
HAL Id: hal-04314431
https://hal.science/hal-04314431v1

Preprint submitted on 29 Nov 2023 (v1), last revised 26 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stabilization of Kawahara equation with input
saturation and saturated boundary feedback

Hugo Parada, Subrata Majumdar

To cite this version:
Hugo Parada, Subrata Majumdar. Stabilization of Kawahara equation with input saturation and
saturated boundary feedback. 2023. �hal-04314431v1�

https://hal.science/hal-04314431v1
https://hal.archives-ouvertes.fr


STABILIZATION OF KAWAHARA EQUATION WITH INPUT SATURATION AND

SATURATED BOUNDARY FEEDBACK

SUBRATA MAJUMDAR†, AND HUGO PARADA‡∗

Abstract. In this paper, we study the stabilizability of the Kawahara equation in a bounded interval
(0, L) by a saturated internal control and boundary feedback. We prove the exponential stabilization of

the corresponding closed-loop system. We first show the well-posedness of the nonlinear system using

linear, nonlinear semigroup theory and fixed-point arguments. Next, we prove two stabilization results
by means of interior-saturating feedback and boundary-saturated feedback as well, using observability

inequalities and certain unique continuation principle.

1. Introduction and main results

1.1. System under study. Let us consider the following nonlinear Kawahara equation
∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu+ f1(t, x) = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = f2(t), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(1.1)

with p ∈ [1, 2), and the functions f1 and f2 are the controls acting internally and through the boundary
conditions, respectively. The objective of this work is to show the exponential stabilization of (1.1) by
acting with either internal or boundary controls, in the case where these controls are subject to saturation.
The Kawahara equation ∂tu + ∂xu + ∂3xu − ∂5xu + up∂xu = 0 is fifth-order, nonlinear one dimensional
equation and is typically used to model the propagation of small-amplitude long waves in fluid dynamics,
water waves, plasma dynamics among other dispersive phenomena (see [12, 15, 16] and the references
therein). This equation can be also considered as an extension of the Korteweg-de Vries equation (KdV),
including high order dispersion effects. It has been studied as a fifth degree KdV equation and singularly
perturbed KdV equation in [2, 28] respectively. Discovered in 1972 by Kawahara [16], it was also obtained
by Hasimoto for shallow water system in 1970 [14]. Since then, the Kawahara equation has been subject
of study for different points of views. Recently, the control and stabilization properties have attracted
the attention of the control community. Let us provide a brief overview about this subject.

As far as we know the first works dealing with this kind of control problems for Kawahara equation
were [36, 37]. In these works, the stabilization of global solutions of the linear Kawahara equation using
localized damping was addressed following the ideas presented in the works [27, 30], where similar prob-
lems was analyzed for the KdV equation. These results were then extended to the nonlinear Kawahara
equation, with nonlinearity u∂xu. In [1], a similar problem was studied for the generalized Kawahara
equation with nonlinearity up∂xu for p ∈ [1, 4). It is important to remark that in [1], the energy of
solutions decay exponentially for arbitrary initial data in L2(0, L) for p ∈ [1, 2]. However, this decay was
only proved for small initial data if p ∈ (2, 4). Internal and boundary delayed stabilization problems for
Kawahara equation were considered in [3, 8, 10]. The exponential stability was shown using multipli-
ers, Lyapunov functionals and compactness ideas. We also mention [4], where Massera’s theorems were
obtained, [9], where the internal null controllability was shown via Carleman estimates, [7], where con-
trollability in weighted Sobolev spaces was proved, and [5, 6], where the control with overdetermination
condition was considered.
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As we already mentioned, the focus of this paper is to analyze the case of saturated controllers.
Saturation in control systems is related to the fact that in most real-life applications, the actuators
are subject to constraints, limitations due to physical, economical, operational reasons, etc. It is well-
known that even in the finite-dimensional case the introduction of saturation in the controller could
destabilize the system [34, Example 1.1], making the saturated control problem a challenging task. In the
finite-dimensional framework, the stability analysis could be done by studying an appropriate Lyapunov
function and a sector condition related with the saturation map [33–35].

With respect to saturation in infinite-dimensional control systems there is not a general method to
tackle these problems. Noteworthy works include [29] where the stabilization of a one dimensional wave
equation was considered with saturated internal and boundary controls. In this work, stability results were
proved by using Lyapunov functions and LaSalle’s invariance principle. In the case of parabolic equations
in [18], several results are collected in the one-dimensional case, the principal idea is to decompose the
system into its stable and stable parts via a spectral approach. The unstable finite dimensional part
is tackled as in [34], and for the remaining part, an appropriated Lyapunov function is considered. In
the case of KdV-type equations, the approach is to follow the ideas of the works [27, 30] and to prove
the exponential stability via compactness arguments. This requires, in particular, the use of unique
continuation results for nonlinear PDEs. In this direction we mention the works [19, 20, 22, 25].

1.2. Setting of the problem. This paper deals with the feedback stabilization of the system (1.1) by
means of saturated control acting in-domain or through a boundary action. In this work, we consider
two types of saturation function sat which can be given by the following. Let M > 0 be the saturation
level. We define

satloc(s) =

{
s, if |s| ≤M,

Msgn(s), if |s| ≥M,
(1.2)

and the second one is

sat2(s) =

{
s, if ∥s∥L2(0,L) ≤M,

sM
∥s∥L2(0,L)

, if ∥s∥L2(0,L) ≥M.
(1.3)

1.2.1. Internal control. We start by describing the case where the control action is in-domain.
∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu+ sat(a(x)u(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(1.4)

where a ∈ L∞(0, L) is a localized function given by

a1 ≥ a(x) ≥ a0 > 0 on ω ⊂ [0, L], ω is a nonempty open subset of [0, L]. (1.5)

1.2.2. Boundary control. In this work, we also explore the case where the saturated actuator is at the
boundary, consider the following equation:

∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(1.6)

where |α| < 1.

The main objective of this paper is to show the exponential stability of (1.4) and (1.6) in the presence
of saturated control. More precisely, we investigate semiglobal exponential stabilization result (see The-
orem 3.4) for the Kawahara equation (1.4) with internal saturation. That means, for any r > 0, we can
find a positive number µ(r) > 0 such that the energy

E(t) =
1

2

∫ L

0

u(t, x)2dx

of the solution of (1.4) decays exponentially with a rate µ(r), provided the initial data satisfying the
following smallness assumption ∥u0∥L2(0,L) ≤ r. For the saturated boundary feedback case, we study
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local exponential stabilization result (see Theorem 3.3) for the system (1.6) with |α| < 1. That is, there
exist positive constants r, µ, C > 0 such that whenever ∥u0∥L2(0,L) ≤ r, the solution of (1.6) satisfies

∥u(t, ·)∥L2(0,L) ≤ Ce−µt ∥u0∥L2(0,L) , ∀t ≥ 0. (1.7)

Our study is based on deriving appropriate observability inequalities for the saturated systems. These
inequalities are obtained using compactness ideas and Carleman estimates. We also put special emphasis
on the global well-posedness of the associated systems. Indeed, as we can observe from the definition of
the saturation maps (1.2) and (1.3) if the argument of the map, it is small enough (in the appropriated
norms) then the saturation is not really active. This was one of the main points for instance in [25].

The structure of this paper is the following. In Section 2, we study the well-posedness results associated
to (1.4) and (1.6). Then, in Section 3, we study the two exponential stabilization results for the case of
boundary saturation and saturated interior feedback, respectively. At the end, we conclude the paper
with some additional remarks and open questions.

2. well-posedness

This section is devoted to the existence and uniqueness of the system (1.4) and (1.6) with the saturated
feedback. We will follow the works [19, 20, 22, 25] see also [23].

2.1. Well-posedness with boundary feedback. We start by studying the well-posedness results for
(1.6). First, we consider the system (1.6) without the internal nonlinearity, and we prove the well-
posedness based on nonlinear semigroup theory. Then, we will add an internal source term in order to
take in account the nonlinear term up∂xu. Consider the system

∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(2.1)

Let Ab : D(Ab) → L2(0, L) the nonlinear operator defined by

Abw := −w′ − w′′′ + w′′′′′ (2.2)

D(Ab) = {w ∈ H5(0, L) ∩H2
0 (0, L) : w

′′(L) = satloc(αw
′′(0))}.

Note that the operator Ab is nonlinear by the action of the boundary saturation. Following [19, 22], we
show that Ab is a closed, dissipative operator and that for some λ > 0, D(Ab) ⊂ R(I − λAb), where
I : L2(0, L) → L2(0, L), is the identity operator and R denotes the range of a operator. The following
result, ensure the existence of mild and strong solutions for (2.1).

Proposition 2.1. Let u0 ∈ L2(0, L) and |α| < 1, then there exists a unique mild solution u ∈ C([0,∞), L2(0, L))
of (2.1). Moreover, if u0 ∈ D(Ab), this solution is strong and u ∈ C([0,∞), D(Ab))∩C1((0,∞), L2(0, L)).

