. Here, we provide some examples in
the case of satloc. In the case of boundary saturation concerning the proof of
well-posedness and exponential stability, we can replace the boundary feedback
∂2xu(t, L) = satloc(α∂

2
xu(t, 0)) by ∂2xu(t, L) = F (α∂2xu(t, 0)), where F : R 7→ R

satisfies:

• |F (x1)− F (x2)| ≤ |x1 − x2|2, for all x1, x2 ∈ R.
• There exists M > 0, such that for all x ∈ R, |F (x)| ≤M .
• F (0) = 0.

For the internal saturation problem, instead of satloc(a(x)u(t, x)) we can consider
feedback F (a(x)u(t, x)), where F : R 7→ R is such that:

• ∥F (h)− F (g)∥L2(0,L) ≤ C∥h− g∥L2(0,L), for all h, g ∈ L2(0, L).
• F is an odd function.
• F (0) = 0.
• F satisfies the second point of Lemma 3.6.

2Actually if |F (x1)− F (x2)| ≤ C|x1 − x2|, the results are still valid if |α| ≤ 1
C
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For instance, given a saturation level, M > 0 we can take F (x) =M arctan( xM ) or
F (x) =M tanh( xM ). Most of the aforementioned properties are clearly satisfied. To
conclude, we prove this function satisfies the second point of Lemma 3.6. To simplify
the computations, we take a(x) = 1 for all x ∈ (0, L) and M = 1. Therefore, for
s ∈ L∞ given r > 0 and |s(x)| < r, we need to find k(r) such that

(F (s(x))− k(r)s(x))s(x) ≥ 0, for all x ∈ (0, L).

We have just to check that if |x| < r, then F (x)x − k(r)x2 ≥ 0. Note that the
function θ(x) = F (x)x−k(r)x2 is even. Therefore, we just consider x ≥ 0. Moreover
θ(0) = 0, for F (x) = arctan(x), we have

θ′(x) =
x

1 + x2
+ arctan(x)− 2k(r)x

≥ x

(
1

1 + r2
− 2k(r)

)
+ arctan(x) ≥ 0

by choosing k(r) =
1

2(1 + r2)
. A similar analysis can be developed for tanh(x).

Appendix A. Proof of Lemma 2.2. In this part, we prove that the operator T
is well-defined. Indeed, take ψ defined by

ψ(x) =
L2

8π2
sin2

(2π
L
x
)
satloc(αy

′′(0)).

We can easily observe that ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0, and ψ′′(L) =
satloc(αy

′′(0)). Then z solves (13) if and only if φ = z − ψ solves{
λ̃φ+ φ′ + φ′′′ − φ′′′′′ = f = λ̃w − λ̃ψ − ψ′ − ψ′′′ + ψ′′′′′,

φ(0) = φ(L) = φ′(0) = φ′(L) = φ′′(L) = 0.

which is equivalent to (A0
b − λ̃I)φ = −f . Now, let (λ, y) a pair eigenvalue, eigen-

function of A0
b , i.e A0

by = λy, in particular we have{
−y′ − y′′′ + y′′′′′ = λy,

−y′ − y′′′ + y′′′′′ = λy.

We multiply the first equation by y, the second one by y and we integrate over
(0, L), we get after some integration by parts∫ L

0

yy′dx+

∫ L

0

yy′′′dx−
∫ L

0

yy′′′′′dx− |y′(0)|2 = λ|y|2dx

and

−
∫ L

0

yy′dx−
∫ L

0

yy′′′dx+

∫ L

0

yy′′′′′dx = λ

∫ L

0

|y|2dx.

By adding these two equations, we deduce

−1

2
|y′(0)|2 = Re(λ)

∫ L

0

|y|2dx =⇒ Re(λ) ≤ 0.

Then, as λ̃ > 0, we get λ̃ /∈ σ(A0
b), thus A0

b − λ̃I is invertible, and finally, φ =

−(A0
b − λ̃I)−1f , is well defined and also z.
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Appendix B. Proof of Lemma 3.7. This section is devoted to the proof of the
unique continuation principle for the Kawahara equation with interior observation.
Let us first recall the following existence result of the Kawahara equation in a regular
set-up.

