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FROM INGHAM TO NAZAROV’S INEQUALITY: A SURVEY ON SOME TRIGONOMETRIC
INEQUALITIES

PHILIPPE JAMING & CHADI SABA

ABSTRACT. The aim of this paper is to give an overview of some inequalities about Lp-norms (p = 1 or
p = 2) of harmonic (periodic) and non-harmonic trigonometric polynomials. Among the material covered,
we mention Ingham’s Inequality about L2 norms of non-harmonic trigonometric polynomials, the proof of
the Littlewood conjecture by McGehee, Pigno and Smith on the lower bound of the L1 norm of harmonic
trigonometric polynomials as well as its counterpart in the non-harmonic case due to Nazarov. For the latter
one, we give a quantitative estimate that completes our recent result with an estimate of L1-norms over small
intervals.

We also give some stronger lower bounds when the frequencies satisfy some more restrictive conditions
(lacunary Fourier series, “multi-step arithmetic sequences”).

Most proofs are close to existing ones and some open questions are mentioned at the end.
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1. INTRODUCTION

The aim of this paper is to give an overview of the main estimates of Lp-norms of harmonic and non-
harmonic trigonometric polynomials, when p = 2 and p = 1. In many fields of mathematics, ranging from
number theory (see e.g. the previous survey [1]) to signal processing and PDEs, one is lead to investigate
such norms. Our main motivation comes from the use of Ingham’s inequality (lower and upper estimates of
L2-norms of non-harmonic trigonometric polynomials) in control theory of PDEs. We refer the interested
reader to the book by Komornik and Loreti [14]

2020 Mathematics Subject Classification. 42A75.
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Let us not be more precise. We will here restrict attention to p = 2 or p = 1 and investigate Lp-norm
estimates of (harmonic) trigonometric polynomials
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or non-harmonic trigonometric polynomials
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as well as their limits when T → +∞
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(that is Besicovitch norms). Note for future use that, when the �k’s are all integers, we recover theLp([−1∕2, 1∕2])-
norms.

The simplest case p = 2 for harmonic trigonometric polynomials known by Parseval’s relation states
that
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2.

The situation becomes much complicated for non-harmonic trigonometric polynomials but is well under-
stood thanks to a deep result by Ingham:

Theorem A (Ingham). Let T > 1, then there are two constants A and B such that
– for every sequence (�k)k∈Z with �k+1 − �k ≥ 1,
– for every complex sequence (ck)k=−N,…,N
for every integerN ≥ 1,

(1.1) A
N
∑

k=−N
|ck|

2 ≤ 1
T ∫

T ∕2

−T ∕2

N
∑
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|

|

|

cke
2i��kt|

|

|

2
dt ≤ B

N
∑

k=−N
|ck|

2.

The condition T > 1 is optimal in the following sense; When T = 1, there is a sequence (�k)k∈Z with
�k+1 − �k ≥ 1 and a sequence (ck) ∈ l2 such that the lower bound in (1.1) does not hold for every N for
any A > 0.

Note that the upper bound in (1.1) holds for every T > 0, the restriction T > 1 is only needed for
the lower bound, which is the most interesting one for control theory. In the next section, we will present
Ingham’s proof and also compute the constants A and B. We will also present an argument due to Haraux
that allows to obtain the lower bound with T arbitrarily small when |�k+1 − �k| → +∞ when k→ ±∞.

Once the L2-theory settled, we will move to the L1-theory which is much richer. To start with, the
behavior of the L1-norm of a trigonometric polynomial may depend on the frequencies. There are two
extreme cases

– the frequencies form an arithmetic sequence, e.g. the Dirichlet kernel, one might expect the L1-norm
to be small in view of the estimate: whenN → +∞
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– the frequencies form a geometric sequence, or more generally a lacunary sequence (nk+1 ≥ qnk with
q > 1) then the L1-norms are much large: forN large enough
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We will prove these two estimates in Section 3. In view of those estimates, Littlewood conjectured that
the Dirichlet kernel has worse possible behavior, namely that

LN ∶= inf
n0<n1<⋯<nN ∫
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for some constant C ≤ 4
�2

. The first non-trivial estimate was obtained by Cohen [5] who proved that

LN ≥ C(lnN∕ ln lnN)1∕8

for N ≥ 4. Subsequent improvements are due to Davenport [6], Fournier [8] and crucial contributions by
Pichorides [19, 20, 21, 22] leading toLN ≥ C lnN∕(ln lnN)2. Finally, Littlewood’s conjecture was proved
independently by Konyagin [15] and Mc Gehee, Pigno, Smith [16] in 1981. In both papers, Littlewood’s
conjecture is actually obtained as a corollary of a stronger result (and they are not consequences of one
another). The second one is the one we will focus on here and is the following result:

Theorem B (Mc Gehee, Pigno & Smith [16]). For n1 < n2 < ⋯ < nN integers and a1,… , aN complex
numbers,
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where CMPS is a universal constant (CMPS = 1∕30 would do).

We will present its proof below.
We would like to insist that this is the worse possible behavior. To start, as we already mentioned, in

the lacunary case, the lower bound is
√

N . We will show a recent result of Hanson [10] who considered a
family of sets (so-called “strongly multi-dimensional sets”) of which the simplest example is a multi-step
arithmetic sequence. By that, we mean a sequence njM+k = jD + kd, j ∈ Z, k = 0,… ,M − 1 and
Md ≪ D. In other words, we take an arithmetic sequence with large step D and, after each element of the
sequence, we add a small piece of an arithmetic sequence with small step. It is then shown that
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We also present an example of Newman that constructed a0,… , aN all of modulus 1 such that
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This shows that it is possible to be far away from the lower bound (and actually near to the best possible
upper bound).

The last part of this survey is devoted to L1-norms of non-harmonic trigonometric polynomials. The
best result to day is the following:

Theorem C. Let �0 < �2 < ⋯ < �N be N distinct real numbers and a0,… , aN be complex numbers.
Then

(i) we have

lim
T→+∞
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(ii) If further a0,… , aN all have modulus larger than 1, |ak| ≥ 1 then
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(iii) Assume further that for k = 0,… , N − 1, �k+1 − �k ≥ 1, then, for every T > 1, there exists a
constant C(T ) such that, for every a0,… , aN ∈ C,
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Moreover,
(a) for T ≥ 72 we can take C(T ) = 1

122
;

(b) for 1 < T ≤ 2, C(T ) = O
(

(T − 1)15∕2
)

.

Let us comment on this theorem. To start with, the theorem is essentially a quantitative version of a result
of F. Nazarov [17] and is due to the authors together with K. Kellay [13]. Only the case 1 < T ≤ 2 has not
been presented before. To be more precise, when the �k’s are integers, this is of course the result of Mc
Gehee, Pigno and Smith while Point 2 comes from a slight modification of their argument by Stegeman and
Yabuta. Note that the constants are the same as those in Theorem B (and are actually a bit better). While it
is obvious that this inequality implies Theorem B (with the same constant), there is an elegant argument by
Hudson and Leckband [11] that allows to show that the converse is also true. We will present this argument
below. Point 3 is due to Nazarov with non-explicit constant. A direct proof of this theorem is given in [13]
with the explicit constants mentioned above. Only the case of small T has not been presented so far and is
thus the main novelty of the present paper. It is obtained by a very mild modification of Nazarov’s proof.
Note also that once we have established Point 3 for some T0, it is valid for all T ≥ T0 so that we actually
recover Nazarov’s original result (with much worse constants than the ones stated above).

The remaining of the paper is organised as follows: Section 2 is devoted to the L2 case and we prove the
inequalities in Ingham’s Theorem in Section 2.1 and the necessity of the condition T > 1 in Section 2.2.
Further, Haraux’s argument is presented in Section 2.3.

In Section 3, we investigate the L1 norms when the frequencies are integers. We start with the classical
asymptotic estimate of the Dirichlet kernel and devote Section 2.2 to lacunary trigonometric polynomials.
Section 3.3 is devoted to Mc Gehee, Pigno, Smith’s proof of Littlewood’s conjecture. In Section 3.4 we
present Hanson’s result on strongly multidimensional sequences and we conclude in Section 3.5 with the
result of Newman.

Section 4 is devoted to the case of non-harmonic trigonometric polynomials. We start in Section 4.1 with
the argument of Hudson and Leckband and then extend the case of lacunary trigonometric polynomials to
the non-harmonic setting and the Besicovitch L1-norms. We conclude this section with the proof of the
quantitative version of Nazarov’s theorem for small T .

In the last section, we present a few open questions.

2. L2 ESTIMATES

2.1. Ingham’s inequalities. The aim of this section is to show the following: let Λ = {�k}k∈Z ⊂ R be
a 1-separated sequence, |�k − �l| ≥ 1 if k ≠ l. Let (Λ) be the set of (non-harmonic) trigonometric
polynomials

(Λ) =

{

P (t) ∶=
∑

k∈Z
ake

2i��kt ∶ (ak)k∈Z ⊂ C with finite support

}

.

Note that, if P ∈ (Λ) is given, then the ak’s are determined by

ak = lim
T→+∞

1
T ∫

T ∕2

−T ∕2
P (t)e−2i��kt dt.

We can then define two natural norms on (Λ), namely

‖P‖L2([−T ∕2,T ∕2]) ∶=

(

1
T ∫

T ∕2

−T ∕2
|P (t)|2 dt

)
1
2
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and

‖P‖l2 ∶=

(

∑

k∈Z
|ak|

2

)
1
2

.

Our aim in this section is to show that, when T > 1, these two norms are equivalent. This is done by proving
two inequalities. The first one is the direct inequality:

Proposition 2.1 (Ingham’s direct inequality). Let (ak)k∈Z be a finitely supported sequence of complex
numbers and (�k)k∈Z be a sequence of real numbers with �k+1 − �k ≥ 1. For every T > 0,

(2.1) 1
T ∫
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dt ≤ 2T + 1
T

∑

k∈Z
|ak|

2.

Proof. We consider the functionH on R defined by

ℎ(x) =

{

cos�t when |x| ≤ 1
2

0 otherwise
.

As ℎ is real and even, its Fourier transform is given by

ℎ̂(t) = 2∫

1∕2

0
cos�x cos 2�xt dx = 2

�
cos�t
1 − 4t2

with the understanding that ℎ̂(1∕2) = 1
2
. From this, one shows that ℎ̂(x) ≥ 1

2
for |x| ≤ 1

2
. Finally, let

g(x) = ℎ ∗ ℎ(x) =

⎧

⎪

⎨

⎪

⎩

sin�|x| − �(|x| − 1) cos�x
2�

when |x| ≤ 1

0 otherwise
.

One easily shows that g is even, non-negative, supported in [−1, 1] and that g(0) = 1
2
. Further its Fourier

transform is ĝ(t) = ℎ̂(t)2. In particular, ĝ(t) ≥ 0 and ĝ(t) ≤ 1
4
for |t| ≤ 1

2
.

But then, if (ak)k∈Z is finitely supported and P (t) =
∑

k∈Z
ake

2i��kt,

∫

1∕2

−1∕2
|P (t)|2 dt ≤ 4∫

1∕2
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ĝ(t)|P (t)|2 dt ≤ 4∫R

ĝ(x)
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dt

= 4
∑

j,k∈Z
ajak ∫R

ĝ(t)e2i�(�j−�k)t dt

= 4
∑

j,k∈Z
ajakg(�j − �k).

Note that the sums are actually finite. Further, if j ≠ k then |�j − �k| ≥ 1 and, as g is supported in [−1, 1],
we then have g(�j − �k) = 0. This implies that

∫

1∕2

−1∕2
|P (t)|2 dt ≤ 4g(0)

∑

j∈Z
|aj|

2

so that the inequality is proven for T = 1 since 4g(0) = 2.
For T < 1 we simply write

1
T ∫

T ∕2

−T ∕2
|P (t)|2 dt ≤ 1

T ∫

1∕2

−1∕2
|P (t)|2 dt ≤ 2

T
∑

j∈Z
|aj|

2.



6 PHILIPPE JAMING & CHADI SABA

To conclude, notice first that, if I = [a − 1∕2, a + 1∕2] and P (t) =
∑

j∈Z
aje

2i��j t then

∫I
|P (t)|2 dt = ∫

1∕2

−1∕2
|P (a + t)|2 dt = ∫

1∕2
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|

|
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aje
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dt

≤ 2
∑
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2i��ja
|

2 = 2
∑

j∈Z
|aj|

2

from the case T = 1.
Now let T > 1 and cover the interval [−T ∕2, T ∕2] by K = ⌈T ⌉ ≤ T + 1 intervals I1,… , IK of length

1. Then

1
T ∫

T ∕2

−T ∕2
|P (t)|2 dt ≤ 1

T

K
∑

j=1
∫Ij

|P (t)|2 dt ≤ 2T + 1
T

∑

j∈Z
|aj|

2.

This completes the proof. �

We now show that a converse inequality also holds, but this time with the extra condition that T > 1:

Proposition 2.2 (Ingham’s converse inequality). Let (ak)k∈Z be a finitely supported sequence of complex
numbers and (�k)k∈Z be a sequence of real numbers with �k+1 − �k ≥ 1. For every T > 1,

(2.2) 1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

∑

k∈Z
ake

2i��kt
|

|

|

|

|

2

dt ≥ C(T )
∑

k∈Z
|ak|

2

with

C(T ) =

⎧

⎪

⎨

⎪

⎩

�2

8
T 2 − 1
T 3

for 1 < T ≤ 2
3�2
64

for T ≥ 2
.

Proof. We will do so in three steps. We first establish this inequality for 1 < T ≤ 2.
LetH be defined byH(x) = 1[−1∕2,1∕2] cos�x and notice that

Ĥ(t) = 2
�
cos�t
1 − 4t2

.

Note thatH being non-negative, Ĥ is maximal at 0 (which may be checked directly).
Next considerH ∗ H and notice that, asH is non-negative, even, continuous with support [−1∕2, 1∕2],

thenH ∗ H is non-negative, even, continuous with support [−1, 1] and its Fourier transform is

Ĥ ∗ H = Ĥ2.

NextH ∈ H1(R) withH ′ = −�1[−1∕2,1∕2] sin�x and

Ĥ ′(t) = 4it cos�t
1 − 4t2

thus
Ĥ ′ ∗ H ′(t) = −(2�t)2Ĥ2(t)

We now consider GT = �2T 2H ∗ H +H ′ ∗ H ′ so that GT is continuous, real valued, even and supported
in [−1, 1].

ĜT (t) = �2
(

T 2 − 4t2
)

Ĥ2(t)

is even (so GT is the Fourier transform of ĜT ) and in L1. Further Ĝ is non-negative on [−T ∕2, T ∕2] and
negative on R ⧵ [−T ∕2, T ∕2].
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This implies that
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dt
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∑
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ĜT (t)e2i�(�k−�l)t dt

=
∑

k,l∈Z
akalGT (�k − �l) =

∑

k∈Z
|ak|

2GT (0).

In the last line, we use that |�k − �l| ≥ 1 when k ≠ l thus GT (�k − �l) = 0.
Now, for � ∈ [−T ∕2, T ∕2],

ĜT (�) = �2(T 2 − 4�2)Ĥ2(�) ≤ �2(T 2 − 4�2)Ĥ2(0) ≤ 4T 2

while

GT (0) = �2 ∫

1∕2

−1∕2
T 2 cos2 �t − sin2 �t dt = �2

2
(T 2 − 1)

which leads to

(2.3) ∫
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8
T 2 − 1
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∑

k∈Z
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2.

For 2 ≤ T ≤ 6, we simply write

∫

T ∕2

−T ∕2

|

|
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|
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∑

k∈Z
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2i��kt
|
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dt ≥ ∫

1

−1

|

|
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|

|
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k∈Z
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2i��kt
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|
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|

|

2

dt ≥ 3�2
32

∑

k∈Z
|ak|

2

where the second inequality is (2.3) with T = 2, establishing (2.2) with C = 3�2
32T

≥ �2

64
.

Now let T ≥ 6 andMT = [T ∕2] so thatMT ≥ T
2
−1 ≥ T

3
. For j = 0,… ,MT −1, let tj = −T ∕2+j+1

so that the intervals [tj − 1, tj + 1[ are disjoint and
N−1
⋃

j=0
[tj − 1, tj + 1[⊂ [−T ∕2, T ∕2] thus

∫

T ∕2

−T ∕2

|

|

|

|

|

∑

k∈Z
bke

2i��kt
|

|

|

|

|

2

dt ≥
MT−1
∑

j=0
∫

tj+1

tj−1

|

|

|

|

|

∑

k∈Z
bke

2i��kt
|

|

|

|

|

2

dt

=
MT−1
∑

j=0
∫

1

−1

|

|

|

|

|

∑

k∈Z
bke

2i��ktj e2i��kt
|

|

|

|

|

2

dt.

Now, apply (2.3) with ak = bke2i��ktj and T = 2 to get

1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

|

N
∑

j=1
bke

2i��kt
|

|

|

|

|

|

2

dt ≥ 3�2
32

MT
T

N
∑

k=1
|ak|

2 ≥ �2

32

N
∑

k=1
|ak|

2,

establishing (2.2) with C = �2

32
. �

Finally, we notice that, with a change of variable, and a simple limiting argument to remove the condition
on the support of (ak), we have just proved the following;

Theorem 2.3 (Ingham). Let 
 > 0 and T > 1


. There exist two constants C = C(
T ), B = B(
T ) such

that
– for every sequence of real numbers Λ = {�k}k∈Z such that �k+1 − �k ≥ 
;
– for every sequence (ak)k∈Z ∈ l2(Z,C),
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(2.4) C
∑

k∈Z
|ak|

2 ≤ 1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

∑

k∈Z
ake

2i��kt
|

|

|

|

|

2

dt ≤ B
∑

k∈Z
|ak|

2.

2.2. The condition T > 1. We now show that the condition T > 1 is mandatory to establish (2.2) for every
Λ and every P ∈ (Λ).