Proof. Ab is a closed operator. Consider the operator A0
b : D(A0

b) → L2(0, L) defined by A0
bw := Abw,

where D(A0
b) = {w ∈ H5(0, L)∩H2

0 (0, L) : w
′′(L) = 0}. Then, clearly A0

b is a closed operator. Similarly,
by [17, Page 91] the operator satloc satisfies

∀(s, s̃) ∈ R2, |satloc(s)− satloc(s̃)| ≤ |s− s̃| . (2.3)

Thus, satloc is a Lipschitz continuous function and hence the operator Ab is closed.
Ab is dissipative. Let w, v ∈ D(Ab), then after some integration by parts and (2.3) we have

⟨Abw −Abv, w − v⟩L2(0,L) =

∫ L

0

(−w′ − u′′′ + w′′′′′ + v′ + v′′′ − v′′′′′)(w − v)dx

=
1

2

[
(w′′(L)− v′′(L))2 − (w′′(0)− v′′(0))2

]
=

1

2

[
(satloc(αw

′′(0))− satloc(αv
′′(0)))2 − (w′′(0)− v′′(0))2

]
≤ α2 − 1

2
(w′′(0)− v′′(0))2 ≤ 0,

from where we obtain that Ab is dissipative.
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For λ > 0 small enough, D(Ab) ⊂ R(I − λAb). Take λ > 0, then D(Ab) ⊂ R(I − λAb), is equivalent

to given w ∈ D(Ab) find v ∈ D(Ab) such that (I − λAb)v = w. Define λ̃ =
1

λ
, then we have to find

solutions v ∈ D(Ab) of{
λ̃v + v′ + v′′′ − v′′′′′ = λ̃w,

v(0) = v(L) = v′(0) = v′(L) = 0, v′′(L) = satloc(αv
′′(0)).

(2.4)

Consider the operator T : H3(0, L) → L2(0, L) defined by T (y) = z, where z is the solution of{
λ̃z + z′ + z′′′ − z′′′′′ = λ̃w,

z(0) = z(L) = z′(0) = z′(L) = 0, z′′(L) = satloc(αy
′′(0)).

(2.5)

Lemma 2.2. For all w ∈ D(Ab), the operator T is well-defined, i.e. for all y ∈ H3(0, L) there exists a
unique solution to (2.5).

The proof of Lemma 2.2 is given in the Appendix A. Let us show now that T has a fixed point. Take
C > 0 to be chosen later and define

KC = {z ∈ H2
0 (0, L) : ∥z∥H2

0 (0,L)
≤ C}. (2.6)

As H2
0 (0, L) is compactly embedded in L2(0, L), the set KC is a bounded set in H2

0 (0, L) and relatively
compact in L2(0, L). Furthermore, as KC is closed in L2(0, L) we can deduce that KC is compact in
L2(0, L). Our idea now is to apply the Schauder fixed point theorem [11, Theorem B.19]. Thus, we have
to prove the following lemma

Lemma 2.3. There exists C > 0 such that T (H3(0, L)) ⊂ KC .

Proof. Multiplying (2.5) by z and integrating on (0, L) we get after some integration by parts

λ̃

∫ L

0

z2dx+
1

2
z′′(0)2 =

1

2
satloc(αy

′′(0))2 + λ̃

∫ L

0

wzdx.

Then, using the definition of satloc given in (1.2) and Cauchy-Schwartz, we obtain

λ̃

2
∥z∥2L2(0,L) ≤

M2

2
+
λ̃

2
∥w∥2L2(0,L). (2.7)

Now, multiplying (2.5) by xz and integrating on (0, L) we get after some integration by parts

λ̃

∫ L

0

xz2dx+
3

2

∫ L

0

(z′)2dx+
5

2

∫ L

0

(z′′)2dx =
1

2

∫ L

0

z2dx+
L

2
sat(αy′′(0))2 + λ̃

∫ L

0

xwzdx,

3

2
∥z′∥2L2(0,L) +

5

2
∥z′′∥2L2(0,L) ≤

(
Lλ̃

2
+

1

2

)
∥z∥2L2(0,L) +

LM2

2
+
Lλ̃

2
∥w∥2L2(0,L), (2.8)

and hence using (2.7) and (2.8) we conclude, ∥z′′∥2L2(0,L) ≤ C, where C > 0 only depends on the level of

saturation M , L, λ̃ and w which ends the proof of Lemma 2.3. □

Using the Schauder fixed point theorem, we manage to find v ∈ H3(0, L) solution of (2.4), we get
v ∈ D(Ab) using that the boundary conditions and w ∈ D(Ab). We conclude that for all λ > 0, D(Ab) ⊂
R(I − λAb). Using [21, Theorem 4.2] Ab is the generator of a semigroup of contractions S(t), t > 0. By
[21, Theorem 4.5] for all T > 0, u0 ∈ D(Ab), u = S(t)u0 ∈ C([0, T ];D(Ab)) ∩ C1((0, T );L2(0, L)) is a
strong solution to (2.1). Moreover, by [21, Theorem 4.10] this solution is unique. Also, we can deduce
that for all T > 0, for all u0 ∈ L2(0, L), there exists a unique mild solution of (2.1) u ∈ C([0, T ];L2(0, L))
and then, the proof of Proposition 2.1 is finished. □

Now we study the well-posedness of the system (2.1) with an extra source term f .
∂tu+ ∂xu+ ∂3xu− ∂5xu = f, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(2.9)

Formally, this system can be seen as ∂tu = Abu + f . The following result can be obtained using [26,
Theorem 10.1, Theorem 10.2].
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Proposition 2.4. Let u0 ∈ L2(0, L), |α| < 1, f ∈ L1((0,∞), L2(0, L)), then there exists a unique mild
solution u ∈ C([0,∞), L2(0, L)) of (2.9). Moreover, if u0 ∈ D(Ab) and f ∈ W 1,1((0,∞), L2(0, L)) this
solution is strong and u ∈ C([0,∞), L2(0, L)), u(t, ·) ∈ D(Ab), for all t ≥ 0 and u ∈ C1((0,∞), L2(0, L)).

Now, in order to deal with the nonlinear term up∂xu, we show that mild solutions of (2.9) have an
extra regularity. Consider the space BT = C([0, T ], L2(0, L)) ∩ L2((0, T ), H2(0, L)), endowed with the
norm

∥u∥2BT
= ∥u∥2C([0,T ],L2(0,L)) + ∥u∥2L2((0,T ),H2(0,L)).

Proposition 2.5. Let u0 ∈ L2(0, L), |α| < 1, f ∈ L1((0, T ), L2(0, L)) and T > 0, consider
u ∈ C([0, T ], L2(0, L)), the restriction of the solution of (2.9) on [0, T ], then u ∈ BT . Moreover, the
following estimate holds,

∥u∥BT
≤ C(1 +

√
T )
(
∥u0∥L2(0,L) + ∥f∥L1((0,T ),L2(0,L))

)
. (2.10)

For f = 0, the following estimate follows

∥u0∥2L2(0,L) ≤
1

T
∥u∥2L2((0,T ),L2(0,L)) + ∥∂2xu(·, 0)∥2L2(0,T ). (2.11)

Proof. Suppose u is a strong solution of (2.9), let T > 0 and 0 ≤ s ≤ T . Multiplying the first line of
(2.9) by u and integrating on (0, L)× (0, s), we get

∫ s

0

∫ L

0

u∂tudxdt+

∫ s

0

∫ L

0

u∂xudxdt+

∫ s

0

∫ L

0

u∂3xudxdt−
∫ s

0

∫ L

0

u∂5xudxdt =

∫ s

0

∫ L

0

ufdxdt.

After some integration by parts, we observe

1

2

∫ L

0

u(s, x)2dx+
1

2

∫ s

0

(
∂2xu(t, 0)

2 − sat(α∂2xu(t, 0))
2
)
dt =

1

2

∫ L

0

u20dx+

∫ s

0

∫ L

0

fudxdt. (2.12)

Note that for all s ∈ [0, T ]∫ s

0

∫ L

0

fudxdt ≤
∫ T

0

∥u(t, ·)∥L2(0,L)∥f(t, ·)∥L2(0,L)dt ≤ ∥u∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L))

Now, using the above equation, (2.3), (2.12), we get for all s ∈ [0, T ],

1

2

∫ L

0

u(s, x)2dx+ Cα

∫ s

0

∂2xu(t, 0)
2dt ≤ 1

2

∫ L

0

u20dx+ ∥u∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L)), (2.13)

where Cα =
1− |α|2

2
> 0. Now, taking the supremum for s ∈ [0, T ], and with Young’s inequality, we get

∥u∥2C([0,T ],L2(0,L)) +

∫ T

0

∂2xu(t, 0)
2dt ≤ C

(
∥u0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
. (2.14)

Now, we multiply the first equation of (2.9) by xu and integrate on (0, L)× (0, T ) and we get

∫ T

0

∫ L

0

xu∂tudxdt+

∫ T

0

∫ L

0

xu∂xudxdt+

∫ T

0

∫ L

0

xu∂3xudxdt−
∫ T

0

∫ L

0

xu∂5xudxdt =

∫ T

0

∫ L

0

xufdxdt.

(2.15)
Thus, performing integration by parts

1

2

∫ L

0

xu(T, ·)2dx+
3

2

∫ T

0

∫ L

0

∂xu
2dxdt+

5

2

∫ T

0

∫ L

0

∂2xu
2dxdt =

1

2

∫ L

0

xu20dx+
1

2

∫ T

0

∫ L

0

u2dxdt

+
L

2

∫ T

0

sat(α∂2xu(t, 0))
2dt+

∫ T

0

∫ L

0

xufdxdt.

(2.16)
Note that ∫ T

0

∫ L

0

u2dxdt ≤ T∥u∥2C([0,T ],L2(0,L))
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and ∫ T

0

∫ L

0

xufdxdt ≤ L∥u∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L)).

