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In this paper, we study the stabilizability of the Kawahara equation in a bounded interval (0, L) by a saturated internal control and boundary feedback. We prove the exponential stabilization of the corresponding closed-loop system. We first show the well-posedness of the nonlinear system using linear, nonlinear semigroup theory and fixed-point arguments. Next, we prove two stabilization results by means of interior-saturating feedback and boundary-saturated feedback as well, using observability inequalities and certain unique continuation principle.

Introduction and main results

1.1. System under study. Let us consider the following nonlinear Kawahara equation

         ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u + u p ∂ x u + f 1 (t, x) = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ 2 
x u(t, L) = f 2 (t), t ∈ (0, ∞), u(0, x) = u 0 (x),

x ∈ (0, L),

with p ∈ [1, 2), and the functions f 1 and f 2 are the controls acting internally and through the boundary conditions, respectively. The objective of this work is to show the exponential stabilization of (1.1) by acting with either internal or boundary controls, in the case where these controls are subject to saturation. The Kawahara equation

∂ t u + ∂ x u + ∂ 3 x u -∂ 5
x u + u p ∂ x u = 0 is fifth-order, nonlinear one dimensional equation and is typically used to model the propagation of small-amplitude long waves in fluid dynamics, water waves, plasma dynamics among other dispersive phenomena (see [START_REF] Cui | Global existence of solutions for the Cauchy problem of the Kawahara equation with L 2 initial data[END_REF][START_REF] Iguchi | A long wave approximation for capillary-gravity waves and the Kawahara equation[END_REF][START_REF] Kawahara | Oscillatory solitary waves in dispersive media[END_REF] and the references therein). This equation can be also considered as an extension of the Korteweg-de Vries equation (KdV), including high order dispersion effects. It has been studied as a fifth degree KdV equation and singularly perturbed KdV equation in [START_REF] Boyd | Weakly non-local solitons for capillary-gravity waves: fifth-degree korteweg-de vries equation[END_REF][START_REF] Pomeau | Structural stability of the korteweg-de vries solitons under a singular perturbation[END_REF] respectively. Discovered in 1972 by Kawahara [START_REF] Kawahara | Oscillatory solitary waves in dispersive media[END_REF], it was also obtained by Hasimoto for shallow water system in 1970 [START_REF] Hasimoto | Water waves[END_REF]. Since then, the Kawahara equation has been subject of study for different points of views. Recently, the control and stabilization properties have attracted the attention of the control community. Let us provide a brief overview about this subject.

As far as we know the first works dealing with this kind of control problems for Kawahara equation were [START_REF] Vasconcellos | Stabilization of the linear Kawahara equation with localized damping[END_REF][START_REF] Vasconcellos | Stabilization of the linear Kawahara equation with localized damping[END_REF]. In these works, the stabilization of global solutions of the linear Kawahara equation using localized damping was addressed following the ideas presented in the works [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], where similar problems was analyzed for the KdV equation. These results were then extended to the nonlinear Kawahara equation, with nonlinearity u∂ x u. In [START_REF] Araruna | Energy decay for the modified Kawahara equation posed in a bounded domain[END_REF], a similar problem was studied for the generalized Kawahara equation with nonlinearity u p ∂ x u for p ∈ [START_REF] Araruna | Energy decay for the modified Kawahara equation posed in a bounded domain[END_REF][START_REF] Capistrano-Filho | Massera's theorems for a higher order dispersive system[END_REF]. It is important to remark that in [START_REF] Araruna | Energy decay for the modified Kawahara equation posed in a bounded domain[END_REF], the energy of solutions decay exponentially for arbitrary initial data in L 2 (0, L) for p ∈ [START_REF] Araruna | Energy decay for the modified Kawahara equation posed in a bounded domain[END_REF][START_REF] Boyd | Weakly non-local solitons for capillary-gravity waves: fifth-degree korteweg-de vries equation[END_REF]. However, this decay was only proved for small initial data if p ∈ [START_REF] Boyd | Weakly non-local solitons for capillary-gravity waves: fifth-degree korteweg-de vries equation[END_REF][START_REF] Capistrano-Filho | Massera's theorems for a higher order dispersive system[END_REF]. Internal and boundary delayed stabilization problems for Kawahara equation were considered in [START_REF] Capistrano-Filho | Two stability results for the Kawahara equation with a time-delayed boundary control[END_REF][START_REF] Capistrano-Filho | Stabilization results for delayed fifth-order KdV-type equation in a bounded domain[END_REF][START_REF] Chentouf | Well-posedness and exponential stability of the Kawahara equation with a time-delayed localized damping[END_REF]. The exponential stability was shown using multipliers, Lyapunov functionals and compactness ideas. We also mention [START_REF] Capistrano-Filho | Massera's theorems for a higher order dispersive system[END_REF], where Massera's theorems were obtained, [START_REF] Chen | Internal controllability of the Kawahara equation on a bounded domain[END_REF], where the internal null controllability was shown via Carleman estimates, [START_REF] Capistrano-Filho | Well-posedness and controllability of Kawahara equation in weighted Sobolev spaces[END_REF], where controllability in weighted Sobolev spaces was proved, and [START_REF] Capistrano-Filho | Control results with overdetermination condition for higher order dispersive system[END_REF][START_REF] Capistrano Filho | Control of Kawahara equation with overdetermination condition: The unbounded cases[END_REF], where the control with overdetermination condition was considered.

As we already mentioned, the focus of this paper is to analyze the case of saturated controllers. Saturation in control systems is related to the fact that in most real-life applications, the actuators are subject to constraints, limitations due to physical, economical, operational reasons, etc. It is wellknown that even in the finite-dimensional case the introduction of saturation in the controller could destabilize the system [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]Example 1.1], making the saturated control problem a challenging task. In the finite-dimensional framework, the stability analysis could be done by studying an appropriate Lyapunov function and a sector condition related with the saturation map [START_REF] Sussmann | On the stabilizability of multiple integrators by means of bounded feedback controls[END_REF][START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF][START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF].

With respect to saturation in infinite-dimensional control systems there is not a general method to tackle these problems. Noteworthy works include [START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF] where the stabilization of a one dimensional wave equation was considered with saturated internal and boundary controls. In this work, stability results were proved by using Lyapunov functions and LaSalle's invariance principle. In the case of parabolic equations in [START_REF] Lhachemi | Saturated boundary stabilization of partial differential equations using control-Lyapunov functions[END_REF], several results are collected in the one-dimensional case, the principal idea is to decompose the system into its stable and stable parts via a spectral approach. The unstable finite dimensional part is tackled as in [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF], and for the remaining part, an appropriated Lyapunov function is considered. In the case of KdV-type equations, the approach is to follow the ideas of the works [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] and to prove the exponential stability via compactness arguments. This requires, in particular, the use of unique continuation results for nonlinear PDEs. In this direction we mention the works [START_REF] Marx | Stabilization of a linear Korteweg-de Vries equation with a saturated internal control[END_REF][START_REF]Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF][START_REF] Parada | Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback[END_REF][START_REF]Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers[END_REF].

1.2. Setting of the problem. This paper deals with the feedback stabilization of the system (1.1) by means of saturated control acting in-domain or through a boundary action. In this work, we consider two types of saturation function sat which can be given by the following. Let M > 0 be the saturation level. We define

sat loc (s) = s, if |s| ≤ M, M sgn(s), if |s| ≥ M, (1.2) 
and the second one is

sat 2 (s) = s, if ∥s∥ L 2 (0,L) ≤ M, sM ∥s∥ L 2 (0,L) , if ∥s∥ L 2 (0,L) ≥ M.
(1.3) 1.2.1. Internal control. We start by describing the case where the control action is in-domain.

         ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u + u p ∂ x u + sat(a(x)u(t, x)) = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ 2 x u(t, L) = 0, t ∈ (0, ∞), u(0, x) = u 0 (x), x ∈ (0, L), (1.4) 
where a ∈ L ∞ (0, L) is a localized function given by

a 1 ≥ a(x) ≥ a 0 > 0 on ω ⊂ [0, L], ω is a nonempty open subset of [0, L]. (1.5) 
1.2.2. Boundary control. In this work, we also explore the case where the saturated actuator is at the boundary, consider the following equation:

         ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u + u p ∂ x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ 2 x u(t, L) = sat loc (α∂ 2 x u(t, 0)), t ∈ (0, ∞), u(0, x) = u 0 (x), x ∈ (0, L), (1.6) 
where |α| < 1.

The main objective of this paper is to show the exponential stability of (1.4) and (1.6) in the presence of saturated control. More precisely, we investigate semiglobal exponential stabilization result (see Theorem 3.4) for the Kawahara equation (1.4) with internal saturation. That means, for any r > 0, we can find a positive number µ(r) > 0 such that the energy

E(t) = 1 2
local exponential stabilization result (see Theorem 3.3) for the system (1.6) with |α| < 1. That is, there exist positive constants r, µ, C > 0 such that whenever ∥u 0 ∥ L 2 (0,L) ≤ r, the solution of (1.6) satisfies

∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , ∀t ≥ 0. (1.7)
Our study is based on deriving appropriate observability inequalities for the saturated systems. These inequalities are obtained using compactness ideas and Carleman estimates. We also put special emphasis on the global well-posedness of the associated systems. Indeed, as we can observe from the definition of the saturation maps (1.2) and (1.3) if the argument of the map, it is small enough (in the appropriated norms) then the saturation is not really active. This was one of the main points for instance in [START_REF]Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers[END_REF].

The structure of this paper is the following. In Section 2, we study the well-posedness results associated to (1.4) and (1.6). Then, in Section 3, we study the two exponential stabilization results for the case of boundary saturation and saturated interior feedback, respectively. At the end, we conclude the paper with some additional remarks and open questions.

well-posedness

This section is devoted to the existence and uniqueness of the system (1.4) and (1.6) with the saturated feedback. We will follow the works [START_REF] Marx | Stabilization of a linear Korteweg-de Vries equation with a saturated internal control[END_REF][START_REF]Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF][START_REF] Parada | Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback[END_REF][START_REF]Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers[END_REF] see also [START_REF] Parada | Control and stabilization of PDE on networks[END_REF].

2.1. Well-posedness with boundary feedback. We start by studying the well-posedness results for (1.6). First, we consider the system (1.6) without the internal nonlinearity, and we prove the wellposedness based on nonlinear semigroup theory. Then, we will add an internal source term in order to take in account the nonlinear term u p ∂ x u. Consider the system

         ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ 2 x u(t, L) = sat loc (α∂ 2 x u(t, 0)), t ∈ (0, ∞), u(0, x) = u 0 (x),
x ∈ (0, L).

