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FROM INGHAM TO NAZAROV’S INEQUALITY: A SURVEY ON SOME TRIGONOMETRIC
INEQUALITIES

PHILIPPE JAMING & CHADI SABA

ABSTRACT. The aim of this paper is to give an overview of some inequalities about L”-norms (p = 1 or
p = 2) of harmonic (periodic) and non-harmonic trigonometric polynomials. Among the material covered,
we mention Ingham’s Inequality about L? norms of non-harmonic trigonometric polynomials, the proof of
the Littlewood conjecture by Mc Gehee, Pigno and Smith on the lower bound of the L! norm of harmonic
trigonometric polynomials as well as its counterpart in the non-harmonic case due to Nazarov. For the latter
one, we give a quantitative estimate that completes our recent result with an estimate of L'-norms over small
intervals.

We also give some stronger lower bounds when the frequencies satisfy some more restrictive conditions
(lacunary Fourier series, “multi-step arithmetic sequences”).

Most proofs are close to existing ones and some open questions are mentioned at the end.
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1. INTRODUCTION

The aim of this paper is to give an overview of the main estimates of L”-norms of harmonic and non-
harmonic trigonometric polynomials, when p = 2 and p = 1. In many fields of mathematics, ranging from
number theory (see e.g. the previous survey [1]]) to signal processing and PDEs, one is lead to investigate
such norms. Our main motivation comes from the use of Ingham’s inequality (lower and upper estimates of
L?-norms of non-harmonic trigonometric polynomials) in control theory of PDEs. We refer the interested
reader to the book by Komornik and Loreti [14]

2020 Mathematics Subject Classification. 42A75.
Key words and phrases. Ingham’s Inequality, Littlewood problem, non-harmonic Fourier series, lacunary series.
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2 PHILIPPE JAMING & CHADI SABA

Let us not be more precise. We will here restrict attention to p = 2 or p = 1 and investigate L”-norm
estimates of (harmonic) trigonometric polynomials

12| N ) b
/ 2 ce ™ dt ¢, cC, nCN
=172 |k=—N

or non-harmonic trigonometric polynomials
)4

T/2| N _
l/ Z M| dt T>0,¢,cC, 4 CR
T Jorp | Sy

as well as their limits when T — +oc0
N p

T/2 ,
lim supl/ Z ce?™ dt T>0,¢,cC, 4 CR
Totoo T Jorp2 | 5y

(thatis Besicovitch norms). Note for future use that, when the 4, ’s are all integers, we recover the L([—1/2, 1/2])-
norms.

The simplest case p = 2 for harmonic trigonometric polynomials known by Parseval’s relation states
that

12| N 2 N
/ Z Cke2ilrkl‘ dt = Z |Ck|2-
—1/2 |k=—N k=—N

The situation becomes much complicated for non-harmonic trigonometric polynomials but is well under-
stood thanks to a deep result by Ingham:

Theorem A (Ingham). Let T > 1, then there are two constants A and B such that
— for every sequence (Ay) ez With Ay — A 2 1,
— for every complex sequence (¢ )y——n. N
for every integer N > 1,

N 5 1 T/2 N vins 2 N )
iTA,t
(1.1) Ak=§_N|ck| < T/_T/Zk;_N’cke k’ dthkzz_N|ck| .

The condition T > 1 is optimal in the following sense; When T' = 1, there is a sequence (A;);cz, With
Aks1 — A > 1 and a sequence (c;) € £ such that the lower bound in (LL1) does not hold for every N for
any A > 0.

Note that the upper bound in holds for every T' > 0, the restriction 7' > 1 is only needed for
the lower bound, which is the most interesting one for control theory. In the next section, we will present
Ingham’s proof and also compute the constants A and B. We will also present an argument due to Haraux
that allows to obtain the lower bound with T" arbitrarily small when |4, — A;| = 400 when k — +co.

Once the Lz—theory settled, we will move to the Ll—theory which is much richer. To start with, the
behavior of the L!-norm of a trigonometric polynomial may depend on the frequencies. There are two
extreme cases

— the frequencies form an arithmetic sequence, e.g. the Dirichlet kernel, one might expect the L'-norm
to be small in view of the estimate: when N — +oo

N

1/2 ‘ 4
/ Y #™H|dt==1InN+0(1),
—1/2 |k=—N 7[2

— the frequencies form a geometric sequence, or more generally a lacunary sequence (1, > gn;, with
g > 1) then the L'-norms are much large: for N large enough

12| N
[T émlar= v,

1/2 k=0
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We will prove these two estimates in Section 3. In view of those estimates, Littlewood conjectured that
the Dirichlet kernel has worse possible behavior, namely that

N

1/2
Ly := inf / Ze
no<n<-<ny f_y /5 e

2imnyt

dt > Clog N

for some constant C < iz The first non-trivial estimate was obtained by Cohen [S]] who proved that
b2

Ly >C(OnN/Inln N)'/8
for N > 4. Subsequent improvements are due to Davenport [[6], Fournier 8] and crucial contributions by
Pichorides [19,20} 21,22] leading to L > C In N /(Inln N)?. Finally, Littlewood’s conjecture was proved
independently by Konyagin [15] and Mc Gehee, Pigno, Smith [16]] in 1981. In both papers, Littlewood’s

conjecture is actually obtained as a corollary of a stronger result (and they are not consequences of one
another). The second one is the one we will focus on here and is the following result:

Theorem B (Mc Gehee, Pigno & Smith [16]). For ny < ny, < -+ < ny integers and ay, ... ,ay complex

numbers,
12| N
,/—1/2 k=

Z akeZtﬂ:nkt

where Cyypg is a universal constant (Cysps = 1/30 would do).

a
dt>CMPSZ| il

We will present its proof below.
We would like to insist that this is the worse possible behavior. To start, as we already mentioned, in

the lacunary case, the lower bound is \/]V . We will show a recent result of Hanson [[10] who considered a
family of sets (so-called “strongly multi-dimensional sets™) of which the simplest example is a multi-step
arithmetic sequence. By that, we mean a sequence n;yy = jD + kd, j € Z, k = 0,...,M — 1 and
Md < D. In other words, we take an arithmetic sequence with large step D and, after each element of the
sequence, we add a small piece of an arithmetic sequence with small step. It is then shown that

2| N M
/ ZZez’”(JDJrkd)’ dt>CInNInM.
—1/2 =0 k=0
We also present an example of Newman that constructed a, ... , ap all of modulus 1 such that
12| N '
/ Z age? | dt > \/N - C.
=1/2 |k=0

This shows that it is possible to be far away from the lower bound (and actually near to the best possible
upper bound).

The last part of this survey is devoted to L!-norms of non-harmonic trigonometric polynomials. The
best result to day is the following:

Theorem C. Let Ay < 4, < -+ < Ay be N distinct real numbers and ayy, ... ,ay be complex numbers.
Then

(i) we have
| [T

lim —
T—o+o T -T2

e21n'/1kt

(ii) If further ay, ..., ay all have modulus larger than 1, |a;| > 1 then

1 T/2
lim =
To+00 T /—T/2

ai
k=0

N

Z akeZ[zikt

k=0

dtZ%lnN
T
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(iii) Assume further that for k = 0,...,N — 1, A, — A > 1, then, for every T > 1, there exists a
constant C(T) such that, for every ay, ... ,ay € C,

1 /2 < 2 < |ak|
— a4 dr > C(T) .
T[m kz::f) k /Zi k+1

Moreover,

(a) for T > T2 we can take C(T) = Elz;

(b) for 1 <T <2, C(T)=O((T — N!3/2).

Let us comment on this theorem. To start with, the theorem is essentially a quantitative version of a result
of F. Nazarov [[17] and is due to the authors together with K. Kellay [13]]. Only the case 1 < T < 2 has not
been presented before. To be more precise, when the 4,’s are integers, this is of course the result of Mc
Gehee, Pigno and Smith while Point 2 comes from a slight modification of their argument by Stegeman and
Yabuta. Note that the constants are the same as those in Theorem [B| (and are actually a bit better). While it
is obvious that this inequality implies Theorem [B] (with the same constant), there is an elegant argument by
Hudson and Leckband [[11] that allows to show that the converse is also true. We will present this argument
below. Point 3 is due to Nazarov with non-explicit constant. A direct proof of this theorem is given in [[13]]
with the explicit constants mentioned above. Only the case of small T has not been presented so far and is
thus the main novelty of the present paper. It is obtained by a very mild modification of Nazarov’s proof.
Note also that once we have established Point 3 for some T, it is valid for all T > T}, so that we actually
recover Nazarov’s original result (with much worse constants than the ones stated above).

The remaining of the paper is organised as follows: Section 2 is devoted to the L? case and we prove the
inequalities in Ingham’s Theorem in Section 2.1 and the necessity of the condition 7" > 1 in Section 2.2.
Further, Haraux’s argument is presented in Section 2.3.

In Section 3, we investigate the L! norms when the frequencies are integers. We start with the classical
asymptotic estimate of the Dirichlet kernel and devote Section 2.2 to lacunary trigonometric polynomials.
Section 3.3 is devoted to Mc Gehee, Pigno, Smith’s proof of Littlewood’s conjecture. In Section 3.4 we
present Hanson’s result on strongly multidimensional sequences and we conclude in Section 3.5 with the
result of Newman.

Section 4 is devoted to the case of non-harmonic trigonometric polynomials. We start in Section 4.1 with
the argument of Hudson and Leckband and then extend the case of lacunary trigonometric polynomials to
the non-harmonic setting and the Besicovitch L!-norms. We conclude this section with the proof of the
quantitative version of Nazarov’s theorem for small 7.

In the last section, we present a few open questions.

2. L2 ESTIMATES

2.1. Ingham’s inequalities. The aim of this section is to show the following: let A = {4, },c7z C R be
a l-separated sequence, |4, — 4, > 1if k # £. Let P(A) be the set of (non-harmonic) trigonometric
polynomials

PN = {P(t) 1= Z a ¥ (a)1e7 C C with finite support} )
kEZ

Note that, if P € P(A) is given, then the a;’s are determined by

T/2 '
a; = lim 1 / P(r)e 274! gt
T—+o T -T2

We can then define two natural norms on P(A), namely

A\
1Pl 2 - —/ P2 dr
LX(-T/2.1/2) T 1
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and

1

2

1Pl 2= <2 |ak|2>
kEZ

Our aim in this section is to show that, when T' > 1, these two norms are equivalent. This is done by proving
two inequalities. The first one is the direct inequality:

Proposition 2.1 (Ingham’s direct inequality). Let (ay)icz be a finitely supported sequence of complex
numbers and (Ay) ey, be a sequence of real numbers with Ay 1 — A, > 1. For every T > 0,

1 T/2 vini
2.1 —/ ae” !
T J_Tp z ,

kez
Proof. We consider the function H on R defined by

h(x) = coszt when |x| <
0 otherwise

dt < ZT—_"1 D lagl?
keZ

N —

As h is real and even, its Fourier transform is given by

~ 12 2 cosrt
h(t) = 2/ cosTxcos2xxtdx = =
0 T 1 - 4t2
with the understanding that h(l /2) = =. From this, one shows that h(x) > % for |x| < % Finally, let

sinz|x| — z(|x| — 1) cos wx

g(x)=h=x h(x)= 2
0 otherwise

when |x| < 1

One easily shows that g is even, non-negative, supported in [ 1, 1] and that g(0) = 5 Further its Fourier

transform is g(r) = A(t)2. In particular, §(r) > 0 and §(¢) < 4_1 for |t] < %

But then, if (a;),c7 is finitely supported and P(t) = Z e,
keZ

1/2 1/2
/ P> dt < 4/ §<r>|P<r>|2dts4/g<x)
R

-1/2 -1/2
4 2 aja / 8e? At
j.kEZ R

4 ajgg(h; = Ay).

J.kEZ

2
dr

A

Z a, o2 Ayt

kEZ

Note that the sums are actually finite. Further, if j # k then [4; — 4;| > 1 and, as g is supported in [-1, 1],
we then have g(4 i = Ar) = 0. This implies that

1/2
/ |P(1)|* dt < 4g(0) ) |a;I?

1/2 JEZ

so that the inequality is proven for T = 1 since 4g(0) =
For T' < 1 we simply write

LT ) Ve ) )
— P®|~dt < = P(t dt<—
+[ e _T/_1 PO S la,l.

-T/2 jGZ
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To conclude, notice first that, if I = [a—1/2,a+ 1/2] and P(t) = Z a,e*"*i! then

JEZ
1/2 1/2
/|P(t)|2dt / |P(a+t)|2dt=/
I -1/2 -1/2

Z ajeZin'ﬂjaniir),jt
2 Z |aje2i7rl/-0|2 =2 Z |aj|2

JEZ
JEZ JEZ

2

dr

IA

from the case T = 1.
Now let T > 1 and cover the interval [-T/2,T /2] by K = [T| < T + 1l intervals I, ..., Ix of length
1. Then

T/2
%/ |P(t)|2dt<—2/ |P(t)|2dt<2T+1 3 1a, 2

-T/2 JEZ
This completes the proof. O
We now show that a converse inequality also holds, but this time with the extra condition that T > 1:

Proposition 2.2 (Ingham’s converse inequality). Let (a;),c7z be a finitely supported sequence of complex
numbers and (A) ez be a sequence of real numbers with Ay 1 — A, > 1. For every T > 1,

2
(2.2) — / age¥ ™| dt > C(T) 2 la,|?
T/2 \kez, keZ
with
22
%T L fri<r<2
M =93, T .
a fO}"T Z 2

Proof. We will do so in three steps. We first establish this inequality for 1 < T' < 2.
Let H be defined by H(x) = 1;_; /5 1 /) cos zx and notice that

2 cosrnt

Hpn=2% .
® w1 —4¢2

Note that H being non-negative, H is maximal at 0 (which may be checked directly).
Next consider H * H and notice that, as H is non-negative, even, continuous with support [—1/2,1/2],
then H % H is non-negative, even, continuous with support [—1, 1] and its Fourier transform is

H+H=H
Next H € H'(R) with H' = =1y 5,1/ Sin 7x and

cos it
H' 1) = 4it
® 1 — 412

thus

H' * H'(t) = —Qzt)* H2 (1)
We now consider Gy = #*T?H « H + H' % H’ so that G is continuous, real valued, even and supported
in[—1,1].