Using these two inequalities, (2.14) we derive

∥∂2xu∥2L2((0,T ),L2(0,L)) ≤ C(1 + T )
(
∥u0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
, (2.17)

where C > 0 does not depend on T . Thus u ∈ L2((0, T ), H2(0, L)). Joining (2.14) and (2.17) we deduce
(2.10). To deduce (2.11), consider f = 0 and multiply (2.1) by (T − t)u and integrate (0, T ) × (0, L),
after some integration by parts we get

T

∫ L

0

u20dx+

∫ T

0

(T − t)
[
satloc(∂

2
xu(t, 0))

2 − ∂2xu(t, 0)
2
]
dt =

∫ T

0

∫ L

0

u2dxdt,

using (2.3) we obtain (2.11). The result can be extended by density to mild solutions. □

Before going to prove the global well-posedness result for the nonlinear system (1.6), we first show
some important estimates related to the nonlinear term:

Proposition 2.6. Let u ∈ BT . Then for 1 ≤ p ≤ 2, up∂xu ∈ L1((0, T ), L2(0, L)) and the map u ∈ BT 7→
up∂xu ∈ L1((0, T ), L2(0, L)) is continuous. Moreover, there exists C > 0 such that, for any u, v ∈ BT

∥up∂xv∥L1((0,T ),L2(0,L)) ≤ C(T (2−p)/4 +
√
T )∥u∥pBT

∥v∥BT
. (2.18)

∥up∂xu− vp∂xv∥L1((0,T ),L2(0,L)) ≤ C(T (2−p)/4 +
√
T )
(
∥u∥BT

∥v∥p−1
BT

+ ∥v∥pBT
+ ∥u∥pBT

)
∥u− v∥BT

.

(2.19)

Proof. Estimate (2.18) trivially follows from [31, Lemma 2.3]. Next, we give a sketch of the proof of the
estimate (2.19).∫ T

0

∥up∂xu− vp∂xv∥L2(0,L) =

∫ T

0

∥up∂x(u− v) + (up − vp)∂xv∥L2(0,L)

≤ C(T (2−p)/4 +
√
T )∥u∥pBT

∥u− v∥BT +

∫ T

0

∥
(
|u|p−1 + |v|p−1) (u− v)∂xv∥L2(0,L)

Using [31, Lemma 2.4], we estimate the last term of the above inequality as:∫ T

0

∥
(
|u|p−1 + |v|p−1

)
(u− v)∂xv∥L2(0,L) ≤ CT (2−p)/4∥u− v∥BT

(
∥u∥BT

∥v∥p−1
BT

+ ∥v∥pBT

)
.

□

We conclude this subsection by proving the global well-posedness result for nonlinear equation (1.6).

Theorem 2.7. Let u0 ∈ L2(0, L) and |α| < 1, then there exists a unique mild solutions u ∈ C([0,∞), L2(0, L))∩
L2(0,∞, H2(0, L)) of (1.6).

Proof. Let u0 ∈ D(Ab) and R, θ > 0 to be chosen later. Consider the ball BBθ
(0, R) := {v ∈ Bθ, ∥v∥Bθ

≤
R}. Then BBθ

(0, R) it is a complete metric space. Let us introduce the map Φ : Bθ 7→ Bθ, defined by
Φ(v) = u, where u solves

∂tu+ ∂xu+ ∂3xu− ∂5xu = −vp∂xv, (t, x) ∈ (0, θ)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0, θ),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0, θ),

u(0, x) = u0(x), x ∈ (0, L).

We observe first that Φ is well-defined, since by Proposition 2.6 vp∂xv ∈ L1((0, θ), L2(0, L)). By Propo-
sition 2.5 and Proposition 2.6 we get

∥Φ(v)∥Bθ
≤C(1 +

√
θ)
(
∥u0∥L2(0,L) + ∥vp∂xv∥L1((0,θ),L2(0,L))

)
≤C1(1 +

√
θ)∥u0∥L2(0,L) + C2(θ

(2−p)/4 +
√
θ)∥v∥p+1

BT
,

for some C1, C2 > 0. Then taking R = 3C1∥u0∥L2(0,L) and θ > 0 small enough such thatC2(θ
2−p
4 +

√
θ)Rp <

1

3
,

(1 +
√
θ) < 2,



STABILIZATION OF KAWAHARA WITH SATURATED FEEDBACK 7

we have that ∥Φ(v)∥Bθ
≤ R and thus Φ maps BBθ

(0, R) into itself. Now take v1, v2 ∈ BBθ
(0, R), and

consider w = u1 − u2 = Φ(v1)− Φ(v2). We observe that w solves
∂tw + ∂xw + ∂3xw − ∂5xw = f, (t, x) ∈ (0, θ)× (0, L),

w(t, 0) = w(t, L) = ∂xw(t, 0) = ∂xw(t, L) = 0, t ∈ (0, θ),

∂2xw(t, L) = h, t ∈ (0, θ),

w(0, x) = 0, x ∈ (0, L),

where f = −vp1∂xv1 + vp2∂xv2 and h = satloc(α∂
2
xu1(t, 0)) − satloc(α∂

2
xu2(t, 0)). Similar integration by

parts as in Proposition 2.5 allows to write

∥w∥Bθ
≤ C

(
∥h∥L2(0,θ) + ∥f∥L1((0,θ),L2(0,L)

)
. (2.20)

Our idea now is to obtain an estimate of ∥h∥L2(0,θ). Proceeding as (2.12) we obtain

1

2

∫ L

0

w(θ, ·)2dx+
1

2

∫ θ

0

(∂2xw(t, 0)
2 − h(t)2)dt =

∫ θ

0

∫ L

0

fwdxdt.

Using (2.3) we get

∥h∥L2(0,θ) =
∥∥satloc(α∂2xu1(·, 0))− satloc(α∂

2
xu2(·, 0))

∥∥
L2(0,θ)

≤ ∥α∂2xu1(·, 0)− α∂2xu2(·, 0)∥L2(0,θ)

≤ |α|∥∂2xw(·, 0)∥L2(0,θ),

which implies
1

2

∫ L

0

w(θ, ·)2dx+ Cα

∫ θ

0

∂2xw(t, 0)
2dt ≤

∫ θ

0

∫ L

0

fwdxdt.

Thus by Young’s inequality ∥w∥C([0,θ],L2(0,L)) ≤ C∥f∥L1((0,θ),L2(0,L), then by the above equation

∥h∥L2(0,θ) ≤ |α|∥∂2xw(·, 0)∥L2(0,θ) ≤ C∥f∥L1((0,θ),L2(0,L).

Using this estimate in (2.20) we obtain

∥Φ(v1)− Φ(v2)∥Bθ
= ∥w∥Bθ

≤ C∥f∥L1((0,θ),L2(0,L) = C∥vp1∂xv1 − vp2∂xv2∥L1((0,θ),L2(0,L).

Finally by Proposition 2.6

∥Φ(v1)− Φ(v2)∥Bθ
≤ C3(θ

(2−p)/4 +
√
θ)
(
∥v1∥Bθ

∥v2∥p−1
Bθ

+ ∥v1∥pBθ
+ ∥v2∥pBθ

)
∥v1 − v2∥Bθ

,

for some C3 > 0. Then, taking θ > 0, small enough such that 3C3(θ
(2−p)/4 +

√
θ)Rp < 1, we get that Φ

is a contraction and by the Banach fixed point theorem and a density argument, we deduce the local in
time well-posedness.
To conclude the global well-posedness result, we need some a priori estimates. Let T > 0 and u be a
strong solution of (1.6). Multiplying (1.6) by u and integrating over (0, L) × (0, s), we get after some
integration by parts

1

2

∫ L

0

u(s, ·)2dx+
1

2

∫ s

0

(
∂2xu(t, 0)

2 − sat(α∂2xu(t, 0))
2
)
dt =

1

2

∫ L

0

u20dx.

Using (1.2) we derive

1

2

∫ L

0

u2(s, ·)dx+ Cα

∫ s

0

∂2xu(t, 0)
2dt ≤ 1

2

∫ L

0

u20dx. (2.21)

Then, taking the supremum for s ∈ [0, T ] in (2.21),

∥u∥2C([0,T ],L2(0,L)) ≤ ∥u0∥2L2(0,L). (2.22)

On the other hand, taking s = T in (2.21),∫ T

0

∂2xu(t, 0)
2dt ≤ 1

2
C−1
α ∥u0∥2L2(0,L). (2.23)

Now, we multiply the first line of (1.6) by xu and integrate on (0, L)× (0, T ),

1

2

∫ L

0

xu2(T, ·)dx+
3

2

∫ T

0

∫ 1

0

∂xu
2dxdt+

5

2

∫ T

0

∫ L

0

∂2xu
2dxdt =

1

2

∫ L

0

xu20(x) +
1

p+ 2

∫ T

0

∫ L

0

up+2dxdt

+
1

2

∫ T

0

∫ L

0

u2dxdt+
L

2

∫ T

0

∂2xu(t, 0)
2dt.
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For the term involving

∫ T

0

∫ L

0

u2dxdt∫ T

0

∫ L

0

u2(t, x)dx ≤ T∥u∥2C([0,T ],L2(0,L)).

For the term involving

∫ T

0

∫ L

0

up+2(t, x)dxdt, observe that

1

p+ 2

∫ T

0

∫ L

0

up+2dxdt ≤ 1

p+ 2

∫ T

0

∥u(t, ·)∥pL∞(0,L) ∥u(t, ·)∥
2
L2(0,L) dt

≤ 2p/2

p+ 2

∫ T

0

∥∂xu(t, ·)∥p/2L2(0,L) ∥u(t, ·)∥
2+p/2
L2(0,L) dt.

Therefore using (2.22) we have

1

p+ 2

∫ T

0

∫ L

0

up+2dxdt ≤ C
2p/2

p+ 2
∥u0∥2+p/2L2(0,L)

∫ T

0

∥∂xu(t, ·)∥p/2L2(0,L) dt

≤ C
2p/2T 1−p/4

p+ 2
∥u0∥2+p/2L2(0,L)

(∫ T

0

∥∂xu(t, ·)∥2L2(0,L) dt

)p/4

≤ CpT∥u0∥
8+2p
4−p

L2(0,L) +
1

2

(∫ T

0

∥∂xu(t, ·)∥2L2(0,L) dt

)
, (2.24)

for some positive constant Cp depending on p and C. Thus, from (2.22), (2.23) and Young’s inequality
we derive ∫ T

0

∫ 1

0

∂xu
2dxdt+

∫ T

0

∫ L

0

∂2xu
2dxdt ≤ Cp

[
(1 + T )∥u0∥2L2(0,L) + T∥u0∥

8+2p
4−p

L2(0,L)

]
. (2.25)

Finally, with (2.22) and (2.25) and arguing by density, the proof of Theorem 2.7 is finished. □

2.2. Well-posedness with internal feedback. In this section, we study the global well-posedness of
(1.4), some of the computations are quite similar to those exposed in Section 2.1 for that we focus in the
main difference.