(

Let A b : D(A b ) → L 2 (0, L) the nonlinear operator defined by

A b w := -w ′ -w ′′′ + w ′′′′′ (2.2) D(A b ) = {w ∈ H 5 (0, L) ∩ H 2 0 (0, L) : w ′′ (L) = sat loc (αw ′′ (0))}.
Note that the operator A b is nonlinear by the action of the boundary saturation. Following [START_REF] Marx | Stabilization of a linear Korteweg-de Vries equation with a saturated internal control[END_REF][START_REF] Parada | Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback[END_REF], we show that A b is a closed, dissipative operator and that for some λ > 0, D(A b ) ⊂ R(I -λA b ), where I : L 2 (0, L) → L 2 (0, L), is the identity operator and R denotes the range of a operator. The following result, ensure the existence of mild and strong solutions for (2.1). Proposition 2.1. Let u 0 ∈ L 2 (0, L) and |α| < 1, then there exists a unique mild solution

u ∈ C([0, ∞), L 2 (0, L)) of (2.1). Moreover, if u 0 ∈ D(A b ), this solution is strong and u ∈ C([0, ∞), D(A b ))∩C 1 ((0, ∞), L 2 (0, L)). Proof. A b is a closed operator. Consider the operator A 0 b : D(A 0 b ) → L 2 (0, L) defined by A 0 b w := A b w, where D(A 0 b ) = {w ∈ H 5 (0, L) ∩ H 2 0 (0, L) : w ′′ (L) = 0}. Then, clearly A 0 b is a closed operator.
Similarly, by [17, Page 91] the operator sat loc satisfies

∀(s, s) ∈ R 2 , |sat loc (s) -sat loc (s)| ≤ |s -s| .
(2.3) Thus, sat loc is a Lipschitz continuous function and hence the operator

A b is closed. A b is dissipative. Let w, v ∈ D(A b )
, then after some integration by parts and (2.3) we have

⟨A b w -A b v, w -v⟩ L 2 (0,L) = L 0 (-w ′ -u ′′′ + w ′′′′′ + v ′ + v ′′′ -v ′′′′′ )(w -v)dx = 1 2 (w ′′ (L) -v ′′ (L)) 2 -(w ′′ (0) -v ′′ (0)) 2 = 1 2 (sat loc (αw ′′ (0)) -sat loc (αv ′′ (0))) 2 -(w ′′ (0) -v ′′ (0)) 2 ≤ α 2 -1 2 (w ′′ (0) -v ′′ (0)) 2 ≤ 0,
from where we obtain that A b is dissipative.

For λ > 0 small enough, D(A b ) ⊂ R(I -λA b ). Take λ > 0, then D(A b ) ⊂ R(I -λA b ), is equivalent to given w ∈ D(A b ) find v ∈ D(A b ) such that (I -λA b )v = w. Define λ = 1 λ , then we have to find solutions v ∈ D(A b ) of λv + v ′ + v ′′′ -v ′′′′′ = λw, v(0) = v(L) = v ′ (0) = v ′ (L) = 0, v ′′ (L) = sat loc (αv ′′ (0)). (2.4)
Consider the operator T : H 3 (0, L) → L 2 (0, L) defined by T (y) = z, where z is the solution of

λz + z ′ + z ′′′ -z ′′′′′ = λw, z(0) = z(L) = z ′ (0) = z ′ (L) = 0, z ′′ (L) = sat loc (αy ′′ (0)). (2.5)
Lemma 2.2. For all w ∈ D(A b ), the operator T is well-defined, i.e. for all y ∈ H 3 (0, L) there exists a unique solution to (2.5).

The proof of Lemma 2.2 is given in the Appendix A. Let us show now that T has a fixed point. Take C > 0 to be chosen later and define

K C = {z ∈ H 2 0 (0, L) : ∥z∥ H 2 0 (0,L) ≤ C}. (2.6)
As H 2 0 (0, L) is compactly embedded in L 2 (0, L), the set K C is a bounded set in H 2 0 (0, L) and relatively compact in L 2 (0, L). Furthermore, as K C is closed in L 2 (0, L) we can deduce that K C is compact in L 2 (0, L). Our idea now is to apply the Schauder fixed point theorem [START_REF] Coron | Control and nonlinearity[END_REF]Theorem B.19]. Thus, we have to prove the following lemma Lemma 2.3. There exists C > 0 such that T (H 3 (0, L)) ⊂ K C .

Proof. Multiplying (2.5) by z and integrating on (0, L) we get after some integration by parts

λ L 0 z 2 dx + 1 2 z ′′ (0) 2 = 1 2 sat loc (αy ′′ (0)) 2 + λ L 0 wzdx.
Then, using the definition of sat loc given in (1.2) and Cauchy-Schwartz, we obtain λ 2

∥z∥ 2 L 2 (0,L) ≤ M 2 2 + λ 2 ∥w∥ 2 L 2 (0,L) . (2.7)
Now, multiplying (2.5) by xz and integrating on (0, L) we get after some integration by parts

λ L 0 xz 2 dx + 3 2 L 0 (z ′ ) 2 dx + 5 2 L 0 (z ′′ ) 2 dx = 1 2 L 0 z 2 dx + L 2 sat(αy ′′ (0)) 2 + λ L 0 xwzdx, 3 2 ∥z ′ ∥ 2 L 2 (0,L) + 5 2 ∥z ′′ ∥ 2 L 2 (0,L) ≤ L λ 2 + 1 2 ∥z∥ 2 L 2 (0,L) + LM 2 2 + L λ 2 ∥w∥ 2 L 2 (0,L) , (2.8) 
and hence using (2.7) and (2.8) we conclude, ∥z ′′ ∥ 2 L 2 (0,L) ≤ C, where C > 0 only depends on the level of saturation M , L, λ and w which ends the proof of Lemma 2.3. □

Using the Schauder fixed point theorem, we manage to find v ∈ H 3 (0, L) solution of (2.4), we get v ∈ D(A b ) using that the boundary conditions and w ∈ D(A b ). We conclude that for all λ > 0, D(A b ) ⊂ R(I -λA b ). Using [21, Theorem 4.2] A b is the generator of a semigroup of contractions S(t), t > 0. By [START_REF] Miyadera | Nonlinear semigroups[END_REF]Theorem 4.5] for all T > 0, (2.1). Moreover, by [START_REF] Miyadera | Nonlinear semigroups[END_REF]Theorem 4.10] this solution is unique. Also, we can deduce that for all T > 0, for all u 0 ∈ L 2 (0, L), there exists a unique mild solution of (2.1) u ∈ C([0, T ]; L 2 (0, L)) and then, the proof of Proposition 2.1 is finished. □

u 0 ∈ D(A b ), u = S(t)u 0 ∈ C([0, T ]; D(A b )) ∩ C 1 ((0, T ); L 2 (0, L)) is a strong solution to
Now we study the well-posedness of the system (2.1) with an extra source term f .

         ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = f, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ 2 x u(t, L) = sat loc (α∂ 2 x u(t, 0)), t ∈ (0, ∞), u(0, x) = u 0 (x),
x ∈ (0, L).

(2.9) Formally, this system can be seen as ∂ t u = A b u + f . The following result can be obtained using [ 

∈ L 2 (0, L), |α| < 1, f ∈ L 1 ((0, ∞), L 2 (0, L)), then there exists a unique mild solution u ∈ C([0, ∞), L 2 (0, L)) of (2.9). Moreover, if u 0 ∈ D(A b ) and f ∈ W 1,1 ((0, ∞), L 2 (0, L)) this solution is strong and u ∈ C([0, ∞), L 2 (0, L)), u(t, •) ∈ D(A b ), for all t ≥ 0 and u ∈ C 1 ((0, ∞), L 2 (0, L)).
Now, in order to deal with the nonlinear term u p ∂ x u, we show that mild solutions of (2.9) have an extra regularity. Consider the space B T = C([0, T ], L 2 (0, L)) ∩ L 2 ((0, T ), H 2 (0, L)), endowed with the norm

∥u∥ 2 B T = ∥u∥ 2 C([0,T ],L 2 (0,L)) + ∥u∥ 2 L 2 ((0,T ),H 2 (0,L)) . Proposition 2.5. Let u 0 ∈ L 2 (0, L), |α| < 1, f ∈ L 1 ((0, T ), L 2 (0, L)) and T > 0, consider u ∈ C([0, T ], L 2 (0, L))
, the restriction of the solution of (2.9) on [0, T ], then u ∈ B T . Moreover, the following estimate holds,

∥u∥ B T ≤ C(1 + √ T ) ∥u 0 ∥ L 2 (0,L) + ∥f ∥ L 1 ((0,T ),L 2 (0,L)) .
(2.10)

For f = 0, the following estimate follows

∥u 0 ∥ 2 L 2 (0,L) ≤ 1 T ∥u∥ 2 L 2 ((0,T ),L 2 (0,L)) + ∥∂ 2 x u(•, 0)∥ 2 L 2 (0,T ) . (2.11)
Proof. Suppose u is a strong solution of (2.9), let T > 0 and 0 ≤ s ≤ T . Multiplying the first line of (2.9) by u and integrating on (0, L) × (0, s), we get

s 0 L 0 u∂ t udxdt + s 0 L 0 u∂ x udxdt + s 0 L 0 u∂ 3 x udxdt - s 0 L 0 u∂ 5 x udxdt = s 0 L 0 uf dxdt.
After some integration by parts, we observe

1 2 L 0 u(s, x) 2 dx + 1 2 s 0 ∂ 2 x u(t, 0) 2 -sat(α∂ 2 x u(t, 0)) 2 dt = 1 2 L 0 u 2 0 dx + s 0 L 0 f udxdt. (2.12) 
Note that for all s ∈ [0, T ]

s 0 L 0 f udxdt ≤ T 0 ∥u(t, •)∥ L 2 (0,L) ∥f (t, •)∥ L 2 (0,L) dt ≤ ∥u∥ C([0,T ],L 2 (0,L)) ∥f ∥ L 1 ((0,T ),L 2 (0,L))
Now, using the above equation, (2.3), (2.12), we get for all s ∈ [0, T ],

1 2 L 0 u(s, x) 2 dx + C α s 0 ∂ 2 x u(t, 0) 2 dt ≤ 1 2 L 0 u 2 0 dx + ∥u∥ C([0,T ],L 2 (0,L)) ∥f ∥ L 1 ((0,T ),L 2 (0,L)) , (2.13) 
where C α = 1 -|α| 2 2 > 0. Now, taking the supremum for s ∈ [0, T ], and with Young's inequality, we get

∥u∥ 2 C([0,T ],L 2 (0,L)) + T 0 ∂ 2 x u(t, 0) 2 dt ≤ C ∥u 0 ∥ 2 L 2 (0,L) + ∥f ∥ 2 L 1 ((0,T ),L 2 (0,L)) . (2.14) 
Now, we multiply the first equation of (2.9) by xu and integrate on (0, L) × (0, T ) and we get

