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The aim of this paper is to give an overview of some inequalities about -norms ( = 1 or = 2) of harmonic (periodic) and non-harmonic trigonometric polynomials. Among the material covered, we mention Ingham's Inequality about 2 norms of non-harmonic trigonometric polynomials, the proof of the Littlewood conjecture by Mc Gehee, Pigno and Smith on the lower bound of the 1 norm of harmonic trigonometric polynomials as well as its counterpart in the non-harmonic case due to Nazarov. For the latter one, we give a quantitative estimate that completes our recent result with an estimate of 1 -norms over small intervals.

We also give some stronger lower bounds when the frequencies satisfy some more restrictive conditions (lacunary Fourier series, "multi-step arithmetic sequences").

Most proofs are close to existing ones and some open questions are mentioned at the end.
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INTRODUCTION

The aim of this paper is to give an overview of the main estimates of -norms of harmonic and nonharmonic trigonometric polynomials, when = 2 and = 1. In many fields of mathematics, ranging from number theory (see e.g. the previous survey [START_REF] Belov | On the conjecture of Littlewood and minima of even trigonometric polynomials[END_REF]) to signal processing and PDEs, one is lead to investigate such norms. Our main motivation comes from the use of Ingham's inequality (lower and upper estimates of 2 -norms of non-harmonic trigonometric polynomials) in control theory of PDEs. We refer the interested reader to the book by Komornik and Loreti [START_REF] Komornik | LORETI Fourier Series in Control Theory[END_REF] (iii) Assume further that for = 0, … , -1, +1 -≥ 1, then, for every > 1, there exists a constant ( ) such that, for every 0 , … , ∈ C, Moreover, (a) for ≥ 72 we can take ( ) = 1 122 ;

(b) for 1 < ≤ 2, ( ) = ( -1) 15∕2 .

Let us comment on this theorem. To start with, the theorem is essentially a quantitative version of a result of F. Nazarov [START_REF] Nazarov | On a proof of the Littlewood conjecture by McGehee, Pigno and Smith[END_REF] and is due to the authors together with K. Kellay [START_REF] Ph | SABA The Littlewood problem and non-harmonic Fourier series[END_REF]. Only the case 1 < ≤ 2 has not been presented before. To be more precise, when the 's are integers, this is of course the result of Mc Gehee, Pigno and Smith while Point 2 comes from a slight modification of their argument by Stegeman and Yabuta. Note that the constants are the same as those in Theorem B (and are actually a bit better). While it is obvious that this inequality implies Theorem B (with the same constant), there is an elegant argument by Hudson and Leckband [11] that allows to show that the converse is also true. We will present this argument below. Point 3 is due to Nazarov with non-explicit constant. A direct proof of this theorem is given in [START_REF] Ph | SABA The Littlewood problem and non-harmonic Fourier series[END_REF] with the explicit constants mentioned above. Only the case of small has not been presented so far and is thus the main novelty of the present paper. It is obtained by a very mild modification of Nazarov's proof. Note also that once we have established Point 3 for some 0 , it is valid for all ≥ 0 so that we actually recover Nazarov's original result (with much worse constants than the ones stated above).

The remaining of the paper is organised as follows: Section 2 is devoted to the 2 case and we prove the inequalities in Ingham's Theorem in Section 2.1 and the necessity of the condition > 1 in Section 2.2. Further, Haraux's argument is presented in Section 2. [START_REF] Brevig | VUKOTIĆ The multiplicative Hilbert matrix[END_REF].

In Section 3, we investigate the 1 norms when the frequencies are integers. We start with the classical asymptotic estimate of the Dirichlet kernel and devote Section 2.2 to lacunary trigonometric polynomials. Section 3.3 is devoted to Mc Gehee, Pigno, Smith's proof of Littlewood's conjecture. In Section 3.4 we present Hanson's result on strongly multidimensional sequences and we conclude in Section 3.5 with the result of Newman. Section 4 is devoted to the case of non-harmonic trigonometric polynomials. We start in Section 4.1 with the argument of Hudson and Leckband and then extend the case of lacunary trigonometric polynomials to the non-harmonic setting and the Besicovitch 1 -norms. We conclude this section with the proof of the quantitative version of Nazarov's theorem for small .

In the last section, we present a few open questions.

2 ESTIMATES

2.1. Ingham's inequalities. The aim of this section is to show the following: let

Λ = { } ∈Z ⊂ R be a 1-separated sequence, | -| ≥ 1 if ≠ . Let (Λ)
be the set of (non-harmonic) trigonometric polynomials

(Λ) = ( ) ∶= ∑ ∈Z 2 ∶ ( ) ∈Z ⊂ C with finite support .
Note that, if ∈ (Λ) is given, then the 's are determined by

= lim →+∞ 1 ∫ ∕2 -∕2 ( ) -2 d .
We can then define two natural norms on (Λ), namely

‖ ‖ 2 ([-∕2, ∕2]) ∶= 1 ∫ ∕2 -∕2 | ( )| 2 d 1 2
and

‖ ‖ 2 ∶= ∑ ∈Z | | 2 1 2
.

Our aim in this section is to show that, when > 1, these two norms are equivalent. This is done by proving two inequalities. The first one is the direct inequality:

Proposition 2.1 (Ingham's direct inequality). Let ( ) ∈Z be a finitely supported sequence of complex numbers and ( ) ∈Z be a sequence of real numbers with +1 -≥ 1. For every > 0,

(2.1) 1 ∫ ∕2 -∕2 | | | | | ∑ ∈Z 2 | | | | | 2 d ≤ 2 + 1 ∑ ∈Z | | 2 .
Proof. We consider the function on R defined by

ℎ( ) = cos when | | ≤ 1 2 0 otherwise .
As ℎ is real and even, its Fourier transform is given by ĥ

( ) = 2 ∫ 1∕2 0 cos cos 2 d = 2 cos 1 -4 2
with the understanding that ĥ(1∕2) = 1 2

. From this, one shows that ĥ(

) ≥ 1 2 for | | ≤ 1 2 . Finally, let ( ) = ℎ * ℎ( ) = ⎧ ⎪ ⎨ ⎪ ⎩ sin | | -(| | -1) cos 2 when | | ≤ 1 0 otherwise .
One easily shows that is even, non-negative, supported in [-1, 1] and that (0) = 1 2 . Further its Fourier transform is ̂ ( ) = ĥ( ) 2 . In particular, ̂ ( ) ≥ 0 and ̂ ( )

≤ 1 4 for | | ≤ 1 2 .
But then, if ( ) ∈Z is finitely supported and

( ) = ∑ ∈Z 2 , ∫ 1∕2 -1∕2 | ( )| 2 d ≤ 4 ∫ 1∕2 -1∕2 ̂ ( )| ( )| 2 d ≤ 4 ∫ R ̂ ( ) | | | | | ∑ ∈Z 2 | | | | | 2 d = 4 ∑ , ∈Z ∫ R ̂ ( ) 2 ( -) d = 4 ∑ , ∈Z ( -).
Note that the sums are actually finite. Further, if

≠ then | -| ≥ 1 and, as is supported in [-1, 1],
we then have ( -) = 0. This implies that

∫ 1∕2 -1∕2 | ( )| 2 d ≤ 4 (0) ∑ ∈Z | | 2
so that the inequality is proven for = 1 since 4 (0) = 2.

For < 1 we simply write

1 ∫ ∕2 -∕2 | ( )| 2 d ≤ 1 ∫ 1∕2 -1∕2 | ( )| 2 d ≤ 2 ∑ ∈Z | | 2 . for 1 < ≤ 2 3 2 64 for ≥ 2 .
Proof. We will do so in three steps. We first establish this inequality for 1 < ≤ 2.

Let be defined by ( ) = 1 [-1∕2,1∕2] cos and notice that

̂ ( ) = 2 cos 1 -4 2 .
Note that being non-negative, ̂ is maximal at 0 (which may be checked directly).

Next consider * and notice that, as is non-negative, even, continuous with support [-1∕2, 1∕2], then * is non-negative, even, continuous with support [-1, 1] and its Fourier transform is

̂ * = ̂ 2 . Next ∈ 1 (R) with ′ = -1 [-1∕2,1∕2] sin and ̂ ′ ( ) = 4 cos 1 -4 2 thus ̂ ′ * ′ ( ) = -(2 ) 2 ̂ 2 ( )
We now consider = 2 2 * + ′ * ′ so that is continuous, real valued, even and supported in

[-1, 1]. ̂ ( ) = 2 2 -4 2 ̂ 2 ( )
is even (so is the Fourier transform of ̂ ) and in 1 . Further ̂ is non-negative on [-∕2, ∕2] and negative on R ⧵ [-∕2, ∕2].

∑ =1 | | 2 ≥ 2 32 ∑ =1 | | 2 , establishing (2.2) with = 2 32
.

Finally, we notice that, with a change of variable, and a simple limiting argument to remove the condition on the support of ( ), we have just proved the following; Theorem 2.3 (Ingham). Let > 0 and > 1 . There exist two constants = ( ), = ( ) such that -for every sequence of real numbers Λ = { } ∈Z such that +1 -≥ ; -for every sequence ( ) ∈Z ∈ 2 (Z, C),

In other words, for (2.2) to hold for = 1 for this sequence ( ) and every sequence ( ) then (1) = 0 so that the condition > 1 is necessary for this inequality to be interesting.