2.2.1. Well-posedness of linear system. Let us first investigate the well-posedness of the linear Kawahara
system, i.e when we drop the nonlinear internal terms up∂xu and sat(au):

∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(2.26)

Thus we write the above system as: {
u̇(t) = Au(t), t > 0,

u(0) = u0,
(2.27)

where the operator A can be written as

Au = −u′ − u′′′ + u′′′′′

with the domain

D(A) =
{
u ∈ H5(0, L) ∩H2

0 (0, L) : uxx(L) = 0
}
.

Remark 2.8. Observe that contrary to the case of boundary saturation, we firts analyse a system which
is linear so that we use linear semigroup theory for the study of (2.26). In what follows, we add the
nonlinear terms as source terms. In the case of boundary saturation this strategy it is not to clear, and
for that reason we just drop the internal nonlinear term and we used nonlinear semigroup arguments.
That made the well-posedness of (2.26) easier that the boundary case.

It can be checked that the operator A and its adjoint operator

A∗u = u′ + u′′′ − u′′′′′

with the domain

D(A∗) =
{
u ∈ H5(0, L) ∩H2

0 (0, L) : uxx(0) = 0
}
,
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are both are dissipative. Therefore by Lumer-Philips theorem, it follows that A generates a strongly
continuous semigroup of contraction {S(t)}t≥0. Hereinafter, we have the following well-posedness result
for the linear Kawahara system:

Theorem 2.9. Let us take u0 ∈ D(A). Then the equation (2.26) possesses a unique strong solution
u ∈ C([0, T ];D(A)∩C1(0, T ;L2(0, L)). If the initial data u0 ∈ L2(0, L), the unique mild solution of (2.26)
lies in C([0, T ];L2(0, L))∩L2(0, T ;H2(0, L)). Moreover, we have a generic positive constant C > 0 such
that the solution satisfies the following estimates

• ∥u∥C([0,T ];L2(0,L)) + ∥u∥L2(0,T ;H2(0,L)) ≤ C ∥u0∥L2(0,L),

• ∥uxx(·, 0)∥L2(0,T ) ≤ C ∥u0∥L2(0,L) .

Next, we study the well-posedness result for the linear Kawahara equation with a source term:
∂tu+ ∂xu+ ∂3xu− ∂5xu = f, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(2.28)

Thus, we write the above system in the form of an abstract nonhomogeneous evolution equation:{
u̇ = Au+ f, t > 0,

u(0) = u0.
(2.29)

By classical semigroup theory result, it follows that for any f ∈ L1
loc(0,∞;L2(0, L)), the solution of the

system (2.29)

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds

belongs to C([0,∞);L2(0, L)). We also have the following estimates:

Theorem 2.10. Let us take f ∈ L1(0, T ;L2(0, L)). Then, the solution u satisfies the following estimates

∥u∥BT
+
∥∥∂2xu(·, 0)∥∥L2(0,T )

≤ C(1 +
√
T )
(
∥y0∥L2(0,L) + ∥f∥L1((0,T ),L2(0,L))

)
. (2.30)

Now we are in a position to prove the global well-posedness result for the system (1.4).

Theorem 2.11. Let u0 ∈ L2(0, L). Then there exists a unique mild solution u ∈ C([0,∞), L2(0, L)) ∩
L2(0,∞), H2(0, L) of (1.4).Moreover, for any T > 0, there exists C > 0, such that the solution of the
system (1.4) with (1.5), satisfies the following:

∥u∥2L2(0,T ;H2(0,L)) ≤ C

(
∥u0∥2L2(0,L) + T ∥u0∥

8+2p
4−p

L2(0,L)

)
, (2.31)∥∥∂2xu(·, 0)∥∥L2(0,L)

≤ C ∥u0∥L2(0,L) , (2.32)

∥u0∥2L2(0,L) ≤
1

T

∫ T

0

∫ L

0

u2(t, x)dxdt+

∫ T

0

|∂2xu(t, 0)|2dt

+ 2

∫ T

0

∫ L

0

sat(a(x)u(t, x))u(t, x)dxdt. (2.33)

Proof. Let u0 ∈ D(A) and R, θ > 0 to be chosen later. Consider again the ball BBθ
(0, R) := {v ∈

Bθ, ∥v∥Bθ
≤ R}. Let Ψ, the map defined by Ψ : Bθ 7→ Bθ, Ψ(v) = u, where u solves
∂tu+ ∂xu+ ∂3xu− ∂5xu = −vp∂xv − sat(a(x)v(t, x)), (t, x) ∈ (0, θ)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, ∂2xu(t, L) = 0, t ∈ (0, θ),

u(0, x) = u0(x), x ∈ (0, L).

Observe that Φ is well-defined, since by Proposition 2.6 vp∂xv ∈ L1((0, θ), L2(0, L)) and by [19, Proposi-
tion 3.4]

∥sat(av)∥L1((0,θ);L2(0,L) ≤ 3
√
La1

√
θ∥v∥Bθ

.

By Theorem 2.10, Proposition 2.6 and the above inequality we get

∥Φ(v)∥Bθ
≤C(1 +

√
θ)
(
∥u0∥L2(0,L) + ∥vp∂xv∥L1((0,θ),L2(0,L)) + ∥sat(a(x)v(t, x))∥L1((0,θ),L2(0,L))

)
≤C1(1 +

√
θ)∥u0∥L2(0,L) + C2(θ

(2−p)/4 +
√
θ)∥v∥p+1

BT
+ C2

√
θ∥v∥BT

,
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for some C1, C2 > 0. Then taking R = 3C1∥u0∥L2(0,L) and θ > 0 small enough such thatC2(θ
2−p
4 Rp +

√
θRp +

√
θ) <

1

3
,

(1 +
√
θ) < 2,

we have that ∥Ψ(v)∥Bθ
≤ R and thus Φ maps BBθ

(0, R) into itself. Now take v1, v2 ∈ BBθ
(0, R), and

consider w = u1 − u2 = Ψ(v1)−Ψ(v2). We observe that w solves
∂tw + ∂xw + ∂3xw − ∂5xw = f + h, (t, x) ∈ (0, θ)× (0, L),

w(t, 0) = w(t, L) = ∂xw(t, 0) = ∂xw(t, L) = 0, ∂2xu(t, L) = 0, t ∈ (0, θ),

w(0, x) = 0, x ∈ (0, L),

where f = −vp1∂xv1+v
p
2∂xv2 and h = −sat(a(x)v1(t, x))+sat(a(x)v2(t, x)). Similar integration by parts

as in Theorem 2.10 a allows to write

∥w∥Bθ
≤ C

(
∥h∥L1((0,θ),L2(0,L) + ∥f∥L1((0,θ);L2(0,L)

)
. (2.34)

Further we have (see [19, Proposition 3.4])

∥h∥L1((0,θ);L2(0,L) = ∥ − sat(av1) + sat(av2)∥L1((0,θ);L2(0,L) ≤ 3
√
La1

√
θ∥v1 − v2∥Bθ

.

Using this estimate along with (2.19) in (2.34) we obtain

∥Ψ(v1)−Ψ(v2)∥Bθ =∥w∥Bθ ≤ C
(
∥f∥L1((0,θ),L2(0,L) + 3

√
La1

√
θ∥v1 − v2∥Bθ

)
≤C

(
(θ(2−p)/4 +

√
θ)

(
∥v1∥Bθ∥v2∥

p−1
Bθ

+ ∥v1∥pBθ
+ ∥v2∥pBθ

)
+ 3

√
La1

√
θ
)
∥u− v∥Bθ .

Then, taking θ > 0, small enough such that C
(
(θ(2−p)/4 +

√
θ)Rp + 3

√
La1

√
θ
)
< 1, we get that Ψ is a

contraction and by the Banach fixed point theorem and a density argument, we deduce the local in time
well-posedness. To conclude the global well-posedness result, we need some a priori estimates. Let T > 0
and u be a strong solution of (1.4). Multiplying the equation (1.4) by u and integrating on [0, L] we have
after integration by parts and boundary data

1

2

d

dt

∫ L

0

u2dx+
1

2
∂2xu(t, 0)

2 +

∫ L

0

sat(a(x)u(t, x))u(t, x)dx = 0. (2.35)

Integrating over [0, T ] and using the fact that sat is an odd function, one can prove the estimate (2.32).
Similarly to (2.22), integrating (2.35) over [0, s] we can show that

∥u∥2C([0,T ],L2(0,L)) ≤ ∥u0∥2L2(0,L). (2.36)

Multiplying first equation of (1.4) by xu and taking integration on both sides over [0, T ]×(0, L), applying
successive integration by parts and using boundary conditions, we obtain

1

2

∫ L

0

xu2(T, ·)dx+
3

2

∫ T

0

∫ L

0

u2xdx+
5

2

∫ T

0

∫ L

0

u2xxdxdt+

∫ T

0

∫ L

0

xusat(au)dxdt =
1

2

∫ L

0

xu20(·)dx

+
1

2

∫ T

0

∫ L

0

u2dxdt

+
1

p+ 2

∫ T

0

∫ L

0

up+2dxdt.