T 0 L 0 xu∂ t udxdt + T 0 L 0 xu∂ x udxdt + T 0 L 0 xu∂ 3 x udxdt - T 0 L 0 xu∂ 5 x udxdt = T 0 L 0 xuf dxdt.
(2.15) Thus, performing integration by parts

1 2 L 0 xu(T, •) 2 dx + 3 2 T 0 L 0 ∂ x u 2 dxdt + 5 2 T 0 L 0 ∂ 2 x u 2 dxdt = 1 2 L 0 xu 2 0 dx + 1 2 T 0 L 0 u 2 dxdt + L 2 T 0 sat(α∂ 2 x u(t, 0)) 2 dt + T 0 L 0 xuf dxdt. (2.16) Note that T 0 L 0 u 2 dxdt ≤ T ∥u∥ 2 C([0,T ],L 2 (0,L)) and T 0 L 0 xuf dxdt ≤ L∥u∥ C([0,T ],L 2 (0,L)) ∥f ∥ L 1 ((0,T ),L 2 (0,L)) .
Using these two inequalities, (2.14) we derive

∥∂ 2 x u∥ 2 L 2 ((0,T ),L 2 (0,L)) ≤ C(1 + T ) ∥u 0 ∥ 2 L 2 (0,L) + ∥f ∥ 2 L 1 ((0,T ),L 2 (0,L)) , (2.17) 
where C > 0 does not depend on T . Thus u ∈ L 2 ((0, T ), H 2 (0, L)). Joining (2.14) and (2.17) we deduce (2.10). To deduce (2.11), consider f = 0 and multiply (2.1) by (T -t)u and integrate (0, T ) × (0, L), after some integration by parts we get

T L 0 u 2 0 dx + T 0 (T -t) sat loc (∂ 2 x u(t, 0)) 2 -∂ 2 x u(t, 0) 2 dt = T 0 L 0 u 2 dxdt, using (2.
3) we obtain (2.11). The result can be extended by density to mild solutions. □

Before going to prove the global well-posedness result for the nonlinear system (1.6), we first show some important estimates related to the nonlinear term:

Proposition 2.6. Let u ∈ B T . Then for 1 ≤ p ≤ 2, u p ∂ x u ∈ L 1 ((0, T ), L 2 (0, L)) and the map u ∈ B T → u p ∂ x u ∈ L 1 ((0, T ), L 2 (0, L)) is continuous. Moreover, there exists C > 0 such that, for any u, v ∈ B T ∥u p ∂ x v∥ L 1 ((0,T ),L 2 (0,L)) ≤ C(T (2-p)/4 + √ T )∥u∥ p B T ∥v∥ B T .
(2.18) 

∥u p ∂ x u -v p ∂ x v∥ L 1 ((0,T ),L 2 (0,L)) ≤ C(T (2-p)/4 + √ T ) ∥u∥ B T ∥v∥ p-1 B T + ∥v∥ p B T + ∥u∥ p B T ∥u -v∥ B T . ( 2 
∥u p ∂xu -v p ∂xv∥ L 2 (0,L) = T 0 ∥u p ∂x(u -v) + (u p -v p )∂xv∥ L 2 (0,L) ≤ C(T (2-p)/4 + √ T )∥u∥ p B T ∥u -v∥B T + T 0 ∥ |u| p-1 + |v| p-1 (u -v)∂xv∥ L 2 (0,L)
Using [31, Lemma 2.4], we estimate the last term of the above inequality as:

T 0 ∥ |u| p-1 + |v| p-1 (u -v)∂ x v∥ L 2 (0,L) ≤ CT (2-p)/4 ∥u -v∥ B T ∥u∥ B T ∥v∥ p-1 B T + ∥v∥ p B T .

□

We conclude this subsection by proving the global well-posedness result for nonlinear equation (1.6).

Theorem 2.7. Let u 0 ∈ L 2 (0, L) and |α| < 1, then there exists a unique mild solutions

u ∈ C([0, ∞), L 2 (0, L))∩ L 2 (0, ∞, H 2 (0, L)) of (1.6).
Proof. Let u 0 ∈ D(A b ) and R, θ > 0 to be chosen later. Consider the ball

B B θ (0, R) := {v ∈ B θ , ∥v∥ B θ ≤ R}. Then B B θ (0, R) it is a complete metric space. Let us introduce the map Φ : B θ → B θ , defined by Φ(v) = u, where u solves          ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = -v p ∂ x v, (t, x) ∈ (0, θ) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, θ), ∂ 2 x u(t, L) = sat loc (α∂ 2 x u(t, 0)), t ∈ (0, θ), u(0, x) = u 0 (x),
x ∈ (0, L).

We observe first that Φ is well-defined, since by Proposition 2.6

v p ∂ x v ∈ L 1 ((0, θ), L 2 (0, L))
. By Proposition 2.5 and Proposition 2.6 we get

∥Φ(v)∥ B θ ≤C(1 + √ θ) ∥u 0 ∥ L 2 (0,L) + ∥v p ∂ x v∥ L 1 ((0,θ),L 2 (0,L)) ≤C 1 (1 + √ θ)∥u 0 ∥ L 2 (0,L) + C 2 (θ (2-p)/4 + √ θ)∥v∥ p+1 B T , for some C 1 , C 2 > 0. Then taking R = 3C 1 ∥u 0 ∥ L 2 (0,L) and θ > 0 small enough such that    C 2 (θ 2-p 4 + √ θ)R p < 1 3 , (1 + √ θ) < 2, we have that ∥Φ(v)∥ B θ ≤ R and thus Φ maps B B θ (0, R) into itself. Now take v 1 , v 2 ∈ B B θ (0, R), and consider w = u 1 -u 2 = Φ(v 1 ) -Φ(v 2 ). We observe that w solves          ∂ t w + ∂ x w + ∂ 3 x w -∂ 5 x w = f, (t, x) ∈ (0, θ) × (0, L), w(t, 0) = w(t, L) = ∂ x w(t, 0) = ∂ x w(t, L) = 0, t ∈ (0, θ), ∂ 2 x w(t, L) = h, t ∈ (0, θ), w(0, x) = 0, x ∈ (0, L), where f = -v p 1 ∂ x v 1 + v p 2 ∂ x v 2 and h = sat loc (α∂ 2 x u 1 (t, 0)) -sat loc (α∂ 2
x u 2 (t, 0)). Similar integration by parts as in Proposition 2.5 allows to write

∥w∥ B θ ≤ C ∥h∥ L 2 (0,θ) + ∥f ∥ L 1 ((0,θ),L 2 (0,L) .
(2.20)

Our idea now is to obtain an estimate of ∥h∥ L 2 (0,θ) . Proceeding as (2.12) we obtain

1 2 L 0 w(θ, •) 2 dx + 1 2 θ 0 (∂ 2 x w(t, 0) 2 -h(t) 2 )dt = θ 0 L 0 f wdxdt. Using (2.3) we get ∥h∥ L 2 (0,θ) = sat loc (α∂ 2 x u 1 (•, 0)) -sat loc (α∂ 2 x u 2 (•, 0)) L 2 (0,θ) ≤ ∥α∂ 2 x u 1 (•, 0) -α∂ 2 x u 2 (•, 0)∥ L 2 (0,θ) ≤ |α|∥∂ 2 x w(•, 0)∥ L 2 (0,θ) , which implies 1 2 L 0 w(θ, •) 2 dx + C α θ 0 ∂ 2 x w(t, 0) 2 dt ≤ θ 0 L 0 f wdxdt.
Thus by Young's inequality ∥w∥ C([0,θ],L 2 (0,L)) ≤ C∥f ∥ L 1 ((0,θ),L 2 (0,L) , then by the above equation

∥h∥ L 2 (0,θ) ≤ |α|∥∂ 2 x w(•, 0)∥ L 2 (0,θ) ≤ C∥f ∥ L 1 ((0,θ),L 2 (0,L) . Using this estimate in (2.20) we obtain ∥Φ(v 1 ) -Φ(v 2 )∥ B θ = ∥w∥ B θ ≤ C∥f ∥ L 1 ((0,θ),L 2 (0,L) = C∥v p 1 ∂ x v 1 -v p 2 ∂ x v 2 ∥ L 1 ((0,θ),L 2 (0,L) . Finally by Proposition 2.6 ∥Φ(v 1 ) -Φ(v 2 )∥ B θ ≤ C 3 (θ (2-p)/4 + √ θ) ∥v 1 ∥ B θ ∥v 2 ∥ p-1 B θ + ∥v 1 ∥ p B θ + ∥v 2 ∥ p B θ ∥v 1 -v 2 ∥ B θ ,
for some C 3 > 0. Then, taking θ > 0, small enough such that 3C 3 (θ (2-p)/4 + √ θ)R p < 1, we get that Φ is a contraction and by the Banach fixed point theorem and a density argument, we deduce the local in time well-posedness. To conclude the global well-posedness result, we need some a priori estimates. Let T > 0 and u be a strong solution of (1.6). Multiplying (1.6) by u and integrating over (0, L) × (0, s), we get after some integration by parts

1 2 L 0 u(s, •) 2 dx + 1 2 s 0 ∂ 2 x u(t, 0) 2 -sat(α∂ 2 x u(t, 0)) 2 dt = 1 2 L 0 u 2 0 dx. Using (1.2) we derive 1 2 L 0 u 2 (s, •)dx + C α s 0 ∂ 2 x u(t, 0) 2 dt ≤ 1 2 L 0 u 2 0 dx. (2.21)
Then, taking the supremum for s ∈ [0, T ] in (2.21),

∥u∥ 2 C([0,T ],L 2 (0,L)) ≤ ∥u 0 ∥ 2 L 2 (0,L) . (2.22)
On the other hand, taking s = T in (2.21),

T 0 ∂ 2 x u(t, 0) 2 dt ≤ 1 2 C -1 α ∥u 0 ∥ 2 L 2 (0,L) . (2.23)
Now, we multiply the first line of (1.6) by xu and integrate on (0, L) × (0, T ),

1 2 L 0 xu 2 (T, •)dx + 3 2 T 0 1 0 ∂ x u 2 dxdt + 5 2 T 0 L 0 ∂ 2 x u 2 dxdt = 1 2 L 0 xu 2 0 (x) + 1 p + 2 T 0 L 0 u p+2 dxdt + 1 2 T 0 L 0 u 2 dxdt + L 2 T 0 ∂ 2 x u(t, 0) 2 dt.
For the term involving

T 0 L 0 u 2 dxdt T 0 L 0 u 2 (t, x)dx ≤ T ∥u∥ 2 C([0,T ],L 2 (0,L)) .
For the term involving

T 0 L 0 u p+2 (t, x)dxdt, observe that 1 p + 2 T 0 L 0 u p+2 dxdt ≤ 1 p + 2 T 0 ∥u(t, •)∥ p L ∞ (0,L) ∥u(t, •)∥ 2 L 2 (0,L) dt ≤ 2 p/2 p + 2 T 0 ∥∂ x u(t, •)∥ p/2 L 2 (0,L) ∥u(t, •)∥ 2+p/2 L 2 (0,L) dt.
Therefore using (2.22) we have

1 p + 2 T 0 L 0 u p+2 dxdt ≤ C 2 p/2 p + 2 ∥u 0 ∥ 2+p/2 L 2 (0,L) T 0 ∥∂ x u(t, •)∥ p/2 L 2 (0,L) dt ≤ C 2 p/2 T 1-p/4 p + 2 ∥u 0 ∥ 2+p/2 L 2 (0,L) T 0 ∥∂ x u(t, •)∥ 2 L 2 (0,L) dt p/4 ≤ C p T ∥u 0 ∥ 8+2p 4-p L 2 (0,L) + 1 2 T 0 ∥∂ x u(t, •)∥ 2 L 2 (0,L) dt , (2.24) 
for some positive constant C p depending on p and C. Thus, from (2.22), (2.23) and Young's inequality we derive

T 0 1 0 ∂ x u 2 dxdt + T 0 L 0 ∂ 2 x u 2 dxdt ≤ C p (1 + T )∥u 0 ∥ 2 L 2 (0,L) + T ∥u 0 ∥ 8+2p 4-p L 2 (0,L) . (2.25) 
Finally, with (2.22) and (2.25) and arguing by density, the proof of Theorem 2.7 is finished. □ 2.2. Well-posedness with internal feedback. In this section, we study the global well-posedness of (1.4), some of the computations are quite similar to those exposed in Section 2.1 for that we focus in the main difference.