Proposition 2.4 (Ingham). There exists a real sequence {�k}k∈Z with �k+1 − �k ≥ 1 and a sequence
(ak)k∈Z with

∑

k∈Z
|ak|

2 = 1 such that,

(2.5) ∫

1∕2

−1∕2

|

|

|

|

|

|

N
∑

k=−N
ake

2i��kt
|

|

|

|

|

|

2

dt → 0

whenN → +∞.

In other words, for (2.2) to hold for T = 1 for this sequence (�k) and every sequence (ak) then C(1) = 0
so that the condition T > 1 is necessary for this inequality to be interesting.

Proof. Let � > 0 and define, for |z| < 1,

g�(z) = (1 + z)−� =
exp

(

−i� arctan ℑ(z)
1+ℜ(z)

)

|1 + z|�
, |z| < 1.

Of course, we may also write g� as a power series

g�(z) =
+∞
∑

n=0

(−�)n
n!

zn

where (�)0 = 1, (−�)n = −�(−� − 1)⋯ (−� − n + 1).
Next define

f�(r, t) = 2ℜ
(

ei�(�+1)tg�(re2i�t)
)

= ei�(�+1)tg�(re2i�t) + e−i�(�+1)tg�(re−2i�t)

=
+∞
∑

n=0

(−�)n
n!

rne2i�
(

n+ �+1
2

)

t +
+∞
∑

n=0

(−�)n
n!

rne−2i�
(

n+ �+1
2

)

t.

Now set Λ = {�j}j∈Z with �j = j + � + 1
2

when j ≥ 0 and �j = j + 1 − � + 1
2

for j ≤ −1, then
�j+1 − �j ≥ 1 (and even = 1 excepted for �0 − �−1 = 1 + �). In particular, if we set

Pm,r(t) =
m
∑

n=0

(−�)n
n!

rne2i�
(

n+ �+1
2

)

t +
m
∑

n=0

(−�)n
n!

rne−2i�
(

n+ �+1
2

)

t ∶=
∑

k∈Z
am,r(k)e2i��kt ∈ (Λ)

and Pm,r → f� when m→ +∞, uniformly over t ∈ [−1∕2, 1∕2].
Further, Parseval’s relation reads

+∞
∑

n=0

|

|

|

|

(−�)n
n!

rn
|

|

|

|

2
= ∫

1∕2

−1∕2

|

|

|

|

|

|

+∞
∑

n=0

(−�)n
n!

rne2i�nt
|

|

|

|

|

|

2

dt = ∫

1∕2

−1∕2
|g�(re2i�t)|2 dt

thus

lim
m→+∞

∑

k∈Z
|am,r(k)|2 = lim

m→+∞
2
+∞
∑

n=0

|

|

|

|

(�)n
n!

rn
|

|

|

|

2
= 2∫

1∕2

−1∕2
|g�(re2i�t)|2 dt.

It follows that, if we had

(2.6) ∫

1∕2

−1∕2
|Pm,r(t)|2 dt ≥ C

∑

k∈Z
|am,r(k)|2
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then, letting m→ +∞, we would also have

(2.7) ∫

1∕2

−1∕2
|f�(r, t)|2 dt ≥ 2C ∫

1∕2

−1∕2
|g�(re2i�t)|2 dt

for every 0 < r < 1 and every 0 < � < 1.
But, if we fix t ∈] − 1∕2, 1∕2[ then, when r→ 1,

g�(re±2i�t) =
1

(

1 + re±2i�t
)� →

1
(

1 + e±2i�t
)� =

e∓i��t

2� cos� �t

(this is where we use that T ≤ 1) while

|g�(re±2i�t)|2 =
1

(

(1 − r)2 + 4r cos2 �t)�
≤ 1
4 cos2� �t

for 12 < r < 1. Similar bounds follow for f�(r, t):

f�(r, t) = ei�(�+1)tg�(re2i�t) + e−i�(�+1)tg�(re−2i�t)→
ei�t + e−i�t
2� cos� �t

= 1
2�−1 cos�−1 �t

while
|f�(r, t)|2 ≤

1
cos2� �t

.

When 2� < 1 the majorants are integrable so that we can let r→ 1 in (2.7). This leads to

(2.8) 22−2� ∫

1∕2

−1∕2

dt
cos2�−2 �t

≥ 21−2�C ∫

1∕2

−1∕2

dt
cos2� �t

.

Letting � →
1
2
the right hand side goes to+∞while the left hand side stays bounded. We obtain the desired

contradiction. �

2.3. Sequences with large gaps.

Lemma 2.5 (Haraux). Let Λ ⊂ R be a sequence such that 
(Λ) = infk≠l∈Z |�k − �l| > 1 and let
T > 
(Λ)−1.

Assume that there exists 0 < C ≤ 1 ≤ B such that, for every (a�)�∈Λ finitely supported sequence of
complex numbers,

C
∑

�∈Λ
|a�|

2 ≤ 1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

∑

�∈Λ
a�e

2i��t
|

|

|

|

|

dt ≤ B
∑

�∈Λ
|a�|

2.

Let � ∈ R ⧵ Λ and, for sake of simplicity, assume that 
(Λ ∪ {�}) ≥ 1. Let 0 < � < min
(

T , 1
4

)

, then
there is a D with 0 < D < C such that, for every (a�)�∈Λ∪{�}

C
∑

�∈Λ
|a�|

2 ≤ 1
T + � ∫

T+�
2

− T+�
2

|

|

|

|

|

|

∑

�∈Λ∪{�}
a�e

2i��t
|

|

|

|

|

|

dt

Moreover, D can be taken of the form

D = �C
B
�4

for some absolute constant � > 0 (� = 8−4 would do).

Note that, as � is arbitrarily small, as T > 
(Λ)−1 is arbitrarily near to 
(Λ ⧵ {�0})−1 so is T + �.

Proof. Set
f (t) =

∑

�∈Λ∪{�}
a�e

2i��t.
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For 0 < � < 1
4
, we define

g�(t) = f (t) − 1
� ∫

�∕2

−�∕2
e−2i��sf (t + s) ds

=
∑

j∈Λ
a�

(

1 −
sin�(� − �)�
�(� − �)�

)

e2i��t ∶=
∑

�∈Λ
b�(�)e2i��t.

The first observation is that, as |� − �| ≥ 1,
|

|

|

|

1 −
sin�(� − �)�
�(� − �)�

|

|

|

|

2
≥ ��(�) ∶= sup

s≥��

|

|

|

|

1 − sin s
s

|

|

|

|

2
> 0.

It is not difficult to see that, if � ≤ 1
4
, �� ≥

�4

100
. This is what needs to be adjusted if we do not assume that

dist(�,Λ) = min�∈Λ |� − �| ≥ 1.
Further, as for � ≠ �′ ∈ Λ, then |� − �′| ≥ 
(Λ), the hypothesis of the lemma states that, as T > 1


(Λ)
,

(2.9) 1
T ∫

T ∕2

−T ∕2
|g�(t)|2 dt ≥ C

∑

�∈Λ
|b�(�)|2 ≥ C��

∑

�∈Λ
|a�|

2 ≥ C�4

100
∑

�∈Λ
|a�|

2

On the other hand, from Cauchy-Schwarz,

|g�(t)|2 ≤ 2|f (t)|2 + 2
|

|

|

|

|

1
� ∫

�∕2

−�∕2
e−2i��0sf (t + s) ds

|

|

|

|

|

2

≤ 2|f (t)|2 + 21
� ∫

�∕2

−�∕2
|f (t + s)|2 ds

= 2|f (t)|2 + 1
� ∫

t+�

t−�
|f (s)|2 ds.

It follows that
1
T ∫

T ∕2

−T ∕2
|g�(t)|2 dt ≤ 2

T ∫

T ∕2

−T ∕2
|f (t)|2 dt + 2

�
1
T ∫

T ∕2

−T ∕2 ∫

t+�

t−�
|f (s)|2, ds dt

= 2
T ∫

T ∕2

−T ∕2
|f (t)|2 dt + 2

T ∫

T ∕2+�

−T ∕2−�
|f (s)|2 1

� ∫

min(T ∕2,s+�∕2)

max(−T ∕2,s−�∕2)
dt ds

≤ 2
T ∫

T ∕2

−T ∕2
|f (t)|2 dt + 2

T ∫

T ∕2+�∕2

−T ∕2−�∕2
|f (s)|2 ds

≤ 4 1
T ∫

T+�
2

− T+�
2

|f (s)|2 ds ≤ 8 1
T + � ∫

T+�
2

− T+�
2

|f (s)|2 ds

since we assumed that T + � ≤ 2T .
With (2.9), we have thus shown that

(2.10)
∑

�∈Λ
|a�|

2 ≤ 800
C�4

1
T + � ∫

T+�
2

− T+�
2

|f (s)|2 ds.

It remains to add |a�|2 on the left hand side. As a� = f −
∑

�∈Λ
a�e

2i��t,

|a�|
2 = 1

T ∫

T
2

− T
2

|a�|
2 dt ≤ 2 1

T ∫

T
2

− T
2

|f (t)|2 dt + 2 1
T ∫

T
2

− T
2

|

|

|

|

|

∑

�∈Λ
a�e

2i��t
|

|

|

|

|

2

dt

≤ 4 1
T + � ∫

T+�
2

− T+�
2

|f (t)|2 dt + 2B
∑

�∈Λ
|a�|

2
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where we used again that T + � ≤ 2T and the hypothesis of the lemma. But then, from (2.10), we get

|a�|
2 ≤

(

4 + 1600B
C�4

)

1
T + � ∫

T+�
2

− T+�
2

|f (s)|2 ds.

Adding this to (2.10), we finally get that

∑

�∈Λ∪{�}
|a�|

2 ≤

(

4 +
800

(

2B + 1
)

C�4

)

1
T + � ∫

T+�
2

− T+�
2

|f (s)|2 ds

≤ 1
�
B
C�4

1
T + � ∫

T+�
2

− T+�
2

|f (s)|2 ds

with �−1 = 800×3+4 since C(
0T ) ≤ B(
0T ), � ≤ 1 and B(
0T ) ≥ 1. We thus obtain the inequality with

D = �C
B
�4

as claimed. �

We can now use this lemma to improve Ingham’s Inequality.

Corollary 2.6. Let Λ be a sequence such that 
(Λ) = min�≠�′∈Λ |�−�′| ≥ 1 and let F = (�1,… , �n) ⊂ Λ.

LetS > 1

(Λ ⧵ F )

. Then there exists two constants 0 < D < 1 < B such that, for every finitely supported

sequence (a�)�∈Λ,

(2.11) D
∑

�∈Λ
|a�|

2 ≤ 1
S ∫

S∕2

−S∕2

|

|

|

|

|

∑

�∈Λ
a�e

2i��t
|

|

|

|

|

2

dt ≤ B
∑

�∈Λ
|a�|

2.

Proof. Set Λ0 = Λ and, for j = 1,… , n, Λj = Λ ⧵ {�1,… , �n} and 
j = min�≠�′∈Λj |� − �
′
| ≥ 1.

From Ingham’s Theorem, we know that
– for every 2 > T > 1


n

1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

|

∑

�∈Λn

a�e
2i��t

|

|

|

|

|

|

2

dt ≥ Cn
∑

�∈Λn

|a�|
2

with Cn =
�2

26
(T 
n − 1);

– for every 2 > T > 0, and j = 0,… , n,

1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

|

∑

�∈Λj

a�ae
2i��t

|

|

|

|

|

|

2

dt ≤ Bj
∑

�∈Λj

|a�|
2

with Bj =
6(T 
j + 1)

T 
j
= 6

(

1 + 1

jT

)

.

In particular, the upper bound in (2.11) is already established.

Now let 1

(Λ ⧵ F )

< T < S and � = S − T
n

. One might take T = 1
2

(

S + 1

(Λ ⧵ F )

)

so that

� = 1
2n

(

S − 1

(Λ ⧵ F )

)

From Hauraux’s lemma, we get

1
T + � ∫

T+�
2

− T+�
2

|

|

|

|

|

|

∑

�∈Λn−1

a�e
2i��t

|

|

|

|

|

|

2

dt ≥ Cn−1
∑

�∈Λn−1

|a�|
2
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with Cn−1 = ��4
Cn
Bn

. We can therefore apply Haraux’s lemma again, till we reach Λ0. At each step, the

constant Cn−j is replace by Cn−j−1 = ��4
Cn−j
Bn−j

while the integral ranges over
[

−T+(j+1)�
2 , T+(j+1)�2

]

.

This finally leads to

1
T + n� ∫

T+n�
2

− T+n�
2

|

|

|

|

|

|

∑

�∈Λn−1

a�e
2i��t

|

|

|

|

|

|

2

dt ≥ C0
∑

�∈Λ
|a�|

2

with
C0 = �n�4n

Cn
B1B2⋯Bn

.

As T + n� = S, this establishes (2.11). �

Note that, taking � = 8−4 we obtain

D = �2

26

(

3�4

213

)n 
nT − 1
∏n

j=0

(

1 + 1

jT

) .

3. L1 ESTIMATES WITH INTEGER FREQUENCIES

3.1. The L1 norm of the Dirichlet kernel. Recall that the Dirichlet kernel is given by

DN (t) =
N
∑

k=−N
e2i�kt =

sin(2N + 1)�t
sin�t

.

The following is a classical estimate of the L1-norm of this kernel, which is called the Lebesgue constant.

Lemma 3.1. WhenN → +∞,

‖

‖

DN
‖

‖1 ∶= ∫

1∕2

−1∕2
|DN (t)| dt =

4
�2
lnN + O(1).

Proof. The proof is based on the following inequality which is easy to establish and whose proof is left to

the reader: for −�
2
≤ s ≤ �

2
, |s|

(

1 − s2

3!

)

≤ | sin s| ≤ |s|. In particular, for |t| ≤ 1
2
,

1
�|t|

≤ 1
| sin�t|

≤ 1
�|t|

1
1 − �2t2∕6

≤ 1
|�t|

+
�|t|
3

since 1
1−u ≤ 1 + 2u for |u| ≤ 1

2
. It follows that

∫

1∕2

−1∕2

| sin(2N + 1)�t|
|�t|

dt ≤ ∫

1∕2

−1∕2

| sin(2N + 1)�t|
sin�t

dt

≤ ∫

1∕2

−1∕2

| sin(2N + 1)�t|
|�t|

dt + ∫

1∕2

−1∕2
| sin(2N + 1)�t|

�|t|
3
dt.

As

∫

1∕2

−1∕2
| sin(2N + 1)�t|

�|t|
3
dt ≤ ∫

1∕2

−1∕2

�|t|
3
dt = �

12
we get

‖

‖

DN
‖

‖1 = ∫

1∕2

−1∕2

| sin(2N + 1)�t|
|�t|

dt + O(1).

Using parity and the change of variable s = (2N + 1)�t we obtain

∫

1∕2

−1∕2

| sin(2N + 1)�t|
|�t|

dt = 2∫

1∕2

0

| sin(2N + 1)�t|
|�t|

dt = 2
� ∫

N�+�∕2

0

| sin s|
s

ds.
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Note that

∫

N�+�∕2

N�

| sin s|
s

ds ≤ ∫

N�+�∕2

N�

ds
s
= ln

N� + �∕2
N�

= O(1∕N)

while

∫

�

0

| sin s|
s

ds ≤ ∫

�

0
1 ds = �.

It remains to estimate

2
� ∫

N�

�

| sin s|
s

ds = 2
�

N−1
∑

j=1
∫

(j+1)�

j�

| sin s|
s

ds

= 2
�

N−1
∑

j=1
∫

�

0

| sin s|
s + j�

ds = 2
�

N−1
∑

j=1
∫

�

0

sin s
s + j�

ds

as sin s ≥ 0 on [0, �]. But then
2

(j + 1)�
= ∫

�

0

sin s
� + j�

ds ≤ ∫

�

0

sin s
s + j�

ds ≤ ∫

�

0

sin s
j�

ds = 2
j�
.

Writing
N−1
∑

j=1

1
j + 1

=
N
∑

j=1

1
j
− 1 =

N−1
∑

j=1

1
j
− 1 + 1

N
,

it follows that
2
� ∫

N�

�

| sin s|
s

ds = 4
�2

N
∑

j=1

1
j
+ O(1).

Recalling that
N
∑

j=1

1
j
= lnN + O(1) the result follows. �

3.2. Lacunary trigonometric polynomials. In this section, we consider a sequence of integers (nk) such
that

nk+1
nk

≥ q > 1. Such sequences are called q-lacunary in the sense of Hadamard (or simply lacunary).

First note that a q-lacunary sequence is a finite union of q′-lacunary sequences with q′ ≥ 3. Indeed,
if q ≥ 3 there is nothing to prove and for 1 < q < 3, take N an integer such that qN ≥ 3 and write
n(l)k = nl+kN then

(

n(l)k
)

k is q
N -Lacunary and {nk} =

⋃N−1
l=0 {n

(l)
k }. Next, for q ≥ 3, q-lacunary sequences

have a particular arithmetic property:

Lemma 3.2. Let q ≥ 3 and (nk)k≥0 a sequence such that n0 ≥ 1 and nk+1 ≥ qnk. Consider two finite
sequences "l , �l ∈ {−1, 0, 1} for l = 0,… , m and assume that

(3.1)
m
∑

l=0
"lnl =

m
∑

l=0
�lnl

then "l = �l for every l.

In other words, an integer can be represented in at most one way as
∑

±nl . Such a sequence is called
quasi-independent.

Proof. First observe that nj ≤
1

qm−j
nm =

qj

qm
nm for j = 0,… , m.

Assume that (3.1) holds and define �l = "l − �l so that
m
∑

l=0
�lnl = 0.