Proposition B.1. Let us assume that u0 ∈ H5(0, L). Then the equation (57) with
u(0, ·) = u0 possesses a unique solution u ∈ C([0, T ];H5(0, L))∩L2(0, T ;H7(0, L)).
Also by interpolation, if u0 ∈ Hs(0, L), then the equation (77) possesses a unique
solution u ∈ C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+2(0, L)), 0 ≤ s ≤ 5.

One can prove the above result in the same spirit of [34].
Let us consider a function ψ ∈ C∞(0, 1) with ψ > 0 in (0, 1), ψ(0) = ψ(1) =

0, ∥ψ∥L∞(0,1) = 1, |ψx| > 0 in [0, 1] \ ω, ψx(0) > 0, ψx(1) < 0. For any ϵ > 0, we

consider

a(t, x) =
eµ(ψ(x)+3) − e5µ

(t− ϵ)(T − t)
, ξ = eλa, φ =

eµ(ψ(x)+3)

(t− ϵ)(T − t)
, t ∈ (ϵ, T ).

Next, we will use a global Carleman estimate [16, Proposition 1] for the Kawahara
equation. Let us introduce the following space

Uϵ =
{
u ∈ L2(ϵ, T ;H5(0, L)) | u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0,

∂2xu(t, L) = 0, Pu = ∂tu+ ∂xu+ ∂3xu− ∂5xu ∈ L2(ϵ, T ;L2(0, L))
}
.

Proposition B.2. There exists positive constants µ0 > 1, C0 > 0 and C1 > 0 such
that for µ = µ0 and for every s ≥ C0(T + T 2), for all u ∈ Uϵ, we have∫ T

ϵ

∫ L

0

(
sφξ2∂4xu

2 + s3φ3ξ2∂3xu
2 + s5φ5ξ2∂2xu

2 + s7φ7ξ2∂xu
2 + s9φ9ξ2u2

)
≤ C

∫ T

ϵ

∫
ω

(
ξ2|Pu|2 + sφξ2∂4xu

2 + s9φ9ξ2u2
)
. (100)

B.1. Proof of Lemma 3.7. As, u ∈ L2(0, T ;H2(0, L)), for any ϵ ∈ (0, T ), there
exists a candidate t1 ∈ (0, ϵ) such that u(t1, ·) ∈ H2(0, L). Using Proposition B.1,
we get that u ∈ C([t1, T ];H

2(0, L)) ∩ L2(t1, T ;H
4(0, L)). A similar argument gives

a time t2 ∈ (t1, ϵ) such that u(t2, ·) ∈ H4(0, L). Again from Proposition B.1,
it follows that that u ∈ C([t2, T ];H

4(0, L)) ∩ L2(t2, T ;H
6(0, L)). Proceeding with

similar argument we finally have t3 ∈ (t2, ϵ) such that u ∈ C([t3, T ];H
5(0, L)) ∩

L2(t3, T ;H
7(0, L)). Therefore, we eventually have u ∈ C([ϵ, T ];H5(0, L)) ∩

L2(ϵ, T ;H7(0, L)). Thus we can use (100) for the solution u as u ∈ Uϵ.
Plugging Pu = up ∂xu in the Global Carleman estimate (100), we have∫ T

ϵ

∫ L

0

(
sφξ2∂4xu

2 + s3φ3ξ2∂3xu
2 + s5φ5ξ2∂2xu

2 + s7φ7ξ2∂xu
2 + s9φ9ξ2u2

)
≤ C

∫ T

ϵ

∫
ω

(
ξ2|∂xuup|2 + sφξ2∂4xu

2 + s9φ9ξ2u2
)
. (101)

Note that u ∈ L∞((ϵ, T ) × (0, L)). Therefore one can find a large constant C1 =
∥u∥pL∞((ϵ,T )×(0,L)) and consider s large enough so we can absorb the last term in the

right hand sides by the term
1

2

∫ T

ϵ

∫ L

0

s7φ7ξ2∂xu
2. Indeed taking s ≥ C1(T + T 2),

we have

C

∫ T

ϵ

∫
ω

ξ2|up∂xu|2 ≤ 1

2

∫ T

ϵ

∫ L

0

s7φ7ξ2∂xu
2.