2.2.1.

Well-posedness of linear system. Let us first investigate the well-posedness of the linear Kawahara system, i.e when we drop the nonlinear internal terms u p ∂ x u and sat(au):

     ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = ∂ 2 x u(t, L) = 0, t ∈ (0, ∞), u(0, x) = u 0 (x),
x ∈ (0, L).

(2.26)

Thus we write the above system as:

u(t) = Au(t), t > 0, u(0) = u 0 , (2.27) 
where the operator A can be written as

Au = -u ′ -u ′′′ + u ′′′′′ with the domain D(A) = u ∈ H 5 (0, L) ∩ H 2 0 (0, L) : u xx (L) = 0 . Remark 2.8.
Observe that contrary to the case of boundary saturation, we firts analyse a system which is linear so that we use linear semigroup theory for the study of (2.26). In what follows, we add the nonlinear terms as source terms. In the case of boundary saturation this strategy it is not to clear, and for that reason we just drop the internal nonlinear term and we used nonlinear semigroup arguments. That made the well-posedness of (2.26) easier that the boundary case.

It can be checked that the operator A and its adjoint operator

A * u = u ′ + u ′′′ -u ′′′′′ with the domain D(A * ) = u ∈ H 5 (0, L) ∩ H 2 0 (0, L) : u xx (0) = 0 ,
are both are dissipative. Therefore by Lumer-Philips theorem, it follows that A generates a strongly continuous semigroup of contraction {S(t)} t≥0 . Hereinafter, we have the following well-posedness result for the linear Kawahara system: Theorem 2.9. Let us take u 0 ∈ D(A). Then the equation (2.26) possesses a unique strong solution u ∈ C([0, T ]; D(A)∩C 1 (0, T ; L 2 (0, L)). If the initial data u 0 ∈ L 2 (0, L), the unique mild solution of (2.26) lies in C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 2 (0, L)). Moreover, we have a generic positive constant C > 0 such that the solution satisfies the following estimates

• ∥u∥ C([0,T ];L 2 (0,L)) + ∥u∥ L 2 (0,T ;H 2 (0,L)) ≤ C ∥u 0 ∥ L 2 (0,L) , • ∥u xx (•, 0)∥ L 2 (0,T ) ≤ C ∥u 0 ∥ L 2 (0,L) .
Next, we study the well-posedness result for the linear Kawahara equation with a source term:

     ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = f, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = ∂ 2 x u(t, L) = 0, t ∈ (0, ∞), u(0, x) = u 0 (x),
x ∈ (0, L).

(2.28) Thus, we write the above system in the form of an abstract nonhomogeneous evolution equation:

u = Au + f, t > 0, u(0) = u 0 . (2.29)
By classical semigroup theory result, it follows that for any f ∈ L 1 loc (0, ∞; L 2 (0, L)), the solution of the system (2.29)

u(t) = S(t)u 0 + t 0 S(t -s)f (s)ds belongs to C([0, ∞); L 2 (0, L)).
We also have the following estimates: Theorem 2.10. Let us take f ∈ L 1 (0, T ; L 2 (0, L)). Then, the solution u satisfies the following estimates

∥u∥ B T + ∂ 2 x u(•, 0) L 2 (0,T ) ≤ C(1 + √ T ) ∥y 0 ∥ L 2 (0,L) + ∥f ∥ L 1 ((0,T ),L 2 (0,L)) . (2.30) 
Now we are in a position to prove the global well-posedness result for the system (1.4).

Theorem 2.11. Let u 0 ∈ L 2 (0, L). Then there exists a unique mild solution u ∈ C([0, ∞), L 2 (0, L)) ∩ L 2 (0, ∞), H 2 (0, L) of (1.4).Moreover, for any T > 0, there exists C > 0, such that the solution of the system (1.4) with (1.5), satisfies the following:

∥u∥ 2 L 2 (0,T ;H 2 (0,L)) ≤ C ∥u 0 ∥ 2 L 2 (0,L) + T ∥u 0 ∥ 8+2p 4-p L 2 (0,L) , (2.31) 
∂ 2 x u(•, 0) L 2 (0,L) ≤ C ∥u 0 ∥ L 2 (0,L) , (2.32) 
∥u 0 ∥ 2 L 2 (0,L) ≤ 1 T T 0 L 0 u 2 (t, x)dxdt + T 0 |∂ 2 x u(t, 0)| 2 dt + 2 T 0 L 0 sat(a(x)u(t, x))u(t, x)dxdt. (2.33)
Proof. Let u 0 ∈ D(A) and R, θ > 0 to be chosen later. Consider again the ball

B B θ (0, R) := {v ∈ B θ , ∥v∥ B θ ≤ R}. Let Ψ, the map defined by Ψ : B θ → B θ , Ψ(v) = u, where u solves      ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = -v p ∂ x v -sat(a(x)v(t, x)), (t, x) ∈ (0, θ) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, ∂ 2 x u(t, L) = 0, t ∈ (0, θ), u(0, x) = u 0 (x),
x ∈ (0, L).

Observe that Φ is well-defined, since by Proposition 2.6 v p ∂ x v ∈ L 1 ((0, θ), L 2 (0, L)) and by [START_REF] Marx | Stabilization of a linear Korteweg-de Vries equation with a saturated internal control[END_REF]Proposition 3.4]

∥sat(av)∥ L 1 ((0,θ);L 2 (0,L) ≤ 3 √ La 1 √ θ∥v∥ B θ .
By Theorem 2.10, Proposition 2.6 and the above inequality we get

∥Φ(v)∥ B θ ≤C(1 + √ θ) ∥u 0 ∥ L 2 (0,L) + ∥v p ∂ x v∥ L 1 ((0,θ),L 2 (0,L)) + ∥sat(a(x)v(t, x))∥ L 1 ((0,θ),L 2 (0,L)) ≤C 1 (1 + √ θ)∥u 0 ∥ L 2 (0,L) + C 2 (θ (2-p)/4 + √ θ)∥v∥ p+1 B T + C 2 √ θ∥v∥ B T ,
for some C 1 , C 2 > 0. Then taking R = 3C 1 ∥u 0 ∥ L 2 (0,L) and θ > 0 small enough such that

   C 2 (θ 2-p 4 R p + √ θR p + √ θ) < 1 3 , (1 + √ θ) < 2, we have that ∥Ψ(v)∥ B θ ≤ R and thus Φ maps B B θ (0, R) into itself. Now take v 1 , v 2 ∈ B B θ (0, R), and consider w = u 1 -u 2 = Ψ(v 1 ) -Ψ(v 2 )
. We observe that w solves

     ∂ t w + ∂ x w + ∂ 3 x w -∂ 5 x w = f + h, (t, x) ∈ (0, θ) × (0, L), w(t, 0) = w(t, L) = ∂ x w(t, 0) = ∂ x w(t, L) = 0, ∂ 2 x u(t, L) = 0, t ∈ (0, θ), w(0, x) = 0,
x ∈ (0, L),

where f = -v p 1 ∂ x v 1 + v p 2 ∂ x v 2 and h = -sat(a(x)v 1 (t, x)) + sat(a(x)v 2 (t, x))
. Similar integration by parts as in Theorem 2.10 a allows to write

∥w∥ B θ ≤ C ∥h∥ L 1 ((0,θ),L 2 (0,L) + ∥f ∥ L 1 ((0,θ);L 2 (0,L) .
(2.34)

Further we have (see [START_REF] Marx | Stabilization of a linear Korteweg-de Vries equation with a saturated internal control[END_REF]Proposition 3.4])

∥h∥ L 1 ((0,θ);L 2 (0,L) = ∥ -sat(av 1 ) + sat(av 2 )∥ L 1 ((0,θ);L 2 (0,L) ≤ 3 √ La 1 √ θ∥v 1 -v 2 ∥ B θ .
Using this estimate along with (2.19) in (2.34) we obtain

∥Ψ(v1) -Ψ(v2)∥B θ =∥w∥B θ ≤ C ∥f ∥ L 1 ((0,θ),L 2 (0,L) + 3 √ La1 √ θ∥v1 -v2∥B θ ≤C (θ (2-p)/4 + √ θ) ∥v1∥B θ ∥v2∥ p-1 B θ + ∥v1∥ p B θ + ∥v2∥ p B θ + 3 √ La1 √ θ ∥u -v∥B θ .
Then, taking θ > 0, small enough such that C (θ

(2-p)/4 + √ θ)R p + 3 √ La 1 √ θ < 1,
we get that Ψ is a contraction and by the Banach fixed point theorem and a density argument, we deduce the local in time well-posedness. To conclude the global well-posedness result, we need some a priori estimates. Let T > 0 and u be a strong solution of (1.4). Multiplying the equation (1.4) by u and integrating on [0, L] we have after integration by parts and boundary data 1 2

d dt L 0 u 2 dx + 1 2 ∂ 2 x u(t, 0) 2 + L 0 sat(a(x)u(t, x))u(t, x)dx = 0. (2.35)
Integrating over [0, T ] and using the fact that sat is an odd function, one can prove the estimate (2.32).