Assume towards a contradiction that there is an l such that �l ≠ 0. Without loss of generality, we may
assume that the largest such l is m and, up to exchanging "l and �l , that �m ≥ 1.
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Observe that �l ∈ {−2,−1, 0, 1, 2} so that we obtain the desired contradiction writing

0 =
m
∑

l=0
�lnl = �mnm +

m−1
∑

l=0
�lnl ≥ nm − 2

m−1
∑

l=0
nl ≥ nm − 2

m−1
∑

l=0

ql

qm
nm

=
(

1 − 2
qm
qm − 1
q − 1

)

nm =
qm+1 − 3qm + 2
(q − 1)qm

nm > 0

since q ≥ 3 and nm > 0. �

Note that this result is valid when the nk’s are real, not only for integers.
The aim of this section is to prove that trigonometric polynomials with lacunary frequencies have large

L1-norms of which the following estimate is a particular case: there exists a constant C > 0 such that, for
everyN ,

∫

1∕2

−1∕2

|

|

|

|

|

|

N
∑

k=1
e2i�nkt

|

|

|

|

|

|

dt ≥ C
√

N.

This follows from a more general theorem which estimates Lp-norms of lacunary Fourier series. The aim
of this section is to present this result. To do so, we follow closely [25, Chapter V.8] which goes through
Rademacher series. First let us introduce those series.

To start, let us recall that k = {[j2−k−1, (j + 1)2−k−1[, j = 0,… , 2k+1 − 1} the dyadic intervals of
generation k and  =

⋃

k≥0
k the set of all dyadic intervals. Also, if I, J ∈  then either I ∩ J = ∅ or

I ⊂ J or J ⊂ I . The Rademacher functions of generation k are then functions that take alternative values
+1 and −1 on successive intervals in k, that is

rk(t) =
2k+1−1
∑

j=0
(−1)j1]j2−k−1,(j+1)2−k−1[ = sign

(

sin(2�2j t)
)

.

The first observation is that, if I ∈ l and k > l then rk takes the value+1 on half of I and−1 on the other
half so that ∫I rk = 0. A first consequence is that rk is orthogonal to rl in L2([0, 1]) since rl is constant on
each I ∈ l so that ∫I rkrl = 0 and l is a covering of [0, 1]. Moreover, as |rk| = 1, the family (rk)k≥0
is an orthonormal sequence in L2([0, 1]).

In particular, we now fix a sequence (cj)j≥0 such that
+∞
∑

k=0
|ck|

2 converges, we can define

f =
+∞
∑

k=0
ckrk

and this series converges in L2([0, 1]) thus f ∈ L2([0, 1]). We actually have a bit better:

Theorem 3.3. If
+∞
∑

k=0
|ck|

2 < +∞ then there exists f ∈ L2([0, 1]) defined by

f =
+∞
∑

k=0
ckrk

and this series converges both in L2([0, 1]) and almost everywhere.

Proof. The L2 convergence has already been established. Further, let F = ∫ f be the indefinite integral of
f and let E ⊂ [0, 1] be the set of Lebesgue points of f so that |E| = 1 and on E, F ′ exists and is finite.

Now let, Sn[f ] be the n-th partial sum of this series

n[f ](x) =
n
∑

k=0
ckrk(x).
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As n[f ]→ f in L2([0, 1]), for every 0 ≤ a < b ≤ 1,

|

|

|

|

|

∫

b

a

(

f (x) − n[f ](x)
)

dx
|

|

|

|

|

≤ ∫

1

0
|f (x) − n[f ](x)| dx ≤

(

∫

1

0
|f (x) − [f ](x)|2 dx

)1∕2

→ 0.

We have just shown that, if I is an interval, then ∫I n[f ] → ∫I f thus also, if we fix j ≥ 1, ∫I (n[f ] −
j−1[f ]) → ∫I (f − l−1[f ]). On the other hand, if I ∈ l−1 and k ≥ l, then ∫I rk = 0 so that
∫I n[f ] = ∫I l−1[f ]. Letting n→ +∞ we obtain that

∫I
f (x) dx = ∫I

l−1[f ](x) dx for everyI ∈ l−1.

Next, let x0 ∈ E not a dyadic rational (x0 ≠
p
2q

, p, q ∈ N) and let Ik =]j2−k, (j + 1)2−k[ be such that
x0 ∈ E ∩ Ik. Then, as k−1[f ] is constant over Ik

k−1[f ](x0) =
1

|Ik| ∫Ik
k[f ](x) dx =

1
|Ik| ∫Ik

f (x) dx→ F ′(x0)

when k→ +∞. �

The second result is that f is actually in every Lp space:

Theorem 3.4. Let (ck) ∈ l2 and f =
+∞
∑

k=0
ckrk. Then, for 1 ≤ p < +∞, f ∈ Lp([0, 1]). Moreover, there

exists Ap, Bp, depending on p only, such that

Ap

(+∞
∑

k=0
|ck|

2

)
1
2

≤

(

∫

1

0
|f (x)|p dx

)
1
p

≤ Bp

(+∞
∑

k=0
|ck|

2

)
1
2

.

Proof. Let us first notice that the theorem holds for p = 2 since


 ∶=

(

∫

1

0
|f (x)|2 dx

)
1
2

=

(+∞
∑

k=0
|ck|

2

)
1
2

i.e. the inequalities are equalities with A2 = B2 = 1.
Next, let us notice that this implies the lower bound when p > 2 with Ap = 1 since then, with Hölder

(

∫

1

0
|f (x)|p dx

)
1
p

≥

(

∫

1

0
|f (x)|2 dx

)
1
2

= 


and also implies the upper bound with Bp = 1 for p < 2 since now Hölder implies that
(

∫

1

0
|f (x)|p dx

)
1
p

≤

(

∫

1

0
|f (x)|2 dx

)
1
2

= 


Further, as Hölder also implies that if 2(m − 1) < p ≤ 2m for some integer m ≥ 2, then
(

∫

1

0
|f (x)|p dx

)
1
p

≤

(

∫

1

0
|f (x)|2m dx

)
1
2m

so that the upper bound

(3.2)

(

∫

1

0
|f (x)|2k dx

)
1
2m

≤ B2m


would also implies the upper bound for 2(m − 1) < p ≤ 2m with Bp ≤ B2k.
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Next, let us show that the upper bound for p = 4 implies the lower bound for p < 2. Assume for the
moment that we are able to prove that

(

∫

1

0
|f (x)|4 dx

)
1
4

≤ B4
.

Let 1 ≤ q < 2 and write 2 = qt + 4(1 − t), that is, take t = 2
4 − q

. Then, from Hölder


2 = ∫

1

0
|f (x)|2 dx = ∫

1

0
|f (x)|qt|f (x)|4(1−t) dx ≤

(

∫

1

0
|f (x)|q dx

)t(

∫

1

0
|f (x)|4 dx

)1−t

≤ (B4
)4(1−t)
(

∫

1

0
|f (x)|q dx

)t

= (B4
)2−qt
(

∫

1

0
|f (x)|q dx

)t

thus
(

∫

1

0
|f (x)|q dx

)
1
q

≥ B
1− 4−qq
4 
.

So it remains to prove (3.2). Notice also that it is enough to prove this inequality with real ck’s. The
constant in the complex case is then multiplied by 2: write f = fr + ifi where fr =

∑

ℜ(ck)rk and
fi =

∑

ℑ(ck)rk. Then

‖f‖2m ≤ ‖fr‖2m + ‖fi‖2m ≤ BR2m
⎡

⎢

⎢

⎣

(+∞
∑

k=0
|ℜ(ck)|2

)
1
2

+

(+∞
∑

k=0
|ℑ(ck)|2

)
1
2 ⎤
⎥

⎥

⎦

≤ 2BR2m


since |ℜ(ck)|, |ℑ(ck)| ≤ |ck|.
To conclude, we write

∫

1

0
Sn[f ](x)2m dx =

∑

l0+⋯+ln=2m
Al0,…,lnc

l0
0 ⋯ clnn ∫

1

0
rl00 (x)⋯ rlnn (x) dx

where lj ≥ 0 for every j and

Al0,…,ln =
(l0 +⋯ + ln)!

l0!⋯lj!
.

Now observe that

∫

1

0
rl00 (x)⋯ rlnn (x) dx

{

1 all the lj’s are even
0 otherwise

and that
( n
∑

k=0
c2k

)m

=
∑

l0+⋯+ln=m
Al0,…,ln (c

2
0 )

l0 ⋯ (c2n )
ln .

Further, when l0 +⋯ + ln = m,
A2l0,…,2ln
Al0,…,ln

=
(m + 1)(m + 2)⋯ 2m

∏n
j=0(lj + 1)(lj + 2)⋯ 2lj

≤ (m + 1)(m + 2)⋯ 2m
2m

≤ mm

(with the convention that on the denominator is (lj + 1)(lj + 2)⋯ 2lj = 1 when lj = 0). It follows that

∫

1

0
Sn[f ](x)2m dx ≤ mm

( n
∑

k=0
|ck|

2

)m

.

As Sn[f ]→ f a.e., we conclude that
(

∫

1

0
|f (x)|2m dx

)
1
2m

≤ m1∕2
(+∞
∑

k=0
|ck|

2

)
1
2
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that is B2m = 2m1∕2. �

The estimate B2m = 2m1∕2 allows to improve a bit the result:

Corollary 3.5. Let (ck) ∈ l2 and f =
+∞
∑

k=0
ckrj . Then, for every � > 0, exp(�|f |2) ∈ L1([0, 1]).

Proof. Let us fix � > 0. We first show that if 
 ∶= ‖cj‖2 is small enough, then exp(�|f |2) ∈ L1([0, 1]).
Indeed

(3.3) ∫

1

0
exp(�|f (x)|2) dx =

+∞
∑

m=0

�m

m! ∫

1

0
|f (x)|2m dx ≤

+∞
∑

m=0

mm

m!
(4�
2)m.

But m
m

m!
≤
+∞
∑

n=0

mn

n!
= em so that

∫

1

0
exp(�|f (x)|2) dx ≤

+∞
∑

m=0
(4e�
2)m = 1

1 − 4e�
2
< +∞

provided 
2 < 1
4e�

.

Next, take any f ∈ L1(0, 1), and apply the first part to f−n[f ] =
+∞
∑

j=n+1
cjrj . As 
2n ∶=

+∞
∑

j=n+1
|cj|

2 → 0,

for n large enough 
2n <
1
8e�

thus exp(2�|f − n[f ]|2) ∈ L1([0, 1]).

Finally, as |f |2 ≤ 2|f − n[f ]| + 2|n[f ]|2, we have

exp(�|f |2) ≤ exp(2�|f − n[f ]|2) exp(2�|n[f ]|2) ∈ L1

since |n[f ]| ∈ L∞ thus also exp(2�|n[f ]|2) ∈ L∞. �

Next, we consider series of the form
+∞
∑

j=0
cje

2i�jtrj(x).

The idea is that such series are of the form
∑

±cje2i�jt, that is, choosing x ∈ (0, 1) at random, we randomly
change the sign of cj . Our first result is the following:

Theorem 3.6. Let (ck) ∈ l2 and fx(t) =
+∞
∑

k=0
ckrk(x)e2i�kt. Then, for almost every x ∈ (0, 1), the series

converges almost everywhere in t ∈ (0, 1) and fx ∈ Lp([0, 1]) for every 1 ≤ p < +∞.

Proof. Let E be the set of (x, t) ∈ [0, 1]2 where the series defining f converges.
According to Theorem 3.3, for every t ∈ [0, 1], the set E2t = {(x, t) ∈ E} has measure |Ex| = 1. It

follows that |E| = 1 but then, for almost every x ∈ [0, 1], E1x = {(x, t) ∈ E} has also measure |E1x| = 1.
Next, set 
 = ‖ck‖2 and fix n ≥ 1. As in (3.3),

(3.4) �n

n! ∫

1

0
|fx(t)|2n dx =

+∞
∑

m=0

�m

m! ∫

1

0
|fx(t)|2m dx = ∫

1

0
exp(�|fx(t)|2) dx ≤ 1

1 − 4e�
2

provided � < 1
4e
2

. It follows that

∫

1

0 ∫

1

0
|fx(t)|2n dt dx = ∫

1

0 ∫

1

0
|fx(t)|2n dx dt ≤

n!
(1 − 4e�
2)�n

< +∞.

But then, for every n, there is a set Fn ⊂ [0, 1] with |Fn| = 0 such that, if x ∈ [0, 1] ⧵ Fn, ∫

1

0
|fx(t)|2n dt <

+∞. Setting F =
⋃

Fn, |F | = 0 and, for every x ∈ [0, 1] ⧵ F , for every n, fx ∈ L2n. Using the inclusion
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ofL2n([0, 1]) ⊂ Lp([0, 1])when p ≤ 2n, we obtain that, for almost every x, fx ∈ Lp([0, 1]) for every p ≥ 1,
as claimed. �

We can now prove the main result of this section:

Theorem 3.7. Let q > 1 and (nj)j≥0 be a q-lacunary sequence of integers, n0 ≥ 1 and nj+1 ≥ qnj . Let
1 ≤ p < +∞. There are two constants Ap,q , Bp,q such that, if (cj)j≥0 ∈ l2, then g(t) =

∑

j≥0
cje

2i�nj t is in

Lp([0, 1]) with

(3.5) Ap,q

(+∞
∑

j=0
|cj|

2

)
1
2

≤

(

∫

1

0

|

|

|

|

|

|

∑

j≥0
cje

2i�nj t
|

|

|

|

|

|

p

dt

)

1
p

≤ Bp,q

(+∞
∑

j=0
|cj|

2

)
1
2

.

Remark 3.8. Note that a simple change of variable also shows that, for every integerM ,

(3.6) Ap,q

(+∞
∑

j=0
|cj|

2

)
1
2

≤

(

1
M ∫

M∕2

−M∕2

|

|

|

|

|

|

∑

j≥0
cje

2i�
nj
M t

|

|

|

|

|

|

p

dt

)

1
p

≤ Bp,q

(+∞
∑

j=0
|cj|

2

)
1
2

.

Also, we may assume that q → Ap,q , Bp,q are continuous.

Proof. The beginning of the proof is the same as for Theorem 3.4. Parseval’s identify shows that (3.5) is
satisfied when p = 2 with A2,q = B2,q = 1. The lower bound is then automatically satisfied for p ≥ 2
with Ap,q = 1 while the upper bound is satisfied for p ≤ 2 with B2,q = 1. Finally, if we establish the upper
bound for p > 2, using Hölder’s inequality in the same way as in the proof of Theorem 3.4, the lower bound

follows for p < 2 with A2,q = B
1− 4−pp
4,q . Also, it is enough to prove the upper bound when p = 2m, m ≥ 2

and then, if 2(m − 1) < p ≤ 2m, Bp,q ≤ B2k,q . Another reduction is that, by homogeneity, it is enough to

prove the theorem when
+∞
∑

j=0
|cj|

2 = 1.

A further restriction is that it is enough to prove the theorem for q ≥ 3. Indeed, for 1 < q < 3,
we introduce an integer Nq such that qNq ≥ 3 and write n(l)k = nkNq+l for l = 0,… , Nq − 1. Then
n(l)k+1 ≥ qNqn(l)k . If the theorem is established when q ≥ 3 then, for each l, the upper bound in (3.5) reads

(

∫

1

0

|

|

|

|

|

|

∑

k≥0
ckNq+le

2i�n(l)k t
|

|

|

|

|

|

p

dt

)

1
p

≤ Bp,qNq

(+∞
∑

k=0
|ckNq+l|

2

)
1
2

.

But then, with the triangular inequality in Lp,
(

∫

1

0

|

|

|

|

|

|

∑

j≥0
cje

2i�nj t
|

|

|

|

|

|

p

dt

)

1
p

=
⎛

⎜

⎜

⎝

∫

1

0

|

|

|

|

|

|

Nq−1
∑

l=0

∑

k≥0
ckNq+le

2i�n(l)k t
|

|

|

|

|

|

p

dt
⎞

⎟

⎟

⎠

1
p

≤
Nq−1
∑

l=0

(

∫

1

0

|

|

|

|

|

|

∑

k≥0
ckNq+le

2i�n(l)k t
|

|

|

|

|

|

p

dt

)

1
p

≤ Bp,qNq
Nq−1
∑

l=0

(+∞
∑

k=0
|ckNq+l|

2

)
1
2

≤ N1∕2
q Bp,qNq

⎛

⎜

⎜

⎝

Nq−1
∑

l=0

+∞
∑

k=0
|ckNq+l|

2
⎞

⎟

⎟

⎠

1
2

= N1∕2
q Bp,qNq

(

∑

j≥0
|cj|

2

)
1
2

,
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where we have used Cauchy-Schwarz in RNq in the next to last line.
A last reduction comes from the observation that, for every k

∫

1

0
exp(�|g(t)|2) dt =

+∞
∑

n=0

�n

n! ∫

1

0
|g(t)|2n dt ≥ �m

m! ∫

1

0
|g(t)|2m dt.

It is therefore enough to prove that there is a �(q) and a C > 0 such that, if � < �(q)

(3.7) ∫

1

0
exp(�|g(t)|2) dt ≤ C

which would then imply that

∫

1

0
|g(t)|2k dt ≤ C m!

�m

as desired.
In order to prove (3.7), let us introduce

fx(t) =
∑

j≥0
cjrnj (x)e

2i�nj t.

Integrating (3.4) with respect to t and using Fubini, we deduce that

∫

1

0 ∫

1

0
exp(�|fx(t)|2) dt dx ≤ K ∶= 1

1 − 4e�
2
.

But then, there is an x0 (that we can assume not to be a dyadic rational x0 ≠ 2j∕k) such that

∫

1

0
exp(�|fx0 (t)|

2) dt ≤ K.

Next, we consider the Riesz product

Pk(x) =
k
∏

j=0

(

1 + rnj (x0) cos 2�nj t
)

=
m
∏

k=0

(

1 + rnk (x0)
e2�nkt + e−2�nkt

2

)

=
∑

j∈Z

je

2i�jt

where the Fourier coefficients have the following property:
– 
0 = 1

– 
j = 0 if j is an integer that is not of the form
∑

±nl , in particular when |j| >
n
∑

k=0
nk

– if j =
∑

"lnl with "l ∈ {−1, 0, 1}. As q > 3, this "l’s are unique. Then 
j =
∏

"j≠0

rnj (x0)

2
. In

particular, 
nj =
rnj (x0)

2
for j = 0,… , k and 
nj = 0 for j > k.