Noting the fact sat is an odd function, using (2.36) and following the computations of (2.24) we finally
have (2.31).
Next multiplying first equation of (1.4) by (T − t)u and taking integration over [0, L] on both sides, we
write∫ L

0

(T − t)u∂tudx+

∫ L

0

(T − t)u∂xudx+

∫ L

0

(T − t)u∂3xudx

−
∫ L

0

(T − t)u∂5xudx+

∫ L

0

(T − t)u∂xudx+

∫ L

0

(T − t)sat(a(x)u(t, x))u(t, x)dx = 0. (2.37)

Integrating over [0, T ] we have

1

2

∫ T

0

∫ L

0

u2dxdt− T

2

∫ L

0

u20dx+
1

2

∫ T

0

(T − t)∂2xu(t, 0)
2dt+

∫ T

0

∫ L

0

(T − t)sat(a(x)u(t, x))u(t, x)dxdt = 0.



STABILIZATION OF KAWAHARA WITH SATURATED FEEDBACK 11

Thus we get the estimate (2.33). □

3. Exponential stabilization

In this part we prove our main results with respect to the exponential stability of systems (1.4) and
(1.6). Both proofs are based on showing an appropriated observability inequality, using a contradiction
argument and compactness ideas. The main difference in the proof of internal and boundary saturation
is that for the boundary case we first prove such a observability inequality by analyzing system (2.1)
and then we pass to the fully nonlinear system (1.6) by a perturbation approach, due to this argument
our exponential stability result for (1.6) it is of local nature. From the other side, in the proof of the
observability inequality for (1.4) we work directly with the nonlinear system which allow us to obtain a
semiglobal exponential stability result. In what follows, we consider here the classical L2-energy,

E(t) =
1

2

∫ L

0

u(t, x)2dx. (3.1)

3.1. Boundary saturation. In this part we are going to prove our main result in the case of boundary
saturation related to the exponential stability of system (1.6). In the case of boundary saturation, the
following unique continuation property is crucial in the proof

Lemma 3.1. ([3, Lemma 4.3]) Let L > 0, if λ, ψ ∈ C×H5(0, L) satisfies
λψ(x) + ψ′(x) + ψ′′′(x)− ψ′′′′′(x) = 0, x ∈ (0, L)

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0,

ψ′′(0) = ψ′′(L) = 0,

(3.2)

then ψ ≡ 0.

For a strong solution of (1.6) (or (2.1)) performing integration by parts, we get using |α| < 1

Ė(t) =
1

2

(
sat(α∂2xu(t, 0))

2 − ∂2xu(t, 0)
2
)
≤ −Cα∂2xu(t, 0)2 ≤ 0. (3.3)

Thus, the energy is a non-increasing function of time. In fact, we will prove that the energy decays
exponentially to 0. Our approach will be based on an observability inequality for the system (2.1).

Proposition 3.2. Let L > 0, |α| < 1 and u0 ∈ L2(0, L). For any solution u of (2.1), the following
inequality holds: ∫ L

0

u20dx ≤ Cobs

∫ T

0

∂2xu(t, 0)
2dt, (3.4)

for some Cobs > 0, that does not depend on u0.

Proof. In order to prove the observability inequality, we follow [30] and use a contradiction argument.
Let us suppose that (3.4) is false, then there exists (un0 )n∈N ⊂ L2(0, L) such that∫ L

0

(un0 )
2dx = 1, and

∫ T

0

∂2,nx u(t, 0)2dt −→ 0

when n→ ∞ and where un is the associate solution of (2.1) with initial data un0 . Now, using (2.10) with
f = 0 we get that (un)n∈N is bounded in L2((0, T ), H2(0, L)). Then as ∂tu

n = −∂xun − ∂3xu
n + ∂5xu

n,
we can see that (∂tu

n)n∈N is bounded in L2((0, T ), H−3(0, L)), thus by Aubin-Lions lemma (un)n∈N is
relatively compact in L2((0, T ), L2(0, L)), therefore we can assume that un −→ u in L2((0, T ), L2(0, L)).
Now, using (2.11) we derive that (un0 )n∈N is a Cauchy sequence in L2(0, L) . Let u0 = limn→∞ un0 , then∫ L

0

u20dx = 1, and

∫ T

0

∂2xu(t, 0)
2dt = 0

Thus, as satloc(0) = 0, we conclude that y solves the following linear equation:
∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂2xu(t, 0) = ∂2xu(t, L) = 0, t ∈ (0,∞).

(3.5)

But by Lemma 3.1 we can show that there is no function satisfying this system and ∥u0∥L2(0,L) = 1,
which gives us the contradiction and finishes the proof of Proposition 3.2. □
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Now, we prove our main result related with the exponential stability in the boundary saturated case.

Theorem 3.3. Let L > 0, |α| < 1 and u0 ∈ L2(0, L). For any solution u of (2.1), the energy of the
system decays exponentially to zero i.e, there exists C, γ > 0 such that E(t) ≤ CE(0)e−γt, for all t ≥ 0.
Moreover, if ∥u0∥L2(0,L) ≤ ε for ε > 0 small enough, the same property holds for (1.6).

Proof. Let u0 ∈ D(Ab), using (3.3) and (2.3) we get for a strong solution of (2.1)

Ė(t) ≤ −Cα∂2xu(t, 0)2,
thus we can see

E(T )− E(0) ≤ −Cα
∫ T

0

∂2xu(t, 0)
2dt.

Using the last expression, (3.3) and (3.4) we get

E(T ) ≤ E(0) ≤ Cobs

∫ T

0

∂2xu(t, 0)
2dt ≤ Cobs

Cα
(E(0)− E(T )),

which implies that

E(T ) ≤ γE(0), with γ =
Cobs

Cα + Cobs
< 1. (3.6)

As (2.1) is invariant by translation in time and repeating this argument on [(m−1)T,mT ] form = 1, 2, · · ·
to obtain,

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0).

Hence, we have E(mT ) ≤ e−µmTE(0) where µ =
1

T
ln
(

1
γ

)
> 0. Let t > 0 then there exists m ∈ N∗ such

that (m− 1)T < t ≤ mT , and then using again the non-increasing property of the energy we get

E(t) ≤ E((m− 1)T ) ≤ e−µ(m−1)TE(0) ≤ 1

γ
e−µtE(0).

Finally, we conclude the exponential stability of (2.1) by a density argument.

We study now the nonlinear case, note that as (1.6) is also invariant by translation in time, thus to prove
the stability, the objective is to show that (3.6) holds for u solution of (1.6) if the initial data it is small
enough. This idea was used in several works, for instance [22, 24]. Let ∥u0∥L2(0,L) ≤ ϵ for ϵ > 0 to fix
later. Take u the solution of (1.6), then we can split u as u = u+ ũ, where

∂tu+ ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

and 
∂tũ+ ∂xũ+ ∂3xũ− ∂5xũ = up∂xu, (t, x) ∈ (0,∞)× (0, L),

ũ(t, 0) = ũ(t, L) = ∂xũ(t, 0) = ∂xũ(t, L) = 0, t ∈ (0,∞),

∂2xũ(t, L) = h(t), t ∈ (0,∞),

ũ(0, x) = 0, x ∈ (0, L).

where h(t) = sat(α∂2xu(t, 0))− sat(α∂2xu(t, 0)). Now, we observe that

∥u(T, ·)∥L2(0,L) ≤ ∥u(T, ·)∥L2(0,L) + ∥ũ(T, ·)∥L2(0,L). (3.7)

From the other side as u satisfies (2.1), we get using (3.6) and u(0, x) = u0(x) that there exists γ < 1
such that

∥u(T )∥L2(0,L) ≤ γ∥u0∥L2(0,L). (3.8)

For ũ, by (2.10) and Proposition 2.6,

∥ũ(T, ·)∥L2(0,L) ≤ ∥ũ∥C([0,T ],L2(0,L)) ≤ C∥up∂xu∥L1((0,T ),L2(0,L)) ≤ C∥u∥p+1
BT

,

using (2.22)-(2.25), we derive

∥u∥p+1
BT

≤ C

(
∥u0∥p+1

L2(0,L) + ∥u0∥
(4+p)(p+1)

4−p

L2(0,L)

)
.
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Thus, we get for ũ

∥ũ(T, ·)∥L2(0,L) ≤
(
C∥u0∥pL2(0,L) + C∥u0∥

p(6+p)
4−p

L2(0,L)

)
∥u0∥L2(0,L).

Finally, as ∥u0∥L2(0,L) ≤ ϵ we deduce from (3.7)

∥u(T, ·)∥L2(0,L) ≤ ∥u(T, ·)∥L2(0,L) + ∥ũ(T, ·)∥L2(0,L)

≤ γ∥u0∥L2(0,L) + (Cϵp + Cϵ
p(6+p)
4−p )∥u0∥L2(0,L)

= (γ + Cϵp + Cϵ
p(6+p)
4−p )∥u0∥L2(0,L).

We conclude by choosing ϵ > 0 small enough such that γ̃ = γ + Cϵp + Cϵ
p(6+p)
4−p < 1. □

3.2. Internal saturation. We pass now to study the case of internal saturation. We are interested to
prove the following exponential stabilization result:

Theorem 3.4 (Semi global stabilization). Let us consider the system (1.4). Then for any r > 0 there
exists a constant µ(r) > 0 such that for any u0 ∈ L2(0, L) satisfying ∥u0∥L2(0,L) ≤ r, the solution of (1.4)
satisfy the following:

E(t) ≤ e−µtE(0),∀t ≥ 0,

where E(·) is defined in (3.1).

Before going to prove Theorem 3.4, first we state some useful results borrowed from the article [20].