Similarly to (2.22), integrating (2.35) over [0, s] we can show that

∥u∥ 2 C([0,T ],L 2 (0,L)) ≤ ∥u 0 ∥ 2 L 2 (0,L) . (2.36)
Multiplying first equation of (1.4) by xu and taking integration on both sides over [0, T ]×(0, L), applying successive integration by parts and using boundary conditions, we obtain

1 2 L 0 xu 2 (T, •)dx + 3 2 T 0 L 0 u 2 x dx + 5 2 T 0 L 0 u 2 xx dxdt + T 0 L 0 xusat(au)dxdt = 1 2 L 0 xu 2 0 (•)dx + 1 2 T 0 L 0 u 2 dxdt + 1 p + 2 T 0 L 0 u p+2 dxdt.
Noting the fact sat is an odd function, using (2.36) and following the computations of (2.24) we finally have (2.31). Next multiplying first equation of (1.4) by (T -t)u and taking integration over [0, L] on both sides, we write

L 0 (T -t)u∂ t udx + L 0 (T -t)u∂ x udx + L 0 (T -t)u∂ 3 x udx - L 0 (T -t)u∂ 5 x udx + L 0 (T -t)u∂ x udx + L 0 (T -t)sat(a(x)u(t, x))u(t, x)dx = 0. (2.37)
Integrating over [0, T ] we have

1 2 T 0 L 0 u 2 dxdt - T 2 L 0 u 2 0 dx + 1 2 T 0 (T -t)∂ 2 x u(t, 0) 2 dt + T 0 L 0 (T -t)sat(a(x)u(t, x))u(t, x)dxdt = 0.
Thus we get the estimate (2.33). □

Exponential stabilization

In this part we prove our main results with respect to the exponential stability of systems (1.4) and (1.6). Both proofs are based on showing an appropriated observability inequality, using a contradiction argument and compactness ideas. The main difference in the proof of internal and boundary saturation is that for the boundary case we first prove such a observability inequality by analyzing system (2.1) and then we pass to the fully nonlinear system (1.6) by a perturbation approach, due to this argument our exponential stability result for (1.6) it is of local nature. From the other side, in the proof of the observability inequality for (1.4) we work directly with the nonlinear system which allow us to obtain a semiglobal exponential stability result. In what follows, we consider here the classical L 2 -energy,

E(t) = 1 2 L 0 u(t, x) 2 dx. (3.1)
3.1. Boundary saturation. In this part we are going to prove our main result in the case of boundary saturation related to the exponential stability of system (1.6). In the case of boundary saturation, the following unique continuation property is crucial in the proof

Lemma 3.1. ([3, Lemma 4.3]) Let L > 0, if λ, ψ ∈ C × H 5 (0, L) satisfies      λψ(x) + ψ ′ (x) + ψ ′′′ (x) -ψ ′′′′′ (x) = 0, x ∈ (0, L) ψ(0) = ψ(L) = ψ ′ (0) = ψ ′ (L) = 0, ψ ′′ (0) = ψ ′′ (L) = 0, (3.2) 
then ψ ≡ 0.

For a strong solution of (1.6) (or (2.1)) performing integration by parts, we get using |α| < 1

Ė(t) = 1 2 sat(α∂ 2 x u(t, 0)) 2 -∂ 2 x u(t, 0) 2 ≤ -C α ∂ 2 x u(t, 0) 2 ≤ 0. (3.3) 
Thus, the energy is a non-increasing function of time. In fact, we will prove that the energy decays exponentially to 0. Our approach will be based on an observability inequality for the system (2.1).

Proposition 3.2. Let L > 0, |α| < 1 and u 0 ∈ L 2 (0, L). For any solution u of (2.1), the following inequality holds:

L 0 u 2 0 dx ≤ C obs T 0 ∂ 2 x u(t, 0) 2 dt, (3.4) 
for some C obs > 0, that does not depend on u 0 .

Proof. In order to prove the observability inequality, we follow [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] and use a contradiction argument. Let us suppose that (3.4) is false, then there exists (u n 0 ) n∈N ⊂ L 2 (0, L) such that L 0 (u n 0 ) 2 dx = 1, and

T 0 ∂ 2,n x u(t, 0) 2 dt -→ 0
when n → ∞ and where u n is the associate solution of (2.1) with initial data u n 0 . Now, using (2.10) with f = 0 we get that (u n ) n∈N is bounded in L 2 ((0, T ), H 2 (0, L)). Then as

∂ t u n = -∂ x u n -∂ 3 x u n + ∂ 5 x u n , we can see that (∂ t u n ) n∈N is bounded in L 2 ((0, T ), H -3 (0, L)), thus by Aubin-Lions lemma (u n ) n∈N is relatively compact in L 2 ((0, T ), L 2 (0, L)), therefore we can assume that u n -→ u in L 2 ((0, T ), L 2 (0, L)). Now, using (2.11) we derive that (u n 0 ) n∈N is a Cauchy sequence in L 2 (0, L) . Let u 0 = lim n→∞ u n 0 , then L 0 u 2 0 dx = 1, and T 0 ∂ 2 x u(t, 0) 2 dt = 0
Thus, as sat loc (0) = 0, we conclude that y solves the following linear equation:

         ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = 0, t ∈ (0, ∞), ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ x u(t, 0) = ∂ 2 x u(t, 0) = ∂ 2 x u(t, L) = 0, t ∈ (0, ∞). (3.5) 
But by Lemma 3.1 we can show that there is no function satisfying this system and ∥u 0 ∥ L 2 (0,L) = 1, which gives us the contradiction and finishes the proof of Proposition 3.2. □ Now, we prove our main result related with the exponential stability in the boundary saturated case.

Theorem 3.3. Let L > 0, |α| < 1 and u 0 ∈ L 2 (0, L). For any solution u of (2.1), the energy of the system decays exponentially to zero i.e, there exists C, γ > 0 such that E(t) ≤ CE(0)e -γt , for all t ≥ 0. Moreover, if ∥u 0 ∥ L 2 (0,L) ≤ ε for ε > 0 small enough, the same property holds for (1.6).

Proof. Let u 0 ∈ D(A b ), using (3.3) and ( 2.3) we get for a strong solution of (2.1)

Ė(t) ≤ -C α ∂ 2 x u(t, 0) 2 , thus we can see E(T ) -E(0) ≤ -C α T 0 ∂ 2 x u(t, 0) 2 dt.
Using the last expression, (3.3) and (3.4) we get

E(T ) ≤ E(0) ≤ C obs T 0 ∂ 2 x u(t, 0) 2 dt ≤ C obs C α (E(0) -E(T )),
which implies that 

E(T ) ≤ γE(0), with γ = C obs C α + C obs < 1. ( 3 
E(mT ) ≤ γE((m -1)T ) ≤ • • • ≤ γ m E(0).
Hence, we have E(mT ) ≤ e -µmT E(0) where µ = 1 T ln 1 γ > 0. Let t > 0 then there exists m ∈ N * such that (m -1)T < t ≤ mT , and then using again the non-increasing property of the energy we get

E(t) ≤ E((m -1)T ) ≤ e -µ(m-1)T E(0) ≤ 1 γ e -µt E(0).
Finally, we conclude the exponential stability of (2.1) by a density argument.

We study now the nonlinear case, note that as (1.6) is also invariant by translation in time, thus to prove the stability, the objective is to show that (3.6) holds for u solution of (1.6) if the initial data it is small enough. This idea was used in several works, for instance [START_REF] Parada | Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback[END_REF][START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF]. Let ∥u 0 ∥ L 2 (0,L) ≤ ϵ for ϵ > 0 to fix later. Take u the solution of (1.6), then we can split u as u = u + ũ, where

         ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ 2 x u(t, L) = sat loc (α∂ 2 x u(t, 0)), t ∈ (0, ∞), u(0, x) = u 0 (x),
x ∈ (0, L),

and          ∂ t ũ + ∂ x ũ + ∂ 3 x ũ -∂ 5 x ũ = u p ∂ x u, (t, x) ∈ (0, ∞) × (0, L), ũ(t, 0) = ũ(t, L) = ∂ x ũ(t, 0) = ∂ x ũ(t, L) = 0, t ∈ (0, ∞), ∂ 2 x ũ(t, L) = h(t), t ∈ (0, ∞), ũ(0, x) = 0, x ∈ (0, L).
where

h(t) = sat(α∂ 2 x u(t, 0)) -sat(α∂ 2 x u(t, 0)). Now, we observe that ∥u(T, •)∥ L 2 (0,L) ≤ ∥u(T, •)∥ L 2 (0,L) + ∥ũ(T, •)∥ L 2 (0,L) . (3.7)
From the other side as u satisfies (2.1), we get using (3.6) and u(0, x) = u 0 (x) that there exists γ < 1 such that ∥u(T )∥ L 2 (0,L) ≤ γ∥u 0 ∥ L 2 (0,L) .

(3.8) For ũ, by (2.10) and Proposition 2.6,

∥ũ(T, •)∥ L 2 (0,L) ≤ ∥ũ∥ C([0,T ],L 2 (0,L)) ≤ C∥u p ∂ x u∥ L 1 ((0,T ),L 2 (0,L)) ≤ C∥u∥ p+1 B T , using (2.22)-(2.25), we derive ∥u∥ p+1 B T ≤ C ∥u 0 ∥ p+1 L 2 (0,L) + ∥u 0 ∥ (4+p)(p+1) 4-p L 2 (0,L)
.

Thus, we get for ũ ∥ũ(T,

•)∥ L 2 (0,L) ≤ C∥u 0 ∥ p L 2 (0,L) + C∥u 0 ∥ p(6+p) 4-p L 2 (0,L) ∥u 0 ∥ L 2 (0,L) .
Finally, as ∥u 0 ∥ L 2 (0,L) ≤ ϵ we deduce from (3.7)

∥u(T, •)∥ L 2 (0,L) ≤ ∥u(T, •)∥ L 2 (0,L) + ∥ũ(T, •)∥ L 2 (0,L) ≤ γ∥u 0 ∥ L 2 (0,L) + (Cϵ p + Cϵ p(6+p) 4-p )∥u 0 ∥ L 2 (0,L) = (γ + Cϵ p + Cϵ p(6+p) 4-p )∥u 0 ∥ L 2 (0,L) .
We conclude by choosing ϵ > 0 small enough such that γ = γ + Cϵ p + Cϵ p(6+p) 4-p < 1. □

Internal saturation.

We pass now to study the case of internal saturation. We are interested to prove the following exponential stabilization result:

Theorem 3.4 (Semi global stabilization). Let us consider the system (1.4). Then for any r > 0 there exists a constant µ(r) > 0 such that for any u 0 ∈ L 2 (0, L) satisfying ∥u 0 ∥ L 2 (0,L) ≤ r, the solution of (1.4) satisfy the following:

E(t) ≤ e -µt E(0), ∀t ≥ 0,
where E(•) is defined in (3.1).

Before going to prove Theorem 3.4, first we state some useful results borrowed from the article [START_REF]Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF].