Proof. Let > 0 and define, for

| | < 1, ( ) = (1 + ) -= exp -arctan ℑ( ) 1+ℜ( ) |1 + | , | | < 1.
Of course, we may also write as a power series

( ) = +∞ ∑ =0 (-) !
where ( ) 0 = 1, (-) = -(--1) ⋯ (--+ 1). Next define

( , ) = 2ℜ ( +1) ( 2 ) = ( +1) ( 2 ) + -( +1) ( -2 ) = +∞ ∑ =0 (-) ! 2 + +1 2 + +∞ ∑ =0 (-) ! -2 + +1 2 .
Now set Λ = { } ∈Z with = + + 1 2 when ≥ 0 and = + 1 -+ 1 2 for ≤ -1, then +1 -≥ 1 (and even = 1 excepted for 0 --1 = 1 + ). In particular, if we set

, ( ) = ∑ =0 (-) ! 2 + +1 2 + ∑ =0 (-) ! | | | | 2 = 2 ∫ 1∕2 -1∕2 | ( 2 )| 2 d .
It follows that, if we had

(2.6) ∫ 1∕2 -1∕2 | , ( )| 2 d ≥ ∑ ∈Z | , ( )| 2
then, letting → +∞, we would also have

(2.7) ∫ 1∕2 -1∕2 | ( , )| 2 d ≥ 2 ∫ 1∕2 -1∕2 | ( 2 )| 2 d
for every 0 < < 1 and every 0 < < 1.

But, if we fix ∈] -1∕2, 1∕2[ then, when → 1,

( ±2 ) = 1 1 + ±2 → 1 1 + ±2 = ∓ 2 cos
(this is where we use that ≤ 1) while

| ( ±2 )| 2 = 1 (1 -) 2 + 4 cos 2 ) ≤ 1 4 cos 2 for 1 2 < < 1.
Similar bounds follow for ( , ):

( , ) = ( +1) ( 2 ) + -( +1) ( -2 ) → + - 2 cos = 1 2 -1 cos -1 while | ( , )| 2 ≤ 1 cos 2 .
When 2 < 1 the majorants are integrable so that we can let → 1 in (2.7). This leads to

(2.8) 2 2-2 ∫ 1∕2 -1∕2 d cos 2 -2 ≥ 2 1-2 ∫ 1∕2 -1∕2 d cos 2 .
Letting → 1 2 the right hand side goes to +∞ while the left hand side stays bounded. We obtain the desired contradiction. Assume that there exists 0 < ≤ 1 ≤ such that, for every ( ) ∈Λ finitely supported sequence of complex numbers,

∑ ∈Λ | | 2 ≤ 1 ∫ ∕2 -∕2 | | | | | ∑ ∈Λ 2 | | | | | d ≤ ∑ ∈Λ | | 2 .
Let ∈ R ⧵ Λ and, for sake of simplicity, assume that

(Λ ∪ { }) ≥ 1. Let 0 < < min , 1 4 
, then there is a with 0 < < such that, for every

( ) ∈Λ∪{ } ∑ ∈Λ | | 2 ≤ 1 + ∫ + 2 -+ 2 | | | | | | ∑ ∈Λ∪{ } 2 | | | | | | d Moreover, can be taken of the form = 4
for some absolute constant > 0 ( = 8 -4 would do).

Note that, as is arbitrarily small, as > (Λ) -1 is arbitrarily near to (Λ ⧵ { 0 }) -1 so is + .

Proof. Set ( ) = ∑ ∈Λ∪{ } 2 . For 0 < < 1 4
, we define

( ) = ( ) - 1 ∫ ∕2 -∕2 -2 ( + ) d = ∑ ∈Λ 1 - sin ( -) ( -) 1 (Λ) , (2.9) 1 ∫ ∕2 -∕2 | ( )| 2 d ≥ ∑ ∈Λ | ( )| 2 ≥ ∑ ∈Λ | | 2 ≥ 4 100 ∑ ∈Λ | | 2
On the other hand, from Cauchy-Schwarz,

| ( )| 2 ≤ 2| ( )| 2 + 2 | | | | | 1 ∫ ∕2 -∕2 -2 0 ( + ) d | | | | | 2 ≤ 2| ( )| 2 + 2 1 ∫ ∕2 -∕2 | ( + )| 2 d = 2| ( )| 2 + 1 ∫ + - | ( )| 2 d . It follows that 1 ∫ ∕2 -∕2 | ( )| 2 d ≤ 2 ∫ ∕2 -∕2 | ( )| 2 d + 2 1 ∫ ∕2 -∕2 ∫ + - | ( )| 2 , d d = 2 ∫ ∕2 -∕2 | ( )| 2 d + 2 ∫ ∕2+ -∕2- | ( )| 2 1 ∫ min( ∕2, + ∕2) max(-∕2, -∕2) d d ≤ 2 ∫ ∕2 -∕2 | ( )| 2 d + 2 ∫ ∕2+ ∕2 -∕2-∕2 | ( )| 2 d ≤ 4 1 ∫ + 2 -+ 2 | ( )| 2 d ≤ 8 1 + ∫ + 2 -+ 2 | ( )| 2 d
since we assumed that + ≤ 2 . With (2.9), we have thus shown that (2.10)

∑ ∈Λ | | 2 ≤ 800 4 1 + ∫ + 2 -+ 2 | ( )| 2 d . It remains to add | | 2 on the left hand side. As = - ∑ ∈Λ 2 , | | 2 = 1 ∫ 2 -2 | | 2 d ≤ 2 1 ∫ 2 -2
where we used again that + ≤ 2 and the hypothesis of the lemma. But then, from (2.10), we get

| | 2 ≤ 4 + 1600 4 1 + ∫ + 2 -+ 2 | ( )| 2 d .
Adding this to (2.10), we finally get that

∑ ∈Λ∪{ } | | 2 ≤ 4 + 800 2 + 1 4 1 + ∫ + 2 -+ 2 | ( )| 2 d ≤ 1 4 1 + ∫ + 2 -+ 2 | ( )| 2 d with -1 = 800 × 3 + 4 since ( 0 ) ≤ ( 0 ), ≤ 1 and ( 0 ) ≥ 1.
We thus obtain the inequality with = 4 as claimed.

We can now use this lemma to improve Ingham's Inequality.

Corollary 2.6. Let Λ be a sequence such that

(Λ) = min ≠ ′ ∈Λ | -′ | ≥ 1 and let = ( 1 , … , ) ⊂ Λ. Let > 1 (Λ ⧵ )
. Then there exists two constants 0 < < 1 < such that, for every finitely supported sequence ( ) ∈Λ ,

(2.11) ∑ d ≤ ∑ ∈Λ | | 2 with = 6( + 1) = 6 1 + 1 .
In particular, the upper bound in (2.11) is already established. 4 . We can therefore apply Haraux's lemma again, till we reach Λ 0 . At each step, the constant -is replace by --1 = 4 - -while the integral ranges over -+( +1) 2 , +( +1) 2 . This finally leads to

Now let 1 (Λ ⧵ ) < < and = -. One might take = 1 2 + 1 (Λ ⧵ ) so that = 1 2 - 1 (Λ ⧵ ) From Hauraux's lemma, we get 1 + ∫ with -1 =
1 + ∫ + 2 d ≥ 0 ∑ ∈Λ | | 2 with 0 = 4 1 2 ⋯ .
As + = , this establishes (2.11).

Note that, taking = 8 -4 we obtain

= 2 2 6 3 4 2 13
-1

∏ =0 1 + 1 .
3. 

( ) = ∑ =- 2 = sin(2 + 1) sin .
The following is a classical estimate of the 1 -norm of this kernel, which is called the Lebesgue constant.

Lemma 3.1. When → +∞, ‖ ‖ ‖ ‖1 ∶= ∫ 1∕2 -1∕2 | ( )| d = 4 2 ln + (1).
Proof. The proof is based on the following inequality which is easy to establish and whose proof is left to

the reader: for - 2 ≤ ≤ 2 , | | 1 - 2 3! ≤ | sin | ≤ | |. In particular, for | | ≤ 1 2 , 1 | | ≤ 1 | sin | ≤ 1 | | 1 1 -2 2 ∕6 ≤ 1 | | + | | 3 since 1 1-≤ 1 + 2 for | | ≤ 1 2 . It follows that ∫ 1∕2 -1∕2 | sin(2 + 1) | | | d ≤ ∫ 1∕2 -1∕2 | sin(2 + 1) | sin d ≤ ∫ 1∕2 -1∕2 | sin(2 + 1) | | | d + ∫ 1∕2 -1∕2 | sin(2 + 1) | | | 3 d . As ∫ 1∕2 -1∕2 | sin(2 + 1) | | | 3 d ≤ ∫ 1∕2 -1∕2 | | 3 d = 12 we get ‖ ‖ ‖ ‖1 = ∫ 1∕2 -1∕2 | sin(2 + 1) | | | d + (1).
Using parity and the change of variable = (2 + 1) we obtain

∫ 1∕2 -1∕2 | sin(2 + 1) | | | d = 2 ∫ 1∕2 0 | sin(2 + 1) | | | d = 2 ∫ + ∕2 0 | sin | d . Note that ∫ + ∕2 | sin | d ≤ ∫ + ∕2 d = ln + ∕2 = (1∕ ) while ∫ 0 | sin | d ≤ ∫ 0 1 d = .
It remains to estimate

2 ∫ | sin | d = 2 -1 ∑ =1 ∫ ( +1) | sin | d = 2 -1 ∑ =1 ∫ 0 | sin | + d = 2 -1 ∑ =1 ∫ 0 sin + d as sin ≥ 0 on [0, ]. But then 2 ( + 1) = ∫ 0 sin + d ≤ ∫ 0 sin + d ≤ ∫ 0 sin d = 2 .
Writing

-1 ∑ =1 1 + 1 = ∑ =1 1 -1 = -1 ∑ =1 1 -1 + 1 , it follows that 2 ∫ | sin | d = 4 2 ∑ =1 1 + (1).
Recalling that ∑ =1 1 = ln + (1) the result follows.