Lemma 3.5 ([20]). Let r > 0 and a : [0, L] 7→ R be a function which satisfies (1.5). Let us define

k(r) = min

{
M

a1r
, 1

}
,

where M and a1 are defined in (1.2) and (1.5) respectively. The following two hold:

• For s ∈ L2(0, L) with ∥s∥L2(0,L) ≤ r, we have

(sat2(a(x)s(x))− k(r)a(x)s(x)) s(x) ≥ 0,∀x ∈ [0, L]. (3.9)

• For s ∈ L∞(0, L) with |s(x)| ≤ r, we have

(satloc(a(x)s(x))− k(r)a(x)s(x)) s(x) ≥ 0,∀x ∈ [0, L]. (3.10)

3.2.1. Proof of Theorem 3.4 with ω = [0, L] and sat = sat2. In this case, the proof is direct. In-

deed, thanks to the estimate (2.35), we have

1

2

d

dt

∫ L

0

u2dx ≤ −
∫ L

0

sat(a(x)u(t, x))u(t, x)dx. (3.11)

Using (2.36), we have ∥u(t, ·)∥L2(0,L) ≤ r, where r > 0 be any number such that ∥u0∥L2 ≤ r. Applying

first estimate (3.9) of Lemma 3.5 we deduce

1

2

d

dt

∫ L

0

u2dx ≤ −
∫ L

0

k(r)a0u
2(t, x)dx. (3.12)

Thus the proof is complete with µ = min{a0, k(r)}.

3.2.2. Proof of Theorem 3.4 with ω ⊂ [0, L] and sat = sat2. In this case, we will use a contradiction

argument as [31]. First, let us state a unique continuation lemma for the Kawahara equation, which plays
an integral part in the proof of stabilization result:

Lemma 3.6 (Unique continuation principle, [13]). Let u0 ∈ L2(0, L) and u ∈ BT be the solution of the
equation

∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(3.13)

such that u(t, x) = 0,∀x ∈ ω,∀ t ∈ (0, T ), with ω ⊂ (0, L). Then u(t, x) = 0,∀x ∈ (0, L),∀ t ∈ (0, T ).
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For the sake of completeness, we give a sketch of the proof of Lemma 3.6 in the Appendix B.
Let us consider ∥u0∥L2(0,L) ≤ r. Using (2.36), we deduce

∥u(t, ·)∥L2(0,L) ≤ r, ∀t ≥ 0. (3.14)

Integrating (2.35) over [0, T ] we have∫ L

0

u2(T, ·)dx =

∫ L

0

u20dx−
∫ T

0

∂2xu(t, 0)
2dt− 2

∫ T

0

∫ L

0

sat(a(x)u(t, x))u(t, x)dxdt (3.15)

As (3.14) holds, we apply the first part of Lemma 3.5, and deduce∫ L

0

u2(T, ·)dx ≤
∫ L

0

u20dx−
∫ T

0

∂2xu(t, 0)
2dt− 2

∫ T

0

∫ L

0

k(r)a(x)|u(t, x)|2dxdt. (3.16)

Next, for the time being we assume the following result:

Lemma 3.7. Let us take T > 0 and let r be any positive number. Then for any u0 ∈ L2(0, L), with
∥u0∥L2(0,L) ≤ r, the solution of the equation (1.4) satisfies the following

∥u0∥2L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|u(t, x)|2dxdt

)
. (3.17)

Therefore combining (3.16) and (3.17), we finally have the existence of γ ∈ (0, 1) such that

∥u(kT, ·)∥2L2(0,L) ≤ γk ∥u0∥2L2(0,L) ,∀ k ≥ 0. (3.18)

Using (2.36), we have ∥u(t, ·)∥2L2(0,L) ≤ ∥u(kT, ·)∥2L2(0,L) , where kT ≤ t ≤ (k + 1)T. Finally, we obtain

that

∥u(t, ·)∥L2(0,L) ≤
1

γ
e−µt ∥u0∥L2(0,L) ,∀ t ≥ 0, (3.19)

where µ = − log γ
T .

3.2.3. Proof of Lemma 3.7. Thanks to (2.33), we can say that to prove Lemma 3.7, it is enough to
show that the following

∥u∥2L2(0,T ;L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|u(t, x)|2dxdt

)
, (3.20)

for some C > 0, provided ∥u0∥L2(0,L) ≤ r. We prove this inequality by contradiction approach. Suppose

that (3.20) is not true. Hence there exists a sequence of functions un0 ∈ L2(0, L) with ∥un0∥L2(0,L) ≤ r

and {un}n∈N ∈ BT be the corresponding solution of the equation
∂tu

n + ∂xu
n + ∂3xu

n − ∂5xu
n + unp∂xu

n + sat(a(x)un(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

un(t, 0) = un(t, L) = ∂xu
n(t, 0) = ∂xu

n(t, L) = ∂2xu
n(t, L) = 0, t ∈ (0,∞),

un(0, x) = un0 (x), x ∈ (0, L),

(3.21)

where p ∈ [1, 2), and

lim
n→∞

∥un∥2L2(0,T ;L2(0,L))(∫ T

0

|∂2xun(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a|un(t, x)|2dxdt

) = +∞. (3.22)

Also (2.36) gives that
∥un(t, ·)∥L2(0,L) ≤ r, ∀ t ≥ 0. (3.23)

Let us denote λn = ∥un∥L2(0,T ;L2(0,L)) and vn(t, x) =
un(t, x)

λn
. {λn}n∈N is a bounded sequence by (3.23).

Therefore it has a subsequence, denoted by {λn}n∈N such that there exists λ ≥ 0 with

λn → λ as n→ ∞. (3.24)

Note that vn satisfies the following equation:
∂tv

n + ∂xv
n + ∂3xv

n − ∂5xv
n + λnv

np∂xv
n +

sat(a(x)λnv
n(t, x))

λn
= 0, (t, x) ∈ (0,∞)× (0, L),

vn(t, 0) = vn(t, L) = ∂xv
n(t, 0) = ∂xv

n(t, L) = ∂2xv
n(t, L) = 0, t ∈ (0,∞),

∥vn∥L2(0,T ;L2(0,L) = 1.

(3.25)
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and also by (3.22) we further have(∫ T

0

|∂2xvn(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a|vn(t, x)|2dxdt

)
→ 0 as n→ ∞. (3.26)

In addition, using (2.33), we have that {∥vn(0, ·)∥L2(0,L)}n∈N is a bounded sequence and due to the

following ∥vn∥2L2(0,T ;H2(0,L)) ≤ C

(
∥vn(0, ·)∥2L2(0,L) + T ∥vn(0, ·)∥

8+2p
4−p

L2(0,L)

)
∥vn(t, ·)∥L2(0,L) ≤ ∥vn(0, ·)∥

L2(0,L)
,

(3.27)

the sequence {vn}n∈N is bounded in the space L2(0, T ;H2(0, L)) and L∞([0, T ];L2(0, L)). Therefore there
exists a subsequence still denoted by {vn}n∈N and a function v ∈ L∞(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L))
such that {

vn
∗
⇀ v in L∞(0, T ;L2(0, L))

vn ⇀ v in L2(0, T ;H2(0, L))
(3.28)

To derive the equation satisfied by v, we need to pass the limit in (3.25) and thus, in the following steps,
we need to take care of the convergence of the terms related to the nonlinearity.
First of all, we have

∥vnp∂xvn∥L1((0,T ),L2(0,L)) ≤ C(T (2−p)/4 +
√
T )∥vn∥pBT

∥vn∥BT
≤ C. (3.29)

In the next step, we prove that {(vn)p+1}n∈N is bounded in L2(0, T ;L2(0, L)).∫ T

0

∫ L

0

(vn)2p+2dxdt ≤ ∥vn∥2L2(0,T ;H1(0,L)) ∥v
n∥3+ϵL∞(0,T ;L2(0,L) ≤ C, (3.30)

where p = 1+ ϵ, 0 < ϵ < 1. This shows that {vnp∂xvn}n∈N is bounded in the space L2(0, T ;H−1(0, L)) ⊂
L2(0, T ;H−3(0, L)). Also, we know that {∂5xvn}n∈N is bounded in L2(0, T ;H−3(0, L)). Furthermore, it is
easy to check the following estimate (see [20, Lemma 3.2] for more details)∥∥∥∥sat(a(x)λnvn(t, x))λn

∥∥∥∥
L2(0,T ;L2(0,L))

≤ C ∥vn∥L2(0,T ;H1(0,L)) . (3.31)

Thus combining we have that ∂tv
n = −

(
∂xv

n + ∂3xv
n − ∂5xv

n + λnv
np∂xv

n + sat(a(x)λnv
n(t,x))

λn

)
is bounded

in L2(0, T ;H−3(0, L)). Thanks to the Lions-Aubin lemma with the embedding H2(0, L) ⊂ L2(0, L) ⊂
H−3(0, L), {vn}n∈N is relatively compact in L2(0, T ;L2(0, L)). It follows that there exists a subse-
quence, again denoted by {vn}n∈N such that vn → v in L2(0, T ;L2(0, L)). Further, it implies (vn)p+1 →
vp+1 a.e. (t, x) ∈ (0, T ) × (0, L). Since {(vn)p+1}n∈N is bounded in L2(0, T ;L2(0, L)), therefore there
exists some h ∈ L2(0, T ;L2(0, L)) such that (vn)p+1 ⇀ h in L2(0, T ;L2(0, L)). Uniqueness of limit gives
h = vp+1 a.e. and we have (vn)p+1 → vp+1 in D′((0, T ) × (0, L)). Taking the derivative with respect
to space, we further have λnv

np∂xv
n → λvp∂xv in D′((0, T ) × (0, L)). As {vn}n∈N and {∂tvn}n∈N are

bounded in the spaces L∞(0, T ;L2(0, L)) and L2(0, T ;H−3(0, L)) respectively. Using the embedding
L2(0, L) ⊂ H−1(0, L) ⊂ H−3(0, L) (see [32, Corollary 4]), we get by for a subsequence denoted by
{vn}n∈N that vn → v in C([0, T ];H−1(0, L)).

Thus in a nutshell, interpolation theory gives us the following

vn
∗
⇀ v in L∞(0, T ;L2(0, L))

vn ⇀ v in L2(0, T ;H2(0, L))

vn → v in L2(0, T ;L2(0, L))

vn → v in C([0, T ];H−1(0, L))

λnv
np∂xv

n → λvp∂xv in D′((0, T )× (0, L)).