Gr(t) = 7% (T? = 4%) H*(1)

is even (so G is the Fourier transform of (/;\T) and in L!. Further G is non-negative on [—7'/2,T /2] and
negative on R\ [-T'/2,T/2].
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This implies that

T2 P - P
/ Gr(t) 2 ake2t7t/1kt dt > /GT(I) Z akezlfrikt dr
-T/2 keZ R kEZ
— Z ak@/ é;-v(t)e2iﬂ(/1k_l1f)t dt
k£EZ, R
= D @@;Gr(hy = i) = lag*Gr(0).
kCEZ kEZ

In the last line, we use that |4, — 4,| > 1 when k # £ thus Gy(14, — 4,) =0
Now, for ¢ € [-T/2,T /2],

Gr(&) = (T2 — 4E)H? (&) < nX(T? — 482 H*(0) < 4T?
while
1/2 2
G(0) = 7r2/ T? cos® nt — sin” ztdt = =—(T? — 1)
-1/2 2
which leads to

T/2
2.3) /
)

Z akeZiﬂ/lkt
kEZ
For 2 < T < 6, we simply write
T/2 » 1
/ Z akjeZNMkl dr > /
-T/2 -1

kE€Z
where the second inequality is (2.3) with T = 2, establishing (Z.2) with C =

2

Z akeZiﬂ:Akt

kEZ

2
37r ST
32T ~ 64
NowletT > 6 and My = [T /2] so that My > g—l > % For j = 0,...,MT—1,lettj =-T/2+j+1
N-1
so that the intervals [7; — 1,7; + 1[ are disjoint and U [t; — 1,t; + 1[C [-T/2,T /2] thus

L2 > [

keZ Jj

2/,

2 MTl

dr dr

2
Z kaZiﬂ/‘Lkl‘

keZ

bkeZilrﬂkt

v

2
dr.

MT—I

Z by o2 Akl 2im Ayt
k€Z

Now, apply (Z3) with a; = bye*™ i and T = 2 to get
/2| N 5 N N
3z* Mp 72
b e2ln'/1kt t SN T | Z T ak|2’
7/, & o &l =5 Ll

2
establishing (2.2)) with C = 3—2 O

Finally, we notice that, with a change of variable, and a simple limiting argument to remove the condition
on the support of (a;), we have just proved the following;

Theorem 2.3 (Ingham). Lety > Oand T > l There exist two constants C = C(yT), B = B(yT) such
4
that

— for every sequence of real numbers A = { A} } ez such that Ay | — A >y,
— for every sequence (a;)c7, € (7, C),
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2

dt < B Y |
keZ

Z akeZiﬂﬂkt

keZ

o1 T/2
2.4 C < —
2.4) D layl _T/_

kEZ T/2

2.2. The condition T > 1. We now show that the condition T’ > 1 is mandatory to establish (2.2)) for every
A and every P € P(A).

Proposition 2.4 (Ingham). There exists a real sequence {A;} ez With Ay — 4, > 1 and a sequence

(ap)kez with Z lag|? = 1 such that,
kEZ

1/2
2.5) /
-1/2

when N — +co0.

N 2

e2i7rlkt

dt - 0

ag
k=—N

In other words, for (2.2) to hold for T = 1 for this sequence (4,) and every sequence (a;) then C(1) =0
so that the condition T > 1 is necessary for this inequality to be interesting.

Proof. Let a > 0 and define, for |z| < 1,

exp (—ia arctan ﬂ)

_ 14+R(2)
g, =1+2z)"%= T , lzl < 1.
Of course, we may also write g, as a power series
+oo
(-a), ,
g(2) = ;) —z
where (a)y = 1, (—a), = —a(-a —1) - (—a —n+1).

Next define
So(rs )

zm(eiﬂ'(a-l-])tga(reZilrt))

— eiﬂ(a+l)tga(r62iﬂ:t) + e—izr(a+1)tga(re—2im)

+o0

+o0
— . a+1 — . a+1
_ z ( O;’)n rneZtﬂ<n+T)t n z ( a;l)n rne—217r(n+7)t.
=0 n! =0 n!

a+1

Now set A = {4;} ez With 4; = j + aTHWhenj 20and 4; = j+1- for j < —1, then

Ajy1 —A; = 1 (and even = 1 excepted for A4g — A_; =1 + a). In particular, if we set

m m

- iz (e &L - iz (n+ &L .

Pm’r(t) _ Z anem (n+ 3 )t " Z ane 2i (n+ > )t = Z am’r(k)ez’“"t e P(A)
=0 =0 keZ

and P, , — f, when m — +oco, uniformly over ¢ € [-1/2, 1/2].

Further, Parseval’s relation reads

2
oo 2 1/2 |+o0 A 172 A
Z ( a')nrn =/ Z( a')l’lrneZNrnt dt=/ |ga(rez””)|2dt
n=0 h: =1/2 [p=0 h: -1/2
thus
5 +00 (a) 2 1/2 5 5
lim la, (k)| = lim 2 npn =2/ |, (re”™)|* dt.
m—>+ookezZ m.r m—+oo r;) n! ~1/2 o
It follows that, if we had
1/2
2.6) / P, 0Rd2C Y la,, (0P
-1/2 kEZ
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then, letting m — +o0, we would also have

1/2 1/2 '
Q2.7 / | f,(r,0)]*dt > 2C / | g (re™)|? dt
-1/2 —-1/2

foreveryO < r < landevery 0 < a < 1.
But, if we fix t €] — 1/2,1/2[ then, when r — 1,

1 1 eiiam

+2irxt
re— = - =
&a ) (1 + reiZim)a (1 + e¢2im)“ 2% cos® st

(this is where we use that T < 1) while

Iga(reiZimNZ — 1 < 1
(1 =12 +4rcos? xt)® ~ 4cos®@ xt

for % < r < 1. Similar bounds follow for f,(r,1):

[t = eiﬂ:(a+l)tg (re2im)+e—i7r(a+1)tg (76_2[”t) . el 4 p—int _ 1
a\' a a 2a cos? it 20’_] COSa_l 7t

while
1
2
r,n)|° < .
| a(r- D cos2¢ rt
When 2a < 1 the majorants are integrable so that we can let r — 1 in (2.7). This leads to
1/2 1/2

2.8) 0220 / 4 pi-teg / e
—1/2 cos?@ 2zt _1/2 cos2® it

Letting o — % the right hand side goes to +oco0 while the left hand side stays bounded. We obtain the desired
contradiction. O
2.3. Sequences with large gaps.

Lemma 2.5 (Haraux). Let A C R be a sequence such that y(A) = infy,pez |4 — Ap| > 1 and let
T >yl
Assume that there exists 0 < C < 1 < B such that, for every (a,),cp finitely supported sequence of

complex numbers,
T/2
1 )
cTlalsq [ 1T aen
AEA -T/2 |)eA

dt <B Y |a*
AEA

Let uy € R\ A and, for sake of simplicity, assume that y(AU {u}) > 1. Let 0 < 6 < min <T, %) then
there is a D with O < D < C such that, for every (a,) ;eau(u)

T+6
1 7 2iz it
CZlaﬂZS— Z ae””™| dt
AEA T+é —% AeAU{u}
Moreover, D can be taken of the form
D = K£54
B

for some absolute constant k > 0 (k = 8% would do).

Note that, as 8 is arbitrarily small, as T > y(A)~! is arbitrarily near to y(A \ {/10})_1 sois T + 6.

Proof. Set
f(t) — z aleziﬂ'it.

AEAU{u}
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1
For0 < 6 < T we define

L
f@ - 5 / e HTHS £ (1 + 5)ds

g =
5/2
_ Z a, <1 _ sinw(4 — /4)5) 2imit . Z b (5)82177/11
jen n(h = u)é JEA
The first observation is that, as [A — u| > 1,
inz(A — u)s |* 2
‘1 3 sin 7 ( n) > ns(u) 1= sup |1 — sin s 0.
(A — u)é s>né

4
It is not difficult to see that, if 6 < i, N5 = % This is what needs to be adjusted if we do not assume that

dist(p, A) = minycp [A — p| 2 1.
Further, as for 1 # A’ € A, then |1 — 4’| > y(A), the hypothesis of the lemma states that, as T > —— (A)
14

L[ 2 2 2 2
2. — > ( > (
(2.9 /—T lgs()|~ dt Z |b,(5)] "5 z la;|= > 100 z la,l

T AEA AEA

On the other hand, from Cauchy-Schwarz,
2

5/2
] —2imAps
g1 < 21f01F+2 5/ e 2703 £(t + 5)ds
—6/2

§/2

2702 +z§/ L4 )P ds

/2

IA

1 1+6
= 2|f(t)|2+—/ |£ ()] ds.
0 Ji—s

It follows that

L TR 5 [T T2
[ wora < 2 [ jropas 2] / P, dsdi

A

T/2 -T/2
) T/2 T/2+6 1 min(T' /2,s+6/2)
- 2 wora+2 [ ors [ drds
-T/2 T/2-6 max(—T/2,s—68/2)
) T/2 T/2+6/2
< ;/ lf (DI dl+—/ | (s)I* ds
T/2 T/2-8/2

T+6
< 4—/”5 Fe)Pds <8 +5/ e

since we assumed that T + 6 < 2T
With (2.9), we have thus shown that

T+5

800 1 )
(2.10) D lal? < r O ds.
= C4T +6
It remains to add |aﬂ|2 on the left hand side. As a, = f — Z aiez’”’,
JEA
T Z 2
2 _ 1 2 1 2 1 Dinit
la, > = T/T|a|dt<2 /Tlf(t)l dr+2 : Y ae dr
-3 -3 -3 lien
T+5
1

|f(t)|2dt+2Bz la,|?
T+5 =
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where we used again that T + 6 < 2T and the hypothesis of the lemma. But then, from (2.10), we get

T+s
1600B 1 [

la,|* < <4+ o5 > — /m |/ (s)]? ds.
T2

Adding this to (Z.10), we finally get that

800(2B + 1 s
2 lal < G+ ( 4))T15/”gﬂm%s
JEAD () cs toJ -2
1 B 1 =
2
+ o 2
S R T+ [ TONds

2
with k=1 = 800 x 3 + 4 since C(yoT) < B(yyT), 6 < 1 and B(y,T) > 1. We thus obtain the inequality with

D = K964
B
as claimed. O

We can now use this lemma to improve Ingham’s Inequality.

Corollary 2.6. Let A be a sequence such that y(A) = min ;4 ep [A— Nl >1landlet F =(A,...,4,) CA.

Let S > ﬁ Then there exists two constants 0 < D < 1 < B such that, for every finitely supported
14
sequence (a,) e
R P
(2.11) D2|aﬂ|2s—/ D @, dt < B Y |ayl*.
AEA S J-sp2 | feh AEA

Proof. Set Ag=Aand, forj=1,....n,A; = A\ {4,....4,} and y; = min,lﬁ/e,\j A=A >1.
From Ingham’s Theorem, we know that

—forevery2>T > 1

Yn
T/2 2
l/ Z aieZiﬂﬁl‘ dtZCn Z |a/1|2
T Jorp AEA, AEA,
. 72
with C,, = 2—6(Tyn - 1);
—forevery2>T >0,and j =0,...,n,
T/2 2
l/ > a,ae¥ | dr < B; Y |a,l
T J-rp A€A,; JEA,;

) 6(Tyj +1) 1
w1tth=—=6 1+ — ).
Tyj yJ-T

In particular, the upper bound in (Z.11) is already established.

Nowlet; < T < Sand 6 = S =
y(A\ F) n

20 \° T YA\ F)

From Hauraux’s lemma, we get

T . 1 1
. One might take T = =[S+ ———— ) so that
£ 2( ﬂA\ﬂ)

T+5 2

1 2
T+6 J_ T+
2

Z aie2iﬂit

JEA,_,

2
dt>Coy Y lay
AE€A,_,
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C
with C,_; = xk6*—". We can therefore apply Haraux’s lemma again, till we reach A,. At each step, the
Bn

C,_; ‘ ‘
constant C,,_; is replace by C,_;_; = k6*——L while the integral ranges over [—%ﬂ)&, w].

) 2
n—j
This finally leads to
T+né 2
1 2 Z izt 2
aie dlZCOZ|a}v|
T +ns Py JEA
with
C, = K"g‘*"L
0 BB, B,
As T + né = S, this establishes (2.11). O

Note that, taking x = 8~* we obtain
7% [35* T —1

n
D=~"—|—) — .
() ——

Hj=0<l+yj_T>

3. L' ESTIMATES WITH INTEGER FREQUENCIES

3.1. The L' norm of the Dirichlet kernel. Recall that the Dirichlet kernel is given by

N
; in2N + 1)xt
DN(I)= Z eZlﬂ'kt= SIn( a + )7[ )
Pt sin xt

The following is a classical estimate of the L'-norm of this kernel, which is called the Lebesgue constant.

