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1. Introduction

Combinatorial maps is a natural bridge linking combinatorics to topological graph theory. At
the heart of this connection is the property that a cellular embedding of a graph on a surface can
(basically) be described by means of the cyclic order of incident edges at vertex. This property,
already noticed by Heffter [13] at the end of the XIXth century, led to a combinatorial study of
graph embeddings, initiated by Edmonds [9] and Youngs [26], who independently gave a precise
description of this correspondence, as well as a derived computation of the faces and genus of the
embedding. This framework was then popularized by White’s book “Graphs, Group, and Surfaces”
[25]. Further generalization have been proposed, with the notions of hypermaps [5, 14], of dessins
d’enfants [22], and of ribbon graphs [20]. Also, instead of a description of combinatorial maps by
means of a permutation and an involution, Tutte proposed a description based on three involutions.

From these combinatorial descriptions of graphs on surfaces, some coding schemes of maps
by words were derived, which allowed to shed a new light in [5] on Tutte’s enumeration formulas
of maps [23], or a bijection between (rooted) hypermaps and indecomposable permutations (also
called connected or irreducible) [18] (see also [6]). The connection between maps and words also
impacted several over fields, from graph drawing [12] to matroid theory [10, 11], and was central
to the characterization of Gauss codes [19, 8].

In this paper, we survey some aspects of combinatorial maps, and how they are intrinsically
linked with chord diagrams, double occurrence words, Euler tours, ∆-matroids, polynomials,
etc., with an emphasis on words. In particular, we explicit few bijections involving rooted maps
and words. As an application, we derive some enumerative properties of loopless rooted maps.
Our approach will be purely combinatorial, though it relates to topological properties of graph
embeddings on orientable surfaces. The reader interested in the topological aspects is referred to
the monograph [16] (See also [17]).

2. Combinatorial maps and hypermaps

Recall that the group of all permutations of a set B is the symmetric group Sym(B) of B. The
composition of permutations is denoted multiplicatively: στ = σ◦τ. A permutation τ ∈ Sym(B) is
an involution if τ2 is the identity permutation; it is fixed-point free if τ(x) , x for every x ∈ B. We
denote by ⟨τ1, . . . , τk⟩ the subgroup of Sym(B) generated by the permutations τ1, . . . , τk, which is
the smallest subgroup of Sym(B) which contains τ1, . . . , τk. The orbit of an element b ∈ B in a
subgroup Γ of Sym(B) is the set Γ · b = {γ(b) : γ ∈ Γ}. A subgroup Γ of Sym(B) acts transitively
on B if, for every b, b′ ∈ B there exists some τ ∈ Γ such that τ(b) = b′. In other words, Γ acts
transitively on B if Γ has a single orbit. The cycles of a permutation γ ∈ Sym(B) are the orbits of
⟨γ⟩, that is, the sets of the form {γi(b) : i ∈ Z}. The set of all the cycles of γ is denoted by Z(γ).

For µ ∈ Sym(B) and B′ ⊆ B we define the restriction of σ to B′ as the permutation σ|B′ ∈
Sym(B′) defined as follows: for every b ∈ B′, µ|B′(b) = µk(b), where k is the minimum positive
integer such that µk(b) ∈ B′. We further define the cutting-out of µ on B′ as the permutation
µB′ ∈ Sym(B), where µB′ (b) is equal to µ|B′ (b) if b ∈ B′, and to b if b < B′. (Intuitively, µB′ is µ|B′
on B′ and the identity mapping on B \ B′.)

The next easy lemma will be useful.