As a consequence, the partial sums of the Fourier series of g are given by

Snk [g](t) ∶=
k
∑

j=0
cje

2i�nj t =
k
∑

j=0
cjrj(x0)2e

2i�nj t = 2∫

1

0
fx0 (s)Pk(t − s) ds.

Note that Pk ≥ 0 and ∫

1

0
Pk(t) dt = 
0 = 1 so that �k = Pk(t) dt is a probability measure. As '(s) =

exp(�s2) is increasing and convex, we apply Jensen’s inequality (with the measure �k) to obtain

'
(1
2
Snk [g](t)

)

≤ '

(

∫

1

0
|fx0 (s)|Pk(t − s) ds

)

≤ ∫

1

0
'
(

|fx0 (s)|
)

|Pk(t − s) ds.

Integrating over [0, 1] and using Fubini, we get

∫

1

0
'
(1
2
Snk [g](t)

)

dt ≤ ∫

1

0
'
(

|fx0 (s)|
)

∫

1

0
Pk(t − s) dt ds = ∫

1

0
'
(

|fx0 (s)|
)

ds ≤ K.
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Letting k→ +∞, we obtain

∫

1

0
exp

(�
2
|g(t)|2

)

dt ≤ K

as claimed (up to �∕2 replacing �. �

3.3. The proof of Littlewood’s conjecture by Mc Gehee, Pigno and Smith. We will now give the proof
of the Littlewood conjecture, following closely [4].

Theorem 3.9 (Mc Gehee, Pigno, Smith). There exists a constant CMPS ⩽ 4
�2

such that, if (nk)k∈N is an
increasing sequence of integers and (ak) is a complex sequence with finite support, then

CMPS

+∞
∑

k=0

|ak|
k + 1

⩽ ∫

1

0

|

|

|

|

|

|

+∞
∑

k=0
ake

2i�nkt
|

|

|

|

|

|

dt.

The proof given below will give CMPS =
1
96

which is not the best possible. We avoid minor techni-

calities which would lead to CMPS = 1
30

(see e.g. [7, 24]). The proof in [13] requires the introduction
of various parameters and a cumbersome optimization of those parameters in the final step and leads to
CMPS =

1
26

.
Note also that the sum starts at 0, we have so far been unable to obtain a lower bound when the sum runs

over Z.

3.3.1. Strategy of the proof.

Notation 3.10. For a function F ∈ L2([0, 1]) and s ∈ Z, we write

F̂ (s) = cs(F ) = ∫

1

0
F (t)e−2i�st dt

for the Fourier coefficients of F . Its Fourier series is then

F (t) =
∑

s∈Z
cs(F )e2i�st

and Parseval’s relation reads

∫

1

0
|F (t)|2 dt =

∑

s∈Z
|cs(F )|2

and can also be written in the form

∫

1

0
F (t)G(t) dt =

∑

s∈Z
cs(F )c−s(G).

We fix a trigonometric polynomial

(3.8) �(t) =
N
∑

k=0
ake

2i�nkt and S =
N
∑

k=0

|ak|
k + 1

.

We then write |ak| = akuk with uk complex numbers of modulus 1 and we introduce

(3.9) T0(t) =
N
∑

k=0

uk
k + 1

e−2i�nkt.

Then by Parseval identity, written in the second form we have

(3.10) S ∶=
N
∑

k=0

|ak|
k + 1

=
N
∑

k=0
�̂(nk)T̂0(−nk) = ∫

1

0
�(t)T0(t) dt.

so that
S ⩽ ‖�‖1‖T0‖L∞([0,1]).
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The issue is that, typically we have no control over the L∞ norm of T0 other than the trivial and explosive
control by

∑ 1
k+1 , so we will correct T0 into another test function T1 as follows;

(1) The L∞ norm of the corrected function T1 is controlled by a constant C , ‖T1‖∞ ≤ C .

(2) T̂1(−nk) only differs a little from T̂0(−nk) for 0 ⩽ k ⩽ N , say |T̂1(−nk) − T̂0(−nk)| ≤
T̂0(−nk)

2
=

1
2(k + 1)

, while we impose no condition on the behavior of T̂1(n) for n ≠ −nk.

We would then conclude as follows:
|

|

|

|

|

S − ∫

1

0
�(t)T1(t) dt

|

|

|

|

|

=
|

|

|

|

|

∫

1

0
�(t)(T0 − T1)(t) dt

|

|

|

|

|

=
|

|

|

|

|

|

N
∑

k=0
�̂(�k)(T̂0(−nk) − T̂1(−nk))

|

|

|

|

|

|

with Parseval. With the triangular inequality and our expected estimate |T̂1(−nk) − T̂0(−nk)| ≤
1

2(k + 1)
,

we then conclude that
|

|

|

|

|

S − ∫

1

0
�(t)T1(t) dt

|

|

|

|

|

≤
N
∑

k=1
|�̂(�k)| |T̂0(−nk) − T̂1(−nk)| ≤

N
∑

k=1

|ak|
2(k + 1)

= S
2
.

But then
1
2
S ≤

|

|

|

|

|

∫

1

0
�(t)T1(t) dt

|

|

|

|

|

≤ ‖T1‖∞ ∫

1

0
|�(t)| dt ≤ C ∫

1

0
|�(t)| dt

which is the expected result with A = 1
2C

.
The proof of the Theorem B thus amounts to proving the following lemma:

Lemma 3.11. There exists a universal constant C and a T1 ∈ L∞ such that
(1) ‖T1‖∞ ⩽ C

(2) |T̂1(−nk) − T̂0(−nk)| ⩽
1
2
|T̂0(−nk)| =

1
2(k + 1)

for 0 ⩽ k ⩽ N

where T0 is the function given by (3.9).

The remaining of this section is devoted to the proof of this lemma.

3.3.2. Proof of Lemma 3.11. First note that, up to eventually adding extra zeros to the sequence (ak) and
adding �N+j = �N + j to the sequence (�k), we may assume thatN = 2m+1 − 2.

We start by decomposing T0 into a sum of dyadic blocs on which the amplitude |T̂0(−�k)| =
1

k + 1
is

more or less constant. More precisely, for j = 0,…m we set Ij = [2j , 2j+1[ and

fj =
∑

k+1∈Ij

uk
k + 1

e−2i�nkt.

The function T0 now appears as the partial sum of order m of the series
∑

fj , in other words

T0 =
m
∑

j=0
fj .

Let us start with a simple lemma:

Lemma 3.12. With the above notations, we have
(1) ‖fj‖L∞([0,1]) ⩽ 1.
(2) ‖fj‖L2([0,1]) ⩽ 2−j∕2.

Proof. By construction, |Ij| = 2j hence

‖fj‖∞ ⩽
∑

k+1∈Ij

1
k + 1

⩽
|Ij|
2j

= 1.
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On the other hand, Parseval implies that

‖fj‖
2
2 =

2j+1−1
∑

k+1=2j

1
(k + 1)2

⩽ 2j

4j
= 2−j

as claimed. �

Now, write the Fourier series of each |fj| ∈ L2([0, 1])

|fj| =
∑

s∈ℤ
cs(|fj|)e2i�st.

To each |fj|, we associate ℎj ∈ L2([−�, �]) defined via its Fourier series as

ℎj(t) = c0(|fj|) + 2
∞
∑

s=1
cs(|fj|)e2i�st.

Lemma 3.13. For 0 ≤ j ≤ n, the following properties hold
(1) Re(ℎj) = |fj| ⩽ 1;
(2) ‖ℎj‖L2([0,1]) ≤

√

2‖fj‖L2([0,1]).

Proof. First, as |fj| is real valued, c0(|fj|) is also real while cs(|fj|) = c−s(|fj|) for every s ≥ 1. Hence

ℎj(t) = c0(|fj|) + 2
∞
∑

s=1
c−s(|fj|)e−ist

and thus

Re(ℎj) =
ℎj + ℎj
2

= c0(|fj|) +
∑

s≠0
cs(|fj|)eist = |fj| ⩽ 1

by lemma 3.12.
By Parseval’s identity and again cs(|fj|) = c−s(|fj|),

‖ℎj‖
2
2 = |

|

|

c0(|fj|)
|

|

|

2
+ 4

∞
∑

s=1

|

|

|

cs(|fj|)
|

|

|

2
= |

|

|

c0(|fj|)
|

|

|

2
+ 2

∞
∑

s=1

|

|

|

cs(|fj|)
|

|

|

2
+ 2

∞
∑

s=1

|

|

|

c−s(|fj|)
|

|

|

2

⩽ 2
∑

s∈Z
|cs(|fj|)|2 = 2‖fj‖22

as claimed. �

We now define a sequence (Fj)j=0,…,n inductively through

F0 = f0 and Fj+1 = Fje
−�ℎj+1 + fj+1

where 0 < � ≤ 1 is a real number to be adjusted later on. Further set

E� ∶= sup
0<x≤1

x
1 − e−�x

= 1
�
sup
0<x≤�

x
1 − e−x

= 1
1 − e−�

≤ 2
�
.

Lemma 3.14. For 0 ≤ j ≤ n, ‖Fj‖∞ ⩽ 2
�
.

Proof. By definition of E� , if C ≤ E� and 0 ≤ x ≤ 1, then Ce−�x + x ≤ E�e−�x + x ≤ E� .
We can now prove by induction over j that |Fj| ≤ E� . First, when j = 0, from Lemma 3.12 we get

‖F0‖∞ = ‖f0‖∞ ≤ 1 ≤ E� .

Assume now that ‖Fj‖∞ ≤ E� , then

|Fj+1(t)| = |Fj(t)e
−�ℎj+1(t) + fj+1(t)| ≤ |Fj(t)|e

−�ℜ
(

ℎj+1(t)
)

+ |fj+1(t)|

= |Fj(t)|e
−�|fj+1(t)| + |fj+1(t)|.
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As |fj+1(t)| ≤ 1 and |Fj(t)| ≤ E� , we get |Fj+1(t)| ≤ E� . It remains to prove that E� ⩽ 2
�
. To do so, it

suffices to see that

e−y ⩽ 1 −
(e − 1

e

)

y for 0 ⩽ y ⩽ 1,

yielding the result immediately. �

Lemma 3.15. For 0 ≤ l ≤ n and j = 0,… , k, let gj,k = e−�Hj,k with

Hj,k =

{

ℎj+1 +…+ ℎk when j < k
0 when j = k

.

Then

Fk =
k
∑

j=0
fjgj,k.

Proof. By induction on k, when k = 0,H0,0 = 0 thus g0,0 = 1 and, indeed, we have
F0 = f0 = f0g0,0.

Assume now that the formula has been established at rank k − 1 and let us show that Fk =
k
∑

j=0
fjgj,k. By

construction, we have

Fk = Fk−1e−�ℎk + fk =

(k−1
∑

j=0
fjgj,k−1

)

e−�ℎk + fk.

with the induction hypothesis. It remains to notice that gk,k = e−�Hk,k = 1 and that, for j = 0,… , k − 1,

Hj,k = Hj,k−1 + ℎk thus gj,k = gj,k−1e−�ℎk so that, indeed, we have Fk =
k
∑

j=0
fjgj,k as claimed. �

Recall that

T0 =
m
∑

j=0
fj

and we set

T �1 = Fm =
m
∑

j=0
fjgj,m

where the dependence on � comes from the definition of the gj,n’s, in particular

‖T �1 ‖∞ ⩽ E� .
The first part of Lemma 3.11 is thus established and it remains to prove the second part. To do so, we

start by some intermediary results;

Lemma 3.16. IfH ∈ H∞(Hardy space) and Re(H) ⩾ 0, then e−H ∈ H∞ and
‖e−H − 1‖2 ⩽ ‖H‖2.

Proof. SinceH∞ is a Banach algebra, the partial sums
n
∑

k=0
(−1)kH

k

k!
of e−H are elements ofH∞. Moreover,

since H is bounded, these sommes converge uniformly toward e−H , with e−H ∈ H∞. Finally, if z ∈ C
and ℜ(z) ⩾ 0,

|e−z − 1| =
|

|

|

|

|

∫

1

0
ze−tzdt

|

|

|

|

|

⩽ ∫

1

0
|z|e−tℜ(z)dt ⩽ |z|.

In our case z = H(t), and we have
|

|

|

e−H(t) − 1||
|

⩽ |H(t)|
and by integration we have the desired inequality. �
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Next let us introduce the following notations:
(1) Let f ∈ L1([0, 1]), the spectrum of f , denoted by spec(f ) is the set of non zero Fourier coefficients,

more precisely
spec(f ) = {n ∈ Z ∶ f̂ (n) ≠ 0}.

It is easy to show that, if f, g ∈ L2([0, 1]), then

spec(fg) ⊂ spec(f ) + spec(g) = {� + � ∶ � ∈ spec(f ), � ∈ spec(g)}.

(2) Let A be a subset of [1, N[, we denote by ΛA the set of nj , j ∈ A i.e

ΛA = {nj , j ∈ A}.

Lemma 3.17. Let k + 1 ∈ Il = [2l , 2l+1[ then f̂jgj,m(−nk) = 0 if j < l.

Proof. We must show that −nk ∉ spec(fjgj,m). By contradiction, we suppose that −nk ∈ sp(fjgj).
But since spec(fj) ⊂ −ΛIj and, from Lemma 3.16, spec(gj,m) ⊂ N, thus

spec(fjgj,m) ⊂ −ΛIj +N.

However, since j < l, Ij is to the left of Il , then −ΛIl is completely to the left of −ΛIj + N (since
k + 1 ∈ Il , then −nk ∈ −ΛIl by definition of ΛIl ).

−ΛIl

−�k
−ΛIj

�

Proof of (2) in Lemma 3.11. Let k ∈ [0, N[ and l ⩽ m such that k + 1 ∈ Il . Hence

T̂1(−nk) =
m
∑

j=0
f̂jgj,m(−nk) =

m
∑

j=l
f̂jgj,m(−nk)

with Lemma 3.17.
On the other hand, T̂0(−nk) =

uk
k + 1

while f̂j(−nk) =
uk
k + 1

if k+ 1 ∈ Ij i.e. if j = l and f̂j(−nk) = 0
otherwise. So we can write

T̂0(−nk) =
m
∑

j=l
f̂j(−nk),

hence
|

|

|

T̂1(−nk) − T̂0(−nk)
|

|

|

=
m
∑

j=l

̂[fj(gj,m − 1)](−nk) =
m
∑

j=l
c−nk [fj(gj,m − 1)].

But

|c−nk [fj(gj,m − 1)]| ≤ ‖fj(gj,m − 1)‖L1([0,1)]
≤ ‖fj‖L2([0,1)]‖gj,m − 1‖L2([0,1)] = ‖fj‖L2([0,1)]‖e

−�Hj,m − 1‖L2([0,1)]
by definition of gj,m. Using Lemma 3.16 and then Lemma 3.15, we obtain

|c−nk [fj(gj,m − 1)]| ⩽ �‖fj‖2‖Hj,m‖2 ⩽ �‖fj‖2
m
∑

r=j+1
‖ℎr‖2

⩽ �‖fj‖2
√

2
m
∑

r=j+1
‖fr‖2

with Lemma 3.13. Then, from Lemma 3.12, we obtain

|c−nk [fj(gj,m − 1)]| ≤ �2−j∕2
√

2
+∞
∑

r=j+1
2−r∕2 = �2−j∕2

√

2 2
−(j+1)∕2

1 − 2−1∕2
.
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We conclude that
|

|

|

T̂1(−�k) − T̂0(−�k)
|

|

|

≤ 3�
m
∑

j=l
2−j ≤ 6�2−l .

On the other hand, as k + 1 ∈ Il = [2l , 2l+1[,

|T̂0(−�k)| =
1

k + 1
> 2−l−1

so that
|

|

|

T̂1(−�k) − T̂0(−�k)
|

|

|

≤ 12�|T̂0(−�k)|.

Choosing � = 1
24

gives the result. �

Note that, when � = 1
24

, E� ≤ 48 so that we can take C = 48 in Lemma 3.11, leading to CMPS =
1
96

in Theorem 3.9.

3.4. Strongly multidimensional sets. Let � > 0 and (m, n) ∈ ℕ2. A subset A of ℤ is (�;m, n)-strongly
2-dimensional if there exists numbers d and D with D > (2 + �)d such that

A =
⋃

k∈I
(Ak + kD)

for some set I containing at least m integers and subsets Ak ⊆ {−d,… , d} verifying |Ak| ⩾ n.

Theorem 3.18 (Hanson [10]). Let � > 0 and m, n be two positive integers satisfying

(3.11) n ⩾ �3221C3MPS ln(n)
3 and m ⩾ �3221C3MPS ln(n)

3 ln(m)3,

where CMPS is the constant in theorem B. Suppose A is (�;m, n) strongly 2-dimensional subset of ℤ. Then

∫

1

0

|

|

|

|

|

∑

a∈A
e2i�at

|

|

|

|

|

dt ⩾
C2MPS

(29�)2
(

2 + ln(1 + 2
� )
) ln(m) ln(n)

Combining this result with Theorem 3.3 in [23], we see that this theorem is also best possible up to the
constant.

Given a set I ⊆ ℤ, a positive integer q, and an arbitrary integer s, we define

I(q; s) = {k ∈ I ∶ k = s (mod q)}.

The proof of Theorem 3.18 is a direct consequence of two lemmas. The first one is the following:

Lemma 3.19. Let I be a set of integers with |I| ⩾ 8. Then there are positive integers q and s such that

|I|
1
3

8
⩽ |I(q; s)| ⩽ q1∕2.

Proof. For each j ⩾ 1, we choose any sj such that |I(4j ; sj)| is maximal. But, on one hand,

I =
4j−1
⋃

s=0
I(4j , s)

and on the other hand, for j fixed, the sets I(4j ; s) are disjoints, so at least one of them has cardinality larger
than 4−j|I|. In particular,

(3.12) |I(4j , sj)| ⩾ 4−j|I|.