Lemma 3.1. When N — +o0o,
1/2 4
1Dy, :=/ IDy@ldr= 21N + 00,
-1/2 T
Proof. The proof is based on the following inequality which is easy to establish and whose proof is left to

b4 b4 52 . . 1
the reader: for—z <s< > [s| [ 1— 3 < |sins| < |s|. In particular, for |¢| < 5

Lt 1 1 < Lz
zlt| T |sinat| T z|t| 1 - 722/6 T |xt] 3

since 1—; <14 2ufor|ul < % It follows that

/‘/2|sin(2N+1)m| & < /‘/2|sin(2N+1)m| i

1/2 |7t 1/2 sin zrt
172 | sin@N + 1)t 1/2 t
< / Mdt+/ | sinN + Dt 2 g
-1/2 |z1| -1/2 3
As 1/2 1/2
t t
/ |sin(2N+1)ﬂt|Mdt§/ Mg = L
_1/2 3 _1/2 3 12
we get

2 | $in2N + Dat
||DN||1:/ Wdt—ko(l)'
-1/2

Using parity and the change of variable s = (2N + 1)zt we obtain

/‘/2 [sin2N + Dzt dt—z/l/z |SiN@N + Dar| 2/N”+”/2 [sins|
~1/2 |7t 0 0 s

|t T
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Note that

Nz N n Nrn (/)

" |sins z
/ ! ldsS/ lds = .
0 S 0
1/(’“)” |sms|
T

/ |SlﬂS| Z / _sins
1J0 S+]ﬂ S+j77.'
as sins > 0 on [0, #]. But then

2 T sins T T sin s 2
- = —ds < —d = —.
G+ D= 0o T+ jm 0 s+]7r jr

N-1

/N”+”/2 | sin s| /N”+”/2 ds Nr+n/2
ds < —

Nr S

while

It remains to estimate

Nrx .
2 sin s
—/ | |ds
T S N

b4

!
N
EM

2

ENIES]

J

Writing

Jj=1 Jj=

N
2/ |sms| 1
il ds E -+ 0(1).
T Jx i=1 17

+ L
+

—_
&l»—a
&l»—a

it follows that

N

Recalling that Z l = In N + O(1) the result follows. O
= J
Jj=1

3.2. Lacunary trigonometric polynomials. In this section, we consider a sequence of integers (n;) such

that _&*L
ny

First note that a g-lacunary sequence is a finite union of ¢’-lacunary sequences with q’ Z 3. Indeed,

if ¢ > 3 there is nothing to prove and for 1 < g < 3, take N an integer such that ¢V > 3 and write

nf) = nyn then (nf)) is ¢V -Lacunary and {n, } = U /=0 {n(f)} Next, for g > 3, g- 1acunary sequences

have a particular arithmetic property:

> q > 1. Such sequences are called g-lacunary in the sense of Hadamard (or simply lacunary).

Lemma 3.2. Let q > 3 and (ny),>q a sequence such that ny > 1 and ni| > qn,. Consider two finite
sequences €,,1, € {—1,0,1} for £ =0, ..., m and assume that
m m
3.1) D eong =Y neng
=0 =0
then e, = n, for every ¢.

In other words, an integer can be represented in at most one way as Y. +n,. Such a sequence is called
quasi-independent.
1 ¢ .
Proof. First observe that n; ; < g —n, = q—mnm forj=0,...,m.
Assume that (3:1)) holds and define v, = €, — 1, so that
m
Z Vehp = 0.
=0
Assume towards a contradiction that there is an ¢ such that v, # 0. Without loss of generality, we may
assume that the largest such ¢ is m and, up to exchanging €, and #,, that v,, > 1.
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Observe that v, € {—2,—-1,0, 1,2} so that we obtain the desired contradiction writing

m m—1 m—1 m—1 qf
0=2vfng = vmnm+2vfnf2nm—22nf2nm—22—nm
£=0 £=0 /=0 i
m_ 1 m+1 _ 3gM +2
= (1-21 n, =2 4 72, >0
q" q—1 (g — Dg™
since ¢ > 3 and n,,, > 0. O

Note that this result is valid when the #,’s are real, not only for integers.
The aim of this section is to prove that trigonometric polynomials with lacunary frequencies have large
L'-norms of which the following estimate is a particular case: there exists a constant C > 0 such that, for

every N,
1/2
/ dt > CVN.
-1/2

This follows from a more general theorem which estimates LP-norms of lacunary Fourier series. The aim
of this section is to present this result. To do so, we follow closely [25] Chapter V.8] which goes through
Rademacher series. First let us introduce those series.

To start, let us recall that D, = {[j27%1,(j + 1)27%71[, j = 0,...,2K1 — 1} the dyadic intervals of
generation k and D = U D, the set of all dyadic intervals. Also, if I,J € D then either I NJ = @ or

k>0
I c J orJ C I. The Rademacher functions of generation k are then functions that take alternative values

+1 and —1 on successive intervals in D,, that is

N

Z e2imnyt

k=1

2k+1 -1
@ =3, (DLt yppien = sign(sin222/n).
Jj=0
The first observation is that, if I € D, and k > ¢ then ry, takes the value +1 on half of I and —1 on the other
half so that f, r, = 0. A first consequence is that r,, is orthogonal to r, in L>([0, 1]) since r, is constant on
each I € D, so that fI rerp = 0and D, is a covering of [0, 1]. Moreover, as |r,| = 1, the family (r;);>

is an orthonormal sequence in L2([0, 1]).
+o0

In particular, we now fix a sequence (c;);»( such that Z |ck|2 converges, we can define
k=0

+o0
f= Z Cilk
k=0

and this series converges in L2([0, 1]) thus f € L?([0, 1]). We actually have a bit better:

+o0

Theorem 3.3. Ifz |ck|2 < 4o then there exists f € L*([0, 1]) defined by
k=0

+o0
f=2 e
k=0

and this series converges both in L2([0, 1]) and almost everywhere.

Proof. The L* convergence has already been established. Further, let F = f f be the indefinite integral of
f and let E C [0, 1] be the set of Lebesgue points of f so that |[E| = 1 and on E, F’ exists and is finite.
Now let, S,[f] be the n-th partial sum of this series
n

S0 = Y epri(x).

k=0
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As S,[f] = fin L%([0, 1)), for every0<a<b<l,

b 1 1 172
/(f(x)—S,,[f](x))dx S/O |f(x)—5,,[f](x)|dx§</0 If(x)—S[f](x)Izdx> - 0.

We have just shown that, if I is an interval, then [, S,[f] — /; f thus also, if we fix j > 1, [,(S,[f] -
S;olfh = J;(f = S;_i[f]). On the other hand, if I € D,_; and k > ¢, then [, r, = 0 so that
J;Sulf1= [; S_1[f]. Letting n — +o0 we obtain that
/f(x)dx:/Sf_l[f](x)dx foreveryl € D,_;.
I I

Next, let x, € E not a dyadic rational (x, # ﬁ, p,q € N) and let I, =]j27%,(j + 1)27¥[ be such that

24

xg € EN . Then, as S;_;[f]1is constant over I,
1 1
Sic1lf1x) = = [ S [fl)dx = — [ f(x)dx = F'(x)
il J1, il Ji,
when k — +o0. O
The second result is that f is actually in every L? space:
+o00

Theorem 3.4. Let (¢,) € and f = Z ¢ty Then, for 1 < p < 400, f € LP([0, 1]). Moreover, there

k=0
exists Ap, Bp, depending on p only, such that

+00 % 1 % T %
A,,(ZlcklZ) s(/ If(X)I"dx> @,,(Zlcuz) :
k=0 0 k=0

Proof. Let us first notice that the theorem holds for p = 2 since

| 3 [+e 2
y :=</ |f<x)|2dx) =<Z|ck|2>
0 k=0

i.e. the inequalities are equalities with A, = B, = 1.
Next, let us notice that this implies the lower bound when p > 2 with A, = 1 since then, with Holder

1 1
1 » 1 3
(/O If(x)l"dx> z(/o |f(x)|2dx> =y

and also implies the upper bound with B, = 1 for p < 2 since now Holder implies that

1 ; | 3
</0 If(x)lpdx> s(/o |f(x)|2dx> =y

Further, as Holder also implies that if 2(m — 1) < p < 2m for some integer m > 2, then

| ) | e
( / If(x)l”dX> s< / |f<x>|2'"dx>
0 0
so that the upper bound
| b
3.2) </ If(x)lz"dx> < Byyy
0

would also implies the upper bound for 2(m — 1) < p < 2m with B, < By,.
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Next, let us show that the upper bound for p = 4 implies the lower bound for p < 2. Assume for the

moment that we are able to prove that
| i
[ iseortax ) <Ba
0

Let 1 < g < 2 and write 2 = gt + 4(1 — 1), that is, take t = 4L Then, from Holder
—q

1 1 1 ! 1 1=
. /0 GO dx = /O If(x)l"’lf(x)l4(1")dxs< /0 |f<x>|qu> ( /0 |f<x>|4dx>
1 ! 1 !
(Bm““—'>< / If(x)lqu> =(B4y)2—q'< / If(X)qux>
0 0

| A
</ If(x)l"dx> >B, 7.
0

So it remains to prove (3.2). Notice also that it is enough to prove this inequality with real ¢;’s. The
constant in the complex case is then multiplied by 2: write f = f,. + if; where f, = Y R(c,)r, and
fi =2 S(ci)ry. Then

1 1
+00 2 +00 2
1S lom < Ul + 1 fillom < By, <Z m(ck)F) + <Z |S<ck>|2> <2B}y
k=0 k=0

since [R(cp)l, [S(ep)] < lel-
To conclude, we write

1 1
4 4 4 4
/S,,[f](x)z’"dx= > A fncOO---cn"/ r0(x) e 1y (x) dx
0 0

Cotertlp=2m

IA

thus

where #; > 0 for every j and
Gyt + )
00 eln Lol )

1 b
/ rgo(x) rf"(x) d { 1 all the #;’s are even
0

Now observe that

0 otherwise
and that

(5= 3 a0 siorar

k=0 Lotettlp=m
Further, when £y + - + £, = m,

A2f0,...,2fn _ (m+1D(m+2)--2m < (m+1(m+2)--2m <
Afo’.“’fn H;’zo(fj + D& +2)-2¢; - 2m -
(with the convention that on the denominator is (; + 1)(¢; +2) - 2¢; = 1 when £; = 0). It follows that

1 n m
/0 S,lf1x)*" dx < m"™ <Z |ck|2> :

k=0

As S,[f]1— f ae., we conclude that

| o +oo 3
(/ £GP dx> <m'’? (Z Ick|2>
0 k=0
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that is B,,, = 2m'/2. O

1/2

The estimate B,,, = 2m"/* allows to improve a bit the result:

+00

Corollary 3.5. Let (c;) € £ and f = Z cirj. Then, for every u > 0, exp(u| f1*) € L'([0, 1]).
k=0

Proof. Let us fix u > 0. We first show that if y := ||¢; ||, is small enough, then exp(u|f|*) € L'([0,1]).
Indeed

+o00
mm
(3.3) / exp(ul f(x)[*) dx = Z / [fGo*" dx < Z W(4M’2)m-
0 m=0 "
m Too n
But 2 < "M~ e so that
m! n!
n=0
1 +o0 1
2 2\m
ex x)|7)dx < 4e = <4
/0 Pl f I EJ R vy
provided y? < L
deu
+oc0
Next, take any f € L'(0, 1), and apply the first part to f —S,[f] = Z crj. Asy: = Z le; 12 >0,
Jj=n+1 Jj=n+1

for n large enough y2 < SL thus expu|f — S,[f1]>) € L'([0, 1]).
ep
Finally, as | f|> < 2|f — S,[f1| + 2|S,[f1|?, we have
exp(ulf %) < expQulf — S,[f11*) exp2ulS,[f11*) € L'

since |S,[f]| € L* thus also exp(2,u|5'n[f]|2) € L*™. O
Next, we consider series of the form
+00
Z cjeZi”j’rj(x).
Jj=0

The idea is that such series are of the form Z *c¢; e2injt that is, choosing x € (0, 1) at random, we randomly
change the sign of ¢;. Our first result is the following:

+0o0
Theorem 3.6. Let (c;) € % and fx@®) = Z ckrk(x)ezi”k’. Then, for almost every x € (0, 1), the series
k=0
converges almost everywhere int € (0,1) and f,, € LP([0,1]) for every 1 < p < +o0.
Proof. Let E be the set of (x,1) € [0, 1]2 where the series defining f converges.
According to Theorem for every ¢ € [0, 1], the set Et2 = {(x,t) € E} has measure |E,| = 1. It
follows that | E| = 1 but then, for almost every x € [0, 1], E}( = {(x,t) € E} has also measure |E;| =1.
Next, set y = |lcill, and fix n > 1. As in (3.3),

+oo 1 1
u m _ M 2m — 2 ;
(3.4) / /0] dx_m%m! /0 |/ dx /0 GO dx < 7 s

provided y < ——. It follows that
4ey

2n _ 2n n!
// | f @] dtdx = // | f (D] dth<—(1—4e,uy2);4 < 400.

1
But then, for every n, there is a set F,, C [0, 1] with | F,,| = O such that, if x € [0, 1]\ F,,, / IfX(t)Iz” dr <
0
+o00. Setting F = |J F,, | F| = 0 and, for every x € [0,1] \ F, for every n, f,, € L?". Using the inclusion
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of L2([0, 1]) c L?([0, 1]) when p < 2n, we obtain that, for almost every x, f,, € LP([0,1]) forevery p > 1,

as claimed. O
We can now prove the main result of this section:

Theorem 3.7. Let g > 1 and (n));5o be a g-lacunary sequence of integers, ny > 1 and n; | > qn;. Let

B, , such that, if (c;) ;50 € £2, then g(t) = Z cjez””‘/ is in
Jj=0

1 < p < +o00. There are two constants Ap,q’

LP([0, 1]) with

+o0 % 1 p i +o0 %
(3.5) Ay <Z |cj|2> < </ D ejerimnit dt) <B,, <Z |cj|2>
j=0 0 1j>0 j=0

Remark 3.8. Note that a simple change of variable also shows that, for every integer M,
1

+o0 % 1 M/2 N " P ? +o0 %
(3.6) Ap?q<2|cj|2> s(M/ et de SBM<Z|cj|2> :
j —M/2|j>0 j

Jj=0 Jj=0

Also, we may assume thatg — A, /., B, , are continuous.