Lemma 1. Let σ, µ ∈ Sym(B) and let B′ ⊆ B. Then,

σB′µB′ = (σµB′ )B′ and thus σ|B′µ|B′ = (σµB′ )|B′ .
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Proof. If b < B′, then b is a fixed point of both σB′µB′ and (σµB′ )B′ . So, assume b ∈ B′. Let k be
the minimum positive integer with (σµB′)k(b) ∈ B′. We prove by induction on i that for every
1 ≤ i ≤ k we have (σµB′ )i(b) = σiµB′ (b). The base case, i = 1, is straightforward. Assume that the
property holds for all 1 ≤ j < i and 1 < i ≤ k. Then,

(σµB′ )i(b) = σµB′ (σµB′ )i−1(b)

= σ(σµB′ )i−1(b) (as (σµB′ )i−1(b) < B′)

= σ(σi−1µB′ )(b) (by induction hypothesis)

= σiµB′ (b)

Thus, it follows that k is also the minimum positive integer with σkµB′(b) ∈ B′. Hence,
(σµB′ )B′ (b) = (σµB′ )k(b) = σkµB′ (b) = σB′µB′ (b).

A (combinatorial) map is a triple M = (B, σ, α), where B is the set of the flags of M,
σ, α ∈ Sym(B), α is a fixed-point free involution, and ⟨σ, α⟩ acts transitively on B. When we relax
the condition that ⟨σ, α⟩ acts transitively on B, we say thatM = (B, σ, α) is a general map, and
we refer to the orbits of ⟨σ, α⟩ as the components ofM. The edges of a mapM are the cycles of
α, and its vertices are the cycles of σ. For a flag b ∈ B it will be convenient to define

b = ⟨α⟩ · b = {b, α(b)},

which is the edge ofM that contains b.
Two maps M = (B, σ, α) and M′ = (B′, σ′, α′) are isomorphic if there exists a bijection

f : B → B′ (referred to as a (map) isomorphism of M and M′) with σ′ = f ◦ σ ◦ f −1 and
α′ = f ◦ α ◦ f −1.

The underlying graph of a mapM is a graph G(M) with vertex set Z(σ) and edge set Z(α).
In this graph, an edge e ∈ Z(α) is incident to a vertex v ∈ Z(σ) if e ∩ v , ∅. If e ⊆ v (i.e. if e and v
intersects on two flags), then e is a loop attached to v. It will be convenient to identifyM with an
embedding of G(M). When we speak about cycles, trees, and cuts ofM, we mean the cycles,
trees, and cuts of G(M), as subsets of edges.

It is well known that a mapM defines a cellular embedding of G(M) on an orientable surface,
whose genus g is given by Euler’s formula

2 − 2g = |Z(σα)| − |Z(α)| + |Z(σ)|. (1)

In this paper, by the dual of a general mapM = (B, σ, α) we mean the general map

M∗ = (B, σα, α).

Note thatM∗ has the same components asM; in particular, the dual of a map is a map. Remark
that this duality differs from the geometric dual by the orientation of the dual surface (see Figure 1).

A rooted map is a pairM• = (M, b•), where b• is a flag ofM. Two rooted combinatorial
maps (M, b•) and (M′, b′•) are isomorphic if there exists a map isomorphism f ofM andM′

with b′• = f (b•).
For an introduction to combinatorial maps (and hypermaps) we refer the interested reader

to [7].

3



σ

σαα

Figure 1: Map duality. From a geometric point of view, the orientation of the surface is reversed when we consider the
dual map.

3. Planar maps

Before we consider the general setting of maps, we take time to comment on the planar case.
It follows immediately from Euler’s formula that a mapM is planar if and only if the complement
of a spanning tree ofM is a spanning tree of the dual mapM∗. Fixing a spanning tree T of a
planar mapM allows defining several bijections. A first one is obtained by considering a tubular
neighborhood of T . Traversing this tubular neighborhood, either we follow some edge of T , or
we cross some edge of the complement of T . This way, the traversal defines a circular sequence,
in which every edge appears twice. This circular sequence, in turn, naturally defines a bipartite
chord diagram (hence a bipartite circle graph). Conversely, every proper coloration of a bipartite
circle graph uniquely determines a planar map and a spanning tree of it (see Figure 2). This
property is at the heart of Fraysseix’s characterization of circle graphs [10, 11] and Rosenstiehl’s
characterization of planarity by the algebraic diagonal [21].
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Figure 2: From a spanning tree T of a planar graph G to the bipartite circle graph ΛT (G) , and back.