For j = 1, we thus have |I(4; s1)| ⩾
|I|
4

⩾ 2. On the other hand, if j = s mod kp then j = s mod p
so that, for any s

I(4m; s) ⊂ I(4l; s) for l < m,



26 PHILIPPE JAMING & CHADI SABA

and, for sufficiently large j we have |I(4j ; sj)| = 1 ⩽ 2j . Therefore, there exists a minimal j0 such that
|I(4j0 ; sj0 )| ⩽ 2

j0 . Let q = 4j0 , and s = sj0 then using (3.12) and the definition of j0

|I|
q

⩽ |I(q; s)| = |I(4j0 ; sj0 )| ⩽ 2
j0 = q

1
2 .

In particular

(3.13) |I|
1
3 ⩽ q

1
2 .

By minimality of j0 − 1

q
1
2

2
= 2j0−1 ⩽

|

|

|

|

I
(

4j0−1; sj0−1
)

|

|

|

|

≤
3
∑

r=0

|

|

|

|

I
(

4j0 ; sj0−1 + r4
j0−1

)

|

|

|

|

≤ 4|I(4j0 ; sj0 )| = 4|I(q; s)|

by definition of sj0 . We thus get

|I(q; s)| ⩾ q
1
2

8
⩾ |I|

1
3

8
,

with (3.13). �

Lemma 3.20. Let � > 0 and let d and D be positive integers with (2 + �)d < D. Suppose I is a finite set
of integers, and let

F (t) =
∑

k∈I
fk(t)e2i�Dkt

where
fk(t) =

∑

|n|⩽d
an,ke

2i�nt

Let q and s with q > 4� and suppose I(q; s) = {k1,… , kJ} then we have

‖F‖L1([0,1] ⩾
1

32�(2 + ln(1 + 2
� ))

J
∑

j=1
‖fkj‖L1([0,1])

(

CMPS
2j

− 2�d
qD

)

We split the remaining of this section into two parts. In the first one, we show that Lemmas 3.19 and
3.20 imply Theorem 3.11. In the second one, we prove the Lemma 3.20.

3.4.1. Proof of Theorem 3.18. Let � > 0 m, n be two integers satisfying the conditions of the theorem and
let A be strongly (�, m, n)-regular. Thus, there are two integers d,D with D > (2 + �)d, such that we can
write

A =
⋃

k∈I
(Ak + kD),

with |I| ⩾ m and Ak ⊂ {−d,… , d} with |Ak| ⩾ n. We can then write

F (t) ∶=
∑

a∈A
e2i�at =

∑

k∈I
fk(t)e2i�Dkt

with

fk(t) =
∑

a∈Ak

e2i�at =
d
∑

n=−d
an,ke

2i�nt

with an,k = 1 if n ∈ Ak and an,k = 0 otherwise.
Assume first that there exists k1 ∈ I such that

(3.14) ‖fk1‖L1([0,1]) ⩾
CMPS

29�
ln(m) ln(n).
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We then choose q ⩾ 16�
7CMPS

in such a way that there is an s such that I(q, s) = {k1}. Hence by Lemma

3.20,

‖F‖L1([0,1]) ≥
‖fk1‖L1([0,1])

32�
(

2 + ln
(

1 + 2
�

))

(

CMPS
2

− 2�d
qD

)

≥
CMPS‖fk1‖L1([0,1])

26�
(

2 + ln
(

1 + 2
�

))

(

1 − 7d
8D

)

.

As D > 2d, using (3.14), we conclude that, in this case

‖F‖L1([0,1]) ≥
(

CMPS

29�

)2 ln n lnm

2 + ln
(

1 + 2
�

)

which establishes the theorem.
We will thus assume that, for each k ∈ I ,

(3.15) ‖fk‖L1([0,1]) ⩽
CMPS

29�
ln(m) ln(n).

Note that, from Theorem B,
‖fk‖L1([0,1]) ⩾ CMPS ln(n)

so that 29� ⩽ ln(m), in particular, m ≥ 8. We then take q and s given by Lemma 3.19 applied to the set I
so that J = |I(q; s)| satisfies

(3.16) m
1
3

8
⩽ J ⩽ q

1
2 .

We write
I(q; s) = {k1 <… < kJ}

From Lemma 3.20, we get that

‖F‖L1([0,1]) ⩾ 1

25�
(

2 + ln
(

1 + 2
�

))

J
∑

j=1
‖fkj‖L1

(

CMPS
2j

− 2�d
qD

)

= 1

25�
(

2 + ln
(

1 + 2
�

))

)
(T1 − T2)

with

T1 =
CMPS
2

J
∑

j=1

‖fkj‖L1

j
and T2 =

2�d
qD

J
∑

j=1
‖fkj‖L1 .

Next, as ‖fkj‖L1 ⩾ CMPS ln(n),

T1 ≥
C2MPS ln(n)

2

J
∑

j=1

1
j
≥
C2MPS ln(n)

2
ln J ≥

C2MPS ln(n) ln(m)
8

with (3.16).
On the other hand, from (3.15), we get

T2 ⩽
2�Jd
qD

CMPS

29�
ln(m) ln(n) ⩽ 2�

q
1
2

CMPS

29�
ln(m) ln(n),

since d ⩽ D
2

and J ⩽ q
1
2 with (3.15). Further, (3.15) also implies that

q
1
2 ⩾ m

1
3

8
≥ 24�CMPS ln(m) ln(n)
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with (3.11), leading to T2 ⩽
1

213�
.

We have established that

‖F‖L1([0,1]) ⩾ 1

25�
(

2 + ln
(

1 + 2
�

))

(

C2MPS ln(m) ln(n)

23
− 1
213�

)

=
C2MPS

(29)2�
(

2 + ln
(

1 + 2
�

))

(

210 ln(m) ln(n) − 1
C2MPS

)

⩾
C2MPS

(29�)2
(

2 + ln(1 + 2
� )
) ln(m) ln(n)

since ln(m) ln(n)C2MPS ⩾ 1
210� − 1

.

3.4.2. Proof of Lemma 3.20. The rest of this chapter consist in proving Lemma 3.20. the proof is divided
into several lemmas.

The first one is a simple lemma about numerical integration of trigonometric polynomials:

Lemma 3.21. LetN be a positive integer. Then for any trigonometric polynomial f of degree d
|

|

|

|

|

|

‖f‖L1([0,1]) −
1
N

N−1
∑

j=0

|

|

|

|

|

f
(

j
N

)

|

|

|

|

|

|

|

|

|

|

|

⩽ 2�d
N

‖f‖L1([0,1]).

Note that, as f is 1-periodic, writingN = R + S, 1
N

N−1
∑

j=0

|

|

|

|

|

f
(

j
N

)

|

|

|

|

|

= 1
R + S

S−1
∑

j=−R

|

|

|

|

|

f
(

j
R + S

)

|

|

|

|

|

.

Proof. We write, using the triangular and reverse triangular inequalities
|

|

|

|

|

|

∫

1

0
|f (t)| dt − 1

N

N−1
∑

j=0

|

|

|

|

|

f
(

j
N

)

|

|

|

|

|

|

|

|

|

|

|

=
|

|

|

|

|

|

N−1
∑

j=0
∫

j+1
N

j
N

|f (t)| −
|

|

|

|

|

f
(

j
N

)

|

|

|

|

|

dt
|

|

|

|

|

|

≤
N−1
∑

j=0
∫

j+1
N

j
N

|

|

|

|

|

f (t) − f
(

j
N

)

|

|

|

|

|

dt =
N−1
∑

j=0
∫

j+1
R

j
N

|

|

|

|

|

|

∫

t

j
N

f ′(s) ds
|

|

|

|

|

|

dt

≤
N−1
∑

j=0
∫

j+1
N

j
N

∫

t

j
N

|f ′(s)| ds dt =
N−1
∑

j=0
∫

j+1
N

j
N

|f ′(s)|∫

j+1
N

s
dt ds

≤ 1
N

N−1
∑

j=0
∫

j+1
N

j
N

|f ′(s)| ds = ∫

1

0
|f ′(s)| ds

where we have used Fubini and the bound ∫

j+1
N

s
dt ≤ 1

N
when j

N
≤ s ≤ j + 1

N
. We conclude with

Bernstein’s inequality, ‖f ′‖L1([0,1]) ⩽ 2�d‖f‖L1([0,1]). �

For a finitely supported sequence
(

A(k)
)

k∈Z we define its discrete Fourier transform (orZ-Fourier trans-
form) as

d[A](t) =
∑

k∈Z
A(k)e−2i�kt.

If A,B are two finitely supported sequences, their convolution is the sequence A ∗ B defined by

A ∗ B(k))B ∗ A(k) =
∑

n∈Z
A(k − n)B(n).

The Convolution Theorem is also valid here: d[A ∗ B](t) = d[A](t)d[B](t). Two classical examples
are
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– the Dirichlet kernel: set dL = 1−L,…,L so that

DL(t) = d[dL](t) =
∑

|k|⩽L
e2i�kt =

sin(�(2L + 1)t)
sin(�t)

;

– the Fejer kernel: set fL(k) =
(

1 − |k|
L+1

)

1−L,…,L(k) so that

FL(t) = d
[

fL
]

(t) =
∑

|k|⩽L

(

1 −
|k|
L + 1

)

e2i�kt = 1
L + 1

(sin(�(L + 1)t))2

(sin(�t))2
.

Lemma 3.22. LetM,N,R, S be integers with 2 ⩽ M < N . Then there exists a function KM,N with the
following properties:

(1) KM,N (k) = 1 for |k| ⩽ N,
(2) KM,N (k) = 0 for |k| ⩾ N + 2M

(3) when R + S ⩾ 2N + 4M , 1
R + S

S−1
∑

j=−R

|

|

|

|

|

d[KM,N ]
(

j
R + S

)

|

|

|

|

|

⩽ 16�(2 + ln(1 +N∕M))

Proof. Define

KM,N (k) = 1
M

dN+M ∗ fM−1(k) =
1
M

∑

n∈Z
1{−M−N,…,M+N}(k − n)1{−M+1,…,M+1}(k)

= 1
M

∑

|n|⩽M−1
|n−k|⩽N+M

(

1 −
|n|
M

)

.

First, for |k| ⩽ N , if |n| ⩽M − 1, then |n − k| ⩽ |n| + |k| ≤ N +M − 1, so that

KM,N (k) =
1
M

∑

|n|⩽M−1

(

1 −
|n|
M

)

= 1,

since
∑

|n|⩽M−1

(

1 −
|n|
M

)

=
0
∑

n=1−M

(

1 + n
M

)

+
M−1
∑

n=1

(

1 − n
M

)

= M + 1
2

+ M − 1
2

=M.

On the other hand, if |k| ⩾ N + 2M and |n| ≤M − 1 then |k− n| ≥ |k|− |n| ≥ N +M + 1 so that the
sum defining KM,N is empty and KM,N = 0.

To prove the last item, the Convolution Theorem shows that

d[KM,N ](t) =
1
M
DN+M (t)FM−1(t).

As DN+M and FM−1 are both even, so is KM,N thus

∫

1

0
|d[KM,N ](t)| dt = 2∫

1
2

0
|d[KM,N ](t)| dt = 2(I1 + I2 + I3)

where

I1 =
1
M ∫

1
N+M

0
|DN+M (t)FM−1(t)| dt

I2 =
1
M ∫

1
M

1
N+M

|DN+M (t)FM−1(t)| dt,

I3 =
1
M ∫

1
2

1
M

|DN+M (t)FM−1(t)| dt.
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We have

|DN+M (t)| ⩽ 2(N +M) + 1, 0 ⩽ FM−1(t) ⩽M, ∫

1

0
FM−1(t) dt = 1.

It follows that

I1 ⩽
1
M ∫

1
N+M

0
(2(M +N) + 1)M dt = 2 + 1

M +N
⩽ 3.

sinceM,N are positive integers.
Using the explicit expressions of DN+M and FM−1, we have

I2 = 1
M2 ∫

1
M

1
N+M

| sin(�(2(N +M) + 1)t)| sin2(�Mt)
sin3(�t)

dt ≤ 1
M2 ∫

1
M

1
N+M

sin2(�Mt)
sin3(�t)

dt

⩽ �2

8 ∫

1
M

1
N+M

dt
t
= �2

8
ln
(

1 + N
M

)

.

using that sin�t ≤ �t for t ≥ 0 and that sin�t ≥ 2t for 0 ≤ t ≤ 1
2
.

Finally, for I3, we do the same computation to bound

I3 ≤
1
M2 ∫

1
2

1
M

sin2 �Mt
t3

dt = ∫

M
2

1

sin2 �s
s3

ds ≤ ∫

M
2

1

ds
s3

≤ 1
2
.

Grouping all terms and slightly upper bounding the numerical constants, we obtain

∫

1

0
|d[KM,N ](t)| dt ⩽ 8

(

2 + ln
(

1 + N
M

))

.

By Lemma 3.21 (and the 1-periodicity of d[KM,N ]), we obtain

1
R + S

S−1
∑

j=−R

|

|

|

|

|

d[KM,N ]
(

j
2R + 1

)

|

|

|

|

|

⩽
(

1 + 2�d
R + S

)

‖d[KM,N ]‖L1([0,1]).

But d = N + 2M − 1 and R + S ⩾ 2N + 4M so

2�d
R + S

⩽ �(2N + 4M − 2)
2N + 4M

⩽ �.

Hence we get

1
R + S

S−1
∑

j=−R

|

|

|

|

|

d[KM,N ]
(

j
R + S

)

|

|

|

|

|

⩽ (1 + �)‖d[KM,N ]‖L1([0,1])

⩽ 16�
(

2 + ln
(

1 + N
M

))

,

concluding the proof. �

Lemma 3.23. Let R,S be positive integers and K =
(

K(−R),… , K(S − 1)
)

∈ CR+S . We extend K into
– an R + S-periodic sequence K (p)(j(R + S) + l

)

= K(l), for l = −R,… , S − 1 and j ∈ Z;
– a finitely supported sequence K (0) by setting K (0)(l) = K(l) for l = −R,… , S − 1 and K (0)(l) = 0

for l ≥ S and for l ≤ −R − 1.
Then

∫

1

0

|

|

|

|

|

∑

m∈ℤ
amK

(p)(m)e2i�mt
|

|

|

|

|

dt ≤ 1
R + S

S−1
∑

l=−R

|

|

|

|

|

d[K (0)]
(

l
R + S

)

|

|

|

|

|

∫

1

0

|

|

|

|

|

∑

m∈ℤ
ame

2i�mt
|

|

|

|

|

dt
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Proof. Write elements of CR+S as (a−R,… , aS−1) and the scalar product ⟨a, b⟩ =
S−1
∑

l=−R
albl . For j =

−R,… , S − 1, denote by ek ∶=

[

1
√

R + S
e2i�

kl
R+S

]S−1

l=−R

so that (ek)k=−R,…,S−1 is an orthonormal basis

of CR+S .
Write Al =

∑

n∈ℤ
an(R+S)+le

−2i�(n(R+S)+l)t for l = −R,… , S − 1 and A = (Al) ∈ CR+S . Then, by

periodicity of K (p)

∑

m∈ℤ
amK

(p)(m)e2i�mt =
S−1
∑

l=−R
K(l)

∑

j∈ℤ
aj(R+S)+le

2i�(j(R+S)+l)t = ⟨K,A⟩ =
S−1
∑

k=−R
⟨K, ek⟩⟨A, ek⟩

= 1
R + S

S−1
∑

k=−R

( S−1
∑

l=−R
K(l)e−2i�k

l
R+S

)( S−1
∑

l=−R

∑

n∈ℤ
an(R+S)+le

2i�(n(R+S)+l)te2i�k
l

R+S

)

= 1
R + S

S−1
∑

k=−R
d[K0]

( k
R + S

)

S−1
∑

l=−R

∑

n∈ℤ
an(R+S)+le

2i�[(n(R+S)+l)t+l k
R+S ]).

Noticing that e2i�l
k

R+S = e2i�[(n(R+S)+l)
k

R+S ], we may write

∑

m∈ℤ
amK

(p)(m)e2i�mt = 1
R + S

S−1
∑

k=−R
d[K (0)]

( k
R + S

)

S−1
∑

l=−R

∑

n∈ℤ
an(R+S)+le

2i�(n(R+S)+l)(t+ k
R+S )

= 1
R + S

S−1
∑

k=−R
d[K (0)]

( k
R + S

)

∑

m∈ℤ
ame

2i�m(t+ k
R+S ).

From this, we deduce that

∫

1

0

|

|

|

|

|

∑

m∈ℤ
amK

(p)(m)e2i�mt
|

|

|

|

|

dt ≤ 1
R + S

S−1
∑

k=−R

|

|

|

|

d[K (0)]
( k
R + S

)

|

|

|

|

∫

1

0

|

|

|

|

|

∑

m∈ℤ
ame

2i�m(t+ k
R+S )

|

|

|

|

|

dt

= 1
R + S

S−1
∑

k=−R

|

|

|

|

d[K (0)]
( k
R + S

)

|

|

|

|

∫

1

0

|

|

|

|

|

∑

m∈ℤ
ame

2i�mu
|

|

|

|

|

du,

with the change of variable u = t + j
R + S

and periodicity of u⟶
∑

m
ame

2i�mu. �

Lemma 3.24. Let d, D and q be positive integers with (2 + 2�)d + 4 ⩽ D for some � > 0 and q ⩾ 4�.
Suppose I is a finite set of integers and, for each k ∈ I let fk be a trigonometric polynomial of degree

at most d. Then for any integer s, we have:

∫

1

0

|

|

|

|

|

|

∑

k∈I(q;s)
fk(t)e2i�Dkt

|

|

|

|

|

|

dt ⩽ 32�(2 + ln(1 + 2∕�))∫

1

0

|

|

|

|

|

∑

k∈I
fk(t)e2i�Dkt

|

|

|

|

|

dt.