Proof. The beginning of the proof is the same as for Theorem 3.4} Parseval’s identify shows that (3.5) is
satisfied when p = 2 with A, , = B, , = 1. The lower bound is then automatically satisfied for p > 2
with A, , = 1 while the upper bound is satisfied for p < 2 with B, , = 1. Finally, if we establish the upper

bound for p > 2, using Holder’s inequality in the same way as in the proof of Theorem[3.4] the lower bound
1-%2

follows for p < 2 with A, , = B, . P~ Also, it is enough to prove the upper bound when p = 2m, m > 2
and then, if 2(m — 1) < p < 2m, BM < BQk’q. Another reduction is that, by homogeneity, it is enough to
+o0
prove the theorem when Z lc; |2 =
Jj=0
A further restriction is that it is enough to prove the theorem for ¢ > 3. Indeed, for 1 < g < 3,
@ = = TN e for# =0,...,N, — 1. Then

> q '7n, °. It the theorem 1s established when g > 3 then, for each £, the upper bound 1n reads
Nop{_1f the th is established wh 3 then, for each £, the upper bound i d

we introduce an integer N, such that gNe > 3 and write n,

n©
Mest

1
1 @ P p +o00 2
217rn t 2
/ 2 CknNg+e€ e ) < B, .~ 2 e, +] ‘
0 k>0 k=0

But then, with the triangular inequality in L?,

1
1 b » 1|Ng—1 b
2!7[[1[ dr _ 2i7rnff)t dr
cje = CkN, +£€
0 |j>0 0 [ /£=0 k>0
N,—-1 p 1
< < ! 2i7mf{f)t dr
= CkN +€
£=0 0 k>0

1
Ny=1 /400 3
2
Bp,qN‘I Z Zlcqu+f|

<
£=0 \k=0
1
Ng=T1 400 2
1/2
< Z 2|ckN +el?
£=0 k=0

1
3
_ 1/2 2
= N/°B, v, <Z|cj|> ,
j=0
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where we have used Cauchy-Schwarz in R in the next to last line.
A last reduction comes from the observation that, for every k

1 +00 Mn 1 #m 1
[ exvzora= 3 5 [ soprars i [ g a
0 =0 n: Jo m: Jo

It is therefore enough to prove that there is a u(g) and a C > 0 such that, if y < u(q)

1
G67) [ exptulsopyar<c
0
which would then imply that
1
[ reortar<cm
0 I

as desired.
In order to prove (3.7), let us introduce

£ = Z &7, (%) Qimnjt

720
Integrating (3.4) with respect to 7 and using Fubini, we deduce that

1

1 1
/ / exp(u|f ()]*)dtdx < K := —
0 Jo 1 —4deuy

But then, there is an x (that we can assume not to be a dyadic rational x, # 2/ /k) such that

1
/0 exp(ul f, () df < K.

Next, we consider the Riesz product

k " e2mnyt 27mnt
+e k I
P =JJ(1+r, | (x) cos 2zn;1) = I (1 + rnk(xo)—> Dyt
j=0 k=0 JEZ
where the Fourier coefficients have the following property:
n
—y; = 0if j is an integer that is not of the form Y +n,, in particular when |j| > Z ny
k=0
. . rnj (Xo)
—if j = Yeyn, withe, € {=1,0,1}. As g > 3, this &,’s are unique. Then y; = [], — In
J
) ry (xo)

particular, Yn, = forj=0,...,kand Y, = 0 for j > k.

As a consequence, the partial sums of the Fourier series of g are given by

k 1
S, [g1(0) =) c;e?™" Z ¢jrj(xg)2eH ™! =2 / Foo($)P(t = 5)ds.
J=0 0

1
Note that P, > 0 and / P, (1)dt = yy = 1 so that v = P, (¢)dt is a probability measure. As ¢(s) =
0

exp(us?) is increasing and convex, we apply Jensen’s inequality (with the measure v, ) to obtain

1 1
(p(%snk[g](r))w(/o |fx0(s>|Pk(r—s>ds>s/0 @(1f5, DD P(r = 5)ds.

Integrating over [0, 1] and using Fubini, we get

1 1 1 1
[ o(3sutam) < [ olingon [ ne-sads= [ or,00)s <k
0 2 0 0 0
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Letting k — +co, we obtain

1

U 2

Zlg®?) dr <K
/OeXp<2Ig()I)

as claimed (up to p/2 replacing p. O

3.3. The proof of Littlewood’s conjecture by Mc Gehee, Pigno and Smith. We will now give the proof
of the Littlewood conjecture, following closely [4]].

Theorem 3.9 (Mc Gehee, Pigno, Smith). There exists a constant Cy pg < iz such that, if (n;) e is an
V3

increasing sequence of integers and (ay) is a complex sequence with finite support, then
1

c Z |ak|

MPS k+ 1

The proof given below will give Cy,pg = 9_16 which is not the best possible. We avoid minor techni-

+o0

2 ake2m’nkt

k=0

dr.

calities which would lead to Cy;pg = % (see e.g. [1,124]). The proof in [13] requires the introduction

of various parameters and a cumbersome optimization of those parameters in the final step and leads to
1
C =—
MPS = ¢

Note also that the sum starts at 0, we have so far been unable to obtain a lower bound when the sum runs
over Z.

3.3.1. Strategy of the proof.

Notation 3.10. For a function F € LZ([O, 1]) and s € Z, we write
1
F(s) = c,(F) = / F(t)e™2mst 4
0

for the Fourier coefficients of F. Its Fourier series is then

F(t) — Z CS(F)eZiirSt

SEZ

1
JRLCREDNCT

SEZ

and Parseval’s relation reads

and can also be written in the form

1
/ F(OG(@)dt = )’ e (F)e_y(G).
0

SEZ

We fix a trigonometric polynomial

N
lay|
3.8 1) = At and S =
(3.3) (1) kz‘aa e an Z T
We then write |a; | = a,u; with u;, complex numbers of modulus 1 and we introduce
& u
k__=2imnt
. Ty(?) = — K
(3.9) o0 =2 e
k=0
Then by Parseval identity, written in the second form we have
el _ 5 !
(3.10) Z . Jf1 Y bln)To(—ny) = / (T, (1) dt.
k=0 0

so that
S <l NToll Loogio,17)-
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The issue is that, typically we have no control over the L® norm of T}, other than the trivial and explosive

control by Y} k+r1,

(1) The L*™ norm of the corrected function T is controlled by a constant C, ||T;||,, < C.

so we will correct T, into another test function T as follows;

To(=m) _

(2) T, (=ny) only differs a little from T(—n,) for 0 < k < N, say |T(=n,) — Ty(=n,)| < >

ﬁ, while we impose no condition on the behavior of fl (n) for n # —ny,.

‘We would then conclude as follows:

1 1 N
S - / POT, (1) dt / P (Ty — Ty)(¥) dt Z P )(To(—ny) — Ty (—ny))
0 0 k=0

with Parseval. With the triangular inequality and our expected estimate |ﬂ(—nk) - fo(—nk)| < ﬁ,

we then conclude that

1 N il
S - Ty(Hdt| < A To(=ny) = Ti(=ny)| < =7
/O ST, (1) dt _kzz‘,llqb( ONTo(=n) = Ti( nk>l_k§=}12(k+1) 5
But then . 1 1
%ss / dNT, (1) dt sIITllloo/ |¢(t)|dtsC/ ()] dr
0 0 0
1

which is the expected result with A = —.

The proof of the Theorem [B|thus amounts to proving the following lemma:

Lemma 3.11. There exists a universal constant C and a Ty € L* such that
(D) Il <€

A N 1 -
(2) 1T\ (=ny) = To(=np)| < §|To(—nk)|
where Ty is the function given by (3.9).

=;for0<k<N
2(k+1)

The remaining of this section is devoted to the proof of this lemma.

3.3.2. Proof of Lemma First note that, up to eventually adding extra zeros to the sequence (a;) and

adding Ay ; = Ay + j to the sequence (4;), we may assume that N = m+l g,
1

k+1

is

We start by decomposing T, into a sum of dyadic blocs on which the amplitude Iﬁ)(—/lk)| =
more or less constant. More precisely, for j =0, ... m we set 1 ;= [27,2/%1[ and
Uk dixngt
fj = 2 — e k .
k+lel; k+1

The function Tj, now appears as the partial sum of order m of the series . f, in other words

m
Jj=0
Let us start with a simple lemma:
Lemma 3.12. With the above notations, we have
(D) N fill oo,y < 1
2) I1fill 2oy < 2712,
Proof. By construction, |I;| =2/ hence
1 |Ij|
) < _ <K — =

k+1€l;
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On the other hand, Parseval implies that

S 2
AR <=2
kiimy K+ D2 4

as claimed.

Now, write the Fourier series of each | f;| € L2([0,1])
1£;1 = es(1£;Der ™.
seZ

To each | f ) |, we associate h ; € L%([—r, x]) defined via its Fourier series as
[e+]
hy(t) = co(1£;1) +2 ) e (1 f;De?™ .
s=1

Lemma 3.13. For 0 < j < n, the following properties hold
(1) Re(h)) = |f;] < 1;
(2) 1l 2o,y < \/§||fj||L2([o,1])-

Proof. First, as | f;| is real valued, c¢y(| f;|) is also real while ¢ (| f;]) = c¢_(| f;]) for every s > 1. Hence

R = co(l ;D) +2 D (1 ;e
s=1

and thus

+h; )
2 =5+ Y e f;De = 1,1 < 1
s#0

h

J

Re(h)) =

by lemma[3.12]

By Parseval’s identity and again ¢,(| f;]) = c_,(|f;]),

I = Jeols,[ +4 X e 1] =|eotts;b] +2 Xlessn| +2 Xfestisb]
s=1 s=1 s=1
< 2 Ie (D1 =207515
SEZ
as claimed.

We now define a sequence (F;),—, ., inductively through
Fy=fy and F;y = Fje_nhj+1 + [t
where 0 < n < 1 is a real number to be adjusted later on. Further set

. X 1 X 1
E,,’ = Sup —_}1x = — Sup e = -
o<x<1 1 —e No<x<n 1 —€ l—e

<2
n

Lemma 3.14. For0 < j <n, |[F,ll, < 2.

Proof. By definition of En’ ifC < Eﬂ and 0 < x <1,then Ce ™™ + x < E”e_”" +x < E”.
We can now prove by induction over j that | F;| < E,. First, when j = 0, from Lemma we get

IFolle = lfolle <1 < E,.

Assume now that || Fj||, < E,, then

—nh. R (h
F, (000 1 10 < 1F,0le ™ 510) 417 o)
|F,)le™in Ol £, ()]

| (@]
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As |fi1M] < 1and |F;(1)| < E,, we get |F;(t)] < E,. It remains to prove that E, < =. To do so, it

=N

suffices to see that

e_ygl—(e_l)y for0<y<1,
yielding the result immediately. U

Lemma3.15. For0<¢ <nandj=0,....k let g;; = e ik with

_ hjyp+ ...+ h, whenj<k
k 0 when j =k

Then
k
F, = Z S8k
=0

Proof. By induction on k, when k = 0, H(y = 0 thus gy = 1 and, indeed, we have

Fy = fo = fo8o0-
k

Assume now that the formula has been established at rank k — 1 and let us show that F;, = Z S8k By
Jj=0
construction, we have

k—1
Fy =Fk—1e_”hk+fk = < fjgj’k_1>e_’1hk + fi-
j=0

J
with the induction hypothesis. It remains to notice that Sk = e ik = 1 and that, for j=0,...,k—1,

k
H;,=H;;_+hthusg;, = gj,k_le'”hk so that, indeed, we have F;, = 2 f;8; x as claimed. O
Jj=0
Recall that
m
Ty = Z fj
Jj=0

and we set
m
n_p —
T1 - Fm - ijgj,m
J=0
where the dependence on 7 comes from the definition of the g; ,’s, in particular

Il < E,-

The first part of Lemma [3.11]is thus established and it remains to prove the second part. To do so, we
start by some intermediary results;

Lemma 3.16. If H € H*(Hardy space) and Re(H)

-H
lle™™ =12

0, then e ™ € H*® and

>
< 1 H 5.

n
k
Proof. Since H® is a Banach algebra, the partial sums Z(— ¥ i' of e™H are elements of H*. Moreover,

k!
k=0
since H is bounded, these sommes converge uniformly toward e withe H € H*. Finally, if z € C

and R(z) > 0,
1
/ ze "2 dt
0

|e‘H<’> - 1| < [H®)

and by integration we have the desired inequality. O

1
le™? = 1| = g/ Iz]le™R@dr < |z.
0

In our case z = H(t), and we have
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Next let us introduce the following notations:

(1) Let f € L([0, 1]), the spectrum of f, denoted by spec(f) is the set of non zero Fourier coefficients,
more precisely

spec(f) = {n€Z : f(n)#0}.
It is easy to show that, if f,g € L2([0, 1]), then

spec(fg) C spec(f) +spec(g) = {A+pu : A € spec(f), u € spec(g)}.
(2) Let A be a subset of [1, N[, we denote by A 4 the set of nj, j € Ale
Lemma 3.17. Letk+ 1 € I, = [27,2/+ [ then g, ,(-n,) = 0if j < £.

Proof. We must show that —n;. & spec(f;g; ,,). By contradiction, we suppose that —n; € sp(f;g;)-
But since spec(f;) C —A I and, from Lemma , spec(g;,,) C IN, thus

spec(f;&;m) C —A,j + IN.
However, since j < 7, 1 f is to the left of I, then —A 1, is completely to the left of —A I + IN (since
k+1e€ I,, then —n; € —Aj, by definition of A ).