Lacunary trigonometric polynomials.

In this section, we consider a sequence of integers ( ) such that +1 ≥ > 1. Such sequences are called -lacunary in the sense of Hadamard (or simply lacunary).

First note that a -lacunary sequence is a finite union of ′ -lacunary sequences with ′ ≥ 3. Indeed, if ≥ 3 there is nothing to prove and for 1 < < 3, take an integer such that ≥ 3 and write ( ) = + then ( ) is -Lacunary and { } = ⋃ -1 =0 { ( ) }. Next, for ≥ 3, -lacunary sequences have a particular arithmetic property: Lemma 3.2. Let ≥ 3 and ( ) ≥0 a sequence such that 0 ≥ 1 and +1 ≥ . Consider two finite sequences , ∈ {-1, 0, 1} for = 0, … , and assume that

(3.1) ∑ =0 = ∑ =0 then = for every .
In other words, an integer can be represented in at most one way as

∑ ± . Such a sequence is called quasi-independent. Proof. First observe that ≤ 1 - = for = 0, … , .
Assume that (3.1) holds and define = -so that

∑ =0 = 0.
Assume towards a contradiction that there is an such that ≠ 0. Without loss of generality, we may assume that the largest such is and, up to exchanging and , that ≥ 1.

Observe that ∈ {-2, -1, 0, 1, 2} so that we obtain the desired contradiction writing

0 = ∑ =0 = + -1 ∑ =0 ≥ -2 -1 ∑ =0 ≥ -2 -1 ∑ =0 = 1 - 2 -1 -1 = +1 -3 + 2 ( -1) > 0 since ≥ 3 and > 0.
Note that this result is valid when the 's are real, not only for integers. The aim of this section is to prove that trigonometric polynomials with lacunary frequencies have large 1 -norms of which the following estimate is a particular case: there exists a constant > 0 such that, for every ,

∫ 1∕2 -1∕2 | | | | | | ∑ =1 2 | | | | | | d ≥ √ .
This follows from a more general theorem which estimates -norms of lacunary Fourier series. The aim of this section is to present this result. To do so, we follow closely [25, Chapter V.8] which goes through Rademacher series. First let us introduce those series.

To start, let us recall that  = {[ 2 --1 , ( + 1)2 --1 [, = 0, … , 2 +1 -1} the dyadic intervals of generation and  = ⋃ ≥0  the set of all dyadic intervals. Also, if , ∈  then either ∩ = ∅ or ⊂ or ⊂ . The Rademacher functions of generation are then functions that take alternative values +1 and -1 on successive intervals in  , that is

( ) = 2 +1 -1 ∑ =0 (-1) 1 ] 2 --1 ,( +1)2 --1 [ = sign sin(2 2 ) .
The first observation is that, if ∈  and > then takes the value +1 on half of and -1 on the other half so that ∫ = 0. A first consequence is that is orthogonal to in 2 ([0, 1]) since is constant on each ∈  so that ∫ = 0 and  is a covering of [0, 1]. Moreover, as | | = 1, the family ( ) ≥0 is an orthonormal sequence in 2 ([0, 1]).

In particular, we now fix a sequence ( ) ≥0 such that

+∞ ∑ =0 | | 2 converges, we can define = +∞ ∑ =0
and this series converges in 2 ([0, 1]) thus ∈ 2 ([0, 1]). We actually have a bit better:

Theorem 3.3. If +∞ ∑ =0 | | 2 < +∞ then there exists ∈ 2 ([0, 1]) defined by = +∞ ∑ =0
and this series converges both in 2 ([0, 1]) and almost everywhere.

Proof. The 2 convergence has already been established. Further, let = ∫ be the indefinite integral of and let ⊂ [0, 1] be the set of Lebesgue points of so that | | = 1 and on , ′ exists and is finite. Now let, [ ] be the -th partial sum of this series

 [ ]( ) = ∑ =0 ( ). As  [ ] → in 2 ([0, 1]), for every 0 ≤ < ≤ 1, | | | | | ∫ ( ) - [ ]( ) d | | | | | ≤ ∫ 1 0 | ( ) - [ ]( )| d ≤ ∫ 1 0 | ( ) -[ ]( )| 2 d 1∕2 → 0.
We have just shown that, if is an interval, then

∫  [ ] → ∫ thus also, if we fix ≥ 1, ∫ ( [ ] -  -1 [ ]) → ∫ ( - -1 [ ]). On the other hand, if ∈  -1 and ≥ , then ∫ = 0 so that ∫  [ ] = ∫  -1 [ ]. Letting → +∞ we obtain that ∫ ( ) d = ∫  -1 [ ]( ) d for every ∈  -1 .
Next, let 0 ∈ not a dyadic rational ( 0 ≠ 2 , , ∈ N) and let =] 2 -, ( + 1)2 -[ be such that

0 ∈ ∩ . Then, as  -1 [ ] is constant over  -1 [ ]( 0 ) = 1 | | ∫  [ ]( ) d = 1 | | ∫ ( ) d → ′ ( 0 )
when → +∞.

The second result is that is actually in every space:

Theorem 3.4. Let ( ) ∈ 2 and = +∞ ∑ =0
. Then, for 1 ≤ < +∞, ∈ ([0, 1]). Moreover, there exists , , depending on only, such that

+∞ ∑ =0 | | 2 1 2 ≤ ∫ 1 0 | ( )| d 1 ≤ +∞ ∑ =0 | | 2 1 2
.

Proof. Let us first notice that the theorem holds for = 2 since

∶= ∫ 1 0 | ( )| 2 d 1 2 = +∞ ∑ =0 | | 2 1 2
i.e. the inequalities are equalities with 2 = 2 = 1.

Next, let us notice that this implies the lower bound when > 2 with = 1 since then, with Hölder

∫ 1 0 | ( )| d 1 ≥ ∫ 1 0 | ( )| 2 d 1 2
= and also implies the upper bound with = 1 for < 2 since now Hölder implies that

∫ 1 0 | ( )| d 1 ≤ ∫ 1 0 | ( )| 2 d 1 2 =
Further, as Hölder also implies that if 2( -1) < ≤ 2 for some integer ≥ 2, then

∫ 1 0 | ( )| d 1 ≤ ∫ 1 0 | ( )| 2 d 1 2
so that the upper bound

(3.2) ∫ 1 0 | ( )| 2 d 1 2 ≤ 2
would also implies the upper bound for 2( -1) < ≤ 2 with ≤ 2 .

Next, let us show that the upper bound for = 4 implies the lower bound for < 2. Assume for the moment that we are able to prove that

∫ 1 0 | ( )| 4 d 1 4 ≤ 4 .
Let 1 ≤ < 2 and write 2 = + 4(1 -), that is, take = 2 4 -. Then, from Hölder

2 = ∫ 1 0 | ( )| 2 d = ∫ 1 0 | ( )| | ( )| 4(1-) d ≤ ∫ 1 0 | ( )| d ∫ 1 0 | ( )| 4 d 1- ≤ ( 4 ) 4(1-) ∫ 1 0 | ( )| d = ( 4 ) 2- ∫ 1 0 | ( )| d thus ∫ 1 0 | ( )| d 1 ≥ 1-4-

4

.

So it remains to prove (3.2). Notice also that it is enough to prove this inequality with real 's. The constant in the complex case is then multiplied by 2: write

= + where = ∑ ℜ( ) and = ∑ ℑ( ) . Then ‖ ‖ 2 ≤ ‖ ‖ 2 + ‖ ‖ 2 ≤ R 2 ⎡ ⎢ ⎢ ⎣ +∞ ∑ =0 |ℜ( )| 2 1 2 + +∞ ∑ =0 |ℑ( )| 2 1 2 ⎤ ⎥ ⎥ ⎦ ≤ 2 R 2 since |ℜ( )|, |ℑ( )| ≤ | |.
To conclude, we write

∫ 1 0 [ ]( ) 2 d = ∑ 0 +⋯+ =2 0 ,…, 0 0 ⋯ ∫ 1 0 0 0 ( ) ⋯ ( ) d
where ≥ 0 for every and

0 ,…, = ( 0 + ⋯ + )! 0 ! ⋯ ! . Now observe that ∫ 1 0 0 0 ( ) ⋯ ( ) d
1 all the 's are even 0 otherwise and that

∑ =0 2 = ∑ 0 +⋯+ = 0 ,…, ( 2 0 ) 0 ⋯ ( 2 ) .
Further, when 0 + ⋯ + = ,

2 0 ,…,2 0 ,…, = ( + 1)( + 2) ⋯ 2 ∏ =0 ( + 1)( + 2) ⋯ 2 ≤ ( + 1)( + 2) ⋯ 2 2 ≤
(with the convention that on the denominator is ( + 1)( + 2) ⋯ 2 = 1 when = 0). It follows that

∫ 1 0 [ ]( ) 2 d ≤ ∑ =0 | | 2 .
As [ ] → a.e., we conclude that

∫ 1 0 | ( )| 2 d 1 2 ≤ 1∕2 +∞ ∑ =0 | | 2 1 2 that is 2 = 2 1∕2 .
The estimate 2 = 2 1∕2 allows to improve a bit the result: Proof. Let us fix > 0. We first show that if ∶= ‖ ‖ 2 is small enough, then exp(

| | 2 ) ∈ 1 ([0, 1]). Indeed (3.3) ∫ 1 0 exp( | ( )| 2 ) d = +∞ ∑ =0 ! ∫ 1 0 | ( )| 2 d ≤ +∞ ∑ =0 ! (4 2 ) . But ! ≤ +∞ ∑ =0 ! = so that ∫ 1 0 exp( | ( )| 2 ) d ≤ +∞ ∑ =0 (4 2 ) = 1 1 -4 2 < +∞ provided 2 < 1 4
.