Proof. Assume we can prove the lemma for s = 0, that is, for any sequence (fk)k∈Z of trigonometric
polynomials of degree at most d and any finite set I ,

∫

1

0

|

|

|

|

|

|

∑

ql∈I
flq(t)e2i�Dlqt

|

|

|

|

|

|

dt ⩽ 32�(2 + ln(1 + 2∕�))∫

1

0

|

|

|

|

|

∑

k∈I
fk(t)e2i�Dkt

|

|

|

|

|

dt.
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Then, replacing I with I − s and replacing (fk) with (fk+s) we get

∫

1

0

|

|

|

|

|

|

∑

k∈I(q;s)
fk(t)e2i�Dlqt

|

|

|

|

|

|

dt = ∫

1

0

|

|

|

|

|

|

∑

s+lq∈I
fs+lq(t)e2i�Dlqt

|

|

|

|

|

|

dt

⩽ 32�(2 + ln(1 + 2∕�))∫

1

0

|

|

|

|

|

∑

k∈I−s
fs+k(t)e2i�Dkt

|

|

|

|

|

dt

= 32�(2 + ln(1 + 2∕�))∫

1

0

|

|

|

|

|

e−2i�Dst
∑

l∈I
fl(t)e2i�Dkt

|

|

|

|

|

dt

which is the desired estimate since |e−2i�Dst| = 1. So there is no loss of generality is assuming s = 0.
Next, we write fk =

∑

−d⩽l⩽d
akle

2i�(Dk+l)t and

F (t) =
∑

k∈I

∑

−d⩽l⩽d
akle

2i�(Dk+l)t =
∑

m
ame

2i�mt

where

(3.17)

{

am = akl when m = Dk + l, k ∈ I and |l| ⩽ d
0 otherwise

.

LetN = d,M =
⌈�d
2

⌉

the smallest integer larger than �d
2

and let KM,N the sequence from Lemma 3.22.
Since

N + 2M ⩽ d + 2
(�d
2
+ 1

)

= d + �d + 2 ⩽ D
2

then we have
supp(KM,N ) = [−N − 2M,N + 2M] ⊆

[

−D
2
, D
2

]

.

FurtherKM,N (m) = 1 form ∈ [−d, d]. Next,K
(p)
M,N to be the qD-periodic sequence defined byK (p)

M,N (jqD+
l) = KM,N (l) for l = −N − 2M,… , N + 2M and K (p)

M,N (k) = 0 for all other k’s. We take R,S >

N + 2M such that R + S = qD and then K (p)
M,N (k) = 0 for k = −R,… ,−N − 2M − 1 and for

k = N + 2M + 1,… , S − 1.
From Lemma 3.23, we get

∫

1

0

|

|

|

|

|

∑

m
amK

(p)
M,N (m)e

2i�mt
|

|

|

|

|

dt ≤ 1
R + S

S−1
∑

j=−R

|

|

|

|

|

d[KM,N ]
(

j
R + S

)

|

|

|

|

|

∫

1

0

|

|

|

|

|

∑

m∈ℤ
ame

2i�mu
|

|

|

|

|

du

≤ 16�
(

2 + ln
(

1 + N
M

))

‖F‖L1([0,1])

with Lemma 3.22.
As supp(KM,N ) ⊆

[

−D
2
, D
2

]

and K (p)
M,N is periodic of period R + S = qD then

(3.18) K (p)
M,N (m) ≠ 0 if m = jqD + l′ for j ∈ ℤ and |l′| ⩽ D

2
.

Combining (3.17) and (3.18) we have that amK
(p)
M,N (m) ≠ 0 only when

m = Dk + l = jqD + l′.

Hence |jqD − Dk| = |l − l′| ⩽ d + D
2
< D. But this can only happen when jq = k, which then also

implies l = l′. In particular, m = jqD + l with |l| ≤ d and then

amK
(p)
M,N (m) = ajqD+lK

(p)
M,N (jqD + l) = ajqD+lK

(p)
M,N (l) = a

jqD
l .
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It follows that
∑

m∈ℤ
amKM,N (m)e2i�mt =

∑

j∈ℤ

∑

−d⩽l⩽d
ajqD+le

2i�[(jqD+l)t]

=
∑

k=0 mod q
k∈I

∑

−d⩽l⩽d
akD+le

2i�kDte2i�lt

=
∑

k∈I(q;0)
e2i�kDt

∑

−d⩽l⩽d
akD+le

2i�lt

=
∑

k∈I(q;0)
fk(t)e2i�kDt.

Finally we get

∫

1

0

|

|

|

|

|

|

∑

k∈I(q;0)
fk(t)e2i�Kdt

|

|

|

|

|

|

dt = ∫

1

0

|

|

|

|

|

∑

m
amKM,N (m)e2i�mt

|

|

|

|

|

dt

⩽ 32� (2 + ln(1 +N∕M)) ‖F‖L1([0,1])
⩽ 32�(2 + ln(1 + 2∕�))‖F‖L1([0,1])

since N
M

⩽ 2d
�D

⩽ 2
�
. �

We can now prove the lemma.

Proof of lemma 3.20. Write I(q; s) = {k1,… , kJ} and write each kj in the form kj = rjq + s. Applying
lemma 3.24 yields

‖F‖L1([0,1]) ⩾ 1
32�(2 + ln(1 + 2∕�)) ∫

1

0

|

|

|

|

|

|

J
∑

j=1
fkj (t)e

2i�kjDt
|

|

|

|

|

|

dt = ∫

1

0

|

|

|

|

|

|

e2i�Dst
J
∑

j=1
fkj (t)e

2i�rjqDt
|

|

|

|

|

|

dt

= 1
qD ∫

qD

0

|

|

|

|

|

|

J
∑

j=1
fkj

(

s
qD

)

e2i�rjs
|

|

|

|

|

|

ds

= 1
qD

qD−1
∑

m=0
∫

m+1

m

|

|

|

|

|

|

J
∑

j=1
fkj

(

s
qD

)

e2i�rjs
|

|

|

|

|

|

ds.

But
J
∑

j=1
fkj

(

s
qD

)

e2i�rjs =
J
∑

j=1
fkj

(

m
qD

)

e2i�rjs +
J
∑

j=1

[

fkj

(

s
qD

)

− fkj

(

m
qD

)]

e2i�rjs

so that
‖F‖L1([0,1]) ⩾

1
32(2 + ln(1 + 2∕�))

(T1 − T2)

with

T1 =
1
qD

qD−1
∑

m=0
∫

m+1

m

|

|

|

|

|

|

J
∑

j=1
fkj

(

m
qD

)

e2i�rjs
|

|

|

|

|

|

ds,

and

T2 =
1
qD

qD−1
∑

m=0
∫

m+1

m

|

|

|

|

|

|

J
∑

j=1

(

fkj

(

s
qD

)

− fkj

(

m
qD

))

e2i�rjs
|

|

|

|

|

|

ds.

It remains to show that

T1 ⩾
CMPS
2

J
∑

j=1

‖fkj‖L1

j
and T2 ≤

2�d
qD

J
∑

j=1
‖fkj‖L1 .
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Let us start with T1: using the 1-periodicity in s,

T1 = 1
qD

qD−1
∑

m=0
∫

1

0

|

|

|

|

|

|

J
∑

j=1
fkj

(

m
qD

)

e2i�rjs
|

|

|

|

|

|

ds,

⩾
CMPS
qD

qD(1
∑

m=0

J
∑

j=1

|

|

|

|

fkj
(

m
qD

)

|

|

|

|

j
=
CMPS
qD

J
∑

j=1

1
j

qD−1
∑

m=0

|

|

|

|

|

fkj

(

m
qD

)

|

|

|

|

|

with Theorem B. Applying Lemma 3.21 to fkj and using that 2�d
qD

< 1
2
with our hypothesis on q and D,

we get

1
qD

qD
∑

m=1

|

|

|

|

|

fkj

(

m − 1
qD

)

|

|

|

|

|

⩾
‖fkj‖L1

2

and the desired estimate of T1 follows immediately.
Let us now estimate T2. For s ∈ [m,m + 1], we have

|

|

|

|

|

|

J
∑

j=1

(

fkj

(

s
qD

)

− fkj

(

m
qD

))

e2i�rjs
|

|

|

|

|

|

=
|

|

|

|

|

|

J
∑

j=1
∫

s
qD

m
qD

f ′kj (t)e
2i�rjs dt

|

|

|

|

|

|

⩽ ∫

m+1
qD

m
qD

|

|

|

|

|

|

J
∑

j=1
f ′kj (t)e

2i�rjs
|

|

|

|

|

|

dt.

From the 1-periodicity in s, the integral of this quantity over [m,m + 1] is the same as the integral over
[0, 1]. Thus

T2 ⩽ 1
qD

qD−1
∑

m=0
∫

m+1

m ∫

m+1
qD

m
qD

|

|

|

|

|

|

J
∑

j=1
f ′kj (t)e

2i�rjs
|

|

|

|

|

|

dt ds

= 1
qD

qD−1
∑

m=0
∫

m+1
qD

m
qD

∫

1

0

|

|

|

|

|

|

J
∑

j=1
f ′kj (t)e

2i�rjs
|

|

|

|

|

|

ds dt

= 1
qD ∫

1

0 ∫

1

0

|

|

|

|

|

|

J
∑

j=1
f ′kj (t)e

2i�rjs
|

|

|

|

|

|

ds dt

⩽ 1
qD

J
∑

j=1
‖f ′kj‖L1([0,1]) ⩽

2�d
qD

J
∑

j=1
‖fkj‖L1([0,1])

with Bernstein’s inequality. �

3.5. Newman’s extremal trigonometric polynomial. Finally, let us insist on the fact that all results in
this section are worse case scenarios i.e. the lowest possible L1 norm of a trigonometric polynomial with
eventually a constraint on the spectrum or on the coefficients.

If one looks at the maximal possible value of the L1-norm under the constraint that all coefficients have
modulus 1, then, from Cauchy-Schwarz

∫

1

0

|

|

|

|

|

|

N
∑

j=0
aje

2i�jt
|

|

|

|

|

|

dt ≤
⎛

⎜

⎜

⎝

∫

1

0

|

|

|

|

|

|

N
∑

j=0
aje

2i�jt
|

|

|

|

|

|

2

dt
⎞

⎟

⎟

⎠

1
2

=

( N
∑

j=0
|aj|

2

)

1
2

=
√

N + 1

if |aj| = 1 for all j’s. However, if one wants to reach the bound
√

N + 1, one would need that equality

holds in the Cauchy-Schwarz Inequality so
|

|

|

|

|

|

N
∑

j=0
aje

2i�jt
|

|

|

|

|

|

should be constant. But, it is easy to show that

the only trigonometric polynomials with constant modulus are monomials (thus in our case, equality can
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only occur when N = 0). Indeed, consider the polynomial P (z) =
N
∑

j=0
ajz

j with aN ≠ 0. Introduce

P ∗(z) = P (z̄) =
N
∑

j=0
ajz

j Then |P (z)|2 = c when |z| = 1 can be written in the form P (z)P ∗(1∕z) = c for

|z| = 1, which is now an equality between meromorphic functions overC⧵{0}. As this is true on {|z| = 1}
it is true over all of C ⧵ {0}, in particular, P has only 0 as zero thus P (z) = aNzN .

So the natural question is, how near to
√

N + 1 one can get. A result by E. Beller and D. J. Newman [2]
shows that one can obtain

√

N − O(1). For sake of simplicity, we will only present a previous result by
D. J. Newman [18] which contains similar ingredients:

Theorem 3.25 (Newman, [18]). There is an absolute constant c > 0 and an integerN0 such that, for every
N ≥ N0 there is a sequence a0,… , aN with |aj| = 1 for all j and such that

∫

1

0

|

|

|

|

|

|

N
∑

j=0
aje

2i�jt
|

|

|

|

|

|

dt ≥
√

N − c.

Proof. The example is related to Gauss sums. We fixN and set ! = exp
(

i �
N + 1

)

, aj = !j
2 and define

P (t) =
N
∑

j=0
aje

2i�jt =
N
∑

j=0
exp

(

2i�
(

j2

2(N + 1)
+ jt

))

.

The theorem is based on the following lemma:

Lemma 3.26. With the previous notation, whenN → +∞

∫

1

0
|P (t)|4 dt = N2 + O(N3∕2).

We postpone the proof of the lemma and show how we can conclude with it.
Parseval’s identity gives ‖P‖2 =

√

n + 1 and then Hölder’s inequality implies

N ≤ N + 1 = ∫

1

0
|P (t)|2 dt ≤

(

∫

1

0
|P (t)| dt

)
2
3
(

∫

1

0
|P (t)|4 dt

)
1
3

.

From the lemma, we deduce that there is a constant A > 0 such that ∫

1

0
|P (t)|4 dt ≤ N2 + AN3∕2 when

N is large enough, so that

∫

1

0
|P (t)| dt ≥ N3∕2

(N2 + AN3∕2)1∕2
= N1∕2 1

(1 + AN−1∕2)1∕2
= N1∕2(1 − A

2
N−1∕2 + o(N−1∕2)

)

≥ N1∕2 − A

forN large enough. �

It remains to prove the lemma:

Proof of Lemma 3.26. We write

|

|

|

|

|

|

N
∑

j=0
aje

2i�jt
|

|

|

|

|

|

2

=

( N
∑

j=0
aje

2i�jt

)( N
∑

k=0
ake

−2i�kt

)

∶=
N
∑

l=−N
cle

2i�lt.
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Note that c0 =
N
∑

j=0
ajaj = N + 1, c−l = cl and, for l ≥ 1,

cl =
N−l
∑

k=0
al+kak =

N−l
∑

k=0
!(l+k)

2
!−k

2
= !l2

N−l
∑

k=0
!2kl

= !l2 1 − !2(N−l+1)l

1 − !2l
= −!−l!

l2 − !−l2

!l − !−l

since !2(N+1) = 1. We thus obtain that

|cl|
2 =

sin2 �
N+1l

2

sin2 �
N+1l

.

On the other hand, from Parseval,

∫

1

0
|P (t)|4 dt =

N
∑

l=−N
|cl|

2 = (N + 1)2 + 2
N
∑

l=1
|cl|

2

since c0 = N + 1 and |c−l| = |cl|.
To compute the last sum, we split it into 4 parts

S1 =
∑

1≤l≤
√

N |cl|2 S2 =
∑

√

N<l≤
N + 1
2

|cl|2

S3 =
∑

N + 1
2

<l<N+1−
√

N
|cl|2 S4 =

∑

N+1−
√

N≤l≤N |cl|2.

As |cN+1−l| = |cl| we have S4 ≤ S1 and S3 ≤ S2 so that we only need to show that S1 and S3 are both
O(N3∕2).

For S1, we use the estimate
|

|

|

|

sinl�
sin �

|

|

|

|

≤ l to bound |cl|2 ≤ l2, leading to

S1 ≤
∑

1≤l≤
√

N

l2 ≤ N
∑

1≤l≤
√

N

1 = N3∕2.

Further, as for 0 ≤ � ≤ �
2
, sin � ≥ 2

�
�, we bound |cl|2 ≤

(N + 1)2

4l2
so that

S2 ≤
(N + 1)2

4
∑

√

N<l≤
N + 1
2

1
l2

≤ (N + 1)2

4 ∫

+∞

√

N−1

dt
t2
=

(N + 1)2

4(
√

N − 1)
= O(N3∕2)

as claimed. �

4. L1 ESTIMATES WITH REAL FREQUENCIES

4.1. Some results for the Besicovitch norm. We will now present three results for the Besicovitch norms
of non-harmonic trigonometric polynomials.

Let us start with the analogue of McGehee, Pigno and Smith’s result. Let us present a nice argument by
Hudson and Leckband that shows that the estimate for the Besicovitch norm follows from Theorem B. The
converse is of course true as well and the result was obtained directly in [13] and even allowed to slightly
improve the constant.

Theorem 4.1 (Hudson & Leckband [11]). For (�j)j≥0 be real numbers with �j+1 − �j > 0 and let (aj)j≥0
be a sequence of complex numbers with finite support. Then

lim
T→+∞

1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

|

+∞
∑

j=0
aje

2i��j t
|

|

|

|

|

|

dt ≥ CMPS

+∞
∑

j=0

|aj|
j + 1

where CMPS is the same constant as in Theorem B.
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Moreover, assume that (�k) is q-lacunary i.e. �0 ≥ 1 and �k+1 ≥ q�k. Then, for 1 ≤ p < +∞,

Ap,q

(+∞
∑

j=0
|aj|

2

)1∕2

≤ lim
T→+∞

(

1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

|

+∞
∑

j=0
aje

2i��j t
|

|

|

|

|

|

p

dt

)

1
p

≤ Bp,q

(+∞
∑

j=0
|aj|

2

)1∕2

with Ap,q , Bp,q the constants in Theorem 3.7.

Actually, only the first part is in [11]. The second part is here obtained with almost the same proof and
seems to be new.

Proof. Let a0,… , aN be complex numbers, �0 < �1 < ⋯ < �N be real numbers and

Φ(t) =
N
∑

j=0
aje

2i��j t.

Let " > 0. By a lemma of Dirichlet ([25, p 235], [9]), there is an increasing sequence of integers (Mn)n≥1
and, for each n ≥ 1 a finite family of integers (Nj,n)j=0,…,N such that

|

|

|

|

|

�j −
Nj,n

Mn

|

|

|

|

|

< "
Mn

for j = 0,… , N

which implies that
|

|

|

|

|

e2i��j t − e2i�
Nj,n
Mn

t|
|

|

|

|

≤ 2�
|

|

|

|

|

�j −
Nj,n

Mn

|

|

|

|

|

|t| ≤ 2� "
Mn

|t| for j = 0,… , N.

Define theMn-periodic function

Ψn(t) =
N
∑

j=0
aje

2i�Nj,nt∕Mn

and note that, for t ∈ [−Mn∕2,Mn∕2],

|

|

Φ(t) − Ψn(t)|| ≤
N
∑

j=0
|aj|

|

|

|

|

|

e2i��j t − e2i�
Nj,n
Mn

t|
|

|

|

|

≤ 2�"
N
∑

j=0
|aj|.