A ;
_AI, ]

r
L

I
L1

_Alj

Proof of (2) in Lemma Letk € [0, N[and £ < msuch that k + 1 € I,. Hence
m m
TIy(-ny) = Z Ji8jm(=ny) = Z S8 m(—ny)
j=0 j=¢

with Lemma 3.17 u u
~ " oA "
On the other hand, T,(—n;) = T+ while f;(—ny) = 11

otherwise. So we can write

ifk+1€l;ie ifj=¢and fj(-n) =0

To-ng) = Y, Fi(=ny).

j=t
hence
Ty(=n0) = To=m)| = X 1181 = DI = Y, ¢y [£,(8m = DI
j=t j=t
But

le_p Lf(&jm = DIl < 11f5(8jm = Do,

—nH.
1751 20, 1185.m = 20,191 = 1S 1 220,11 lle 1Him — Ul z2¢0,1y
by definition of g; ,,. Using Lemma 3.16|and then Lemma[3.15] we obtain

IA

m
e L3 &m = DI < Al ol <7l filla Y, MMl

r=j+1
m
< alfhvz Y s
r=j+1
with Lemma Then, from Lemma|3.12] we obtain

+o0 ;
) ) -(+1/2
_ -i/2 —r/2 _ po=if2y/n 20T
e, /581 = DI < 0272V2 3 27712 =P ae o,

r=j+1
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‘We conclude that
m
Ty(=4) = To(=0)| <31 Y, 277 <627,
=t
On the other hand, as k + 1 € I, = [2,27*1],

Ty(=Ap)] = —— > 2701

k+1
so that
Ty (=) — To(=Ap)| < 121]|To(—4,)].
Choosing 1 = % gives the result. O
Note that, when 1 = i, E, < 48 so that we can take C = 48 in Lemma|3.11| leading to Cy;ps = %
in Theorem[3.9]

3.4. Strongly multidimensional sets. Let § > 0 and (m,n) € N?. A subset A of Z is (5; m, n)-strongly
2-dimensional if there exists numbers d and D with D > (2 + 6)d such that

A= U(Ak + kD)
kel

for some set I containing at least m integers and subsets A, C {—d, ..., d} verifying |A;| > n.
Theorem 3.18 (Hanson [[10]). Let 6 > 0 and m, n be two positive integers satisfying

(3.11) n>n2?lc3 In(n)® In(m)?,

MPSln(n)3 and m>n3221C3

MPS
where Cy,pg is the constant in theorem@ Suppose A is (6; m, n) strongly 2-dimensional subset of Z. Then

[z

acgA

2
CMPS

(2972 (2+ In(1 + §)>

2irat

dr >

In(m) In(n)

Combining this result with Theorem 3.3 in [23]], we see that this theorem is also best possible up to the
constant.
Given a set I C Z, a positive integer ¢, and an arbitrary integer s, we define

I(g;s)={kel : k=s(modq)}.
The proof of Theorem [3.18]is a direct consequence of two lemmas. The first one is the following:

Lemma 3.19. Let I be a set of integers with | 1| = 8. Then there are positive integers q and s such that

wi—

|11
8

Proof. For each j > 1, we choose any s I such that |I(4/; s j)| is maximal. But, on one hand,

< |(g;9)| < ¢/

4i-1

I=|J1&,s)
s=0

and on the other hand, for j fixed, the sets I(4/; s) are disjoints, so at least one of them has cardinality larger
than 47/ |I|. In particular,
(3.12) |14/, s)| > 477|1].
P ) |1]
For j = 1, we thus have [I(4;s;)| > T
so that, for any s

> 2. On the other hand, if j = s mod kpthen j =s mod p

14" s) Cc I(4%;s) for £ <m,
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and, for sufficiently large j we have |I(4/;s;)| = 1 < 2/. Therefore, there exists a minimal j; such that
[1(#0; ;)] < 270. Let g = 40, and s = s, then using (3.12) and the definition of jy

I| j ;
" < H(gss) = [I(@0;s;)] <20 = g2,

NI—

In particular

1
(3.13) 15 <q2.

By minimality of j, — 1

3
ot (s, )| £ 3
r=0

D=

I <4fo; Sjmt + r4fo—1) < 4|I@0ss;)| = 41(g: )|

by definition of s jo- We thus get

[1(g; )| >
with (3.13). O

Lemma 3.20. Let 6 > 0 and let d and D be positive integers with (2 + 6)d < D. Suppose I is a finite set
of integers, and let

F(t) — Z fk(t)eziﬂDkt
kel
where
fk(t) — 2 an,keZiﬁnt
|n|<d

Let q and s with q > 4 and suppose 1(q;s) = {ky, ...,k } then we have

7
1 Cups 2zd
1FNl Loy = Il fx Mo < — - —
4 32n(2+1n(1+§)),§f SEOI 2 gD

We split the remaining of this section into two parts. In the first one, we show that Lemmas [3.19) and
[3.20)imply Theorem[3.11} In the second one, we prove the Lemma [3.20]

3.4.1. Proof of Theorem Let 6 > 0 m, n be two integers satisfying the conditions of the theorem and
let A be strongly (8, m, n)-regular. Thus, there are two integers d, D with D > (2 + 6)d, such that we can
write
A=A, +kD),
kel
with [I| > mand A, C {—d, ..., d} with |A;| > n. We can then write

F@) := Z glimat — Z fk(t)eZierkt

acA kel
with
d
fk(t) — 2 e2umt — Z an’kethrnt
acA; n=—d

witha,, = 1ifn € A; and a, ; = 0 otherwise.

Assume first that there exists k; € I such that

C
(3.14) I 2, ooy = ZMTfln(mnn(n).
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We then choose g >

B.20

in such a way that there is an s such that I(g,s) = {k;}. Hence by Lemma
MPS

1, Lo Cymps 2nd
IFN oy 2 2 2 q¢D
327 (2+1n(1+2)) K
Cupsllfi Lo (1 7d )
2x(2+4m(1+2)) " 8P

As D > 2d, using (3.14), we conclude that, in this case

Cumps : Innlnm
IF L1 o7 2 < 29 5
n 2+ln<1 + 5)

which establishes the theorem.
We will thus assume that, for each k € I,

C
(3.15) I/l ziqoay € g InGm InGe.

Note that, from Theorem B]
I fell Loy = Cpps In(n)

so that 2°7 < In(m), in particular, m > 8. We then take g and s given by Lemma applied to the set [
so that J = |I(q; s)| satisfies

wi—

m2
8

D=

(3.16) <J<qo.

We write
From Lemma[3.20] we get that

J
1 C 2nd
IF 210,17 X, ||L1( MPS - ’;)
257r(2+1n<1+ )),:1 2 q

= ! (T, -T5)

257 (2+ln(1+ )))

_C I/, ||L1 27d
E Z and T, === Z £ -

Next, as ”fk/. 21 = Cprps In(n),

WV

SALS]

SIS

with

¢ Inm) L, C? ln(n) Cc?  In(n)In(m)
> nJ >

MPS MPS MPS
12— 2,52 2
2 A 2 8
with (3:16).
On the other hand, from (3.13)), we get
C C
T, < 22J d EMPS |y Ingn) < 2” MPS —MPS 10 (m) In(n),
qD 27 1
qZ
1
since d < g nd J < ¢2 with (3.13). Further, (3.13)) also implies that
1
1 m3 4

8
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with (3.T1), leading to T, < 2%
‘We have established that

) . | ChpsInmIn()
IFN oy 2 2 23 28
s (2m(1+2)) g
C2
- MPS <2‘0 In(m) In(n) — %)
@px(2+1n(1+2)) Cups
CZ
> MPS In(m) In(n)
@2 (2+1n(1+ 2))
s 1

since In(m) In(m)Cy ¢ > 20, _ 1

3.4.2. Proof of Lemma The rest of this chapter consist in proving Lemma[3.20] the proof is divided
into several lemmas.
The first one is a simple lemma about numerical integration of trigonometric polynomials:

Lemma 3.21. Let N be a positive integer. Then for any trigonometric polynomial f of degree d

N-1 .
A Lo, — % Z) f <%> < %”f”LI([o,u)'
j=
o 1L () 1 e j
Note that, as f is 1-periodic, writing N = R+ .S, ~ j;o f <N> = R+ S P2 f <R+ S>‘
Proof. We write, using the triangular and reverse triangular inequalities
/1 |f<t>|dt—iNZ_1 f(i> = NZI/T e f<i> di
0 Nl AN =0 /% N

Jj+1

N-1 St
dt= ) / i
=0

. t
f(t)—f(%) / /jf’(s)ds

Arenasa=Y [ i [T aas
j 4 i
Jj=0 7N $

N-1 i+l
dr

IA
\\
=

A
3
—

N-1 I+

s 1
S /L” 17(5)l ds :/0 17(5)l ds
Jj=0 "N
j+l
.. N 1 J Jj+1 .
where we have used Fubini and the bound dr < ~ when N < s < N We conclude with
N

Bernstein’s inequality, ||f’||L1([0,1]) < 27d| f Nl Lrgo.ay)- O

For a finitely supported sequence (A(k)) ez, We define its discrete Fourier transform (or Z-Fourier trans-
form) as
F LAl = ) Alk)e™m4,
kEZ
If A, B are two finitely supported sequences, their convolution is the sequence A * B defined by

A% B()B * Ak)= Y Ak —m)B(n).
neZ

The Convolution Theorem is also valid here: 7;[A * B](t) = F4[Al(®)F;[B](t). Two classical examples
are
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— the Dirichlet kernel: setd; = 1_; ; so that

.....

sin(z(2L + 1)1)

_ _ 2irkt _
D; (1) =Fyld 1) = Z € - sin(zt)

[klI<L

— the Fejer kernel: set f; (k) = ( — %) 1_; . p(k)so that

<l_ﬂ>ezmm= 1 Gsin(a(L + DY
L+1 L+1 (sin(z0))2

IOENAIACESSY
IkI<L
Lemma 3.22. Let M, N, R, S be integers with2 < M < N. Then there exists a function K M.N with the
following properties:
(1) Kpyyn(k)=1for|k| <N,
(2) Ky n(k)=0for|k| > N +2M

S—1
1 J
Proof. Define
1 1
Kynk) = —dyoy Ty (k)= — Z L_men, vy K =mL gy oy (K)
M M n€Z
= — 1-—.
M &G M

[n—k|<N+M
First, for |k| < N, if |[n]| < M — 1, then |n — k| < |n| + |k| < N + M — 1, so that

K== ¥ (1—%)=1,

In|<M—1
since
In| 0 M-1
D 1——> = ) (1+i>+ (1—1)
|n|<M -1 < M n=1-M M n=1 M
+1 M-1
= + =M.
2 2

On the other hand, if |k| > N +2M and |n| < M — 1 then |k —n| > |k| — |n| > N + M + 1 so that the
sum defining K, » is empty and K, 5 = 0.
To prove the last item, the Convolution Theorem shows that

FalKy 510 = 2 Dyt Oy 10

As Dy, and Fy,_; are both even, so is Ky, y thus

1 1
/ |FqlKp N1 dt = 2/2 |FalKp n1O1dr =201 + 15 + 13)
0 0

where

| [
0

1
| [
Izzﬁ/l 1Dy ps (O Fpr_y (0] dt,
N+M
1
2
I I Dy O Fp (0] dr.

L
M

-1
M
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We have

1
[DnepDIS2(IN+M)+1,0< Fpy (S M, / Fy_(dt =1
0

It follows that

1 NiM 1
I, £ — CIM+N)+ DM dt =2+ <3
M Jq M+ N
since M, N are positive integers.
Using the explicit expressions of Dy, and Fj,_;, we have
1 1
I = 1 /ﬁ | sin(z(2(N + M) + 1)) sin®(z M) it < 1 /ﬁ sin®(z M) dt
2T e - 3 = M2 -3
M=) sin” (1) M= J 1o sin’(xt)
1
2 2
7 Mo dt 7 N
< _— —_— — —
S8/t tn (1 "M )
N+M
using that sin zt < zt for t > 0 and that sinzt > 2t for0 <t < %
Finally, for I5, we do the same computation to bound
Lo, Mo, M
2 2 2
I3§L/ sin ﬂMtdt:/ s1nrcsdss/ Esl
M? + 3 1 53 o os3T 2

Grouping all terms and slightly upper bounding the numerical constants, we obtain

/01 |F4[K py N 10 dr < 8 <2+1n(1 + %))

By Lemma (and the 1-periodicity of F;[ K, y]), we obtain

S-1
1 J 2zd
R+S 2 FﬂKW(m) < (1+ 755 ) 1Pl Ko
Jj=-R

Butd=N+2M —1and R+ S > 2N +4M so

2rd 72N +4M - 2)
< <7
R+ S 2N +4M

Hence we get

S-1
1

R+ S

J
EﬂKMW](EIS» < T+ DFg[Kpg w1l Lo

j=—R
< 16n<2-+h1(1+-95>),
M
concluding the proof. O
Lemma 3.23. Let R, S be positive integers and K = (K(—R), .., K(S - 1)) € CR+S. We extend K into
—an R+ S-periodic sequence K(”)(j(R +.5)+ z,”) = K@), for =—R,...,S—land j € Z;
— a finitely supported sequence K by setting KO (¢) = K(¢) for ¢ = —R, ..., S — 1 and KO(£) =0
for¢ > S andfor? < —R—1.
1
/

Then
1
/

S—
1

R+S &~

2 ame2i7rmt dr

meZ

Z amK(p)(m)eZi”mt dr <

meZ

e (55)