Lemma 3.5 ([20]

). Let r > 0 and a : [0, L] → R be a function which satisfies (1.5). Let us define

k(r) = min M a 1 r , 1 ,
where M and a 1 are defined in (1.2) and (1.5) respectively. The following two hold:

• For s ∈ L 2 (0, L) with ∥s∥ L 2 (0,L) ≤ r, we have Using (2.36), we have ∥u(t, •)∥ L 2 (0,L) ≤ r, where r > 0 be any number such that ∥u 0 ∥ L 2 ≤ r. Applying first estimate (3.9) of Lemma 3.5 we deduce 1 2

(sat 2 (a(x)s(x)) -k(r)a(x)s(x)) s(x) ≥ 0, ∀x ∈ [0, L]. ( 3 
d dt L 0 u 2 dx ≤ - L 0 k(r)a 0 u 2 (t, x)dx. (3.12)
Thus the proof is complete with µ = min{a 0 , k(r)}.

3.2.2.

Proof of Theorem 3.4 with ω ⊂ [0, L] and sat = sat 2 . In this case, we will use a contradiction argument as [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF]. First, let us state a unique continuation lemma for the Kawahara equation, which plays an integral part in the proof of stabilization result:

Lemma 3.6 (Unique continuation principle, [START_REF] Gao | Global Carleman estimate for the Kawahara equation and its applications[END_REF]). Let u 0 ∈ L 2 (0, L) and u ∈ B T be the solution of the equation

     ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u + u p ∂ x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = ∂ 2 x u(t, L) = 0, t ∈ (0, ∞), u(0, x) = u 0 (x),
x ∈ (0, L), (3.13) such that u(t, x) = 0, ∀ x ∈ ω, ∀ t ∈ (0, T ), with ω ⊂ (0, L). Then u(t, x) = 0, ∀ x ∈ (0, L), ∀ t ∈ (0, T ).

For the sake of completeness, we give a sketch of the proof of Lemma 3.6 in the Appendix B. Let us consider ∥u 0 ∥ L 2 (0,L) ≤ r. Using (2.36), we deduce

∥u(t, •)∥ L 2 (0,L) ≤ r, ∀t ≥ 0. (3.14) Integrating (2.35) over [0, T ] we have L 0 u 2 (T, •)dx = L 0 u 2 0 dx - T 0 ∂ 2 x u(t, 0) 2 dt -2 T 0 L 0 sat(a(x)u(t, x))u(t, x)dxdt (3.15) 
As (3.14) holds, we apply the first part of Lemma 3.5, and deduce

L 0 u 2 (T, •)dx ≤ L 0 u 2 0 dx - T 0 ∂ 2 x u(t, 0) 2 dt -2 T 0 L 0 k(r)a(x)|u(t, x)| 2 dxdt. (3.16) 
Next, for the time being we assume the following result:

Lemma 3.7. Let us take T > 0 and let r be any positive number. Then for any u 0 ∈ L 2 (0, L), with ∥u 0 ∥ L 2 (0,L) ≤ r, the solution of the equation (1.4) satisfies the following

∥u 0 ∥ 2 L 2 (0,L) ≤ C 2 T 0 |∂ 2 x u(t, 0)| 2 dt + 2 T 0 L 0 k(r)a(x)|u(t, x)| 2 dxdt . (3.17) 
Therefore combining (3.16) and (3.17), we finally have the existence of γ ∈ (0, 1) such that

∥u(kT, •)∥ 2 L 2 (0,L) ≤ γ k ∥u 0 ∥ 2 L 2 (0,L) , ∀ k ≥ 0. (3.18) Using (2.36), we have ∥u(t, •)∥ 2 L 2 (0,L) ≤ ∥u(kT, •)∥ 2 L 2 (0,L) , where kT ≤ t ≤ (k + 1)T. Finally, we obtain that ∥u(t, •)∥ L 2 (0,L) ≤ 1 γ e -µt ∥u 0 ∥ L 2 (0,L) , ∀ t ≥ 0, (3.19) 
where µ = -log γ T . 3.2.3. Proof of Lemma 3.7. Thanks to (2.33), we can say that to prove Lemma 3.7, it is enough to show that the following

∥u∥ 2 L 2 (0,T ;L 2 (0,L) ≤ C 2 T 0 |∂ 2 x u(t, 0)| 2 dt + 2 T 0 L 0 k(r)a(x)|u(t, x)| 2 dxdt , (3.20) 
for some C > 0, provided ∥u 0 ∥ L 2 (0,L) ≤ r. We prove this inequality by contradiction approach. Suppose that (3.20) is not true. Hence there exists a sequence of functions u n 0 ∈ L 2 (0, L) with ∥u n 0 ∥ L 2 (0,L) ≤ r and {u n } n∈N ∈ B T be the corresponding solution of the equation

     ∂ t u n + ∂ x u n + ∂ 3 x u n -∂ 5 x u n + u np ∂ x u n + sat(a(x)u n (t, x)) = 0, (t, x) ∈ (0, ∞) × (0, L), u n (t, 0) = u n (t, L) = ∂ x u n (t, 0) = ∂ x u n (t, L) = ∂ 2 x u n (t, L) = 0, t ∈ (0, ∞), u n (0, x) = u n 0 (x), x ∈ (0, L), (3.21) 
where p ∈ [1, 2), and

lim n→∞ ∥u n ∥ 2 L 2 (0,T ;L 2 (0,L)) T 0 |∂ 2 x u n (t, 0)| 2 dt + 2 T 0 L 0 k(r)a|u n (t, x)| 2 dxdt = +∞. (3.22) Also (2.36) gives that ∥u n (t, •)∥ L 2 (0,L) ≤ r, ∀ t ≥ 0. (3.23) Let us denote λ n = ∥u n ∥ L 2 (0,T ;L 2 (0,L)) and v n (t, x) = u n (t, x) λ n .
{λ n } n∈N is a bounded sequence by (3.23).

Therefore it has a subsequence, denoted by {λ n } n∈N such that there exists λ ≥ 0 with

λ n → λ as n → ∞. (3.24) 
Note that v n satisfies the following equation:

       ∂ t v n + ∂ x v n + ∂ 3 x v n -∂ 5 x v n + λ n v np ∂ x v n + sat(a(x)λ n v n (t, x)) λ n = 0, (t, x) ∈ (0, ∞) × (0, L), v n (t, 0) = v n (t, L) = ∂ x v n (t, 0) = ∂ x v n (t, L) = ∂ 2 x v n (t, L) = 0, t ∈ (0, ∞), ∥v n ∥ L 2 (0,T ;L 2 (0,L) = 1. (3.25)
and also by (3.22) we further have

T 0 |∂ 2 x v n (t, 0)| 2 dt + 2 T 0 L 0 k(r)a|v n (t, x)| 2 dxdt → 0 as n → ∞. (3.26) 
In addition, using (2.33), we have that {∥v n (0, •)∥ L 2 (0,L) } n∈N is a bounded sequence and due to the following

   ∥v n ∥ 2 L 2 (0,T ;H 2 (0,L)) ≤ C ∥v n (0, •)∥ 2 L 2 (0,L) + T ∥v n (0, •)∥ 8+2p 4-p L 2 (0,L) ∥v n (t, •)∥ L 2 (0,L) ≤ ∥v n (0, •)∥ L 2 (0,L) , (3.27) 
the sequence {v n } n∈N is bounded in the space L 2 (0, T ; H 2 (0, L)) and L ∞ ([0, T ]; L 2 (0, L)). Therefore there exists a subsequence still denoted by

{v n } n∈N and a function v ∈ L ∞ (0, T ; L 2 (0, L)) ∩ L 2 (0, T ; H 2 (0, L)) such that v n * ⇀ v in L ∞ (0, T ; L 2 (0, L)) v n ⇀ v in L 2 (0, T ; H 2 (0, L)) (3.28) 
To derive the equation satisfied by v, we need to pass the limit in (3.25) and thus, in the following steps, we need to take care of the convergence of the terms related to the nonlinearity. First of all, we have

∥v np ∂ x v n ∥ L 1 ((0,T ),L 2 (0,L)) ≤ C(T (2-p)/4 + √ T )∥v n ∥ p B T ∥v n ∥ B T ≤ C. (3.29) 
In the next step, we prove that

{(v n ) p+1 } n∈N is bounded in L 2 (0, T ; L 2 (0, L)). T 0 L 0 (v n ) 2p+2 dxdt ≤ ∥v n ∥ 2 L 2 (0,T ;H 1 (0,L)) ∥v n ∥ 3+ϵ L ∞ (0,T ;L 2 (0,L) ≤ C, (3.30) 
where p = 1 + ϵ, 0 < ϵ < 1. This shows that

{v np ∂ x v n } n∈N is bounded in the space L 2 (0, T ; H -1 (0, L)) ⊂ L 2 (0, T ; H -3 (0, L)). Also, we know that {∂ 5 x v n } n∈N is bounded in L 2 (0, T ; H -3 (0, L))
. Furthermore, it is easy to check the following estimate (see [START_REF]Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF]Lemma 3.2] for more details)

sat(a(x)λ n v n (t, x)) λ n L 2 (0,T ;L 2 (0,L)) ≤ C ∥v n ∥ L 2 (0,T ;H 1 (0,L)) . (3.31) 
Thus combining we have that

∂ t v n = -∂ x v n + ∂ 3 x v n -∂ 5 x v n + λ n v np ∂ x v n + sat(a(x)λnv n (t,x))
λn is bounded in L 2 (0, T ; H -3 (0, L)). Thanks to the Lions-Aubin lemma with the embedding H 2 (0, L) ⊂ L 2 (0, L) ⊂ H -3 (0, L), {v n } n∈N is relatively compact in L 2 (0, T ; L 2 (0, L)). It follows that there exists a subsequence, again denoted by {v n } n∈N such that v n → v in L 2 (0, T ; L 2 (0, L)). Further, it implies (v n ) p+1 → v p+1 a.e. (t, x) ∈ (0, T ) × (0, L). Since {(v n ) p+1 } n∈N is bounded in L 2 (0, T ; L 2 (0, L)), therefore there exists some h ∈ L 2 (0, T ; L 2 (0, L)) such that (v n ) p+1 ⇀ h in L 2 (0, T ; L 2 (0, L)). Uniqueness of limit gives h = v p+1 a.e. and we have (v n ) p+1 → v p+1 in D ′ ((0, T ) × (0, L)). Taking the derivative with respect to space, we further have

λ n v np ∂ x v n → λv p ∂ x v in D ′ ((0, T ) × (0, L)).
As {v n } n∈N and {∂ t v n } n∈N are bounded in the spaces L ∞ (0, T ; L 2 (0, L)) and L 2 (0, T ; H -3 (0, L)) respectively. Using the embedding L 2 (0, L) ⊂ H -1 (0, L) ⊂ H -3 (0, L) (see [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4]), we get by for a subsequence denoted by