Next, take any ∈ 1 (0, 1), and apply the first part to

- [ ] = +∞ ∑ = +1 . As 2 ∶= +∞ ∑ = +1 | | 2 → 0, for large enough 2 < 1 8 thus exp(2 | - [ ]| 2 ) ∈ 1 ([0, 1]). Finally, as | | 2 ≤ 2| - [ ]| + 2| [ ]| 2 , we have exp( | | 2 ) ≤ exp(2 | - [ ]| 2 ) exp(2 | [ ]| 2 ) ∈ 1 since | [ ]| ∈ ∞ thus also exp(2 | [ ]| 2 ) ∈ ∞ .
Next, we consider series of the form

+∞ ∑ =0 2 ( ).
The idea is that such series are of the form ∑ ± 2 , that is, choosing ∈ (0, 1) at random, we randomly change the sign of . Our first result is the following: Theorem 3.6. Let ( ) ∈ 2 and ( ) = +∞ ∑ =0 ( ) 2 . Then, for almost every ∈ (0, 1), the series converges almost everywhere in ∈ (0, 1) and ∈ ([0, 1]) for every 1 ≤ < +∞.

Proof. Let be the set of ( , ) ∈ [0, 1] 2 where the series defining converges.

According to Theorem 3.3, for every

∈ [0, 1], the set 2 = {( , ) ∈ } has measure | | = 1. It follows that | | = 1 but then, for almost every ∈ [0, 1], 1 = {( , ) ∈ } has also measure | 1 | = 1. Next, set = ‖ ‖ 2 and fix ≥ 1. As in (3.3), (3.4) ! ∫ 1 0 | ( )| 2 d = +∞ ∑ =0 ! ∫ 1 0 | ( )| 2 d = ∫ 1 0 exp( | ( )| 2 ) d ≤ 1 1 -4 2 provided < 1 4 2
. It follows that

∫ 1 0 ∫ 1 0 | ( )| 2 d d = ∫ 1 0 ∫ 1 0 | ( )| 2 d d ≤ ! (1 -4 2 ) < +∞.
But then, for every , there is a set

⊂ [0, 1] with | | = 0 such that, if ∈ [0, 1] ⧵ , ∫ 1 0 | ( )| 2 d < +∞. Setting = ⋃ , | | = 0
and, for every ∈ [0, 1] ⧵ , for every , ∈ 2 . Using the inclusion of 2 ([0, 1]) ⊂ ([0, 1]) when ≤ 2 , we obtain that, for almost every , ∈ ([0, 1]) for every ≥ 1, as claimed.

We can now prove the main result of this section: Theorem 3.7. Let > 1 and ( ) ≥0 be a -lacunary sequence of integers, 0 ≥ 1 and +1 ≥

. Let 1 ≤ < +∞. There are two constants , , , such that, if

( ) ≥0 ∈ 2 , then ( ) = ∑ ≥0 2 is in ([0, 1]) with (3.5) , +∞ ∑ =0 | | 2 1 2 ≤ ∫ 1 0 | | | | | | ∑ ≥0 2 | | | | | | d 1 ≤ , +∞ ∑ =0 | | 2 1 2
.

Remark 3.8. Note that a simple change of variable also shows that, for every integer ,

(3.6) , +∞ ∑ =0 | | 2 1 2 ≤ 1 ∫ ∕2 -∕2 | | | | | | ∑ ≥0 2 | | | | | | d 1 ≤ , +∞ ∑ =0 | | 2 1 2
.

Also, we may assume that → , , , are continuous.

Proof. The beginning of the proof is the same as for Theorem 3.4. Parseval's identify shows that (3.5) is satisfied when = 2 with 2, = 2, = 1. The lower bound is then automatically satisfied for ≥ 2 with , = 1 while the upper bound is satisfied for ≤ 2 with 2, = 1. Finally, if we establish the upper bound for > 2, using Hölder's inequality in the same way as in the proof of Theorem 3.4, the lower bound follows for < 2 with 2, =

. Also, it is enough to prove the upper bound when = 2 , ≥ 2 and then, if 2( -1) < ≤ 2 , , ≤ 2 , . Another reduction is that, by homogeneity, it is enough to prove the theorem when

+∞ ∑ =0 | | 2 = 1.
A further restriction is that it is enough to prove the theorem for ≥ 3. Indeed, for 1 < < 3, we introduce an integer such that ≥ 3 and write ( ) = + for = 0, … , -1. Then ( ) +1 ≥ ( ) . If the theorem is established when ≥ 3 then, for each , the upper bound in (3.5) reads

∫ 1 0 | | | | | | ∑ ≥0 + 2 ( ) | | | | | | d 1 ≤ , +∞ ∑ =0 | + | 2 1 2
.

But then, with the triangular inequality in ,

∫ 1 0 | | | | | | ∑ ≥0 2 | | | | | | d 1 = ⎛ ⎜ ⎜ ⎝ ∫ 1 0 | | | | | | -1 ∑ =0 ∑ ≥0 + 2 ( ) | | | | | | d ⎞ ⎟ ⎟ ⎠ 1 ≤ -1 ∑ =0 ∫ 1 0 | | | | | | ∑ ≥0 + 2 ( ) | | | | | | d 1 ≤ , -1 ∑ =0 +∞ ∑ =0 | + | 2 1 2 ≤ 1∕2 , ⎛ ⎜ ⎜ ⎝ -1 ∑ =0 +∞ ∑ =0 | + | 2 ⎞ ⎟ ⎟ ⎠ 1 2 = 1∕2 , ∑ ≥0 | | 2 1 2
, where we have used Cauchy-Schwarz in R in the next to last line.

A last reduction comes from the observation that, for every

∫ 1 0 exp( | ( )| 2 ) d = +∞ ∑ =0 ! ∫ 1 0 | ( )| 2 d ≥ ! ∫ 1 0 | ( )| 2 d .
It is therefore enough to prove that there is a ( ) and a > 0 such that, if < ( )

(3.7) ∫ 1 0 exp( | ( )| 2 ) d ≤
which would then imply that

∫ 1 0 | ( )| 2 d ≤ ! as desired.
In order to prove (3.7), let us introduce

( ) = ∑ ≥0 ( ) 2 .
Integrating (3.4) with respect to and using Fubini, we deduce that

∫ 1 0 ∫ 1 0 exp( | ( )| 2 ) d d ≤ ∶= 1 1 -4 2 .
But then, there is an 0 (that we can assume not to be a dyadic rational 0 ≠ 2 ∕ ) such that

∫ 1 0 exp( | 0 ( )| 2 ) d ≤ .
Next, we consider the Riesz product

( ) = ∏ =0 1 + ( 0 ) cos 2 = ∏ =0 1 + ( 0 ) 2 + -2 2 = ∑ ∈Z 2
where the Fourier coefficients have the following property:

-0 = 1 -= 0 if is an integer that is not of the form ∑ ± , in particular when | | > ∑ =0 -if = ∑ with ∈ {-1, 0, 1}. As > 3, this 's are unique. Then = ∏ ≠0 ( 0 ) 2 . In particular, = ( 0 ) 
2 for = 0, … , and = 0 for > . As a consequence, the partial sums of the Fourier series of are given by

[ ]( ) ∶= ∑ =0 2 = ∑ =0 ( 0 ) 2 2 = 2 ∫ 1 0 0 ( ) ( -) d .
Note that ≥ 0 and ∫ 1 0 ( ) d = 0 = 1 so that = ( ) d is a probability measure. As ( ) = exp( 2) is increasing and convex, we apply Jensen's inequality (with the measure ) to obtain

1 2 [ ]( ) ≤ ∫ 1 0 | 0 ( )| ( -) d ≤ ∫ 1 0 | 0 ( )| | ( -) d .
Integrating over [0, 1] and using Fubini, we get

∫ 1 0 1 2 [ ]( ) d ≤ ∫ 1 0 | 0 ( )| ∫ 1 0 ( -) d d = ∫ 1 0 | 0 ( )| d ≤ .
Letting → +∞, we obtain such that, if ( ) ∈N is an increasing sequence of integers and ( ) is a complex sequence with finite support, then

+∞ ∑ =0 | | + 1 ⩽ ∫ 1 0 | | | | | | +∞ ∑ =0 2 | | | | | | d .
The proof given below will give = 1 96 which is not the best possible. We avoid minor technicalities which would lead to = 1 30 (see e.g. [START_REF] Devore | LORENTZ Constructive Approximation[END_REF][START_REF] Trigub | BELINSKY Fourier Analysis and Approximation of Functions[END_REF]). The proof in [START_REF] Ph | SABA The Littlewood problem and non-harmonic Fourier series[END_REF] requires the introduction of various parameters and a cumbersome optimization of those parameters in the final step and leads to = 1 26 .

Note also that the sum starts at 0, we have so far been unable to obtain a lower bound when the sum runs over Z.

Strategy of the proof.

Notation 3.10. For a function ∈ 2 ([0, 1]) and ∈ Z, we write

̂ ( ) = ( ) = ∫ 1 0 ( ) -2 d
for the Fourier coefficients of . Its Fourier series is then

( ) = ∑ ∈Z ( ) 2
and Parseval's relation reads

∫ 1 0 | ( )| 2 d = ∑ ∈Z | ( )| 2
and can also be written in the form

∫ 1 0 ( ) ( ) d = ∑ ∈Z ( ) -( ).
We fix a trigonometric polynomial

(3.8) ( ) = ∑ =0 2 and = ∑ =0 | | + 1 .
We then write | | = with complex numbers of modulus 1 and we introduce

(3.9) 0 ( ) = ∑ =0 + 1 -2
.