1
=-R
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S-1
Proof. Write elements of CR*S as (a_g, ...,ag_,) and the scalar product (a, b) = Z afE. For j =
¢=-R
S-1
.kt
—R,...,S —1,denote by ¢, := ;ezmm so that (e;);=_g... s—1 is an orthonormal basis
VR+S /=—R
of CR+S.
Write A, = Z G Ris)see TAHRESAO for £ = —R,...,S — 1 and A = (A,) € C**S. Then, by
nez
periodicity of K
S-1 S-1
Z amK(P)(m)e217rmt — Z K(©) z aj(R+S)+fezl”(j(R+S)+f)t — <K, A> — 2 <K, €k><A, ek>
mezZ £=—R JEZ k=—R
S-1 S-1 5-1
_ _ 1 < Z ( Z K(Lﬂ)e—kam>< Z Z an(R+S)+fe2m(n(R+S)+f)te2mk
R Sy P ¢=—Rnez
S-1
1 2n[(n(R+S)+E)+E =51
- =5 X rd[K0]< ) 2 Y sy 7).
k=—R —Rnez

2inl —— 2in[(n(R+S)+8) -

Noticing that e R+T =e R+S , We may write

Z amK(P)(m)€2iﬂmt — < ) Z Z n(R+S)+feZm(n(R+S)+f)(t+m)
R+ S
meZ —RneZ

S 2 FAKOT () 3 g

mezZ
From this, we deduce that

1 S-1 1
i 1 k izm(t+ -
(») 2izmt 0) (t+ )
Z amK (m)e dt < Z Fd[K 1 < ) / Z a,e R+S’| dt
/0 mez R+S, R+S571Jo |aez
1 S-1 K 1
— Z F [K(O)] ( ) / Z ameZin:mu du,
R+S , &~ R+S/1 )y | =
with the change of variable u = 1 + R i 5 and periodicity of u — Z a,, e m, O

Lemma 3.24. Let d, D and q be positive integers with (2 + 26)d + 4 < D for some 6 > 0 and q > 4n
Suppose 1 is a finite set of integers and, for each k € I let f; be a trigonometric polynomial of degree
at most d. Then for any integer s, we have:

1 1
/ Z Fr@®e* Pk dr < 32722 + In(1 +2/6)) /
0 0

kel(q;s)

Z fk(t)eziﬂDkt dt

kel

Proof. Assume we can prove the lemma for s = 0, that is, for any sequence (f} ),z of trigonometric
polynomials of degree at most d and any finite set I,

sz(t)eszkt dt

kel

1 1
/ D frgP PN dt < 3272+ In(1 +2/5)) /
0 0

qtel

__
R+S
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Then, replacing I with I — s and replacing (f;) with (f;,,) we get

/

1
Z fk(t)eZi/erqt dr = / 2 fs+fq(t)62i/erqt dt
kel(g:s) 0 s+0qel
1
< 32ﬂ(2+1n(1+2/5))/ Z fs+k(t)e2i7ert dt
0 Jkel-s
1
= 3272 +In(1 +2/5))/ e_2i”DS’ fo(t)eZiﬂDkt dr
0 el

which is the desired estimate since |e=>7P5"| = 1. So there is no loss of generality is assuming s = 0.

Next, we write f; = 2 ale? " POl gnd
—d<t<d
F@t) = 2 2 al;e2i7r(Dk+f)t — Z ameZiﬂmt
kel —d<t<d m
where

(3.17)

amza’; whenm=Dk+¢, kel and |/|<d
0 otherwise '

Let N=d, M = [%1 the smallest integer larger than % and let K, v the sequence from Lemma|3.22

Since

N+2M<d+2(%+1>=d+5d+2<§
then we have
D D
supp(Kpy ) = [-N —2M, N +2M] C [_E’E]‘

Further K, y(m) = 1form € [—d, d]. Next, K](\Z) N tobe the g D-periodic sequence defined by K](\Z) yaD+
) = Ky n(@) for £ = =N —2M,...,N +2M and K’ (k) = 0 for all other k’s. We take R, S >

N +2M such that R + S = gD and then K\ (k) = 0 for k = —R,...,—~N — 2M — 1 and for
k=N+2M+1,...S—1
From Lemma[3.23] we get

1 S-1 . 1
® 2izxrmt 1 J 2izrmu
Y a,KP  (me < Y |FalKp Nl < ) / Y aye du
/0 & , R+S “~ R+S )| ) | &
<

N
167 (2 +In <1 + M)> ||F||L1([0,1])

with Lemma[3.22] D
As supp(Ky, n) C [_3’ > and Kz(\l/;),zv is periodic of period R + .S = gD then

(3.18) KP m#0 if m=jgD+¢ for j€Z and |f’|<§.

Combining (3.17) and (3:18) we have that aij(&) (M) # 0 only when
m=Dk+¢=jqD+7?'.
Hence |jgD — Dk| = | = ¢'| < d + g < D. But this can only happen when jg = k, which then also

implies Z = ¢'. In particular, m = jqD + ¢ with |£| < d and then

. jqgD
aijg{N(m) =aj, D+ij(\Z)’N (jgD +¢) = a;, D#Kj(;{N(f) =alf’.
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It follows that

2 amKM,N(m)e%”mr - 2 Z aqu+fe2i7r[(/‘qD+f)t]
mez JEZ —d<r<d

_ 2inkDt 2int’t
YT e

k=0 mod q —d<¢<d
kel

_ 2ink Dt 2inlt
-3 A e

kel(q;0) —d<t<d

— Z fk(t)eZi”th.

kel(g;0)

1
a = |
0

Finally we get

/

2 fk(t)eZiﬂKdt

kel(q;0)

Y a, Ky (mye?™™| dt

m

sinceﬁ < E < g
M " 6D "6

We can now prove the lemma.

33

Proof of lemma[3.20, Write 1(q;s) = {ky, ...,k } and write each k; in the form k; = r;q + 5. Applying

lemma [3.24]yields

WV

1| J 1 J
1 Z dirk; Dt 2ixD rz 2izr;qDt
F t 1T dt — 1T DS t ITTr i q dt
Loy 327(2 + In(1 +2/5))/0 “ S (e o |6 ,zlfk;( e

J

1 b i N 2i
= _ fk. <_> e mrjs dS
ab jo |7 \aD
1 gD-1 m+1 | J s )
- f . <_> e217rr/-s ds.
52 (20 (5
But
J J J
S ) 2irrjs _ m \ Dizr;s S Y m 2ixr;s
Z{fk’ <qD>e T T szk’ <4D>e T / [fkf <qD> Ty <qD)] °
j= j= j=
so that
1
F > T, - T
NEN 1oy 32(2_‘_111(14_2/5))( 11— 1)
with
1 gD-1 m+1 i m )
Tl - / fk- < >e217rrjs dS,
aD = Jm |1=7 7 \4D
and
1 qD-1 m+l | J s m )
e 3 B 0 ) ()
2 qD = Im 121 kj gD kj qD
It remains to show that
1 fe Ml
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Let us start with 77 : using the 1-periodicity in s,

qD—-1

Tl / ka ( D>62iﬂrjs dS,
(%

gD J

CMPS Z Z

qDl

P2

CMPS Z

1 (35)

m=0 j= =1
with Theorem Applying Lemma|3.21(to f, k; and using that 2—1;1 < % with our hypothesis on ¢ and D,
we get I
1 ab 7 <m—l> S ”fkj”L1
qD kj qD - 2

and the desired estimate of T} follows 1mmediately.
Let us now estimate 7,. For s € [m, m 4+ 1], we have

J S

J S
Z <fk < > fk < >> e2imrys|  — Z /;D flij(f)ezmjs dr

j=1 j=1

m+l

/N

ka (t)e217rr s

qD J—l

From the 1-periodicity in s, the integral of this quantity over [m,m + 1] is the same as the integral over
[0, 1]. Thus

gD—-1 m+1 m+1
1 +
L < — Z / / Z fk ()e*™%| dt ds
q m=0 m 4D
qD 1 m-;—)l
_ /q / Zf/:.(t)eZirtrjs ds dt
._ J
= / / Z fk (e | ds dt
1 d -
T
< q_DZ“fk oo < q_DZl”fkj”Ll([o,u)
Jj=1 Jj=
with Bernstein’s inequality. U

3.5. Newman’s extremal trigonometric polynomial. Finally, let us insist on the fact that all results in
this section are worse case scenarios i.e. the lowest possible L' norm of a trigonometric polynomial with
eventually a constraint on the spectrum or on the coefficients.

If one looks at the maximal possible value of the L'-norm under the constraint that all coefficients have
modulus 1, then, from Cauchy-Schwarz

1
1[N 1[N 2 2 N %
/ ZajeZi”j’ dr < / ZajeZi”j’ dr| = <Z |aj|2> =VN+1
0 =0 0 [j=0 j=0

if |a;| = 1 for all j’s. However, if one wants to reach the bound VN + 1, one would need that equality
N

holds in the Cauchy-Schwarz Inequality so Z a je2[”j ’| should be constant. But, it is easy to show that
Jj=0

the only trigonometric polynomials with constant modulus are monomials (thus in our case, equality can
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N
only occur when N = 0). Indeed, consider the polynomial P(z) = a jzj with ap, # 0. Introduce
j=0
N
P(z) = P(2) = Za_jzj Then | P(z)|?> = ¢ when |z| = 1 can be written in the form P(z)P*(1/z) = ¢ for
j=0

|z] = 1, which is now an equality between meromorphic functions over C\ {0}. As thisis true on {|z| = 1}

it is true over all of C \ {0}, in particular, P has only 0 as zero thus P(z) = ayz".

So the natural question is, how near to 4/ N + 1 one can get. A result by E. Beller and D.J. Newman [2]

shows that one can obtain \/ N — O(1). For sake of simplicity, we will only present a previous result by
D.J. Newman [18]] which contains similar ingredients:

Theorem 3.25 (Newman, [18]]). There is an absolute constant ¢ > 0 and an integer N such that, for every
N > N there is a sequence ay, ..., ay with |a;| = 1 for all j and such that

/

Proof. The example is related to Gauss sums. We fix N and set @ = exp (1’

N

2imjt
2 9e

Jj=0

dtZ\/ﬁ—c.

L),w = @ and define
N+1/

N N j2
_ 2irxjt _ . .
P(t)_jgoaje irj _j;oexp <217Z' (m +jt>>.

The theorem is based on the following lemma:

Lemma 3.26. With the previous notation, when N — +c0

1
/ |P(1)|*dt = N? + O(N3/?).
0

We postpone the proof of the lemma and show how we can conclude with it.
Parseval’s identity gives || P|l, = v/n + 1 and then Holder’s inequality implies

2 1
1 1 3 1 3
N5N+1=/ |P(t)|2dt§(/ |P(t)|dt> (/ |P(t)|4dt) :
0 0 0

1
From the lemma, we deduce that there is a constant A > 0 such that / |P(t)|4 dt < N? + AN3/? when
0

N is large enough, so that

! N3/2 172 1 1/2 A1 1/2
> = = — =N~ -
,/0 [P@ldr 2 (N2 + AN3/2)1/2 N (1+ AN-1/2)1/2 N (1 2N +olN ))
> NI2_ 4
for N large enough. O

It remains to prove the lemma:

Proof of Lemma[3.26] We write

N

2irjt
2 9e

J=0
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N
Note that ¢, = Za-?z N+1l,c_p,=cyand fore > 1,
j=0

J7J
N-¢ N-¢ N-¢
_ 2 g2 2
¢y = Z Ay = 2 w(f+k) @ k= _ wf Z w2kf

k=0 k=0 k=0

2 2

22 1= w2(N—f+1)f _y a)f _ w—f

= (0] _—m _—

1 — w?¢ @f — o

since @*N+D = 1. We thus obtain that

2 %
o sin N+1f
‘ sin? Z-¢
N+1
On the other hand, from Parseval,
1 N N
/ PO = Y e, P=(N+1*+2) |e,|?
0 ¢=—N ¢=1
since cg = N + 1 and |c_,| = |c/|.
To compute the last sum, we split it into 4 parts
S = > leo]? S, = X leo]?
1<¢<V/N \/17<ng +1
S; = XN+1 lesI? Si = XniioyNersn [

<f<N+l—\/ﬁ

As |eyii—¢] = lcy| we have Sy < S; and S5 < S, so that we only need to show that S} and S5 are both
O(N?3/?).

. sinz0
For S, we use the estimate | —

Sin
Si< ) <N )Y 1=N
1<<V/N 1<¢<V/N
(N + 1)?

’ < 7 to bound |cf|2 < 72, leading to

T

Further, as for 0 < 6 < >

. 2
,sin@ > =6, we bound |c,|> < so that
T

CVEDE g L W T (N
IR S LA DR (O
N<¢<

as claimed. O

S,

4. L' ESTIMATES WITH REAL FREQUENCIES

4.1. Some results for the Besicovitch norm. We will now present three results for the Besicovitch norms
of non-harmonic trigonometric polynomials.

Let us start with the analogue of Mc Gehee, Pigno and Smith’s result. Let us present a nice argument by
Hudson and Leckband that shows that the estimate for the Besicovitch norm follows from Theorem [Bl The
converse is of course true as well and the result was obtained directly in [13]] and even allowed to slightly
improve the constant.

Theorem 4.1 (Hudson & Leckband [[L1]). For (4;);5q be real numbers with ;. — A; > 0 and let (a;) ;>
be a sequence of complex numbers with finite support. Then

l T/2 +o0 i +oo |aj|
lim — a; et dt > C
T—o+oo T /—T/2 j;() J MPS 20 j+1

where Cy,pg is the same constant as in Theorem
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Moreover, assume that (A;) is q-lacunary i.e. Ay > 1 and A; | > qA. Then, for 1 < p < +o0,

1
+00 172 1 T/2 [t p » +o00 1/2
2 . 2im At 2
t( ) <im (3| Se] ) <n(Zior)
j=0 -T/2 |j=0 j=0

with A, ., B, , the constants in Theorem@

Actually, only the first part is in [11]]. The second part is here obtained with almost the same proof and
seems to be new.