{v n } n∈N that v n → v in C([0, T ]; H -1 (0, L)).
Thus in a nutshell, interpolation theory gives us the following

               v n * ⇀ v in L ∞ (0, T ; L 2 (0, L)) v n ⇀ v in L 2 (0, T ; H 2 (0, L)) v n → v in L 2 (0, T ; L 2 (0, L)) v n → v in C([0, T ]; H -1 (0, L)) λ n v np ∂ x v n → λv p ∂ x v in D ′ ((0, T ) × (0, L)).
(3.32) Moreover, from (3.26) we deduce:

T 0 |∂ 2 x v(t, 0)| 2 dt + 2 T 0 L 0 k(r)a(x)|v(t, x)| 2 dxdt ≤ lim inf n→∞ T 0 |∂ 2 x v n (t, 0)| 2 dt + 2 T 0 L 0 k(r)a(x)|v n (t, x)| 2 dxdt = 0.
Therefore a(x)k(x)v = 0, x ∈ (0, L) and ∂ 2 x v(•, 0) = 0, t ∈ (0, T ). This further implies v = 0, x ∈ ω, t ∈ (0, T ). We also obtain the limit v solves the following equation in the sense of distribution

     ∂ t v + ∂ x v + ∂ 3 x v -∂ 5 x v + λv p ∂ x v = 0, (t, x) ∈ (0, ∞) × (0, L), v(t, 0) = v(t, L) = ∂ x v(t, 0) = ∂ x v(t, L) = ∂ 2
x v(t, L) = 0, t ∈ (0, ∞), ∥v∥ L 2 (0,T ;L 2 (0,L)) = 1. (3.33) by unique continuation principle Lemma 3.6, we have v = 0, x ∈ (0, L), t ∈ (0, T ). This contradicts the fact ∥v∥ L 2 (0,T ;L 2 (0,L)) = 1. Therefore Lemma 3.7 holds.

3.2.4. Proof of Theorem 3.4 with ω ⊂ [0, L] and sat = sat loc . We will prove the exponential stabilization result Theorem 3.4 with sat = sat loc as the same strategy of above. It is clear that the stabilizability follows if we can prove the following lemma: Lemma 3.8. Let us take T > 0 and let r be any positive number. Then for any u 0 ∈ L 2 (0, L), with ∥u 0 ∥ L 2 (0,L) ≤ r, the solution of the equation (1.4) satisfies the following

∥u 0 ∥ 2 L 2 (0,L) ≤ C 2 T 0 |∂ 2 x u(t, 0)| 2 dt + 2 T 0 L 0 sat loc (au(t, x))u(t, x)dxdt . (3.34)
Proof. Using (2.33), we can say that to prove Lemma 3.7, it is enough to show that the following

∥u∥ 2 L 2 (0,T ;L 2 (0,L) ≤ C 2 T 0 |∂ 2 x u(t, 0)| 2 dt + 2 T 0 L 0 sat loc (au(t, x))u(t, x)dxdt , (3.35) 
for some C > 0, provided ∥u 0 ∥ L 2 (0,L) ≤ r. Using contradiction we will prove the estimate (3.35). If possible, let us assume that there exists a sequence of functions u n 0 ∈ L 2 (0, L) with ∥u n 0 ∥ L 2 (0,L) ≤ r and {u n } n∈N ∈ B T be the corresponding solution of the equation Thanks to (2.36), we obtain ∥u n (t, •)∥ L 2 (0,L) ≤ r, ∀ t ≥ 0.

     ∂ t u n + ∂ x u n + ∂ 3 x u n -∂ 5 x u n + u np ∂ x u n + sat loc (a(x)u n (t, x)) = 0, (t, x) ∈ (0, ∞) × (0, L), u n (t, 0) = u n (t, L) = ∂ x u n (t, 0) = ∂ x u n (t, L) = ∂ 2 x u n (t, L) = 0, t ∈ (0, ∞), u n (0, x) = u n 0 (x), x ∈ (0, L), (3.36 
(3.38) Also, using (2.33), we have that {v n (0, •)} n∈N is a bounded sequence in L 2 (0, L) and we further deduce

∥v n ∥ 2 L 2 (0,T ;H 2 (0,L)) ≤ C ∥v n (0, •)∥ 2 L 2 (0,L) + T ∥v n (0, •)∥ 8+2p 4-p L 2 (0,L) ≤ Cr 2 + CT r 8+2p 4-p . (3.39)
Using Poincare inequality, we have

∥u n (t, •)∥ L ∞ (0,L) ≤ C ∥u n ∥ H 2 (0,L) ∀ t ∈ [0, T ].
This further gives

∥u n (•, x)∥ 2 L 2 (0,T ) ≤ C 1 , (3.40) 
where C 1 = C 2 (Cr 2 + CT r 8+2p 4-p ). Let us consider the subsets Ω i ⊂ [0, T ] defined as

Ω i = {t ∈ [0, T ] : ∥u n (t, •)∥ L ∞ (0,L) > i}. (3.41)
Its complement is then given by

Ω c i = {t ∈ [0, T ] : ∥u n (t, •)∥ L ∞ (0,L) ≤ i}. (3.42) Therefore we have ∥u n ∥ 2 L 2 (0,T ;L ∞ (0,L)) ≥ ∥u n ∥ 2 L 2 (Ωi;L ∞ (0,L)) ≥ i 2 µ(Ω i ), (3.43) 
where µ(Ω i ) is the Lebesgue measure of the set Ω i . Next, using (3.40) we have µ(Ω i ) ≤ C1 i 2 . This implies that max T -

C 1 i 2 , 0 ≤ µ(Ω c i ) ≤ T. (3.44)
Thanks to the estimate (3.10) of Lemma 3.5, we have

T 0 L 0 sat loc (au n )u n dtdx = Ωi L 0 sat loc (au n )u n dtdx + Ω c i L 0 sat loc (au n )u n dtdx ≥ Ω c i L 0 sat loc (au n )u n dtdx ≥ Ω c i L 0 ak(i)(u n ) 2 dtdx. (3.45)
Let us denote λ n = ∥u n ∥ L 2 (0,T ;L 2 (0,L)) and v n (t, x) = u n (t, x) λ n . {λ n } n∈N is a bounded sequence by (3.23).

Therefore it has a subsequence, denoted by {λ n } n∈N such that there exists λ ≥ 0 with

λ n → λ as n → ∞. (3.46)
Note that v n satisfies the following equation:

       ∂ t v n + ∂ x v n + ∂ 3 x v n -∂ 5 x v n + λ n v np ∂ x v n + sat loc (a(x)λ n v n (t, x)) λ n = 0, (t, x) ∈ (0, ∞) × (0, L), v n (t, 0) = v n (t, L) = ∂ x v n (t, 0) = ∂ x v n (t, L) = ∂ 2 x v n (t, L) = 0, t ∈ (0, ∞), ∥v n ∥ L 2 (0,T ;L 2 (0,L) = 1, ( 3 
.47) and also by (3.37) and (3.45) and we further have

T 0 |∂ 2 x v n (t, 0)| 2 dt + 2 T 0 L 0 k(i)a(x)|v n (t, x)| 2 dxdt → 0 as n → ∞. (3.48) 
Moreover, it is easy to check the following estimate (see [START_REF]Global stabilization of a Korteweg-de Vries equation with saturating distributed control[END_REF]Lemma 3.2])

sat loc (a(x)λ n v n (t, x)) λ n L 2 (0,T ;L 2 (0,L)) ≤ C ∥v n ∥ L 2 (0,T ;H 1 (0,L)) . (3.49) 
Like previous section, we have that

∂ t v n = -∂ x v n + ∂ 3 x v n -∂ 5 x v n + λ n v np ∂ x v n + sat(a(x)λnv n (t,x))
λn is bounded in L 2 (0, T ; H -3 (0, L)). Thanks to the Lions-Aubin lemma with the embedding H 2 (0, L) ⊂ L 2 (0, L) ⊂ H -3 (0, L), {v n } n∈N is relatively compact in L 2 (0, T ; L 2 (0, L)). It follows that there exists a subsequence, again denoted by {v n } n∈N such that v n → v in L 2 (0, T ; L 2 (0, L)). Moreover with (3.48) we have ak

(i)v(t, x) = 0, ∀ x ∈ (0, L), ∀ t ∈ Ω c i and ∂ 2 x v(t, 0) = 0, ∀ t ∈ (0, T ). As k(i) is strictly positive, we further have v(t, x) = 0, ∀ x ∈ ω, ∀ t ∈ ∪ i∈N Ω c i and ∂ 2 x v(t, 0) = 0, ∀t ∈ (0, T ). As µ(∪ i∈N Ω c i ) = T, we have v(t, x) = 0, ∀x ∈ ω, ∀ t ∈ ∪ i∈N Ω c i and ∂ 2
x v(t, 0) = 0, ∀ t ∈ (0, T ). This implies that v(t, x) = 0, ∀ x ∈ ω with almost every t ∈ (0, T ). We also obtain that the limit v solves the following equation in the sense of distribution

     ∂ t v + ∂ x v + ∂ 3 x v -∂ 5 x v + λv p ∂ x v = 0, (t, x) ∈ (0, ∞) × (0, L), v(t, 0) = v(t, L) = ∂ x v(t, 0) = ∂ x v(t, L) = ∂ 2 x v(t, L) = 0, t ∈ (0, ∞), ∥v∥ L 2 (0,T ;L 2 (0,L)) = 1. (3.50)
Using the unique continuation principle Lemma 3.6 for Kawahara equation we have v(t, x) = 0, ∀ x ∈ (0, L). Which is a contradiction. Hence the proof follows. □

Conclusion and final comments

In this work the exponential stabilization of the nonlinear Kawahara equation was addressed. The control was considered acting internally or in the boundary. In both cases, a global well-posedness result was obtained. In the case of boundary saturation a local exponential stability result was derived while for internal saturated actuator a semiglobal exponential stability result was shown. The main strategies in the proof of those results were observability inequalities, contradiction arguments and compactness ideas. We finish this work with several comments and remarks, in order: 4.1. Sign of the first-order derivative. One can wonder if our results are still valid if we modify slightly our systems. This, extension is in fact not true in all the cases. To fix ideas, consider the following equation

     ∂ t u -∂ x u + ∂ 3 x u -∂ 5 x u + u p ∂ x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, ∂ 2 x u(t, L) = sat loc (α∂ 2 x u(t, 0)), t ∈ (0, ∞), u(0, x) = u 0 (x),
x ∈ (0, L). (4.1) Observe that (4.1) it is almost the same equation than (1.6), the unique difference is the sign of the first order derivative. If we reply the arguments Theorem 3.3 to show exponential stability, we are ask to analyze the solutions of

         ∂ t u -∂ x u + ∂ 3 x u -∂ 5 x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = 0, t ∈ (0, ∞), ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ x u(t, 0) = ∂ 2 x u(t, 0) = ∂ 2 x u(t, L) = 0, t ∈ (0, ∞). (4.2) 
For this system, it was shown in [START_REF] Araruna | Energy decay for the modified Kawahara equation posed in a bounded domain[END_REF], the existence of a critical set N , such that if L ∈ N , there exists a steady-state solution of (4.2). Therefore, the argument does not follow. In the case of the KdV equation similar phenomena appears, but for the KdV equation studied in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] the set of critical lengths is totally know, that allows in [START_REF] Parada | Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback[END_REF] to show the exponential stability with saturated boundary control if the length is not critical. By contrast, for (4.2) it is not known if the set N represents all the critical lengths or just some of them. With this in mind, the exponential stability with boundary saturation holds as long the following unique continuation property is true for give L > 0

Assumption 4.1. If λ, ψ ∈ C × H 5 (0, L) satisfies      λψ(x) -ψ ′ (x) + ψ ′′′ (x) -ψ ′′′′′ (x) = 0, x ∈ (0, L) ψ(0) = ψ(L) = ψ ′ (0) = ψ ′ (L) = 0, ψ ′′ (0) = ψ ′′ (L) = 0, then ψ ≡ 0.
Now we consider the same equation, but we drop the first order term; i.e.