(3.32)

Moreover, from (3.26) we deduce:(∫ T

0

|∂2xv(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|v(t, x)|2dxdt

)

≤ lim inf
n→∞

(∫ T

0

|∂2xvn(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(r)a(x)|vn(t, x)|2dxdt

)
= 0.
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Therefore a(x)k(x)v = 0, x ∈ (0, L) and ∂2xv(·, 0) = 0, t ∈ (0, T ). This further implies v = 0, x ∈ ω, t ∈
(0, T ). We also obtain the limit v solves the following equation in the sense of distribution

∂tv + ∂xv + ∂3xv − ∂5xv + λvp∂xv = 0, (t, x) ∈ (0,∞)× (0, L),

v(t, 0) = v(t, L) = ∂xv(t, 0) = ∂xv(t, L) = ∂2xv(t, L) = 0, t ∈ (0,∞),

∥v∥L2(0,T ;L2(0,L)) = 1.

(3.33)

by unique continuation principle Lemma 3.6, we have v = 0, x ∈ (0, L), t ∈ (0, T ). This contradicts the
fact ∥v∥L2(0,T ;L2(0,L)) = 1. Therefore Lemma 3.7 holds.

3.2.4. Proof of Theorem 3.4 with ω ⊂ [0, L] and sat = satloc. We will prove the exponential stabi-
lization result Theorem 3.4 with sat = satloc as the same strategy of above. It is clear that the stabiliz-
ability follows if we can prove the following lemma:

Lemma 3.8. Let us take T > 0 and let r be any positive number. Then for any u0 ∈ L2(0, L), with
∥u0∥L2(0,L) ≤ r, the solution of the equation (1.4) satisfies the following

∥u0∥2L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

satloc(au(t, x))u(t, x)dxdt

)
. (3.34)

Proof. Using (2.33), we can say that to prove Lemma 3.7, it is enough to show that the following

∥u∥2L2(0,T ;L2(0,L) ≤ C2

(∫ T

0

|∂2xu(t, 0)|2dt+ 2

∫ T

0

∫ L

0

satloc(au(t, x))u(t, x)dxdt

)
, (3.35)

for some C > 0, provided ∥u0∥L2(0,L) ≤ r. Using contradiction we will prove the estimate (3.35). If

possible, let us assume that there exists a sequence of functions un0 ∈ L2(0, L) with ∥un0∥L2(0,L) ≤ r and

{un}n∈N ∈ BT be the corresponding solution of the equation
∂tu

n + ∂xu
n + ∂3xu

n − ∂5xu
n + unp∂xu

n + satloc(a(x)u
n(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

un(t, 0) = un(t, L) = ∂xu
n(t, 0) = ∂xu

n(t, L) = ∂2xu
n(t, L) = 0, t ∈ (0,∞),

un(0, x) = un0 (x), x ∈ (0, L),

(3.36)

where p ∈ [1, 2), and

lim
n→∞

∥un∥2L2(0,T ;L2(0,L))(∫ T

0

|∂2xun(t, 0)|2dt+ 2

∫ T

0

∫ L

0

satloc(au(t, x))u(t, x)dxdt

) = +∞. (3.37)

Thanks to (2.36), we obtain

∥un(t, ·)∥L2(0,L) ≤ r, ∀ t ≥ 0. (3.38)

Also, using (2.33), we have that {vn(0, ·)}n∈N is a bounded sequence in L2(0, L) and we further deduce

∥vn∥2L2(0,T ;H2(0,L)) ≤ C

(
∥vn(0, ·)∥2L2(0,L) + T ∥vn(0, ·)∥

8+2p
4−p

L2(0,L)

)
≤ Cr2 + CTr

8+2p
4−p . (3.39)

Using Poincare inequality, we have

∥un(t, ·)∥L∞(0,L) ≤ C ∥un∥H2(0,L) ∀ t ∈ [0, T ].

This further gives

∥un(·, x)∥2L2(0,T ) ≤ C1, (3.40)

where C1 = C2(Cr2 + CTr
8+2p
4−p ). Let us consider the subsets Ωi ⊂ [0, T ] defined as

Ωi = {t ∈ [0, T ] : ∥un(t, ·)∥L∞(0,L) > i}. (3.41)

Its complement is then given by

Ωci = {t ∈ [0, T ] : ∥un(t, ·)∥L∞(0,L) ≤ i}. (3.42)

Therefore we have

∥un∥2L2(0,T ;L∞(0,L)) ≥ ∥un∥2L2(Ωi;L∞(0,L)) ≥ i2µ(Ωi), (3.43)
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where µ(Ωi) is the Lebesgue measure of the set Ωi. Next, using (3.40) we have µ(Ωi) ≤ C1

i2 . This implies
that

max

{
T − C1

i2
, 0

}
≤ µ(Ωci ) ≤ T. (3.44)

Thanks to the estimate (3.10) of Lemma 3.5, we have∫ T

0

∫ L

0

satloc(au
n)undtdx =

∫
Ωi

∫ L

0

satloc(au
n)undtdx+

∫
Ωc

i

∫ L

0

satloc(au
n)undtdx

≥
∫
Ωc

i

∫ L

0

satloc(au
n)undtdx ≥

∫
Ωc

i

∫ L

0

ak(i)(un)2dtdx. (3.45)

Let us denote λn = ∥un∥L2(0,T ;L2(0,L)) and vn(t, x) =
un(t, x)

λn
. {λn}n∈N is a bounded sequence by (3.23).

Therefore it has a subsequence, denoted by {λn}n∈N such that there exists λ ≥ 0 with

λn → λ as n→ ∞. (3.46)

Note that vn satisfies the following equation:
∂tv

n + ∂xv
n + ∂3xv

n − ∂5xv
n + λnv

np∂xv
n +

satloc(a(x)λnv
n(t, x))

λn
= 0, (t, x) ∈ (0,∞)× (0, L),

vn(t, 0) = vn(t, L) = ∂xv
n(t, 0) = ∂xv

n(t, L) = ∂2xv
n(t, L) = 0, t ∈ (0,∞),

∥vn∥L2(0,T ;L2(0,L) = 1,

(3.47)
and also by (3.37) and (3.45) and we further have(∫ T

0

|∂2xvn(t, 0)|2dt+ 2

∫ T

0

∫ L

0

k(i)a(x)|vn(t, x)|2dxdt

)
→ 0 as n→ ∞. (3.48)

Moreover, it is easy to check the following estimate (see [20, Lemma 3.2])∥∥∥∥satloc(a(x)λnvn(t, x))λn

∥∥∥∥
L2(0,T ;L2(0,L))

≤ C ∥vn∥L2(0,T ;H1(0,L)) . (3.49)

Like previous section, we have that ∂tv
n = −

(
∂xv

n + ∂3xv
n − ∂5xv

n + λnv
np∂xv

n + sat(a(x)λnv
n(t,x))

λn

)
is

bounded in L2(0, T ;H−3(0, L)). Thanks to the Lions-Aubin lemma with the embedding H2(0, L) ⊂
L2(0, L) ⊂ H−3(0, L), {vn}n∈N is relatively compact in L2(0, T ;L2(0, L)). It follows that there exists a
subsequence, again denoted by {vn}n∈N such that vn → v in L2(0, T ;L2(0, L)). Moreover with (3.48) we
have ak(i)v(t, x) = 0,∀x ∈ (0, L),∀ t ∈ Ωci and ∂2xv(t, 0) = 0,∀ t ∈ (0, T ). As k(i) is strictly positive, we
further have v(t, x) = 0,∀x ∈ ω,∀ t ∈ ∪i∈N Ωci and ∂

2
xv(t, 0) = 0,∀t ∈ (0, T ). As µ(∪i∈N Ωci ) = T, we have

v(t, x) = 0,∀x ∈ ω,∀ t ∈ ∪i∈N Ωci and ∂2xv(t, 0) = 0,∀ t ∈ (0, T ). This implies that v(t, x) = 0,∀x ∈ ω
with almost every t ∈ (0, T ). We also obtain that the limit v solves the following equation in the sense of
distribution

∂tv + ∂xv + ∂3xv − ∂5xv + λvp∂xv = 0, (t, x) ∈ (0,∞)× (0, L),

v(t, 0) = v(t, L) = ∂xv(t, 0) = ∂xv(t, L) = ∂2xv(t, L) = 0, t ∈ (0,∞),

∥v∥L2(0,T ;L2(0,L)) = 1.

(3.50)

Using the unique continuation principle Lemma 3.6 for Kawahara equation we have v(t, x) = 0,∀x ∈
(0, L). Which is a contradiction. Hence the proof follows. □

4. Conclusion and final comments

In this work the exponential stabilization of the nonlinear Kawahara equation was addressed. The
control was considered acting internally or in the boundary. In both cases, a global well-posedness result
was obtained. In the case of boundary saturation a local exponential stability result was derived while
for internal saturated actuator a semiglobal exponential stability result was shown. The main strategies
in the proof of those results were observability inequalities, contradiction arguments and compactness
ideas. We finish this work with several comments and remarks, in order:
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4.1. Sign of the first-order derivative. One can wonder if our results are still valid if we modify
slightly our systems. This, extension is in fact not true in all the cases. To fix ideas, consider the
following equation

∂tu− ∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, ∂2xu(t, L) = satloc(α∂
2
xu(t, 0)), t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L).

(4.1)
Observe that (4.1) it is almost the same equation than (1.6), the unique difference is the sign of the first
order derivative. If we reply the arguments Theorem 3.3 to show exponential stability, we are ask to
analyze the solutions of

∂tu− ∂xu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂2xu(t, 0) = ∂2xu(t, L) = 0, t ∈ (0,∞).