For an edge f < T we denote by γT ( f ) the fundamental cycle of f , that is the edge set of
the unique cycle in T ∪ { f }; For an edge e ∈ T we denote by ωT (e) the fundamental cocycle of
e, that is the unique inclusion minimal cut of G intersecting T only at e. It is easily proved that
for an edge e ∈ T and an edge f < T we have e ∈ γT ( f ) ⇐⇒ f ∈ ωT (e). The fundamental
interlacement graph of the tree T in the graph G if the bipartite graph ΛT (G) with vertex set
T ∪ (E(G) \ T ), where e ∈ T is adjacent to f ∈ E(G) \ T if e ∈ γT ( f ). The above described
construction emphasizes that the fundamental interlacement graph ΛT (G) of a spanning tree T in
a planar graph G is a bipartite circle graph.
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The local complementation of a graph G at a vertex v is the graph G ∗ v obtained by replacing
the subgraph induced by G on the neighbors of v by its complement (see Figure 3).

This transformation was introduced by Kotzig [15] in relations with κ-transformations. The
pivoting (or switching) of an edge uv in a graph G results in the graph G ∧ uv = G ∗ u ∗ v ∗ u =
G ∗ v ∗ u ∗ v.

v v

G G ∗ v

∗v

Figure 3: Local complementation of a graph G at a vertex v

The chord diagrams and circle graphs obtained when one consider a different spanning tree
are nicely related. Indeed, if a spanning tree T ′ is obtained from a spanning tree T by removing a
tree edge e and replacing it with a non-tree edge f , then f ∈ ω(e) (that is: e f is an edge of ΛT (G)),
and we have ΛT ′ (G) = ΛT (G) ∧ e f (that is: the circle graph obtained from ΛT (G) by pivoting the
edge e f ; see Figure 4).
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Figure 4: From a planar graph to a bipartite circle graph, and back. . . with another tree obtained by replacing c ∈ T by
d < T . The corresponding chord diagram is obtained by pivoting cd.

While pivoting is defined on circle graphs, its effect on a chord diagram representation is easy
to describe (see Figure 5).

e1 f1

e2f2

e2 f1

e1f2

B

D

CA

D

B

CA
∧ef

e f e f

1
2

3

4

5

6

7

8

1
2

3

4

5

6

7

8

Figure 5: Pivoting e f consists in rotating the parts between the endpoints of the chords e and f as in the picture.

On the other hand, contracting an edge in the tree T (or deleting an edge in its complement)
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results in the deletion of the corresponding chord from the chord diagram. This connection extends
to general (loopless simple) graphs, and this nice interplay partly explains the development of a
study of vertex minors and pivot minors, which was built as an analog to Robertson and Seymour’s
graph minor project.

However, considering graphs instead of maps, and circle graphs instead of maps, we might
lose some geometrical and topological aspects. Therefore, we shall keep chord diagrams and
maps as primitive objects.

4. Tours, Quasi-trees, and Map Minors

Definition 2 (tour). LetM = (B, σ, α) be a general map and let F be a subset of edges ofM. The
tour of F inM is the permutation τ defined by

τ(b) = σαF(b) =

σα(b) if b ∈ F
σ(b) otherwise

(2)

where, by a slight abuse of notation, we denote by αF the cutting out of α on the union of all the
edges in F, that is on the set {b ∈ B : b ∈ F}.

Note that the tour of F inM is the same as the tour of the complement of F in the dual general
mapM∗.

WhenM has a single component (i.e. M is a map), and F is (the edge set of) a spanning tree
of G(M), it is well known that the tour of F inM is a cycle (see Figure 6).
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Figure 6: Tour of a spanning tree (on the left) and of a quasi-tree (on the right). (Quasi-)tree edges are depicted as thick
blue edges and the other edges are depicted as thin red edges. The blue arrows correspond to σα and the red ones to σ.

We use this property to generalize the notion of spanning tree.

Definition 3 (quasi-tree). A (spanning) quasi-tree of a general mapM is a subset F of edges of
M, whose tour inM is a cycle.
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Note that the standard definition of a quasi-tree is slightly different, as it is (topologically)
defined as a map (or, more generally, a ribbon graph) with one boundary component [3]. However,
it is not difficult to check that our definition coincides with the notion of a (spanning) quasi-tree in
its original sense. The genus of a quasi-tree S of a mapM is the value (|S | − (n − 1))/2, where n
is the number of vertices ofM.