Then by Parseval identity, written in the second form we have

(3.10) ∶= ∑ =0 | | + 1 = ∑ =0 ̂ ( ) ̂ 0 (-) = ∫ 1 0 ( ) 0 ( ) d . so that ⩽ ‖ ‖ 1 ‖ 0 ‖ ∞ ([0,1]) .
The issue is that, typically we have no control over the ∞ norm of 0 other than the trivial and explosive control by ∑ 1 +1 , so we will correct 0 into another test function 1 as follows;

(1) The ∞ norm of the corrected function 1 is controlled by a constant , ‖ 1 ‖ ∞ ≤ .

(2) ̂ 1 (-) only differs a little from ̂ 0 (-) for 0 ⩽ ⩽ , say

| ̂ 1 (-) -̂ 0 (-)| ≤ ̂ 0 (-) 2 = 1 2( + 1)
, while we impose no condition on the behavior of ̂ 1 ( ) for ≠ -.

1 0 | ( )| d ≤ ∫ 1 0 | ( )| d
which is the expected result with = 1 2 . The proof of the Theorem B thus amounts to proving the following lemma:

Lemma 3.11. There exists a universal constant and a

1 ∈ ∞ such that (1) ‖ 1 ‖ ∞ ⩽ (2) | ̂ 1 (-) -̂ 0 (-)| ⩽ 1 2 | ̂ 0 (-)| = 1 2( + 1)
for 0 ⩽ ⩽ where 0 is the function given by (3.9).

The remaining of this section is devoted to the proof of this lemma. Lemma 3.11. First note that, up to eventually adding extra zeros to the sequence ( ) and adding + = + to the sequence ( ), we may assume that = 2 +1 -2.

Proof of

We start by decomposing 0 into a sum of dyadic blocs on which the amplitude | ̂ 0 (-)| = 1 + 1 is more or less constant. More precisely, for = 0, … we set = [2 , 2 +1 [ and

= ∑ +1∈ + 1 -2
.

The function 0 now appears as the partial sum of order of the series ∑ , in other words

0 = ∑ =0 .
Let us start with a simple lemma: Lemma 3.12. With the above notations, we have

(1) ‖ ‖ ∞ ([0,1]) ⩽ 1. (2) ‖ ‖ 2 ([0,1]) ⩽ 2 -∕2 . Proof. By construction, | | = 2 hence ‖ ‖ ∞ ⩽ ∑ +1∈ 1 + 1 ⩽ | | 2 = 1. As | +1 ( )| ≤ 1 and | ( )| ≤ , we get | +1 ( )| ≤ . It remains to prove that ⩽ 2 .
To do so, it suffices to see that

-⩽ 1 - -1 for 0 ⩽ ⩽ 1,
yielding the result immediately.

Lemma 3.15. For 0 ≤ ≤ and = 0, … , , let , = -, with

, = ℎ +1 + … + ℎ when < 0 when = . Then = ∑ =0 , .
Proof. By induction on , when = 0, 0,0 = 0 thus 0,0 = 1 and, indeed, we have

0 = 0 = 0 0,0 .
Assume now that the formula has been established at rank -1 and let us show that = ∑ =0 , . By construction, we have

= -1 -ℎ + = -1 ∑ =0 , -1 -ℎ + .
with the induction hypothesis. It remains to notice that , = -, = 1 and that, for = 0, … , -1,

, = , -1 + ℎ thus , = , -1 -ℎ so that, indeed, we have = ∑ =0 , as claimed.
Recall that

0 = ∑ =0
and we set

1 = = ∑ =0 ,
where the dependence on comes from the definition of the , 's, in particular

‖ 1 ‖ ∞ ⩽ .
The first part of Lemma 3.11 is thus established and it remains to prove the second part. To do so, we start by some intermediary results; Lemma 3.16. If ∈ ∞ (Hardy space) and ( ) ⩾ 0, then -∈ ∞ and

‖ --1‖ 2 ⩽ ‖ ‖ 2 .
Proof. Since ∞ is a Banach algebra, the partial sums

∑ =0 (-1) ! of -are elements of ∞ . Moreover, since is bounded, these sommes converge uniformly toward -, with -∈ ∞ . Finally, if ∈ C and ℜ( ) ⩾ 0, | --1| =
Next let us introduce the following notations:

(1) Let ∈ 1 ([0, 1]), the spectrum of , denoted by spec( ) is the set of non zero Fourier coefficients, more precisely spec( ) = { ∈ Z ∶ ̂ ( ) ≠ 0}. It is easy to show that, if , ∈ 2 ([0, 1]), then spec( ) ⊂ spec( ) + spec( ) = { + ∶ ∈ spec( ), ∈ spec( )}.

(2) Let A be a subset of [1, [, we denote by Λ the set of , ∈ i.e

Λ = { , ∈ }. Lemma 3.17. Let + 1 ∈ = [2 , 2 +1 [ then ̂ , (-) = 0 if < .
Proof. We must show that -∉ spec( , ). By contradiction, we suppose that -∈ ( ). But since spec( ) ⊂ -Λ and, from Lemma 3.16, spec( , ) ⊂ N, thus spec( , ) ⊂ -Λ + N. However, since < , is to the left of , then -Λ is completely to the left of -Λ + N (since

+ 1 ∈ , then -∈ -Λ by definition of Λ ). -Λ - -Λ Proof of (2) in Lemma 3.11. Let ∈ [0, [ and ⩽ such that + 1 ∈ . Hence ̂ 1 (-) = ∑ =0 ̂ , (-) = ∑ = ̂ , (-)
with Lemma 3.17.

On the other hand, ̂ 0 (-) = + 1 while ̂ (-) = + 1 if + 1 ∈ i.e. if = and ̂ (-) = 0

otherwise. So we can write

̂ 0 (-) = ∑ = ̂ (-), hence | | | ̂ 1 (-) -̂ 0 (-) | | | = ∑ = [ ( , -1)](-) = ∑ = -[ ( , -1)]. But | -[ ( , -1)]| ≤ ‖ ( , -1)‖ 1 ([0,1)] ≤ ‖ ‖ 2 ([0,1)] ‖ , -1‖ 2 ([0,1)] = ‖ ‖ 2 ([0,1)] ‖ -, -1‖ 2 ([0,1)]
by definition of , . Using Lemma 3.16 and then Lemma 3.15, we obtain

| -[ ( , -1)]| ⩽ ‖ ‖ 2 ‖ , ‖ 2 ⩽ ‖ ‖ 2 ∑ = +1 ‖ℎ ‖ 2 ⩽ ‖ ‖ 2 √ 2 ∑ = +1
‖ ‖ 2 with Lemma 3.13. Then, from Lemma 3.12, we obtain

| -[ ( , -1)]| ≤ 2 -∕2 √ 2 +∞ ∑ = +1 2 -∕2 = 2 -∕2 √ 2 2 -( +1)∕2 1 -2 -1∕2 .
and, for sufficiently large we have | (4 ; )| = 1 ⩽ 2 . Therefore, there exists a minimal 0 such that | (4 0 ; 0 )| ⩽ 2 0 . Let = 4 0 , and = 0 then using (3.12) and the definition of 0

| | ⩽ | ( ; )| = | (4 0 ; 0 )| ⩽ 2 0 = 1 2 .
In particular

(3.13) | | 1 3 ⩽ 1 2
.

By minimality of 0 -1

1 2 2 = 2 0 -1 ⩽ | | | | 4 0 -1 ; 0 -1 | | | | ≤ 3 ∑ =0 | | | | 4 0 ; 0 -1 + 4 0 -1 | | | | ≤ 4| (4 0 ; 0 )| = 4| ( ; )|
by definition of 0 . We thus get

| ( ; )| ⩾ 1 2 8 ⩾ | | 1 3
8 , with (3.13).

Lemma 3.20. Let > 0 and let and be positive integers with (2 + ) < . Suppose is a finite set of integers, and let

( ) = ∑ ∈ ( ) 2
where

( ) = ∑ | |⩽ , 2
Let and with > 4 and suppose ( ; ) = { 1 , … , } then we have

‖ ‖ 1 ([0,1] ⩾ 1 32 (2 + ln(1 + 2 )) ∑ =1 ‖ ‖ 1 ([0,1]) 2 - 2
We split the remaining of this section into two parts. In the first one, we show that Lemmas 3.19 and 3.20 imply Theorem 3.11. In the second one, we prove the Lemma 3.20. Theorem 3.18. Let > 0 , be two integers satisfying the conditions of the theorem and let be strongly ( , , )-regular. Thus, there are two integers , with > (2 + ) , such that we can write

Proof of

= ⋃ ∈ ( + ), with | | ⩾ and ⊂ {-, … , } with | | ⩾ . We can then write ( ) ∶= ∑ ∈ 2 = ∑ ∈ ( ) 2 with ( ) = ∑ ∈ 2 = ∑ =- , 2
with , = 1 if ∈ and , = 0 otherwise.

Assume first that there exists 1 ∈ such that

(3.14) ‖ 1 ‖ 1 ([0,1]) ⩾ 2 9
ln( ) ln( ).

We then choose ⩾ 16 7

in such a way that there is an such that ( , ) = { 1 }. Hence by Lemma 3.20,

‖ ‖ 1 ([0,1]) ≥ ‖ 1 ‖ 1 ([0,1]) 32 2 + ln 1 + 2 2 - 2 ≥ ‖ 1 ‖ 1 ([0,1]) 2 6 2 + ln 1 + 2 1 - 7 8 .
As > 2 , using (3.14), we conclude that, in this case

‖ ‖ 1 ([0,1]) ≥ 2 9 2 ln ln 2 + ln 1 + 2
which establishes the theorem.

We will thus assume that, for each ∈ ,

(3.15) ‖ ‖ 1 ([0,1]) ⩽ 2 9
ln( ) ln( ).