But then
|

|

|

|

|

|

(

1
Mn ∫

Mn∕2

−Mn∕2
|Φ(t)|p dt

)1∕p

−

(

1
Mn ∫

Mn∕2

−Mn∕2
|

|

Ψn(t)||
p dt

)1∕p
|

|

|

|

|

|

≤

(

1
Mn ∫

Mn∕2

−Mn∕2
|

|

Φ(t) − Ψn(t)||
p dt

)1∕p

≤

(

2�
N
∑

j=0
|aj|

)1∕p

"1∕p.

We can now conclude as follows. First, in the general case, AsΨn isMn-periodic, wemay apply Theorem
B to obtain

CMPS

N
∑

j=0

|aj|
j + 1

≤ 1
Mn ∫

Mn∕2

−Mn∕2
|Ψn(t)| dt

≤ 1
Mn ∫

Mn∕2

−Mn∕2
|Φ(t)| dt + + 1

Mn ∫

Mn∕2

−Mn∕2
|Φ(t) − Ψn(t)| dt

≤ 1
Mn ∫

Mn∕2

−Mn∕2
|Φ(t)| dt + 2�"

N
∑

j=0
|aj|
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Letting n→ +∞ and then "→ 0 we obtain Theorem 4.1:

lim
T→+∞

1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

|

N
∑

k=0
ake

2i��kt
|

|

|

|

|

|

dt ≥ CMPS

N
∑

k=0

|ak|
k + 1

.

Let us now assume further that �k+1 ≥ q�k. Let q̃ be such that 1 < q̃ < q and, assume that " has been
chosen such that q − (1 + q)" > q̃. Observe that

Nj+1,n

Mn
≥ �j+1 −

|

|

|

|

|

�j+1 −
Nj+1,n

Mn

|

|

|

|

|

≥ q�j −
"
Mn

(4.1)

≥ q
Nj,n

Mn
− q

|

|

|

|

|

�j −
Nj,n

Mn

|

|

|

|

|

− "
Mn

(4.2)

≥ q
Nj,n

Mn
− (1 + q) "

Mn
,(4.3)

that isNj+1,n ≥ qNj,n − (1 + q)" ≥ q̃Nj,n.
Applying (3.6) to nk = Nk,n andM =Mn we obtain

Ap,q̃

(+∞
∑

j=0
|aj|

2

)
1
2

≤

(

1
Mn ∫

Mn∕2

−Mn∕2

|

|

|

|

|

|

∑

j≥0
aje

2i�
Nj,n
Mn

t
|

|

|

|

|

|

p

dt

)

1
p

≤ Bp,q̃

(+∞
∑

j=0
|aj|

2

)
1
2

.

From (4.1) we conclude that

Ap,q̃

(+∞
∑

j=0
|aj|

2

)
1
2

−

(

2�
N
∑

j=0
|aj|

)1∕p

"1∕p ≤

(

1
Mn ∫

Mn∕2

−Mn∕2

|

|

|

|

|

|

∑

j≥0
aje

2i�
Nj,n
Mn

t
|

|

|

|

|

|

p

dt

)

1
p

≤ Bp,q̃

(+∞
∑

j=0
|aj|

2

)
1
2

+

(

2�
N
∑

j=0
|aj|

)1∕p

"1∕p.

The result follows by letting " → 0 and then q̃ → q. �

4.2. Nazarov’s theorem.

Theorem 4.2 (Quantitative version of Nazarov theorem for small �). There exists positive constants c∗, �∗
such that, for 0 < � < �∗ the following holds:

for every �0 < ... < �N of real numbers satisfying �k+1 − �k ⩾ 1 and a0, ..., aN complex numbers,

(4.4)
N
∑

k=0

|ak|
k + 1

⩽
c∗
�15∕2 ∫

1+�
2

− 1+�2

|

|

|

|

|

|

N
∑

k=0
ake

2i��kt
|

|

|

|

|

|

dt.

First, we start by some preliminary notations and results. Let I = I� ∶= [−
1+�
2 ,

1+�
2 ].

Let us fix (�k)k=0,…,N ⊂ Rwith �k+1−�k ≥ 1 for every k, (ak)k=0,…,N a sequence of complex numbers
and write |ak| = akuk with |uk| = 1. Let

S =
N
∑

k=0

|ak|
k + 1

and �(t) =
N
∑

k=0
ake

2i��kt,

so that we must find C� such that:

(4.5) ‖�‖L1(I) ≥ C�S.

We define

S� =
N
∑

k=0

|ak|
k +N�

and T�(t) =
N
∑

k=0

uk
k +N�

e−2i��kt



FROM INGHAM TO NAZAROV’S INEQUALITY: A SURVEY ON SOME TRIGONOMETRIC INEQUALITIES 39

whereN� is a large integer that we will adjust through the proof. This integer will be of the formN� = 2m� .
We will prove that
(4.6) ‖�‖L1(I) ≥ B�S�

and, as k + N� ≤ (k + 1)N� , S� ≥ S
N�

so that we obtain the desired inequality (4.5) with a constant

C� =
B�
N�

.

The meaning ofN� is the following. Consider:
– a new sequence of frequencies (�̃j)j∈Z such that �̃j = �j−N�

for j = N� ,… , N� + N . and then
�̃j = �0 + j −N� for j < N� and �̃j = �N + j −N for j > N . In particular, we still have |�̃j − �̃k| ≥ 1.
In other words, the sequence (�j)j=0,…,N is completed into a sequence (�j)j∈Z that is still 1-separated and
then shifting it byN� .

– A new sequence of complex numbers (ãj)j∈Z with ãj = aj−N�
for j = N� ,… , N� +N and ãj = 0

for other j’s. In other words, the sequence (aj)j=0,…,N is completed into a sequence (aj)j∈Z by 0-padding
it and then shifting it byN� .

Then (4.6) reads

∫I�

|

|

|

|

|

|

∑

j∈Z
ãje

2i��̃j t
|

|

|

|

|

|

dt ≥ B�
∑

j∈Z

|ãj|
j +N�

with the convention that 0∕0 = 0.
Note that, up to adding 0 terms at the end of the sequence aj , we may assume thatN +N� is of the form

2n� − 1 for some integer n� . This will allow us to write
N
∑

k=0
=

n�
∑

j=m�

∑

2j≤r+N�<2j+1
.

Next, as in Ingham’s proof, we will introduce an auxiliary function. Again, we consider

ℎ(t) =

⎧

⎪

⎨

⎪

⎩

cos(�t) if |t| ⩽ 1
2

0 otherwise

whose Fourier transform is given by

ℎ̂(�) = 2
�
cos(��)
1 − 4�2

.

We will need to smooth a bit this function to obtain a better decay of the Fourier transform and thereby
slightly enlarge its support. More precisely, let p = 10, q = 8 and let

f�(t) =
p + q
�

1[− �
2(p+q) ,

�
2(p+q) ]

(t)

and define its p + q-fold self convolution1

g� =∗p+q f� .

Clearly g� is non-negative, even and with support [− �
2 ,

�
2 ]. Finally, we define '� as

(4.7) '� =
�
2
ℎ ∗ g� .

In the following lemma, we list the properties needed on '� . They are all established via easy calculus
and straight forward Fourier analysis.

Lemma 4.3. There is a c0 > 0 and a �0 > 0 such that, if 0 < � < �0 then,

(1) '̂�(�) =
cos(��)
1 − 4�2

sincp+q
(

���
p + q

)

,

1If � is a function, we write ∗1  =  ∗  for the convolution of  with itself and then define inductively ∗k+1  = (∗k  ) ∗  .
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(2) ‖'�‖∞ ⩽ �
2
.

(3) Let D� = c0�
− p+q
p+2 ≥ 1 and � > 0 then, for |�| ⩾ max(1, D��

1
p+2 ),

|'̂(�)| ⩽ �
|�|q

(4) Let 
� =
(

sinc ��
p + q

)p+q
then, for |�| ≥ 1,

|'̂�(�)| ⩽

�

4�2 − 1
.

From now on, we will assume that 0 < � < 7
3� < 1 so that D� ≥ 1. In particular, when |�| ≥ D� , we

have |'̂(�)| ⩽ |�|−3.

Proof of Lemma 4.3. The first one is simple Fourier analysis.
For the second one, we write

‖'�‖∞ ⩽ �
2
‖g�‖1‖ℎ‖∞ ⩽ �

2
‖f�‖

p+q
1 ‖ℎ‖∞

and use simple calculus to conclude.
For the third one, we notice that 4�2 − 1 ≥ 3�2 when � ≥ 1 thus

|'̂�(�)| =
|

|

|

|

|

|

|

cos(��)
4�2 − 1

⎛

⎜

⎜

⎝

sin( ���p+q )
���
p+q

⎞

⎟

⎟

⎠

2p
|

|

|

|

|

|

|

⩽ 1
3

(p + q
�

)p+q
�−(p+q) 1

|�|p+2
1

|�|q
⩽ �

|�|q
,

since |�| ≥ 1

3
1
p+2

(p + q
�

)

p+q
p+2 �−

p+q
p+2 �

1
p+2 . Thus this fact is established with c0 =

1

3
1
p+2

(p + q
�

)

p+q
p+2 .

For the last one, we take �0 small enough to have sinc
��0
p + q

= supt≥�0 | sinc t| and then |ĝ�(�)| ≤ 
�
when |�| ≥ 1. The first identity allows to conclude. �

We can now state the first crucial result in this proof.

Lemma 4.4. There exist �1 > 0, c1 > 0 such that, if 0 < � < �1, 0 < c1�2 < 1 −
√


� .
Moreover, let

�� = 1 −
(

c1�
2 +


�
1 − c1�2

)

and let m� be such that
N� = 2m� ≥ �−7∕2.

Then, for 0 ⩽ k ⩽ N ,
∑

0⩽j⩽N
j≠k

|'̂(�j − �k)|
j +N�

⩽
1 − ��
k +N�

.

Proof. The Taylor expansion when � → 0 of 1 −
√


� is of the form

1 −
√


� = A�2 + O(�4),

with A > 0. Thus, if c1 < A, for � small enough, 0 < c1�2 < 1 −
√


� . Next, notice that 0 < 1 −
(

� +

�
1 − �

)

< 1 if 0 < � < 1 −
√


� which shows that 0 < �� < 1. For future use, note that there is a

� > 0 such that
(4.8) �� = ��2 + O(�4).

We will further assume that � is small enough for

�−7∕2 ≥ max

(

c
− q+1
q−2

1 �−2
q+1
q−2 , c2�

−2− p+q
p+2

)

= max

(

c
− q+1
q−2

1 �−3,
c0
c1
�−7∕2

)
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since we chose q = 8 and p = 10.
Note that, for every " > 0, the power 7∕2 could be reduced to 3 + " by taking p large enough, but could

not be reduced below 3 with this construction.
We can now turn to the estimate itself. Set � = c1�2 and split the sum in the left hand side of the main

inequality into two sums

E ∶=
∑

0⩽j⩽N
j≠k

|'̂(�j − �k)|
j +N�

= E1 + E2

where

E1 =
∑

j+N�<(1−�)(k+N�)

|'̂(�j − �k)|
j +N�

and

E2 =
∑

j+N�⩾(1−�)(k+N�)
j≠k

|'̂(�j − �k)|
j +N�

.

The result is obtained if we prove the two estimates

E1 ⩽
�

k +N�
et E2 ⩽


�∕(1 − �)
k +N�

.

Now, asN� ≥
c0
c1
�−2−

p+q
p+2 , �N� ⩾ D� . Then, if j is an index corresponding to E1, then

|�k − �j| ⩾ |k − j| = (k +N�) − (j +N�) ⩾ �(k +N�) ⩾ �N� ⩾ D�

hence, from Lemma 4.33 with � = 1,

E1 ⩽
∑

j+N�<(1−�)(k+N�)
|'̂(�j − �k)| ⩽

∑

j+N�<(1−�)(k+N�)

1
|�j − �k|q

⩽
∑

j+N�<(1−�)(k+N�)

1
(

�(k +N�)
)q .

But, E1 contains less than k terms so

(4.9) E1 ⩽
k

k +N�

�−(q+1)

(k +N�)q−2
�

k +N�
⩽ �
k +N�

sinceN� ⩾ �−
q+1
q−2 = c

− q+1
q−2

1 �−2
q+1
q−2 .

We shall now bound E2. In this sum,

j +N� ⩾ (1 − �)(k +N�) and |�j − �k| ⩾ 1

then

E2 ⩽
1

(1 − �)(k +N�)
∑

1⩽j⩽N
j≠k


�
4(�j − �k)2 − 1

⩽

�

(1 − �)(k +N�)
∑

1⩽j⩽N
j≠k

1
4(j − k)2 − 1

⩽

�

(1 − �)(k +N�)

∞
∑

l=1

2
4l2 − 1

.

Since 2
4l2 − 1

= 1
2l − 1

− 1
2l + 1

, we obtain the expected bound E2 ⩽

�∕(1 − �)
k +N�

. �

The following lemma is a first step towards proving Theorem 4.2 and is a consequence of Lemma 4.4.
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Lemma 4.5. Let us use the notations of the lemma 4.4. Then,

(4.10)
|

|

|

|

|

|

∫I�
T�(t)

( N
∑

k=0
ake

2i��kt

)

'(t) dt
|

|

|

|

|

|

≥ ��
N
∑

k=0

|ak|
k +N�

.

Proof. By definition of T� ,

∫I�
T�(t)e2i��kt'(t) dt =

M
∑

j=0

uj
j +N� ∫I�

e−2i��j te2i��kt'(t)dt

=
M
∑

j=0

uj
j +N�

'̂(�j − �k)

=
uk

k +N�
+

∑

0⩽j⩽M
j≠k

uj
j +N�

'̂(�j − �k)

thus
|

|

|

|

|

∫I�
T�(t)e2i��kt'(t)dt −

uk
k +N�

|

|

|

|

|

≤
∑

0⩽j⩽M
j≠k

1
j +N�

'̂(�j − �k).

By applying the lemma 4.4, that
|

|

|

|

∫I�
T�(t)e2i��kt'(t)dt −

uk
k +N�

|

|

|

|

⩽
1 − ��
k +N�

.

It follows that
|

|

|

|

∫I�
T�(t)ake2i��kt'(t)dt −

ukak
k +N�

|

|

|

|

⩽
1 − ��
k +N�

|ak|.

Using the fact that ukak = |ak| and the triangular inequality, we obtain

|

|

|

|

∫I�
T�(t)

( N
∑

k=0
ake

2i��kt

)

'(t)dt −
N
∑

k=0

|ak|
k +N�

|

|

|

|

⩽ (1 − ��)
N
∑

k=0

|ak|
k +N�

from which the lemma follows immediately. �

Construction of T̃�
Recall that, from our assumption onN� andN , we can write

T�(t) =
M
∑

k=0

uk
k +N�

e−2i��kt =
n�
∑

j=m�

fj(t)

where we set j = {k ∈ N ∶ 2j ≤ k < 2j+1} and

fj(t) =
∑

r+N�∈j

ur
r +N�

e−2i��rt.

Before we estimate the norms of the fj’s, let us recall Hilbert’s inequality (see e.g. [4, Chapter 10]).

Lemma 4.6 (Hilbert’s inequality). Let �1,… , �N be real numbers with |�k − �l| ≥ 1 when k ≠ l, and let
z1,… , zN be complex numbers. We have

|

|

|

|

∑

1≤k,l≤N
k≠l

zkzl
�k − �l

|

|

|

|

⩽ �
N
∑

k=1
|zk|

2.

We can now prove the following:

Lemma 4.7. For m� ⩽ j ⩽ n� ,
(1) ‖fj‖∞ ⩽ 1
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(2) ‖fj‖L2(I�) ⩽ 2
− j
2
√

|I�| + 1.

Proof. The first estimate is obtained by straightforward computations: for all t,

|fj(t)| ⩽
∑

r+N�∈j

1
r +N�

⩽
|Dj|
2j

= 1

hence ‖fj‖∞ ⩽ 1.
For the second one, set vr =

ur
r +N�

. Then

‖fj‖
2
L2(I�)

= ∫I�
fj(t)fj(t) dt = ∫I�

∑

r+N� ,s+N�∈j

vrvse
−2i�(�r−�s)t dt

= |I�|
∑

r+N�∈j

|vr|
2 +

∑

r+N� ,s+N�∈j
r≠s

vrvs ∫

|I� |∕2

−|I� |∕2
e−2i�(�r−�s)t dt

= |I�|
∑

r+N�∈j

|vr|
2 +

∑

r+N� ,s+N�∈j
r≠s

vrvs

(

ei|I� |�(�r−�s) − e−i|I� |�(�r−�s)
2i�(�r − �s)

)

.

It follows that

‖fj‖
2
L2(I) ⩽ |I�|

∑

r+N�

|vr|
2 + 1

2�

|

|

|

|

|

|

|

|

∑

r,s
r≠s

vre−i��r(1+�)vse−i��s(1+�)

�s − �r

|

|

|

|

|

|

|

|

+ 1
2�

|

|

|

|

|

|

|

|

∑

r,s
r≠s

vrei��r(1+�)vsei��s(1+�)

�s − �r

|

|

|

|

|

|

|

|

We then apply Hilbert’s inequality 4.6 to the last two sums to obtain

‖fj‖
2
2 ⩽ |I�|

∑

r+N�

|vr|
2 + 1

2
∑

r+N�,�∈j

|vr|
2 + 1

2
∑

r+N�∈j

|vr|
2

= (|I�| + 1)
∑

r+N�

|vr|
2.