The existence of a quasi-tree characterizes maps, the same way that the existence of a spanning
tree characterizes connected graphs.

Lemma 4. A general mapM = (B, σ, α) has a single component (i.e. is a map) if and only ifM
has a quasi-tree.

Proof. IfM is a map, then any spanning tree of G(M) is a quasi-tree ofM. Conversely, assume
thatM has a quasi-tree S . As ⟨σ, α⟩ acts transitively on each cycle of the tour of S inM, it acts
transitively on B. Hence,M is a map.

Quasi-trees are compatible with map duality, in a way which is similar to trees with matroid
duality.

Lemma 5. A subset S of edges is a quasi-tree of a mapM if and only if its complement is a
quasi-tree of the dual mapM∗.

Proof. This directly follows from the fact that the tour of S inM is the same as the tour of the
complement of S inM∗.

A bridge (or isthmus) of a mapM is an edge e, such that G(M) − e is disconnected, while a
separating loop ofM is an edge e, such that G(M∗) − e is disconnected. Hence, a separating loop
of a map is a bridge of the dual map. Remark that bridges (resp. separating loops) are exactly
the edges ofM that belong to all quasi-trees (resp. to no quasi-tree) ofM. Note that, from the
map point of view, a bridge does not always disconnect the map as it can be an edge incident
to a degree 1 vertex. Similarly, a separating loop can be a loop that enclosing a single face (see
Figure 7).

Figure 7: Bridges (in fat blue) and separating loops (in fat red). Bridges belong to all quasi-trees, while separating loops
belong to no quasi-tree. On the right, two dual maps (you can check it. . . ), where the purple edge is dual to the green edge.
On the right top, the green edge is an example of a non-bridge with two incidences with a same face; on the right bottom,
the purple edge is an example of a non-separating loop.

Definition 6 (edge deletion). LetM be a map, and let e be an edge ofM that is not a bridge of
M. The map obtained by deleting e inM is the mapM\ e = (B \ e, σ|B\e, α|B\e).

7



e bridge
non

bridge
e

Figure 8: Deleting an edge e of a mapM. The number of edges decreases by 1, while the number of vertices remains
unchanged. Note that the number of faces can increase.

We now prove that this definition is valid, meaning thatM \ e is indeed a map. This will
follow from the next lemma applied to any spanning tree F of G(M) that avoids e, the transitive
action of ⟨σ′, α′⟩ on B \ e being witnessed by the existence of a quasi-tree ofM\ e. Remark that
G(M\ e) = G(M) \ e.

Lemma 7. LetM = (B, σ, α) be a general map, let S ⊂ B, let e ∈ B \ S , let τ be the tour of S in
M, and let τ′ be the tour of S inM\ e. Then, τ′ = τ|B\e.

In particular, S is a quasi-tree ofM if and only if S is a quasi-tree ofM\ e.

Proof. By definition, τ = σαS . As e < S we have (αS )B\e = αS . According to Theorem 1, we
have τ|B\e = (σαS )|B\e = σ|B\e(αS )|B\e = σ|B\e(α|B\e)S = τ

′.

Lemma 8. LetM be a map and let e be a bridge ofM. Then e belongs to all the quasi-trees ofM.

Proof. Assume for contradiction that e is a bridge ofM andM has a quasi-tree S that does not
contain e. Then S \ e is a quasi-tree ofM\ e, thusM\ e is a map. However, it is easily checked
that G(M\ e) = G(M) \ e, thus is not connected.

Note that if we delete fromM all the edges that are not in a quasi-tree S ofM, we get a map
with a single face (which is the tour of S on this map). Also note that deleting an edge keeps the
number of vertices constant.

Definition 9 (edge contraction). LetM be a map, and let e be an edge ofM that is not a separating
loop ofM. The map obtained by contracting e inM is the mapM/e = (B\e, (σα)|B\eα|B\e, α|B\e).

e e

e
non

separating

Figure 9: Contracting an edge e of a mapM. Note the special case of a non-separating loop. The number of edges
decreases by 1, while the number of faces remains unchanged.