         ∂ t u + ∂ 3 x u -∂ 5 x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = 0, t ∈ (0, ∞), ∂ x u(t, 0) = ∂ x u(t, L) = 0, t ∈ (0, ∞), ∂ x u(t, 0) = ∂ 2 x u(t, 0) = ∂ 2 x u(t, L) = 0, t ∈ (0, ∞). (4.3) 
In [START_REF] Vasconcellos | Stabilization of the linear Kawahara equation with localized damping[END_REF][START_REF] Vasconcellos | Stabilization of the linear Kawahara equation with localized damping[END_REF], it was shown that the set of critical lengths related to this equation it is empty. Therefore, we expect that our stability result by saturated boundary feedback is still valid in this context. In the case of internal saturation the situation is better. Consider the following system

     ∂ t u + η∂ x u + ∂ 3 x u -∂ 5
x u + u p ∂ x u + sat(a(x)u(t, x)) = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, ∂ 2

x u(t, L) = 0, t ∈ (0, ∞), u(0, x) = u 0 (x),

x ∈ (0, L),

where η = 0, -1 and a ∈ L ∞ (0, L) satisfies (1.5). Straightforward modifications of Theorem 2.11 allow us to show that there exists a unique mild solution u ∈ C([0, ∞), L 2 (0, L)) ∩ L 2 (0, ∞), H 2 (0, L) of (4.4). With respect to the stabilization, following the proof of Theorem 3.4 we are asking to prove similar unique continuation principle as Lemma 3.6, for a solution of

         ∂ t u + η∂ x u + ∂ 3 x u -∂ 5
x u + u p ∂ x u = 0, (t, x) ∈ (0, ∞) × (0, L), u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = 0, ∂ 2

x u(t, L) = 0, t ∈ (0, ∞), u(t, x) = 0, (t, x) ∈ (0, ∞) × ω, u(0, x) = u 0 (x),

x ∈ (0, L).

In particular, we can write

∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u + u p ∂ x u = (1 -η)∂ x u.
Then, we can apply the Carleman estimate (B.1) and absorb the remaining right hand-side terms by the left hand side terms. From where we can conclude the semiglobal exponential stability of (4.4).

4.2. More general nonlinearities. In the introduction of this work, we mention that in [START_REF] Araruna | Energy decay for the modified Kawahara equation posed in a bounded domain[END_REF] the internal stabilization was studied in the case p ∈ [1, 4), but a smallness condition in the initial data was required for p ∈ [START_REF] Boyd | Weakly non-local solitons for capillary-gravity waves: fifth-degree korteweg-de vries equation[END_REF][START_REF] Capistrano-Filho | Massera's theorems for a higher order dispersive system[END_REF]. This is one of the main reasons why we only considered the case p ∈ [1, 2). In fact, if the initial data is too small, then by continuity, the solution remains small, which could imply that sat(au) = au, then the system is not really saturated. One can prove the above result in the same spirit of [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF]. Let us consider a function ψ ∈ C ∞ (0, 1) with ψ > 0 in (0, 1), ψ(0) = ψ(1) = 0, ∥ψ∥ L ∞ (0,1) = 1, |ψ x | > 0 in [0, 1] \ ω, ψ x (0) > 0, ψ x (1) < 0. For any ϵ > 0, we consider a(t, x) = e µ(ψ(x)+3) -e 5µ (t -ϵ)(T -t) , ξ = e λa , φ = e µ(ψ(x)+3) (t -ϵ)(T -t) , t ∈ (ϵ, T ). x u 2 + s 3 φ 3 ξ 2 ∂ Finally we have the following:

T ϵ L 0 sφξ 2 ∂ 4 x u 2 + s 3 φ 3 ξ 2 ∂ 3 x u 2 + s 5 φ 5 ξ 2 ∂ 2 x u 2 + s 7 φ 7 ξ 2 ∂ x u 2 + s 9 φ 9 ξ 2 u 2 ≤ C T ϵ ω sφξ 2 ∂ 4 x u 2 + s 9 φ 9 ξ 2 u 2 .
Therefore u = 0 in (0, T ) × ω implies that u = 0 in (ϵ, T ) × (0, L) for all ϵ > 0. As a result we get have u = 0, (t, x) ∈ (0, T ) × (0, L).

. 9 )• 3 . 2 . 1 .

 9321 For s ∈ L ∞ (0, L) with |s(x)| ≤ r, we have(sat loc (a(x)s(x)) -k(r)a(x)s(x)) s(x) ≥ 0, ∀x ∈ [0, L].(3.10) Proof of Theorem 3.4 with ω = [0, L] and sat = sat 2 . In this case, the proof is direct. Indeed, thanks to the estimate (2.35)(x)u(t, x))u(t, x)dx.(3.11) 

2 x 2 T 0 L 0 sat

 2200 u n (t, 0)| 2 dt + loc (au(t, x))u(t, x)dxdt = +∞.(3.37)
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  Now we will use a global Carleman estimate [13, Proposition 1] for Kawahara equation. Let us denote the following spaceU ϵ = u ∈ L 2 (ϵ, T ; H 5 (0, L))| u(t, 0) = u(t, L) = ∂ x u(t, 0) = ∂ x u(t, L) = ∂ 2 x u(t, L) = 0, P u = ∂ t u + ∂ x u + ∂ 3 x u -∂ 5 x u ∈ L 2 (ϵ, T ; L 2 (0, L)) Proposition B.2.There exists positive constants µ 0 > 1, C 0 > 0 and C 1 > 0 such that for µ = µ 0 and for every λ ≥ C 0 (T + T 2 ), for all u ∈ U ϵ , we have

0 sφξ 2 ∂ 4 x u 2 + s 3 φ 3 ξ 2 ∂ 3 x u 2 + s 5 φ 5 ξ 2 ∂ 2 x u 2 + s 7 φ 7 ξ 2 ∂ x u 2 + s 9 φ 9 ξ 2 u 2 ≤ C T ϵ ω ξ 2 s 7 φ 7 ξ 2 ∂ x u 2 .ϵ ω ξ 2 s 7 φ

 0222222222227 H 5 (0, L)) ∩ L 2 (t 3 , T ; H 7 (0, L)). Therefore, we eventually have u ∈ C([ϵ, T ]; H 5 (0, L)) ∩ L 2 (ϵ, T ; H 7 (0, L)). Thus we can use (B.1) for the solution u as u ∈ U ϵ .Plugging P u = u p ∂ x u in the Global Carleman estimate (B.1), we haveT ϵ L |∂ x uu p | 2 + sφξ 2 ∂ 4 x u 2 + s 9 φ 9 ξ 2 u 2 . (B.2)Note that u ∈ L ∞ ((ϵ, T ) × (0, L)). Therefore one can find a large constantC 1 = ∥u∥ p L ∞ ((ϵ,T )×(0,L))and consider s large enough so we can absorb the last term in the right hand sides by the term 1 Indeed chosse s ≥ C 1 (T + T 2 ) we haveC T |u p ∂ x u| 2 ≤ 7 ξ 2 ∂ x u 2 .

  3 x u 2 + s 5 φ 5 ξ 2 ∂ 2 x u 2 + s 7 φ 7 ξ 2 ∂ x u 2 + s 9 φ 9 ξ 2 u 2 |P u| 2 + sφξ 2 ∂ 4 x u 2 + s 9 φ 9 ξ 2 u 2 . (B.1) B.1. Proof of Lemma 3.6. As, u ∈ L 2 (0, T ; H 2 (0, L)), for any ϵ ∈ (0, T ), there exists a candidate t 1 ∈ (0, ϵ) such that u(t 1 , •) ∈ H 2 (0, L). Using Proposition B.1, we get that u ∈ C([t 1 , T ]; H 2 (0, L)) ∩ L 2 (t 1 , T ; H 4 (0, L)). Similar argument gives a time t 2 ∈ (t 1 , ϵ) such that u(t 1 , •) ∈ H 4 (0, L). Again from Proposition B.1, it follows that that u ∈ C([t 2 , T ]; H 4 (0, L))∩L 2 (t 2 , T ; H 6 (0, L)). Proceeding with similar argument we finally have t 3 ∈ (t 2 , ϵ) such that u ∈ C([t 3 , T ];

	T	
	≤ C	ξ 2
	ϵ	ω

Appendix A. Proof of Lemma 2.2 In this part, we prove that the operator T is well-defined. Indeed, take ψ defined by

We can easily observe that ψ(0

which is equivalent to (A 0 b -λI)φ = -f . Now, let (λ, y) a pair eigenvalue, eigenfunction of A 0 b , i.e A 0 b y = λy, in particular we have -y ′ -y ′′′ + y ′′′′′ = λy, -y ′ -y ′′′ + y ′′′′′ = λy.

We multiply the first equation by y, the second one by y and we integrate over (0, L), we get after some integration by parts

By adding these two equations, we deduce

Then as λ > 0, we get λ / ∈ σ(A 0 b ), thus A 0 b -λI is invertible and finally, φ = -(A 0 b -λI) -1 f , is well defined and also z.

This section is devoted to the proof of the unique continuation principle for the Kawahara equation with interior observation. Let us first recall the following existence result of the Kawahara equation in a regular set-up.

Proposition B.1. Let us assume that u 0 ∈ H 5 (0, L). Then the equation (3.13) with u(0, •) = u 0 possesses a unique solution u ∈ C([0, T ], H 5 (0, L))∩L 2 (0, T ; H 7 (0, L)). Also by interpolation, if u 0 ∈ H s (0, L), then the equation (3.33) possesses a unique solution u ∈ C([0, T ], H s (0, L)) ∩ L 2 (0, T ; H s+2 (0, L)), 0 ≤ s ≤ 5.