Since
∑

r+N�∈j

|vr|
2 =

∑

r+N�∈j

|ur|2

(r +N�)2
=

∑

r+N�∈j

1
(r +N�)2

⩽
∑

r+N�∈j

1
22j

⩽ 2j

22j
= 2−j ,

we get ‖fj‖2L2(I) ⩽ (|I�| + 1)2
−j as claimed. �

We then write the Fourier series expansion of |fj| ∈ L2(I�) as

|fj(t)| =
∑

s∈ℤ
as,je

2i�
|I� |

st
,

and define ℎj ∈ L2(I�) via its Fourier series expansion

ℎj(t) = a0,j + 2
∞
∑

s=1
as,je

2is�
|I� |

t
.

Lemma 4.8. For m� ⩽ j ⩽ n� , the following properties hold
(1) Re(ℎj) = |fj|;
(2) ‖ℎj‖2 ⩽

√

2‖fj‖2;
(3) ℎj ∈ H∞(I�).
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Proof. First, as |fj| is real valued, its zero Fourier coefficient a0,j is also real, and for the remaining ones
as,j = a−s,j for every s ≥ 1. A direct computation then shows that Re(ℎj) = |fj| which is less than 1 by
lemma 4.7 while Parseval shows that ‖ℎj‖2 ⩽

√

2‖fj‖2. �

We now define a sequence (Fj)j⩾m� inductively through

Fm� = fm� and Fj+1 = Fje
−"ℎj+1 + fj+1

where 0 < " < 1 is a small parameter that we will adjust later. Further set

E" ∶= sup
0<x≤1

x
1 − e−"x

= 1
"
sup
0<x≤"

x
1 − e−x

= 1
1 − e−"

.

From the next to last identity, it is easy to obtain the following simple bound:

1
"
≤ E" ≤

2
"
.

Lemma 4.9. For all m� ⩽ j ⩽ n� ,

‖Fj‖∞ ⩽ 2
"
.

Proof. By definition of E", if C ≤ E" and 0 ≤ x ≤ 1, then Ce−"x + x ≤ E"e−"x + x ≤ E".
We can now prove by induction over j that |Fj| ≤ E" from which the lemma follows. First, when j = 0,

from Lemma 4.7 we get
‖F0‖∞ = ‖f0‖∞ ≤ 1 ≤ E".

Assume now that ‖Fj‖∞ ≤ E", then

|Fj+1(t)| = |Fj(t)e
−"ℎj+1(t) + fj+1(t)| ≤ |Fj(t)|e

−"ℜ
(

ℎj+1(t)
)

+ |fj+1(t)|

= |Fj(t)|e
−"|fj+1(t)| + |fj+1(t)|.

As |fj+1(t)| ≤ 1 and |Fj(t)| ≤ E", we get |Fj+1(t)| ≤ E" as claimed. �

Lemma 4.10. Let m� ⩽ n ⩽ n� . For j = m� ,… , n we define gj,n = e−"Hj,n with

Hj,n =

{

ℎj+1 +…+ ℎn if j < n
0 if j = n

.

Then Fn =
n
∑

j=m�

fjgj,n. Moreover ‖Hj,n‖2 ⩽
√

2(|I�| + 1)
√

2 − 1
2−

j
2 .

Proof. The first part is obtained by a simple induction on n. Moreover, the lemma 4.8 implies

‖Hj,n‖2 =
‖

‖

‖

‖

‖

‖

n
∑

r=j+1
ℎr
‖

‖

‖

‖

‖

‖2

⩽
n
∑

r=j+1
‖ℎr‖2 ⩽

√

2
n
∑

r=j+1
‖fr‖2

⩽
√

2(|I�| + 1)
∞
∑

r=j+1
2−

r
2 =

√

2(|I�| + 1)
√

2 − 1
2−

j
2 ,

as stated. �

Next, we will need the following simple well-known lemma:

Lemma 4.11. IfH ∈ H∞ and Re(H) ⩾ 0, then e−H ∈ H∞ and

‖e−H − 1‖2 ⩽ ‖H‖2.
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Proof. SinceH∞ is a Banach algebra, the partial sums
n
∑

k=0
(−1)kH

k

k!
of e−H are elements ofH∞. Moreover,

since H is bounded, these sums converge uniformly toward e−H , with e−H ∈ H∞. Finally, if z ∈ C and
ℜ(z) ⩾ 0,

|e−z − 1| =
|

|

|

|

|

∫

1

0
ze−tzdt

|

|

|

|

|

⩽ ∫

1

0
|z|e−tℜ(z)dt ⩽ |z|.

In our case z = H(t), and we have
|

|

|

e−H(t) − 1||
|

⩽ |H(t)|

and by integration we have the desired inequality. �

Lemma 4.12. Assume that 0 < " ⩽
√

|I�|(
√

2 − 1)
√

2(|I�| + 1)
. Then, for m� ⩽ j ⩽ n ⩽ n� ,

(1) ‖gj,n − 1‖2 ⩽ "‖Hj,n‖2 ⩽
√

2(|I�| + 1)
√

2 − 1
"2−

j
2

(2) The Fourier series of gj,n(t) − 1 writes gj,n(t) − 1 =
∑

s⩾0
cs,je

2is�
|I| t, with

+∞
∑

s=0
|cs,j|

2 ⩽ 1.

Proof. By lemma 4.11, ‖gj − 1‖2 ⩽ "‖Hj‖2. Then, since gj,n is analytic, its Fourier series writes

gj(t) − 1 =
∑

s⩾0
cs,je

2i�
|I� |

st
.

But then, with Parseval
(

∑

s⩾0
|cs,j|

2

)
1
2

= 1
√

|I�|
‖gj − 1‖2 ⩽

"
√

|I�|
‖Hj‖2 ⩽

"
√

|I�|

√

2(|I�| + 1)
√

2 − 1
2−

j
2 ⩽ 2−

j
2 < 1

which implies the claimed bound. �

Now recall that
T� =

∑

m�⩽j⩽n�

fj

and define
T̃� = Fn� .

In particular, from Lemma 4.9, we have

(4.11) ‖T̃�‖∞ ≤ 2
"
.

The key estimates here is the following;

Lemma 4.13. Once again, we use the notations of the lemma 4.4. There exists �2 > 0 such that, if 0 < � <
�2 andN� ≥ �−7∕2 then

(4.12)
|

|

|

|

|

|

∫I�
(T̃� − T�)(t)

( N
∑

k=0
ake

2i��kt

)

'(t) dt
|

|

|

|

|

|

⩽ 2
3
��

N
∑

k=0

|ak|
k +N�

.

where ' is the function defined in (4.7).

Proof. It is enough to prove that, under the conditions of the lemma, for 0 ⩽ k ⩽ N we have

(4.13)
|

|

|

|

|

∫I�
(T̃� − T�)(t)e2i��kt'(t) dt

|

|

|

|

|

⩽ 2
3

��
k +N�

.

Once (4.13) is established, it will then be enough to multiply the left hand side by ak and to use the triangular
inequality
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We fix k ∈ [0, N] and let l the index such that k +N� ∈ l . We define R,R1 and R2 as follows

R = ∫I�
(T̃�,� − T�,�)(t)e2i��kt'(t) dt

= ∫I

∑

m�⩽j⩽l−2
fj(t)

(

gj(t) − 1
)

e2i��kt'(t dt + ∫I�

∑

l−1⩽j⩽n�

fj(t)
(

gj(t) − 1
)

e2i��kt'(t) dt

∶= R1 + R2
We will first bound R1. Note that if s ∈ ℤ,

∫I�
fj(t)'(t)e2i��kte

2i�
|I� |

st
dt = ∫I�

∑

r+N�∈j

ur
r +N�

'(t)e
2i�(−�r+�k+

s
|I� |

)
dt

=
∑

r+N�∈j

ur
r +N�

'̂(�r − �k −
s

|I�|
).

From there, we obtain

∫I�
fj(t)

(

gj(t) − 1
)

e2i��kt'(t) dt = ∫I�
fj(t)'(t)e2i��kt

∑

s⩾0
cs,je

2is�
|I� |

t
dt

=
+∞
∑

s=0
cs,j ∫I�

fj(t)'(t)e2i��kte
2i�
|I� |

st
dt

=
+∞
∑

s=0
cs,j

∑

r+N�∈j

ur
r +N�

'̂(�r − �k −
s

|I�|
)

=
∑

r+N�∈j

ur
r +N�

∞
∑

s=0
cs,j'̂(�r − �k −

s
|I�|

).

So finally we get

R1 =
∑

m�⩽j⩽l−2

∑

r+N�∈j

ur
r +N�

∞
∑

s=0
cs,j'̂(�r − �k −

s
|I�|

).

Let cs(r) = cs,j if r +N� ∈ Ij . Since '̂ is an even function, we can write

R1 =
∑

2m�⩽r+N�<2l−1

ur
r +N�

∞
∑

s=0
cs(r)'̂(�k − �r +

s
|I�|

) ∶=
∑

2m�⩽r+N�<2l−1

ur
r +N�

Er.

From Lemma 4.3, recall that, with D� = c0�
− p+q
p+2 and � =

��
|I�|1∕q

then, for

|�| ⩾ max(1, D��
− 1
p+2 ),

we have

(4.14) |'̂(�)| ⩽
��

(|I�||�|)q
.

Now, s ⩾ 0, |I�| ≥ 1 and, as r +N� < 2l−1, 2l ⩽ k +N� < 2l+1, �k > �r thus

|I�|
|

|

|

|

�k − �r +
s

|I�|
|

|

|

|

= |I�|(�k − �r) + s ⩾ �k − �r + s ⩾ k − r + s(4.15)

= (k +N�) − (r +N�) > 2l − 2l−1 = 2l−1 ⩾ 2m�−1.

Further, from (4.8) and 1 ≤ |I�| ≤ 2, D��
− 1
p+2 ≤ c3�

− p+q+2
p+2 = c3�

− 2012 . Thus, choosing m� sufficiently large
for N� = 2m��−7∕2 and � ≤ �2 for some �2 > 0 small enough, we are able to apply (4.14) and obtain, with
(4.15)

|'̂(�k − �r +
s

|I�|
)| ⩽

��
(k − r + s)q

.
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We can now bound Er. Since
∞
∑

s=0
|cs(r)|2 ⩽ 1, the previous bound and Cauchy-Schwarz give us

|Er| =
∞
∑

s=0
|cs(r)|

|

|

|

|

'̂
(

�k − �r +
s

1 + �

)

|

|

|

|

⩽ ��

( ∞
∑

s=0

1
(k − r + s)2q

)1∕2

⩽ ��

( ∞
∑

n=k−r

∑

n⩾k−r

1
n2q

)1∕2

⩽ ��

(

∫

∞

k−r−1

dt
t2q

)1∕2
=

√

2q − 1��
(k − r − 1)q−1∕2

.

But k − r > 2l−1 then k − r − 1 ⩾ 2l−1. Since k + N� ∈ l i.e 2l ⩽ k + N� ⩽ 2l+1 we get
1

k − r − 1
⩽ 4
k +N�

and then

|Er| ⩽
4q−1∕2

√

2q − 1��
25(k +N�)q−1∕2

Finally, we deduce that

|R1| =
|

|

|

|

|

|

∑

2m�⩽r+N�<2l−1

ur
r +N�

Er
|

|

|

|

|

|

⩽
∑

2m�⩽r+N�<2l−1

|Er|
r +N�

⩽
4q−1∕2

√

2q − 1��
(k +N�)q−1∕2

since last sum has at most 2l−1 ⩽ k +N� .
We will now bound R2.

|R2| ⩽
∑

l−1⩽j⩽n�
∫I

|fj(t)| |gj(t) − 1| |'(t)| dt

⩽ ‖'‖∞
∑

l−1⩽j⩽n�

‖fj‖2‖gj − 1‖2.

According to the lemmas 4.7 (1) and 4.12 (1) we get

|R2| ⩽ ‖'‖∞"

√

2(2 + �)
√

2 − 1

∑

l−1⩽j⩽m
2−j .

since
∑

l−1⩽j⩽n�

2−j ⩽
∞
∑

j=l−1
2−j = 2−l+2 = 8.2−(l+1)

and k +N� ∈ Il then
1

2l+1
⩽ 1
k +N�

. Consequently

∑

l−1⩽j⩽n�

2−j ⩽ 8
k +N�

.

Finally, we deduce that

R2 ⩽ "‖'‖∞

√

2(|I�| + 1)
√

2 − 1

8
k +N�

and we obtain R2 ⩽
��
3

1
k +N�

when " ⩽
(
√

2 − 1)

24‖'‖∞(|I�| + 1)
√

2
�� . �
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Note that, from (4.8) and |I�| ≤ 2, we can take " = c4�2 for some c4 > 0.
It is now easy to deduce the theorem 4.2 using the 2 inequalities (4.10) and (4.12).

Proof of theorem 4.2. Let S� =
N
∑

k=0

|ak|
k +N�

and Φ(t) =
N
∑

k=0
ake

2i��kt as previously defined. Recall that in

(4.10) , we have shown that

��S� ≤
|

|

|

|

|

∫I�
T�(t)�(t)'(t) dt

|

|

|

|

|

≤
|

|

|

|

|

∫I�
T̃�(t)�(t)'(t) dt

|

|

|

|

|

+
|

|

|

|

|

∫I�

(

T̃�(t) − T�(t)
)

�(t)'(t) dt
|

|

|

|

|

≤
|

|

|

|

|

∫I�
T̃�(t)�(t)'(t) dt

|

|

|

|

|

+ 2
3
��S�

with (4.12).
It follows that

S� ≤ 3
��

|

|

|

|

∫I
T̃�(t)�(t)'(t) dt

|

|

|

|

≤
3‖T̃ ‖∞‖'‖∞

�� ∫I�
|�(t)| dt.

But, if � is small enough andN� ≥ �−7∕2,
– from Lemma 4.3, ‖'‖∞ ≤ �

2
;

– from (4.8), �� = ��2 + O(�4)
– as " = c4�2, from (4.11), ‖T̃ ‖∞ = 2

c4�2
.

Therefore, there are two absolute constants �∗ and c∗ such that, if � ≤ �∗,

S� ≤
c∗
�4 ∫I�

|�(t)| dt.

As noticed at the start of the proof, this implies that
N
∑

n=0

|ak|
k + 1

≤
c∗

�
15
2
∫

1+�
2

− 1+�2

|

|

|

|

|

|

N
∑

k=0
ake

2i��kt
|

|

|

|

|

|

dt

for every N , every sequence of real numbers (�j)j≥0 with �j+1 − �j ≥ 1 and every complex sequence
(aj)j≥0. �

We have not fully optimised the proof, by taking q sufficiently large and p∕q sufficiently large, one can
replace �15∕2 by �7+� for any fixed �.

5. SOME OPEN PROBLEMS

TheL2 theory of exponential sums is rather well understood. This is not the case forL1 theory for which
there are still many open questions. Let us mention a few of them.

(1) There is a major difference between the sums that appear in Ingham’s Theorem and those that
appear in Mc Geehe, Pigno, Smith and Nazarov’s Theorems. In the L2 case, the sums can be two
sided and not in the L1 case. The proof given here does not work in this case (this is due to the
construction of T̃ ) and we are tempted to conjecture the following

Question 1. Let T > 1 and (�k)k∈Z a real sequence such that �k+1 − �k ≥ 1 for every k and �k
has same sign as k.



FROM INGHAM TO NAZAROV’S INEQUALITY: A SURVEY ON SOME TRIGONOMETRIC INEQUALITIES 49

Does there exist a constant C such that, for everyN and every sequence (cj)j=−N,…,N of com-
plex numbers,

N
∑

k=−N

|ck|
|k| + 1

≤ C ∫

T ∕2

−T ∕2

|

|

|

|

|

|

N
∑

k=−N
cke

2i��kt
|

|

|

|

|

|

dt.

(2) The second question is the optimality of the condition T = 1 in Nazarov’s Theorem. In view of
Ingham’s counterexample, it is tempting to conjecture that T > 1 is requested (as observed by
Nazarov, his proof requires this).

Question 2. Is the condition T > 1 necessary in Nazarov’s Theorem. If yes, what is the right
behaviour of the constants.

We think the estimate shown here is not optimal.
(3) Another question related to the previous one comes from Haraux’s Theorem. When �k+1 − �k →

+∞, T can be chosen arbitrarily small. A key element of Haraux’s strategy is that the lower and
upper bounds in Ingham’s inequality are both multiples of the l2-norm of the coefficients. This is
no longer the case in the L1 setting.

In forthcomming work, we have been able to use a compactness argument to show that one may
take T arbitrarily small in Nazarov’s Theorem when �k+1 − �k → +∞. However, in doing so, we
loose control of constants. This leads to the following:

Question 3. Prove a quantitative version Nazarov’s Theorem with T arbitrarily small when �k+1−
�k → +∞.

(4) Are L1([−T , T ])-norms of lacunary non-harmonic Fourier series comparable to the l2-norms of
the coefficients? This is the case for Besikovich norms.

Note that
∞
∑

j=0

|aj|
j + 1

≤

( ∞
∑

j=0

1
(j + 1)2

)1∕2( ∞
∑

j=0
|aj|

2

)1∕2

= �
√

6

( ∞
∑

j=0
|aj|

2

)1∕2

.

The question is then

Question 4. Find a (gap) condition on (Λk) and on T that implies that there is a constant C > 0
such that, for every (ak) with finite support

1
T ∫

T ∕2

−T ∕2

|

|

|

|

|

|

+∞
∑

j=0
aje

2i��j t
|

|

|

|

|

|

dt ≥ C

( ∞
∑

j=0
|aj|

2

)1∕2

.

One may also go the other way and ask whether one can still obtain a result like Theorem B
when �k+1 − �k → 0 but with a smaller power on the denominator. For instance, when �k = ln k
then the Fourier series become Dirichlet series

+∞
∑

k=1

ak
k2i�t

=
+∞
∑

k=1
ake

2i�(ln k)t.

The following question was asked in [3]:

Question 5. Is it true that, for every sequence (ak)k≥1 with finite support,

C

(

|a1| +
∑

k≥2

|ak|
√

k ln k

)

≤ lim
T→+∞∫

T ∕2

−T ∕2

|

|

|

|

|

|

+∞
∑

k=1

ak
k2i�t

|

|

|

|

|

|

dt.
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