(4.2)

For this system, it was shown in [1], the existence of a critical set N , such that if L ∈ N , there exists a
steady-state solution of (4.2). Therefore, the argument does not follow. In the case of the KdV equation
similar phenomena appears, but for the KdV equation studied in [30] the set of critical lengths is totally
know, that allows in [22] to show the exponential stability with saturated boundary control if the length
is not critical. By contrast, for (4.2) it is not known if the set N represents all the critical lengths or just
some of them. With this in mind, the exponential stability with boundary saturation holds as long the
following unique continuation property is true for give L > 0

Assumption 4.1. If λ, ψ ∈ C×H5(0, L) satisfies
λψ(x)− ψ′(x) + ψ′′′(x)− ψ′′′′′(x) = 0, x ∈ (0, L)

ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0,

ψ′′(0) = ψ′′(L) = 0,

then ψ ≡ 0.

Now we consider the same equation, but we drop the first order term; i.e.
∂tu+ ∂3xu− ∂5xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0,∞),

∂xu(t, 0) = ∂2xu(t, 0) = ∂2xu(t, L) = 0, t ∈ (0,∞).

(4.3)

In [36, 37], it was shown that the set of critical lengths related to this equation it is empty. Therefore,
we expect that our stability result by saturated boundary feedback is still valid in this context.
In the case of internal saturation the situation is better. Consider the following system

∂tu+ η∂xu+ ∂3xu− ∂5xu+ up∂xu+ sat(a(x)u(t, x)) = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, ∂2xu(t, L) = 0, t ∈ (0,∞),

u(0, x) = u0(x), x ∈ (0, L),

(4.4)

where η = 0,−1 and a ∈ L∞(0, L) satisfies (1.5). Straightforward modifications of Theorem 2.11 allow
us to show that there exists a unique mild solution u ∈ C([0,∞), L2(0, L)) ∩ L2(0,∞), H2(0, L) of (4.4).
With respect to the stabilization, following the proof of Theorem 3.4 we are asking to prove similar unique
continuation principle as Lemma 3.6, for a solution of

∂tu+ η∂xu+ ∂3xu− ∂5xu+ up∂xu = 0, (t, x) ∈ (0,∞)× (0, L),

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, ∂2xu(t, L) = 0, t ∈ (0,∞),

u(t, x) = 0, (t, x) ∈ (0,∞)× ω,

u(0, x) = u0(x), x ∈ (0, L).

In particular, we can write

∂tu+ ∂xu+ ∂3xu− ∂5xu+ up∂xu = (1− η)∂xu.
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Then, we can apply the Carleman estimate (B.1) and absorb the remaining right hand-side terms by the
left hand side terms. From where we can conclude the semiglobal exponential stability of (4.4).

4.2. More general nonlinearities. In the introduction of this work, we mention that in [1] the internal
stabilization was studied in the case p ∈ [1, 4), but a smallness condition in the initial data was required
for p ∈ (2, 4). This is one of the main reasons why we only considered the case p ∈ [1, 2). In fact,
if the initial data is too small, then by continuity, the solution remains small, which could imply that
sat(au) = au, then the system is not really saturated.
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Appendix A. Proof of Lemma 2.2

In this part, we prove that the operator T is well-defined. Indeed, take ψ defined by

ψ(x) =
L2

8π2
sin2

(2π
L
x
)
satloc(αy

′′(0)).

We can easily observe that ψ(0) = ψ(L) = ψ′(0) = ψ′(L) = 0, and ψ′′(L) = satloc(αy
′′(0)). Then z

solves (2.5) if and only if φ = z − ψ solves{
λ̃φ+ φ′ + φ′′′ − φ′′′′′ = f = λ̃w − λ̃ψ − ψ′ − ψ′′′ + ψ′′′′′,

φ(0) = φ(L) = φ′(0) = φ′(L) = φ′′(L) = 0.

which is equivalent to (A0
b − λ̃I)φ = −f . Now, let (λ, y) a pair eigenvalue, eigenfunction of A0

b , i.e
A0
by = λy, in particular we have {

−y′ − y′′′ + y′′′′′ = λy,

−y′ − y′′′ + y′′′′′ = λy.

We multiply the first equation by y, the second one by y and we integrate over (0, L), we get after some
integration by parts ∫ L

0

yy′dx+

∫ L

0

yy′′′dx−
∫ L

0

yy′′′′′dx− |y′(0)|2 = λ|y|2dx

and

−
∫ L

0

yy′dx−
∫ L

0

yy′′′dx+

∫ L

0

yy′′′′′dx = λ

∫ L

0

|y|2dx.

By adding these two equations, we deduce

−1

2
|y′(0)|2 = Re(λ)

∫ L

0

|y|2dx =⇒ Re(λ) ≤ 0.

Then as λ̃ > 0, we get λ̃ /∈ σ(A0
b), thus A0

b − λ̃I is invertible and finally, φ = −(A0
b − λ̃I)−1f , is well

defined and also z.

Appendix B. Proof of Lemma 3.6

This section is devoted to the proof of the unique continuation principle for the Kawahara equation
with interior observation. Let us first recall the following existence result of the Kawahara equation in a
regular set-up.

Proposition B.1. Let us assume that u0 ∈ H5(0, L). Then the equation (3.13) with u(0, ·) = u0 possesses
a unique solution u ∈ C([0, T ], H5(0, L))∩L2(0, T ;H7(0, L)). Also by interpolation, if u0 ∈ Hs(0, L), then
the equation (3.33) possesses a unique solution u ∈ C([0, T ], Hs(0, L)) ∩ L2(0, T ;Hs+2(0, L)), 0 ≤ s ≤ 5.
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One can prove the above result in the same spirit of [31].
Let us consider a function ψ ∈ C∞(0, 1) with ψ > 0 in (0, 1), ψ(0) = ψ(1) = 0, ∥ψ∥L∞(0,1) = 1, |ψx| > 0

in [0, 1] \ ω, ψx(0) > 0, ψx(1) < 0. For any ϵ > 0, we consider

a(t, x) =
eµ(ψ(x)+3) − e5µ

(t− ϵ)(T − t)
, ξ = eλa, φ =

eµ(ψ(x)+3)

(t− ϵ)(T − t)
, t ∈ (ϵ, T ).

Now we will use a global Carleman estimate [13, Proposition 1] for Kawahara equation. Let us denote
the following space

Uϵ =
{
u ∈ L2(ϵ, T ;H5(0, L))| u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, L) = 0,

Pu = ∂tu+ ∂xu+ ∂3xu− ∂5xu ∈ L2(ϵ, T ;L2(0, L))
}

Proposition B.2. There exists positive constants µ0 > 1, C0 > 0 and C1 > 0 such that for µ = µ0 and
for every λ ≥ C0(T + T 2), for all u ∈ Uϵ, we have∫ T

ϵ

∫ L

0

(
sφξ2∂4xu

2 + s3φ3ξ2∂3xu
2 + s5φ5ξ2∂2xu

2 + s7φ7ξ2∂xu
2 + s9φ9ξ2u2

)
≤ C

∫ T

ϵ

∫
ω

(
ξ2|Pu|2 + sφξ2∂4xu

2 + s9φ9ξ2u2
)
. (B.1)

B.1. Proof of Lemma 3.6. As, u ∈ L2(0, T ;H2(0, L)), for any ϵ ∈ (0, T ), there exists a candidate
t1 ∈ (0, ϵ) such that u(t1, ·) ∈ H2(0, L). Using Proposition B.1, we get that u ∈ C([t1, T ];H

2(0, L)) ∩
L2(t1, T ;H

4(0, L)). Similar argument gives a time t2 ∈ (t1, ϵ) such that u(t1, ·) ∈ H4(0, L). Again from
Proposition B.1, it follows that that u ∈ C([t2, T ];H

4(0, L))∩L2(t2, T ;H
6(0, L)). Proceeding with similar

argument we finally have t3 ∈ (t2, ϵ) such that u ∈ C([t3, T ];H
5(0, L)) ∩ L2(t3, T ;H

7(0, L)). Therefore,
we eventually have u ∈ C([ϵ, T ];H5(0, L)) ∩ L2(ϵ, T ;H7(0, L)). Thus we can use (B.1) for the solution u
as u ∈ Uϵ.

Plugging Pu = up ∂xu in the Global Carleman estimate (B.1), we have∫ T

ϵ

∫ L

0

(
sφξ2∂4xu

2 + s3φ3ξ2∂3xu
2 + s5φ5ξ2∂2xu

2 + s7φ7ξ2∂xu
2 + s9φ9ξ2u2

)
≤ C

∫ T

ϵ

∫
ω

(
ξ2|∂xuup|2 + sφξ2∂4xu

2 + s9φ9ξ2u2
)
. (B.2)

Note that u ∈ L∞((ϵ, T ) × (0, L)). Therefore one can find a large constant C1 = ∥u∥pL∞((ϵ,T )×(0,L))

and consider s large enough so we can absorb the last term in the right hand sides by the term
1

2

∫ T

ϵ

∫ L

0

s7φ7ξ2∂xu
2. Indeed chosse s ≥ C1(T + T 2) we have

C

∫ T

ϵ

∫
ω

ξ2|up∂xu|2 ≤ 1

2

∫ T

ϵ

∫ L

0

s7φ7ξ2∂xu
2.

Finally we have the following:∫ T

ϵ

∫ L

0

(
sφξ2∂4xu

2 + s3φ3ξ2∂3xu
2 + s5φ5ξ2∂2xu

2 + s7φ7ξ2∂xu
2 + s9φ9ξ2u2

)
≤ C

∫ T

ϵ

∫
ω

(
sφξ2∂4xu

2 + s9φ9ξ2u2
)
.

Therefore u = 0 in (0, T ) × ω implies that u = 0 in (ϵ, T ) × (0, L) for all ϵ > 0. As a result we get have
u = 0, (t, x) ∈ (0, T )× (0, L).
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