Note that, from Theorem B,

‖ ‖ 1 ([0,1]) ⩾ ln( )
so that 2 9 ⩽ ln( ), in particular, ≥ 8. We then take and given by Lemma 3.19 applied to the set so that = | ( ; )| satisfies (3.16)

1 3 8 ⩽ ⩽ 1 2 .
We write ( ; ) = { 1 < … < } From Lemma 3.20, we get that 13 .

‖ ‖ 1 ([0,1]) ⩾ 1 2 5 2 + ln 1 + 2 ∑ =1 ‖ ‖ 1 2 - 2 = 1 2 5 2 + ln 1 + 2 ) ( 1 -2 ) with 1 = 2 ∑ =1 ‖ ‖ 1 and 2 = 2 ∑ =1 ‖ ‖ 1 . Next, as ‖ ‖ 1 ⩾ ln( ), 1 ≥ 2 ln( ) 2 ∑ =1 1 ≥ 2 ln( ) 2 
We have established that The first one is a simple lemma about numerical integration of trigonometric polynomials:

‖ ‖ 1 ([0,1]) ⩾ 1 
d ≤ -1 ∑ =0 ∫ +1 ∫ | ′ ( )| d d = -1 ∑ =0 ∫ +1 | ′ ( )| ∫ +1 d d ≤ 1 -1 ∑ =0 ∫ +1 | ′ ( )| d = ∫ 1 0 | ′ ( )| d
where we have used Fubini and the bound 

∫ +1 d ≤ 1 when ≤ ≤ + 1 . We conclude with Bernstein's inequality, ‖ ′ ‖ 1 ([0,1]) ⩽ 2 ‖ ‖ 1 ([0, 1 
f ( ) = 1 -| | +1 1 -,…, ( ) so that ( ) =  f ( ) = ∑ | |⩽ 1 - | | + 1 2 = 1 + 1 
(sin( ( + 1) )) 2 (sin( )) 2 .

Lemma 3.22. Let , , , be integers with 2 ⩽ < . Then there exists a function , with the following properties:

(1)

, ( ) = 1 for | | ⩽ , (2) , ( ) = 0 for | | ⩾ + 2 (3) when + ⩾ 2 + 4 , 1 + -1 ∑ =- | | | | |  [ , ] + | | | | | ⩽ 16 (2 + ln(1 + ∕ )) Proof. Define , ( ) = 1 d + * f -1 ( ) = 1 ∑ ∈Z 1 {--,…, + } ( -)1 {-+1,…, +1} ( ) = 1 ∑ | |⩽ -1 | -|⩽ + 1 - | | . First, for | | ⩽ , if | | ⩽ -1, then | -| ⩽ | | + | | ≤ + -1, so that , ( ) = 1 ∑ | |⩽ -1 1 - | | = 1, since ∑ | |⩽ -1 1 - | | = 0 ∑ =1- 1 + + -1 ∑ =1 1 - = + 1 2 + -1 2 = .
On the other hand, if

| | ⩾ + 2 and | | ≤ -1 then | -| ≥ | | -| | ≥ + + 1 so that the sum defining
, is empty and , = 0. To prove the last item, the Convolution Theorem shows that

 [ , ]( ) = 1 + ( ) -1 ( ).
As + and -1 are both even, so is , thus

∫ 1 0 | [ , ]( )| d = 2 ∫ 1 2 0 | [ , ]( )| d = 2( 1 + 2 + 3 )
where 

1 = 1 ∫ 1 + 0 | + ( ) -1 ( )| d 2 = 1 ∫ 1 1 + | + ( ) -1 ( )| d , 3 = 1 ∫ 1 2 1 | + ( ) -1 ( )| d .
∑ ∈ℤ ( ) ( ) 2 = -1 ∑ =- ( ) ∑ ∈ℤ ( + )+ 2 ( ( + )+ ) = ⟨ , ⟩ = -1 ∑ =- ⟨ , ⟩⟨ , ⟩ = 1 + -1 ∑ =- -1 ∑ =- ( ) -2 + -1 ∑ =- ∑ ∈ℤ ( + )+ 2 ( ( + )+ ) 2 + = 1 + -1 ∑ =-  [ 0 ] + -1 ∑ =- ∑ ∈ℤ ( + )+ 2 [( ( + )+ ) + + ] ).
Noticing that 2 + = 2 [( ( + )+ ) + ] , we may write

∑ ∈ℤ ( ) ( ) 2 = 1 + -1 ∑ =-  [ (0) ] + -1 ∑ =- ∑ ∈ℤ ( + )+ 2 ( ( + )+ )( + + ) = 1 + -1 ∑ =-  [ (0) ] + It follows that ∑ ∈ℤ , ( ) 2 = ∑ ∈ℤ ∑ -⩽ ⩽ + 2 [( + ) ] = ∑ =0 mod ∈ ∑ -⩽ ⩽ + 2 2 = ∑ ∈ ( ;0) 2 ∑ -⩽ ⩽ + 2 = ∑ ∈ ( ;0) ( ) 2 . = ∑ =0 2 ∑ =0 -2 ∶= ∑ =- 2 . when | | ≥ 1.
The first identity allows to conclude.

We can now state the first crucial result in this proof.

Lemma 4.4.

There exist 1 > 0, 1 > 0 such that, if 0 < < 1 , 0 < 1 2 < 1 -√ . Moreover, let

= 1 -1 2 + 1 -1 2
and let be such that = 2 ≥ -7∕2 . Then, for 0 ⩽ ⩽ ,

∑ 0⩽ ⩽ ≠ |̂ ( -)| + ⩽ 1 - + .
Proof. The Taylor expansion when → 0 of 1 -√ is of the form

1 - √ = 2 + ( 4 ),
with > 0. Thus, if 1 < , for small enough, 0 < 1 2 < 1 -√ . Next, notice that 0 < 1 -+ 1 -< 1 if 0 < < 1 -√ which shows that 0 < < 1. For future use, note that there is a > 0 such that (4.8) = 2 + ( 4 ).

We will further assume that is small enough for -7∕2 ≥ max since we chose = 8 and = 10. Note that, for every > 0, the power 7∕2 could be reduced to 3 + by taking large enough, but could not be reduced below 3 with this construction.

We can now turn to the estimate itself. Set = 1 2 and split the sum in the left hand side of the main inequality into two sums The result is obtained if we prove the two estimates , we obtain the expected bound 2 ⩽ ∕(1 -) + .

The following lemma is a first step towards proving Theorem 4.2 and is a consequence of Lemma 4.4.

Proof. First, as | | is real valued, its zero Fourier coefficient 0, is also real, and for the remaining ones , = -, for every ≥ 1. A direct computation then shows that Re(ℎ ) = | | which is less than 1 by lemma 4.7 while Parseval shows that ‖ℎ ‖ 2 ⩽ √ 2‖ ‖ 2 .

We now define a sequence ( ) ⩾ inductively through = and +1 = -ℎ +1 + +1 where 0 < < 1 is a small parameter that we will adjust later. Further set

∶= sup 0< ≤1 1 --= 1 sup 0< ≤ 1 --= 1 1 --.
From the next to last identity, it is easy to obtain the following simple bound:

1 ≤ ≤ 2 .
Lemma 4.9. For all ⩽ ⩽ ,

‖ ‖ ∞ ⩽ 2 .
Proof. By definition of , if ≤ and 0 ≤ ≤ 1, then -+ ≤ -+ ≤ . We can now prove by induction over that | | ≤ from which the lemma follows. First, when = 0, from Lemma 4.7 we get Proof. The first part is obtained by a simple induction on . Moreover, the lemma 4.8 implies

‖ 0 ‖ ∞ = ‖ 0 ‖ ∞ ≤ 1 ≤ . Assume now that ‖ ‖ ∞ ≤ , then
‖ , ‖ 2 = ‖ ‖ ‖ ‖ ‖ ‖ ∑ = +1 ℎ ‖ ‖ ‖ ‖ ‖ ‖2 ⩽ ∑ = +1 ‖ℎ ‖ 2 ⩽ √ 2 ∑ = +1 ‖ ‖ 2 ⩽ √ 2(| | + 1) ∞ ∑ = +1 2 -2 = √ 2(| | + 1) √ 2 -1 2 -2 ,
as stated.

Next, we will need the following simple well-known lemma:

Lemma 4.11. If ∈ ∞ and ( ) ⩾ 0, then -∈ ∞ and

‖ --1‖ 2 ⩽ ‖ ‖ 2 .

2. 3 .

 3 Sequences with large gaps. Lemma 2.5 (Haraux). Let Λ ⊂ R be a sequence such that (Λ) = inf ≠ ∈Z | -| > 1 and let > (Λ) -1 .

Corollary 3 . 5 .=0.

 35 Let ( ) ∈ 2 and = +∞ ∑ Then, for every > 0, exp( | | 2 ) ∈ 1 ([0, 1]).

3 . 3 .Theorem 3 . 9 (

 3339 as claimed (up to ∕2 replacing . The proof of Littlewood's conjecture by Mc Gehee, Pigno and Smith. We will now give the proof of the Littlewood conjecture, following closely[START_REF]QUEFFÉLEC Twelve landmarks of twentieth-century analysis[END_REF]. Mc Gehee, Pigno, Smith). There exists a constant ⩽ 4 2

2 .

 2 ]) . For a finitely supported sequence ( ) ∈Z we define its discrete Fourier transform (or -Fourier trans-If , are two finitely supported sequences, their convolution is the sequence * defined by * ( )) * ( ) = ∑ ∈Z ( -) ( ). The Convolution Theorem is also valid here:  [ * ]( ) =  [ ]( ) [ ]( ). Two classical examples are -the Dirichlet kernel: set d = 1 -,…, so that ( ) =  [d ]

Proof.