It is immediate from the definition that we have

M / e = (M∗ \ e)∗.

As a consequence, if S is a quasi-tree ofM and e ∈ S then S \ e is a quasi-tree ofM / e.
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Using the properties we know about quasi-trees and minors, we can easily prove that deletion
and contraction commute:

Lemma 10. Let e , f be edges ofM. IfM \ e / f is defined then so isM / f \ e and we have
M\ e / f =M / f \ e.

Proof. Let T be spanning tree ofM \ e / f . Then T is a quasi-tree ofM \ e and T ∪ {e} is a
quasi-tree ofM. As f < T ∪ {e} the edge f is contractible inM and T ∪ {e} is a quasi-tree of
M / f . As e ∈ T ∪ {e}, the edge e is erasable inM / f and T is a quasi-tree ofM / f \ e. As the
tours of T inM\ e / f andM / f \ e are the same, the two maps are the same.

Note that a similar proof can be used to prove that deletions commute and that contractions
commute. From the properties of quasi-trees with respect to deletion and contraction, we deduce
the following.

Lemma 11. Let ς(M) be the number of quasi-trees ofM. Then ς satisfies the following contrac-
tion/deletion formula

ς(M) =


ς(M / e) if e is a bridge
ς(M\ e) if e is a separating loop
ς(M / e) + ς(M\ e) otherwise

e

f g h

g h g h

g g g g

f g h

{e, f, h} {e, f, g} {e, g, h} {e}

e ∈ S

f ∈ S f /∈ S

h ∈ S h /∈ S h ∈ S h /∈ S

g /∈ S g /∈ Sg ∈ Sg ∈ S

S :

Figure 10: A map with 4 quasi-trees
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Notice that a mapM defines two graphs, namely G(M) and G(M∗). We noticed that edge
deletion corresponds to a deletion in G(M), thus edge contraction corresponds to a deletion in
G(M∗).

For more on this subject and on the extension to maps (and, more generally, to ribbon graphs)
of the Tutte polynomial, we refer the reader to [3] and to the survey [4].

5. Bicolored chord diagrams and the ∆-matroid of quasi-trees

Given a cyclic permutation τ, we define the interlace chord diagram Λ(τ) of τ as the chord
diagram obtained by putting on a circle the flags in B in τ-order, the chords linking the pairs of
flags in a same edge. Given a quasi-tree S of a mapM with tour τ, we define Λ̃(M, S ) as the
chord diagram Λ(τ) with chords in S colored 1 and those not in S colored 2 (see Figure 12). Every
chord diagram is a representation of a circle graph, whose vertices are the chords and whose
edges are the pairs of intersecting chords. It will be convient to denote Λ̃(M, S ) both the chord
diagram and its associated circle graph.
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Figure 11: Tour of a quasi-tree and the corresponding bicolored chord diagram (color 1 is blue, color 2 is red).

We further define as I(M, S ) the bipartite subgraph of Λ̃(M, S ) induced by S and its comple-
ment. In other words, two edges are adjacent in I(M, S ) if they are adjacent in Λ̃(M, S ), one is in
S and not the other. The property mentioned in the planar case extends in the general case:

Fact 12. LetM be a map and let S be a spanning tree ofM. Then

• for each e ∈ S , the neighbors of e in I(M, S ) are the elements of ω(e) \ {e};

• for each f < S , the neighbors of f in I(M, S ) are the elements of γ( f ) \ { f }.

Note that a direct consequence of Theorem 12 is that I(M, S ) (hence Λ̃(M, S )) is connected
ifM is 2-connected.

It is well known that two spanning trees S and S ′ differ by two elements, i.e. S ′ = S △ {e, f }
if and only if e and f are adjacent in I(M, S ), and that we have I(M, S ′) = I(M, S ) ∧ e f . This
property extends to the chord diagrams of quasi-trees (considering Λ̃(M, S ) instead of I(M, S )).
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Lemma 13. Let S be a quasi-tree of a mapM and let e, f be distinct edges ofM that are adjacent
in Λ̃(M, S ). Then S ′ = S △{e, f } is a quasi-tree ofM and Λ̃(M, S ′) is obtained from Λ̃(M, S )∧e f
by flipping the colors of e and f .