STABILIZATION OF KAWAHARA WITH SATURATED FEEDBACK 29

Finally we have the following:∫ T

ϵ

∫ L

0

(
sφξ2∂4xu

2 + s3φ3ξ2∂3xu
2 + s5φ5ξ2∂2xu

2 + s7φ7ξ2∂xu
2 + s9φ9ξ2u2

)
≤ C

∫ T

ϵ

∫
ω

(
sφξ2∂4xu

2 + s9φ9ξ2u2
)
.

Therefore u = 0 in (0, T )× ω implies that u = 0 in (ϵ, T )× (0, L) for all ϵ > 0. As
a result, we have u = 0 for all (t, x) ∈ (0, T )× (0, L).

Appendix C. Proof of Lemma 4.1. In this section, we provide a proof of
Lemma 4.1. The proof is similar to [5, Lemma 4.3], therefore we just focus on
the differences. Multiplying (97) by ψ and integrating, we easily get λ = −ir,
r ∈ R. Extending ψ by 0 for x /∈ [0, L] and taking Fourier transform, we derive

−iψ̂(ξ) = f(ξ, L) =
α1iξ − α2iξe

−iξL + α3 − α4e
−iξL

ξ5 + ξ3 + ξ + r
,

where αi, for i = 1, 2, 3, 4 are the traces of ψ′′′ and ψ′′′′. Thus, we aim to study
when the function f(·, L) defines an entire function, which is equivalent to ensuring
that all the zeros (with multiplicity) of

q(ξ) = ξ5 + ξ3 + ξ + r

are also zeros of

N(ξ, L) = α1iξ − α2iξe
−iξL + α3 − α4e

−iξL.

Let ξi, i = 1, 2, 3, 4, 5 the zeros of q(·). Then f(·, L) is entire if

α1iξi + α3

α2iξi + α4
= e−iξiL, i = 1, 2, 3, 4, 5.

For α⃗ = (α1, α2, α3, α4) ∈ C4 \ {0}, define the discriminant

d(α⃗) = α1α3 − α2α4.

Thus, for α⃗ such that d(α⃗) ̸= 0 we can introduce the Möbius transformation

M(ξi) = e−iLξi , i = 1, 2, 3, 4, 5.

The following results are borrowed from [15, Lemma 2.1 and Lemma 2.2]

Lemma C.1. Let α⃗ ∈ C4 \ {0} with d(α⃗) = 0 and L > 0. Then, the set of the
imaginary parts of the zeros of N(·, L) has at most two elements.

Lemma C.2. For L > 0, there is no Möbius transformation M , such that

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ1, ξ2},

with ξ1, ξ2, ξ1, ξ2 all distinct in C.

Using these lemmas, it suffices to prove that the set of imaginary parts of zeros
of q(·) has three elements.

• If r = 0, q(ξ) = ξ5 + ξ3 + ξ = ξ(ξ4 + ξ2 + 1), and its roots are given by:

x0 = 0, x1 = −1

2
+ i

√
3

2
, x2 =

1

2
+ i

√
3

2
, x3 = x1, x4 = x2.



30 SUBRATA MAJUMDAR AND HUGO PARADA

• Let r ̸= 0. We claim that q(·) has only one real root. First, observe that

lim
x→±∞

q(x) = ±∞

That ensures the existence of such a real root. Now, note that q′(x) = 5x4 +
3x2 + 1 > 0 for x ∈ R, thus, q(·) has only one real and simple root. Finally,
the roots of q are given by

x0 ∈ R, x1, x2, x1, x2 ∈ C.
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