  Write elements of C + as ( -, … , -1 ) and the scalar product ⟨ , ( + )+ ) for = -, … , -1 and = ( ) ∈ C + . Then, by periodicity of( ) 

2 .

 2 , if is an index corresponding to 1 , then | -| ⩾ | -| = ( We shall now bound 2 . In this sum, + ⩾ (1 -)( + ) and | -| ⩾ 1

|

  +1 ( )| = | ( ) -ℎ +1 ( ) + +1 ( )| ≤ | ( )| -ℜ ℎ +1 ( ) + | +1 ( )| = | ( )| -| +1 ( )| + | +1 ( )|.As | +1 ( )| ≤ 1 and | ( )| ≤ , we get | +1 ( )| ≤ as claimed. Lemma 4.10. Let ⩽ ⩽ . For = , … , we define , = -, with , = ℎ +1 + … + ℎ if < 0 if = .

  Proof ofLemma 3.20. The rest of this chapter consist in proving Lemma 3.20. the proof is divided into several lemmas.

				2 5 2 + ln 1 + 2	2	ln( ) ln( ) 2 3	-	1 2 13
			=	2 (2 9 ) 2 2 + ln 1 + 2	2 10 ln( ) ln( ) -	1 2
					2
			⩾	(2 9 ) 2 2 + ln(1 + 2 )	ln( ) ln( )
	since ln( ) ln( ) 2	⩾	1 2 10 -1	.
	3.4.2.				

If is a function, we write * 1 = * for the convolution of with itself and then define inductively * +1 = ( * ) * .

we then conclude that

On the other hand, Parseval implies that

as claimed.

Now, write the Fourier series of each | | ∈ 2 ([0, 1])

To each | |, we associate ℎ ∈ 2 ([-, ]) defined via its Fourier series as

Lemma 3.13. For 0 ≤ ≤ , the following properties hold [START_REF] Belov | On the conjecture of Littlewood and minima of even trigonometric polynomials[END_REF] 

Proof. We now define a sequence ( ) =0,…, inductively through 0 = 0 and +1 = -ℎ +1 + +1

where 0 < ≤ 1 is a real number to be adjusted later on. Further set

Proof. By definition of , if ≤ and 0 ≤ ≤ 1, then -+ ≤ -+ ≤ . We can now prove by induction over that | | ≤ . First, when = 0, from Lemma 3.12 we get

We conclude that

On the other hand, as

Choosing = 1 24 gives the result.

Note that, when = 1 24 , ≤ 48 so that we can take = 48 in Lemma 3.11, leading to = 1 96 in Theorem 3.9.

3.4. Strongly multidimensional sets. Let > 0 and ( , ) ∈ ℕ 2 . A subset of ℤ is ( ; , )-strongly 2-dimensional if there exists numbers and with > (2 + ) such that

for some set containing at least integers and subsets ⊆ {-, … , } verifying | | ⩾ .

Theorem 3.18 (Hanson [10]). Let > 0 and , be two positive integers satisfying (3.11) ⩾ 3 2 21 3 ln( ) 3 and ⩾ 3 2 21 3 ln( ) 3 ln( ) 3 , where is the constant in theorem B. Suppose is ( ; , ) strongly 2-dimensional subset of ℤ. Then

ln( ) ln( )

Combining this result with Theorem 3.3 in [START_REF] Shao | On character sums and exponential sums over generalized arithmetic progressions[END_REF], we see that this theorem is also best possible up to the constant.

Given a set ⊆ ℤ, a positive integer , and an arbitrary integer , we define

The proof of Theorem 3.18 is a direct consequence of two lemmas. The first one is the following: Lemma 3.19. Let be a set of integers with | | ⩾ 8. Then there are positive integers q and s such that

Proof. For each ⩾ 1, we choose any such that | (4 ; )| is maximal. But, on one hand,

and on the other hand, for fixed, the sets (4 ; ) are disjoints, so at least one of them has cardinality larger than 4 - | |. In particular, (3.12)

For = 1, we thus have

On the other hand, if = mod then = mod so that, for any (4 ; ) ⊂ (4 ; ) for < ,

We have

It follows that

since , are positive integers.

Using the explicit expressions of + and -1 , we have

using that sin ≤ for ≥ 0 and that sin ≥ 2 for 0 ≤ ≤ 1 2 . Finally, for 3 , we do the same computation to bound

Grouping all terms and slightly upper bounding the numerical constants, we obtain

By Lemma 3.21 (and the 1-periodicity of  [ , ]), we obtain

But = + 2 -1 and + ⩾ 2 + 4 so

Hence we get

⩽ 16 2 + ln 1 + , concluding the proof.

Lemma 3.23. Let , be positive integers and = (-), … , ( -1) ∈ C + . We extend into -an + -periodic sequence ( ) ( + ) + = ( ), for = -, … , -1 and ∈ Z; -a finitely supported sequence (0) by setting (0) ( ) = ( ) for = -, … , -1 and (0) ( ) = 0 for ≥ and for ≤ --1.

Then

From this, we deduce that

with the change of variable = + + and periodicity of ⟶ ∑ 2 .

Lemma 3.24. Let , and be positive integers with (2 + 2 ) + 4 ⩽ for some > 0 and ⩾ 4 . Suppose is a finite set of integers and, for each ∈ let be a trigonometric polynomial of degree at most . Then for any integer , we have:

Proof. Assume we can prove the lemma for = 0, that is, for any sequence ( ) ∈Z of trigonometric polynomials of degree at most and any finite set ,

Then, replacing withand replacing ( ) with ( + ) we get

So there is no loss of generality is assuming = 0. Next, we write = ∑

⌉ the smallest integer larger than 2 and let , the sequence from Lemma 3.22. Since ( ) , to be the -periodic sequence defined by ( ) , ( + ) = , ( ) for = --2 , … , + 2 and ( ) , ( ) = 0 for all other 's. We take , > + 2 such that + = and then ( ) , ( ) = 0 for = -, … , --2 -1 and for = + 2 + 1, … , -1. From Lemma 3.23, we get

Combining (3.17 , ( ) = .

Finally we get

We can now prove the lemma.

Proof of lemma 3.20. Write ( ; ) = { 1 , … , } and write each in the form = + . Applying lemma 3.24 yields

and

It remains to show that

Let us start with 1 : using the 1-periodicity in ,

with Theorem B. Applying Lemma 3.21 to and using that 2 < 1 2 with our hypothesis on and , we get

and the desired estimate of 1 follows immediately.

Let us now estimate 2 . For ∈ [ , + 1], we have

From the 1-periodicity in , the integral of this quantity over [ , + 1] is the same as the integral over

with Bernstein's inequality.

Newman's extremal trigonometric polynomial.

Finally, let us insist on the fact that all results in this section are worse case scenarios i.e. the lowest possible 1 norm of a trigonometric polynomial with eventually a constraint on the spectrum or on the coefficients.

If one looks at the maximal possible value of the 1 -norm under the constraint that all coefficients have modulus 1, then, from Cauchy-Schwarz

for all 's. However, if one wants to reach the bound √ + 1, one would need that equality holds in the Cauchy-Schwarz Inequality so

should be constant. But, it is easy to show that the only trigonometric polynomials with constant modulus are monomials (thus in our case, equality can only occur when = 0). Indeed, consider the polynomial

which is now an equality between meromorphic functions over C ⧵ {0}. As this is true on {| | = 1} it is true over all of C ⧵ {0}, in particular, has only 0 as zero thus ( ) = . So the natural question is, how near to √ + 1 one can get. A result by E. Beller and D. J. Newman [START_REF] Beller | An 1 extremal problem for polynomials[END_REF] shows that one can obtain √ - [START_REF] Belov | On the conjecture of Littlewood and minima of even trigonometric polynomials[END_REF]. For sake of simplicity, we will only present a previous result by D. J. Newman [START_REF] Newman | An 1 Extremal Problem for Polynomials[END_REF] which contains similar ingredients: Theorem 3.25 (Newman,[START_REF] Newman | An 1 Extremal Problem for Polynomials[END_REF]). There is an absolute constant > 0 and an integer 0 such that, for every ≥ 0 there is a sequence 0 , … , with | | = 1 for all and such that

Proof. The example is related to Gauss sums. We fix and set = exp + 1 , = 2 and define

The theorem is based on the following lemma: We postpone the proof of the lemma and show how we can conclude with it. Parseval's identity gives ‖ ‖ 2 = √ + 1 and then Hölder's inequality implies

.

From the lemma, we deduce that there is a constant > 0 such that ∫

for large enough.

It remains to prove the lemma:

Proof of Lemma 3.26. We write

On the other hand, from Parseval,

To compute the last sum, we split it into 4 parts

As | +1-| = | | we have 4 ≤ 1 and 3 ≤ 2 so that we only need to show that 1 and 3 are both ( 3∕2 ).

For 1 , we use the estimate

Further, as for

as claimed.

4. Hudson and Leckband that shows that the estimate for the Besicovitch norm follows from Theorem B. The converse is of course true as well and the result was obtained directly in [START_REF] Ph | SABA The Littlewood problem and non-harmonic Fourier series[END_REF] and even allowed to slightly improve the constant. Theorem 4.1 (Hudson & Leckband [11]). For ( ) ≥0 be real numbers with +1 -> 0 and let ( ) ≥0 be a sequence of complex numbers with finite support. Then

where is the same constant as in Theorem B.

Moreover, assume that ( ) is -lacunary i.e. 0 ≥ 1 and +1 ≥ . Then, for 1 ≤ < +∞,

with , , , the constants in Theorem 3.7.

Actually, only the first part is in [START_REF] Hudson | LECKBAND Hardy's inequality and fractal measures[END_REF]. The second part is here obtained with almost the same proof and seems to be new.