Conversely, if S ′ = S △ {e, f } is a quasi-tree ofM, then e and f are adjacent in Λ̃(M, S ).

Proof. Let τ be the tour of S inM, and let e1, f1, e2, f2 be the flags in e and f (following the
τ-order). The cycle τ then rewrites as (w1, e1,w2, f1,w3, e2,w4, f2), where w1,w2,w3, and w4 are
sequences of flags. It is easily checked that the tour τ′ of S ′ is (w1, e2,w4, f1,w3, e1,w2). In
particular, τ′ is a cycle thus S ′ is a quasi-tree ofM.

Assume that e and f are not djacent in Λ̃(M, S ). Let e1, e2, f1, f2 be the flags in e and
f (following the τ-order). The cycle τ then rewrites as (w1, e1,w2, e2,w3, f1,w4, f2), where
w1,w2,w3, and w4 are sequences of flags. Then, it is easily checked that the tour τ′ of S ′ has 3
cycles, namely (w1, e1,w3, f1), (w2, e2) and (w4, f2). Thus, S ′ is not a quasi-tree ofM.
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Figure 12: Pivoting ae transforms the chord diagram of the quasi-tree {a, b, d, e, g, i} into the one of the spanning-tree
{b, d, g, i}.

Lemma 14. For every quasi-tree S ofM, there exist quasi-trees S 0 and S 1 ofMwith S 0 ⊆ S ⊆ S 1,
S 0 is a spanning tree ofM, and S 1 is the complement of a spanning tree ofM∗.

Proof. By duality, it is sufficient to prove the existence of S 0. Assume that S contains two edges
e, f that are adjacent in Λ̃(S ). Then S ′ = S △ {e, f } ⊂ S is a quasi-tree ofM. So, assume that
S does not contain two edges e, f that are adjacent in Λ̃(M, S ). By deleting all the edges not in
S , we get a mapM′, where G(M′) is a spanning subgraph of G(M) induced by the edges in S .
As this map has a single face and no interlaced edges, we deduce thatM′ is a tree, hence S is a
spanning tree ofM.

The next lemma is an easy consequence of our study of minors.

Lemma 15. Let S be a quasi-tree of a mapM.

• If e ∈ S , then Λ̃(M / e, S \ e) = Λ̃(M, S ) − e;

• If e < S , then Λ̃(M\ e, S ) = Λ̃(M, S ) − e.

11



We now state an analog of the edge exchange property of spanning trees, which implies that
the set of all quasi-trees of a map forms an even ∆-matroid [2].

Lemma 16. Let S 1 , S 2 be two quasi-trees of a mapM. Then, for every e ∈ S 1 △ S 2 there exists
f ∈ S 1 △ S 2 with f , e, such that S 1 △ {e, f } is a quasi-tree ofM.

Proof. By contracting all the edges in S 1 ∩ S 2 and deleting those in the complement of S 1 ∪ S 2,
we reduce to the case where (S 1, S 2) is a partition of the edge set. Note thatM has no bridges
and no separating loops. Let τ1 be the tour of S 1 inM. If there exists f , e such that e f is an
edge of Λ̃(M, S 1) we are done. We prove by contradiction that no other case can occur.

Assume e ∈ S 1. Let τ1 = (w1, e1,w2, e2). Note that w1 and w2 are not empty. LetM \ e =
(B \ e, σ′, α′). Let b ∈ w2. By assumption, α(b) ∈ w2. Assume b < S 1. If b is not the last flag of
w2 then σ′(b) = σ(b) ∈ w2. Otherwise, σ′(b) = σ2(b) = σ(e2) = σα(e1) ∈ w2. Assume b ∈ S 1
(hence α(b) ∈ S 1). If α(b) is not the last flag of w2 (i.e. σ(b) , e2) then σ′(b) = σα(α(b)) ∈ w2.
Otherwise, σ′(b) = σ2(b) = σ(e2) = σα(e1) ∈ w2. In all cases, σ′(b) ∈ w2. Thus, we get that w2
is closed under the action of ⟨σ′, α′⟩, contradicting the hypothesis that e is not a bridge (i.e. that
M\ e is a map).