Proof. Let ay, ..., ay be complex numbers, 1 < A; < --- < A5 be real numbers and
N
q)(t) — Z ajeZ:nAjt.
J=0

Lete > 0. By a lemma of Dirichlet (25, p 235], [9]]), there is an increasing sequence of integers (M,),;»

and, for each n > 1 a finite family of integers (N, ,);—  n such that
N.
Aj= 21 £ forj=0,...,N
Mn Mn
which implies that
N;
. 2i Jj.n N
it _ M| <2m|A; — L2t < 22-S-|1]  forj=0,...,N.
Mn n
Define the M ,-periodic function
N
W, (1) = Y aje?Niat/My
=0

and note that, fort € [-M,, /2, M, /2],

N;
i 2ix -4y
eZNth —e M,

N N
o) - ¥,(0)] < ) )| <2ze ) laj|.
. e

j=0

But then

1 M, /2 1/p 1 M, /2 1/p
/ oI dt ) - / @, (0| dr
M, J_m, M, | _m,

n

1 Mn/2 1/1—’
< o) -, dt
Mn /—M /2 | |

N 1/p
< (27[2 |aj|> el/r,
j=0

We can now conclude as follows. First, in the general case, As ¥, is M ,-periodic, we may apply Theorem
to obtain
M,/2
|V, ()] dr

N
|aj| 1

C <
MPSJ;‘) Jj+1 M, J_m, )2

1 Mn/2 1 M"/2
< ()] dr + + / () — W, (1)] de
M, J_m, 2 M, J-m, !
| M,/2 N
< |®()| df + 2ze ) |a;|
M” -M,/2 jgo ’
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Letting n — +o0 and then ¢ — 0 we obtain Theorem .1}
T/2| N N
. 1 Qi ALt |ak|
lim — age”™ dt > C _—
T—>+ooT‘/_T/2 kz=;) k - MPSI;)k+1

Let us now assume further that A, ; > gA,. Let § be such that 1 < § < g and, assume that € has been
chosen such that ¢ — (1 + g)e > §. Observe that

N.

4.1 N WP b W 1. - £
.1 M, = j+1 j+1 ) Z 44 M,
N. N.
4.2) > g2t —gla; - 2L - =
Mn Mn Mn
N.
43 > =2t (149,
4.3) > an ( q)Mn

thatis N;yy, 2gN;, — (1 +q)e 24N, ,.
Applying (3.6) to n, = N, , and M = M, we obtain

1
+§ 2 1 M, /2 2 2ix
A - |a»|2 < —/ a.e  Mn
X J J
=0 M, -M,/2 |j>0

From (@.I)) we conclude that

<+Zm 2>% ( i . / 1 M2 Z i [\ 7
A - la;| —| 27 ) |a;| el/r < —/ a.e’ Mi'| dt
pd J j J
Jj=0 Jj=0 My J-m,2 |75

1

- -1
&
N———
-
IA
=
<
SNA L
[§ \o ¥
)
Y
N——

The result follows by letting ¢ — 0 and then § — q. O
4.2. Nazarov’s theorem.

Theorem 4.2 (Quantitative version of Nazarov theorem for small 6). There exists positive constants c,, 6,
such that, for 0 < 6 < 8, the following holds:
forevery Ay < ... < Ay of real numbers satisfying Ay.1 — A = 1 and ay, ..., ay, complex numbers,

N | | I+ | N
s Cx 2 2im Ayt
Tk« k
(4.4) kzék“ <shn /_ﬁ I;)ake dr.
- P

First, we start by some preliminary notations and results. Let I = I := [—ﬁ 18y

27 2
Letus fix (A )=, .. v C Rwith 4, — 4, > 1forevery k, (a;);—¢,... n asequence of complex numbers
and write |a; | = a,u;, with |u;| = 1. Let

.....

N N
lay| i
S = kz A D agerhd,
=0 k=0
so that we must find Cj such that:
“4.5) i@l Ly = CsS.

We define
N

N
la| Ue iz
S5 = Z —= and T;(t) = Z — K pmiyt
&K+ N, &K+ N,
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where Ny is a large integer that we will adjust through the proof. This integer will be of the form N = 2"s.
We will prove that

(4.6) oMl L1cry = BsSs
and, as k + Ny < (k + 1)N;, S5 > Ni so that we obtain the desired inequality (.5) with a constant
8
B
N
The meaning of Ny is the following. Consider:
— a new sequence of frequencies (4;);ez such that 4; = 4;_y, for j = Nj,..., N5+ N. and then

Zj =Ag+j— Ngforj < Nsand Zj = Ay +j— N for j > N. In particular, we still have I/Tj — Al > 1.
In other words, the sequence (4;);—,_ n is completed into a sequence (4;);cz that is still 1-separated and
then shifting it by Nj.

— A new sequence of complex numbers (4;);cz with d; = a;_y_forj = Nj,...,Ns+ N andd; = 0
for other j’s. In other words, the sequence (a;);—_ n is completed into a sequence (a;);cz by 0-padding
it and then shifting it by Ny.

Then (@.6) reads

217zit
ae dt > B;
/I() Z ! 2]+N5

5 |jEZ JEZ
with the convention that 0/0 = 0.
Note that, up to adding O terms at the end of the sequence a;, we may assume that N + Nj is of the form
2" — 1 for some integer ng. This will allow us to write

ZZZ

k=0 j=ms 2 <r+ Ng<2itl

Next, as in Ingham’s proof, we will introduce an auxiliary function. Again, we consider

cos(xt) if |f] < %

h(@) =
0 otherwise
whose Fourier transform is given by
2 cos(zA)
h(A
= T 1—452

We will need to smooth a bit this function to obtain a better decay of the Fourier transform and thereby
slightly enlarge its support. More precisely, let p = 10, ¢ = 8 and let

P +q
Jo)=—=1_ s ®
T2t 2(p+q)
and define its p + g-fold self convolutimﬂ
8s =>kp+q f o

Clearly g5 is non-negative, even and with support [—g, g]. Finally, we define ¢ as

4.7 95 = Th*g.

In the following lemma, we list the properties needed on @;z. They are all established via easy calculus
and straight forward Fourier analysis.

Lemma 4.3. There is a cy > 0 and a 65 > 0 such that, if 0 < 6 < & then,

cos(wA) piq [ TOA
(1) 5(1) _ap sinc m s

Ipe x is a function, we write #; y = y * y for the convolution of y with itself and then define inductively *; ; y = (+; w) * y.
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2) sl < =

2
s 1
(3) Let Dy =cy6 »*2 > 1and v > O then, for | 1| = max(1, Dgvr+2),
A~ v
M << —
@D < 0
25\
(4) Letys = <sinc > then, for |A| > 1,
pt+4q
~ Vs
N ———rm.
|@s(A 22 -1

From now on, we will assume that 0 < 6 < % < 1 sothat Dg > 1. In particular, when |A| > Dy, we
have |(A)] < |417.

Proof of Lemma The first one is simple Fourier analysis.
For the second one, we write

T T
l#slleo < 851 MRl < §||f5”1;+q”h”oo

and use simple calculus to conclude.
For the third one, we notice that 442 — 1 > 342 when A > 1 thus

sin(Z4) )
G = |2 T || L (2R e L L v
b 422 -1 zéd S3\ gz |A[P+2 |Al2 T Al
ptq
B opa 1 rtg
since |4 > Ll (}ﬂ),ﬁz o r+2yr+2 Thus this fact is established with ¢ = —1] <p +4d ) e
3m z 3@ T

7o

For the last one, we take 6, small enough to have sinc 0 - SUP;>5, | sinc?| and then |g5(A)| < 7
P >
when | 4| > 1. The first identity allows to conclude. O

We can now state the first crucial result in this proof.

Lemma 4.4. There exist 5; > 0, ¢; > 0 such that, if 0 < 6 < 6;, 0 < 0152 <1—=4/7s
Moreover, let
Vs
as=1—(c 8>+ —2—
g ( - 0152>

Ns=2m >577/2,

and let mg be such that

Then, for0 < k < N,

Z |@(ﬂj—/1k)| < 1 —ay
j+Ns  k+Nj

0<j<N
J#k
Proof. The Taylor expansion when 6 — 0 of 1 — 4 /y; is of the form
1—\/fr; = A8 + 0(5%),
with A > 0. Thus, if ¢; < A, for 6 small enough, 0 < c]52 < 1 = 4/ys. Next, notice that 0 < 1 —

(/3 + 17/—_5/3> <lifO<p<1- \/ﬂ which shows that 0 < a5 < 1. For future use, note that there is a
x > 0 such that
(4.8) az = k6% + O(8%).

We will further assume that 6 is small enough for

gq+1 g+l
_ -5 2oL —p- bt ~03 3 €0 .
5 7/22max<c1"25 -2, ¢y © p¥2 | = max cl"25 3,—06 7/2
S



FROM INGHAM TO NAZAROV’S INEQUALITY: A SURVEY ON SOME TRIGONOMETRIC INEQUALITIES 41

since we chose ¢ = 8 and p = 10.

Note that, for every € > 0, the power 7/2 could be reduced to 3 + € by taking p large enough, but could
not be reduced below 3 with this construction.

We can now turn to the estimate itself. Set § = ¢, and split the sum in the left hand side of the main
inequality into two sums

18(4; = Al
E:= 2 '-ji-N = E+E
0N S TS
Jj#k
where
. 18(4; — A
1= — Y~
jANs<(pkeny I T Ns
and
. 1B, = 2l
2= — Y
NPy TN
J#k
The result is obtained if we prove the two estimates
1—
E[ < ﬂ et E2 < M
k+ Ng k+ Nj

Cy —2-2ta e . .
Now, as N > 95 2 fNgs > Dg. Then, if j is an index corresponding to E|, then
S

|4k — 4;1 Z 1k —jl =(k+ Ns)— (j+ Ng) = fk + Ng) 2 BN = D;
hence, from Lemma .3 with v = 1,

A 1
E < Z |§9(ﬂj - /lk)| < m
J+Ns<(I—p)(k+N) J+Ns<(1=p)k+Ng) ' 7J — 7k
1
< —
JNg<(=pueny (Bk+ N5))
But, E; contains less than k terms so
—(g+1)
“9) E, < k p . )/ < B
_arl o —B g
since Ny > a2 =¢ "6 a2,
We shall now bound E,. In this sum,
j+Ns>(1=pk+Ny) and |4 =4l >1
then
1 Vs
E, <
S A= Pk +Ng) | Sy 40, — 42 -1
J#k
Vs 1
< ,
(1= Ak +Ny) | L 4G — k) =1
Jj#k
< Vs Z 2 .
(=P (k+ Nj) &= 42— 1
. 2 1 1 , vs/(1 =)
Since = - , we obtain the expected bound E, < ———. 0
M1 221 2+ " xP e E2 S TN,

The following lemma is a first step towards proving Theorem [4.2]and is a consequence of Lemma 4.4}
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Lemma 4.5. Let us use the notations of the lemma[d.4] Then,

N
/ T;(1) (Z akezmi"’> (1) dt
I k=0

(4.10)

N
lagl

Za,;z k+ N,

k=0 é

Proof. By definition of Ty,

M
) u; ) )
/ Ta(t)ez’”’lkt(p(t) dt = : J / e—Ztitﬂ.jIQZIﬂ'/lkl‘(p(t)dt
I =J T Ns Ji,
M
= Z NP = 40
Uy uj A~
= + 54— &)
J#k
thus
. uk 1 A
Ts(t)e? ™! p(1)dt — < (A = Ap).
J, AR
J#k

By applying the lemma[d.4] that

) u l-«a
T;(1)e2 ™M p(f)dt — —— | < iy
‘/15 6() (P() k+N§ \k+N5
It follows that {
) u,a a
T ()a, e ™! p(f)dt — ——K % |a
‘/15 s(Day @(1) k+N5\k+N5|k|

Using the fact that ua;, = |a,| and the triangular inequality, we obtain

N N N
|a;| la
Ts(1) (Z a ez'”k’> p(tydt - ) <U-ap) )
‘/Ib k=0 i k+Ns iz k+Ns
from which the lemma follows immediately. U

Construction of T}

Recall that, from our assumption on Ny and N, we can write
M

Ty(t) = Zku_N —2in At _ Z fj(t)

g
where weset D; = (k€ IN : 2/ <k < 2/+1} and
u .
=Y e
r+N5€D; r+ Ns
Before we estimate the norms of the f;’s, let us recall Hilbert’s inequality (see e.g. [4, Chapter 10]).

Lemma 4.6 (Hilbert’s inequality). Let Ay, ..., Ay be real numbers with |A;, — Ay| > 1 when k # ¢, and let
Z1, ..., 2y be complex numbers. We have

— N
Zyzy 2
| <7 2l
1<k, /<N "k 4 k=1
k#t

We can now prove the following:

Lemma 4.7. For mg < j < ng,

(D) Ifille <1
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_i
(2) Willeay <272y sl + 1.

Proof. The first estimate is obtained by straightforward computations: for all ,
1 |D jl
(0] < Z < —L =
|f j( )l =X r + N5 2 Jj

r+N;€D;

hence |1/l < 1

For the second one, set v, = . Then

6

/ fj(t)fj(t) dr= / z U,U_Se_Zi”(A'_AS)’ dr
I I r+Ns,s+N;€D;

1s1/2
|15| 2 |Ur|2 / e—2lﬂ(lr—/15)t dr

[

r+Ns€D; r+Ns, s+NbeD [151/2
r#s
|I | Z | |2 < 1|15|n(2,—/1s) _ e—i|15|n(i,—/1s)>
= 5 v, - .
r+Ns€D; r+N5,s+NéeD 2im(Ay = As)
r#s
It follows that
) ” o 2 ’ |2+ 1 Z ure"“r(”‘”use—"”’ls(”‘s) .\ 1 Z Uremlr(1+5)vsemas(1+5)
2 S s 5 by
Lo r+Njg ’ 27 r.s As = 4 27 r.8 Ay = 4,
r#s r#s

We then apply Hilbert’s inequality .6 to the last two sums to obtain

1
1512 < 151 ) o, |2+— 2 P+ ¥yl

r+Ng r+N5,ﬁ€Dl- r+Ns€D;
2
= (L1+D ) o)~
r+Ng
Since
2
2 |ut, | 1
2 el = ¥ = TIN
r+N;ED; r+N;ED; (r+ Ny) r+N4;€D; (r+ Nj)
J
< L < 22 =27,
r+Ns€D; 22 2%
we get || f; II? < ([Ig] + 1)277 as claimed.