Proof. Let 0 , … , be complex numbers, 0 < 1 < ⋯ < be real numbers and

Let > 0. By a lemma of Dirichlet ([25, p 235], [START_REF]GRAFAKOS Classical Fourier analysis[END_REF]), there is an increasing sequence of integers ( ) ≥1 and, for each ≥ 1 a finite family of integers ( , ) =0,…, such that

Define the -periodic function

and note that, for ∈ [-∕2, ∕2],

But then

We can now conclude as follows. First, in the general case, As Ψ is -periodic, we may apply Theorem B to obtain

Letting → +∞ and then → 0 we obtain Theorem 4.1:

Let us now assume further that +1 ≥ . Let ̃ be such that 1 < ̃ < and, assume that has been chosen such that -(1 + ) > ̃ . Observe that

, and = we obtain

.

From (4.1) we conclude that

The result follows by letting → 0 and then ̃ → .

Nazarov's theorem. Theorem 4.2 (Quantitative version of Nazarov theorem for small ).

There exists positive constants * , * such that, for 0 < < * the following holds: for every 0 < ... < of real numbers satisfying +1 -⩾ 1 and 0 , ..., complex numbers,

First, we start by some preliminary notations and results. Let = ∶= [-1+ 2 , 1+ 2 ]. Let us fix ( ) =0,…, ⊂ R with +1 -≥ 1 for every , ( ) =0,…, a sequence of complex numbers and write

, so that we must find such that:

We define

where is a large integer that we will adjust through the proof. This integer will be of the form = 2 . We will prove that (4.6)

‖ ‖ 1 ( ) ≥ and, as + ≤ ( + 1) , ≥ so that we obtain the desired inequality (4.5) with a constant = .

The meaning of is the following. Consider: -a new sequence of frequencies ( ̃ ) ∈Z such that ̃ = -for = , … , + . and then ̃ = 0 + -for < and ̃ = + -for > . In particular, we still have | ̃ -̃ | ≥ 1. In other words, the sequence ( ) =0,…, is completed into a sequence ( ) ∈Z that is still 1-separated and then shifting it by . -A new sequence of complex numbers ( ̃ ) ∈Z with ̃ = -for = , … , + and ̃ = 0 for other 's. In other words, the sequence ( ) =0,…, is completed into a sequence ( ) ∈Z by 0-padding it and then shifting it by . Then (4.6) reads

with the convention that 0∕0 = 0. Note that, up to adding 0 terms at the end of the sequence , we may assume that + is of the form 2 -1 for some integer . This will allow us to write

Next, as in Ingham's proof, we will introduce an auxiliary function. Again, we consider

whose Fourier transform is given by ĥ( ) = 2 cos( ) 1 -4 2 .

We will need to smooth a bit this function to obtain a better decay of the Fourier transform and thereby slightly enlarge its support. More precisely, let = 10, = 8 and let

and define its + -fold self convolution 1 = * + .

Clearly is non-negative, even and with support [-2 , 2 ]. Finally, we define as

In the following lemma, we list the properties needed on . They are all established via easy calculus and straight forward Fourier analysis.

Lemma 4.3.

There is a 0 > 0 and a 0 > 0 such that, if 0 < < 0 then, [START_REF] Belov | On the conjecture of Littlewood and minima of even trigonometric polynomials[END_REF] 

From now on, we will assume that 0 < < 7 3 < 1 so that ≥ 1. In particular, when

Proof of Lemma 4.3. The first one is simple Fourier analysis.

For the second one, we write

For the third one, we notice that 4 2 -1 ≥ 3 2 when ≥ 1 thus

. Thus this fact is established with 0 = 1

For the last one, we take 0 small enough to have sinc 

Proof. By definition of ,

By applying the lemma 4.4, that

Using the fact that = | | and the triangular inequality, we obtain

from which the lemma follows immediately.

Construction of ̃

Recall that, from our assumption on and , we can write

where we set  = { ∈ N ∶ 2 ≤ < 2 +1 } and

.

Before we estimate the norms of the 's, let us recall Hilbert's inequality (see e.g. [4, Chapter 10]).

Lemma 4.6 (Hilbert's inequality). Let 1 , … , be real numbers with | -| ≥ 1 when ≠ , and let 1 , … , be complex numbers. We have

We can now prove the following:

The first estimate is obtained by straightforward computations: for all ,

For the second one, set = + . Then

-

-

We then apply Hilbert's inequality 4.6 to the last two sums to obtain

We then write the Fourier series expansion of | | ∈ 2 ( ) as

and define ℎ ∈ 2 ( ) via its Fourier series expansion

Lemma 4.8. For ⩽ ⩽ , the following properties hold [START_REF] Belov | On the conjecture of Littlewood and minima of even trigonometric polynomials[END_REF] 

Proof. Since ∞ is a Banach algebra, the partial sums ∑ =0 (-1) ! of -are elements of ∞ . Moreover, since is bounded, these sums converge uniformly toward -, with -∈ ∞ . Finally, if ∈ C and ℜ( ) ⩾ 0,

In our case = ( ), and we have | and by integration we have the desired inequality. Lemma 4.12. Assume that 0 < ⩽

. Then, for

(2) The Fourier series of , ( ) -1 writes , ( )

Proof. By lemma 4.11, ‖ -1‖ 2 ⩽ ‖ ‖ 2 . Then, since , is analytic, its Fourier series writes

But then, with Parseval

which implies the claimed bound.

Now recall that

and define ̃ = .

In particular, from Lemma 4.9, we have

The key estimates here is the following; Lemma 4.13. Once again, we use the notations of the lemma 4.4. There exists 2 > 0 such that, if 0 < < 2 and ≥ -7∕2 then (4.12)

where is the function defined in (4.7).

Proof. It is enough to prove that, under the conditions of the lemma, for 0 ⩽ ⩽ we have

Once (4.13) is established, it will then be enough to multiply the left hand side by and to use the triangular inequality

We fix ∈ [0, ] and let the index such that + ∈  . We define , 1 and 2 as follows

).

From there, we obtain

).

So finally we get

).

Let ( ) = , if + ∈ . Since ̂ is an even function, we can write

.

From Lemma 4.3, recall that, with = 0

+2 ),

we have

Further, from (4.8) and

12 . Thus, choosing sufficiently large for = 2 -7∕2 and ≤ 2 for some 2 > 0 small enough, we are able to apply (4.14) and obtain, with (4.15) + ) .

We can now bound . Since 

since last sum has at most 2 -1 ⩽ + . We will now bound 2 .

According to the lemmas 4.7 (1) and 4.12 (1) we get

and + ∈ then

Finally, we deduce that

and we obtain 2 ⩽ 3

.

Note that, from (4.8) and | | ≤ 2, we can take = 4 2 for some 4 > 0. It is now easy to deduce the theorem 4.2 using the 2 inequalities (4.10) and (4.12).

Proof of theorem 4.2. Let

as previously defined. Recall that in (4.10) , we have shown that

with (4.12). It follows that

But, if is small enough and ≥ -7∕2 , -from Lemma 4.3, ‖ ‖ ∞ ≤ 2 ;

-from (4.8), = 2 + ( 4)

.

Therefore, there are two absolute constants * and * such that, if ≤ * ,

As noticed at the start of the proof, this implies that

for every , every sequence of real numbers ( ) ≥0 with +1 -≥ 1 and every complex sequence ( ) ≥0 .

We have not fully optimised the proof, by taking sufficiently large and ∕ sufficiently large, one can replace 15∕2 by 7+ for any fixed .

SOME OPEN PROBLEMS

The 2 theory of exponential sums is rather well understood. This is not the case for 1 theory for which there are still many open questions. Let us mention a few of them.

(1) There is a major difference between the sums that appear in Ingham's Theorem and those that appear in Mc Geehe, Pigno, Smith and Nazarov's Theorems. In the 2 case, the sums can be two sided and not in the 1 case. The proof given here does not work in this case (this is due to the construction of ̃ ) and we are tempted to conjecture the following Question 1. Let > 1 and ( ) ∈Z a real sequence such that +1 -≥ 1 for every and has same sign as . Does there exist a constant such that, for every and every sequence ( ) =-,…, of complex numbers,

(2) The second question is the optimality of the condition = 1 in Nazarov's Theorem. In view of Ingham's counterexample, it is tempting to conjecture that > 1 is requested (as observed by Nazarov, his proof requires this). We think the estimate shown here is not optimal.

(3) Another question related to the previous one comes from Haraux's Theorem. When +1 -→ +∞, can be chosen arbitrarily small. A key element of Haraux's strategy is that the lower and upper bounds in Ingham's inequality are both multiples of the 2 -norm of the coefficients. This is no longer the case in the 1 setting.

In forthcomming work, we have been able to use a compactness argument to show that one may take arbitrarily small in Nazarov's Theorem when +1 -→ +∞. However, in doing so, we loose control of constants. This leads to the following: Question 3. Prove a quantitative version Nazarov's Theorem with arbitrarily small when +1 -→ +∞.

(4) Are 1 ([-, ])-norms of lacunary non-harmonic Fourier series comparable to the 2 -norms of the coefficients? This is the case for Besikovich norms. Note that

The question is then Question 4. Find a (gap) condition on (Λ ) and on that implies that there is a constant > 0 such that, for every ( ) with finite support

.

One may also go the other way and ask whether one can still obtain a result like Theorem B when +1 -→ 0 but with a smaller power on the denominator. For instance, when = ln then the Fourier series become Dirichlet series The following question was asked in [START_REF] Brevig | VUKOTIĆ The multiplicative Hilbert matrix[END_REF]:

Question 5. Is it true that, for every sequence ( ) ≥1 with finite support,