LX)

We then write the Fourier series expansion of | f;| € L2 5)as

2im

== st
|£,(0] = Z aw,eum
N=V4
and define h ;€ L3(1 5) via its Fourier series expansion
2137[
h;(t) = ay; +220 elisl”

s=1
Lemma 4.8. For ms < j < ng, the following properties hold
(1) Re(hy) = |f;l;

(2) ksl < V2055l
(3) h;'€ H®(Iy).
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Proof. First, as | ;| is real valued, its zero Fourier coefficient ay ; is also real, and for the remaining ones

a,; =a_g; forevery s > 1. A direct computation then shows that Re(h;) = | f;| which is less than 1 by
lemmawhile Parseval shows that || ;]| < \/5||fj||2- O

We now define a sequence (F));s,,, inductively through
—eh.
F,, = fm(S and F; = Fje ERjr1 + fit
where 0 < € < 1 is a small parameter that we will adjust later. Further set

i b 1 X 1
E, := sup ——— = — sup = .
0<x<1 I —emex € 0<x<e [ —e> 1—e¢

From the next to last identity, it is easy to obtain the following simple bound:

m | =

<E <

oM 1

Lemma 4.9. Forall ms < j < ng,

1Fjllo <

LIS

Proof. By definitionof E_,if C < E, and0<x <1,thenCe ™ +x < E,e™** +x < E,.
We can now prove by induction over j that | F;| < E, from which the lemma follows. First, when j = 0,
from Lemma[4.7] we get

1Folleo = lfollo < T < E.

Assume now that || F;||, < E,, then

—¢h,; —eR( A
|Fi® = [F0e "m0+ £, 0] < | F0)le™ (100) 4 | Fim1 0
= IF0le Ym0 41 £,,0).

0 ifj=n

As |fip1 (O] < 1and |F;(0)| < E,, we get | F;; ()| < E, as claimed. O
Lemma 4.10. Let ms < n < ng. For j = mg, ..., n we define 8jn= e~ Hjn yith
h]++h l:fj<}’l
Hj,n={ Jt+ n

V2(I51 + 1)

n
Then F, = Z fi8jn Moreover || H; ||, S ———2

j=mg ’ \/5_ 1

Proof. The first part is obtained by a simple induction on n. Moreover, the lemma4.8]implies

[T

n n n
H, L = || Y af < X i< vV2 Y s
r=j+1 o r=j+l r=j+1
< V2LT+D Y 2 r= sl Dy
r=j+1 \/5—1
as stated. O

Next, we will need the following simple well-known lemma:
Lemma4.11. [f H € H® and Re(H) > 0, then e e H® and

-H
lle™ =1l < | H]l.
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n
k
Proof. Since H® is a Banach algebra, the partial sums Z(— 1 )k % of e H are elements of H®. Moreover,
k=0 :

since H is bounded, these sums converge uniformly toward e=#, with e=# € H®. Finally, if z € C and

R(z) = 0,
1
/ ze "2 dt
0

|e‘H<’> - 1| <[H®)

and by integration we have the desired inequality. O

Lemma 4.12. Assume that 0 < € < L\/El)
V2151 + 1)
V21 +1) i
—£272
V2 -1
2isw

+o0
(2) The Fourier series of g; ,(1) — 1 writes g; ,(t) = 1 = Z cs’jemt, with Z |cs’j|2 < L
=0

520

1
le™? — 1] = g/ |z]le"R@dt < |z].
0

In our case z = H(t), and we have

. Then, for mg < j < n < ng,

(1) N80~ Uly < €l Hj,ll, <

Proof. By lemmald.11} |lg; — 1|, < €l H,||,. Then, since g; , is analytic, its Fourier series writes

2in

gin—-1= Z cs,je@ﬁ.

520

But then, with Parseval

1
2\ 1 € e V2L1+D i i
Dleg P ) = lg; = 1, < —I1H;ll, < 272g27a <1
520 varn e VI V2 -1
which implies the claimed bound. O
Now recall that
Ts = Z fj
ms<jsng
and define
T5 = Fn(s.
In particular, from Lemmaf4.9] we have
= 2
@.11) 175l < =

The key estimates here is the following;

Lemma 4.13. Once again, we use the notations of the lemma[.4} There exists 5, > 0 such that, if0 < 6 <
8, and Ng > 677/2 then

N

/ (T5 — T5)() (Z akeZi”*k’> (1) dt
1s k=0

where @ is the function defined in (4.7)).

N
2 la|

4.12 <= .

4.12) \3a5/§)k+N5

Proof. 1t is enough to prove that, under the conditions of the lemma, for 0 < k < N we have

a
<2 %

(4.13) < ,
3k+ N,

(T5 — T5)(t)e* ™! (1) dt
Is

Once @.13)) is established, it will then be enough to multiply the left hand side by g, and to use the triangular
inequality
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We fix k € [0, N] and let £ the index such that k + N5 € D,. We define R, R; and R, as follows

R

/ (Ts.5 — Ts p)(O)* ™ (1) di
Is

/, Y 080 = 1)eP T (e di + /, Y F0(g;0) - 1)eH () dt
)

mg<j<E=2 C—1<j<ng
= Rl + R2
We will first bound R;. Note thatif s € Z,
2im . s
2izAt 15t u, 2in(=A+A+—=)
(Dp()e " lellsl dt = / He sl dt
Q0! 2 e

15 r+NseD; r

P TP Wy Py
r+N; [ 151

15

From there, we obtain

2ist
/ £i0(g;0 = 1) gy di = / £, O0@eE = Y ¢ ol dr
"’ L5 520
+0o0 ‘ th
= ch,j/fj(t)@(t)ez’”’lk’eué\s dt
5s=0 Is

+o0

= ZCA Z “r P _gk_L)
5l + N r |15

u, d A N
= c. . (A, — A, — —).
Z r+Néz 5. P4 k |[5|)

r+Ns€D; s=0
So finally we get
[ss]
A~ s
Ri= ) D ey ;90 = Ay = ).
J r k
ms<j<E=2 r+NsED; r+ N s=0 11
Let ¢ (r) = ¢, ; if r+ N4 € I;. Since @ is an even function, we can write
u - u
A S r
R, = a (NP — A, + —) 1= E.
! 2 7r+N52S()(p(k aTRY 2 L FEN, T
2M5 r+ Ny<2¢-1 5=0 2Ms r+Ng<2¢ -1
. _btq As
From Lemma , recall that, with D5 = c;6 2 and v = m then, for
s

L
|A] = max(1, Dgv 7+2),

we have
(4.14) )] < ——2
. 7] _—
AN
Now, s > 0, |I5| > 1 and, as r + Ng < 20-1 27 < k+ Nz < 20+1 Ay > A, thus
(4.15) |15|,1k—,1,+ﬁ Usl(Ay —A)+s= A=A +s>k—r+s
)

= (k4 Ng)—(r+ Nz) > 20 = 2071 =271 » oms=1,
L _ptat2 20
Further, from @38) and 1 < [I5] <2, Dgv 72 < ¢36 »2 =36 12. Thus, choosing my sufficiently large
for Ny = 2"56~7/? and 6 < 6, for some 6, > 0 small enough, we are able to apply (#14) and obtain, with

EI5)

~ a
160 = Ay + —)| € ————.
|I5| (k—r+s)
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We can now bound E,. Since Z |cs(r)|2 < 1, the previous bound and Cauchy-Schwarz give us

s=0
o . 1/2
A s
qo(/lk—i,+ 1+5>’<0{5<2 (k—r+s)24)

|E

o

D le, ()l
s=0 5s=0

a5< i 5 ﬁ)l/z

<

n=k—r n=k—r
< « /00 ﬂ 1/2——"2‘1_1“5
S\ S 124 (k—r— 1172

Butk —r > 2" thenk —r —1 > 2/7!. Since k + N; € D, i.e 2/ < k + N5 < 27! we get
1 4

<
k—r—1" k+ N;

and then

E|< 497124 /2q — 1ay
"7 25(k + Ng)a-1/2
Finally, we deduce that

IR |

u
Z r+rN5Er

2Ms Kr+ Ng<2/-1

49-1/24/2q — lag

(k + N5)i—1/2

|E,|
< -
h 2 r+ Nj

2M5 K+ Ng<26-1

since last sum has at most 271 < k + Nj.
We will now bound R,.

Rl < ¥ /I|fj<r>||g,<r>—1||(p<r)|dr

f—1<j<n5
< lolle Y5 1A lllg; = 1,
£-1<j<n,
According to the lemmas[4.7) (1) and [.12] (1) we get
V22 + 6) »
IRyl < |l e —F——— 27,
\/5— L -1gjgm
since
(o)
Z 27/ g Z 2=i = p=C+2 _ g p—(+D)
£-1<j<n; j=t—-1
1
and k + N € I, then Yz < TN, Consequently
_j 8
PIPERS :
£-1<j<ng k+Ns
Finally, we deduce that
V2L + 1) 8
R, <ellolle

\/5_1 k+N5
1 “V2-1)

when € <

a
and we obtain R, < el as.
3 k+Ns 24)|9ll o (1] + V2
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Note that, from (@38) and | I5| < 2, we can take £ = c,6° for some ¢, > 0.
It is now easy to deduce the theorem [4.2]using the 2 inequalities (4.10) and @.12).

N N
a .
Proof of theorem[d.2] Let S5 = Z Z I_i_k]lv and ®(t) = Z a e? ™! as previously defined. Recall that in
k=0 6 k=0

(4.10) , we have shown that

a5Ss < /IT(s(t)(i’(f)(P(t)df
< | Tosoen s +| [ (10 -10)00000
13 13
< | Toswen ]+ 2as;
Is

with @T2).

It follows that

S < = ‘ /I Ty ()(Dp(0) dr‘
)
37
o Wl [
s I

But, if ¢ is small enough and N > 5772,
— from Lemma lolle < %;
— from [@.8), a5 = k6% + 0(6*)
_as & = ¢;82, from @I, Tl = %
Therefore, there are two absolute concs‘t‘ants o, and c, such that, if 6 < 6,

C
S, < = )| dr.
5_54/15|¢()|

As noticed at the start of the proof, this implies that

N la, | W | N
a [4 2 .
g )
= +
n=0 + ) —2 |k=0

for every N, every sequence of real numbers (4;);59 with 4;,; — 4; > 1 and every complex sequence

We have not fully optimised the proof, by taking ¢ sufficiently large and p/q sufficiently large, one can
replace 615/2 by 67+ for any fixed 7.

5. SOME OPEN PROBLEMS

The L? theory of exponential sums is rather well understood. This is not the case for L' theory for which
there are still many open questions. Let us mention a few of them.

(1) There is a major difference between the sums that appear in Ingham’s Theorem and those that
appear in Mc Geehe, Pigno, Smith and Nazarov’s Theorems. In the L? case, the sums can be two
sided and not in the L! case. The proof given here does not work in this case (this is due to the
construction of T') and we are tempted to conjecture the following

Question 1. Let T > 1 and (Ay)yez a real sequence such that Ay — A, > 1 for every k and A,
has same sign as k.
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Does there exist a constant C such that, for every N and every sequence (¢;);—_n . n of com-

plex numbers,
N

eyl TS
Z|H+1sg/ > et dr.
k=—N

T/2 k=N

(2) The second question is the optimality of the condition 7" = 1 in Nazarov’s Theorem. In view of
Ingham’s counterexample, it is tempting to conjecture that T > 1 is requested (as observed by
Nazarov, his proof requires this).

Question 2. Is the condition T > 1 necessary in Nazarov’s Theorem. If yes, what is the right
behaviour of the constants.

We think the estimate shown here is not optimal.

(3) Another question related to the previous one comes from Haraux’s Theorem. When 4, | — 4, —
+o0, T can be chosen arbitrarily small. A key element of Haraux’s strategy is that the lower and
upper bounds in Ingham’s inequality are both multiples of the #>-norm of the coefficients. This is
no longer the case in the L! setting.

In forthcomming work, we have been able to use a compactness argument to show that one may
take T arbitrarily small in Nazarov’s Theorem when 4, | — 4, — +o0. However, in doing so, we
loose control of constants. This leads to the following:

Question 3. Prove a quantitative version Nazarov’s Theorem with T arbitrarily small when A —
)’k - +00.

(4) Are L'([-T,T])-norms of lacunary non-harmonic Fourier series comparable to the #2-norms of
the coefficients? This is the case for Besikovich norms.
Note that
1/2 1/2 1/2
© | a,| / 0 / ~ /

Lyt 2} =2 (Y
;)Hls ,gomnz J;OW 7 J;Ow

The question is then

Question 4. Find a (gap) condition on (A;) and on T that implies that there is a constant C > 0
such that, for every (a;) with finite support

EEIES 2ini, 2
T t
T/ Y aje dt>C §m|

T/2]0

1/2

One may also go the other way and ask whether one can still obtain a result like Theorem
when 4, ; — 4, — 0 but with a smaller power on the denominator. For instance, when 1, = Ink
then the Fourier series become Dirichlet series

+oo +0o0

Z ag — Z akeZiﬂ(lnk)t
2int :
k=1 k

k=1

The following question was asked in [3]:

Question 5. Is it true that, for every sequence (ay);», with finite support,

T/2 |t

lay| . ai
C + < 1 dr
LR v RN SN e

k>2 _T/2 k=1
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