Assume e < S 1. Let τ1 = (w1, e1,w2, e2). Note that w1 and w2 are not empty. LetM / e =
(B \ e, σ′, α′). Let b ∈ w2. By assumption, α(b) ∈ w2. Assume b ∈ S 1. If b is not the last flag of
w2 then σ′α′(b) = σα(b) ∈ w2. Otherwise, σ′α′(b) = σασα(b) = σα(e2) = σ(e1) ∈ w2. Assume
b < S 1. If α(b) is not the last flag of w2 (i.e. σ(b) , e2) then σ′α′(b) = σα(b) ∈ w2. Otherwise,
σ′α′(b) = σασα(b) = σα(e2) = σ(e1) ∈ w2. In all cases, σ′α′(b) ∈ w2. Thus, we get that w2 is
closed under the action of ⟨σ′α′, α′⟩, contradicting the hypothesis that e is not a separating loop
(i.e. thatM / e is a map).

Corollary 17. Let S 1 , S 2 be two quasi-trees of a map M. Then there exists a sequence
({e1, f1}, . . . , {ek, fk}) of pairs of edges such that S 2 = S 1 △ {e1, f1} △ · · · △ {ek, fk} and, for all
1 ≤ i < k, S 1 △ {e1, f1} △ · · · △ {ei, fi} is a quasi-tree ofM.

Remark 18. In this setting, the bridges (resp. the separating loops) ofM are the coloops (resp.
the loops) of the ∆-matroid of the quasi-trees ofM, meaning that bridges are exactly those edges
that belong to all quasi-trees (Theorem 8) and, dually, separating loops are exactly those edges
that belong to no quasi-tree.

Also, as a consequence of Theorems 13 and 17, the isolated vertices of Λ̃(M, S ) are exactly
the bridges and the separating loops ofM.

6. Representation of maps using quasi-trees

We extend the bijection between bipartite circle graphs and planar graphs shown Figure 2 to
a bijection between bicolored chord diagrams and pairs (M, S ), whereM is a map and S is a
quasi-tree ofM.

We now present how to derive a representation of a mapM from the choice of a quasi-tree S
ofM. Let g be the genus ofM and let gS be the genus of S .

Recall that an orientable surface of genus g > 1 can be represented using a polygon with 4g
sides (the Fricke canonical polygon or fundamental polygon of the surface), where the sides are
matched in distinct pairs with opposite orientation (see Figure 13 and, e.g. [17]).

In our representation of maps, we use up to two polygons. Precisely, we fix a circle Γ, a
polygonal Πi inside Γ with 4gS sides and a polygon Πe enclosing Γ with 4(g − gS ) sides. (If
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A1

B1 A′
1

B′
1

A2

B2A′
2

B′
2

Figure 13: Representation of a double torus by an octogon.

gs = 0 we don’t need Πi and if g = gs we don’t need Πe.) Each of these two polygons has his
sides matched by distinct pairs, as in Fricke representation. We put on Γ the points of the chord
diagram Λ̃(M, S ) and draw (without crossings, using the fundamental polygons) the chords of S
inside Γ and the other chords outside Γ. These chords are drawn in such a way that they do not
cross Γ (see Figure 14).

If one contracts Γ into a single point, our drawing defines two maps: the exterior map with
edges “outside” Γ, which has genus gS , and the interior map with edges “inside” Γ, which has
genus g − gS . Note that each of these maps has a single vertex (corresponding to Γ). We now
draw the dual of the interior map in our representation, inside Γ. Note that the obtained map has a
number of vertices equal to |S | − 2gS + 1. Then, we connect each point of Γ corresponding an
endpoint of a chord not in S to the vertex that can be reached without crossing any other edge.

a1

a2

b2

b1

c1 c2

d1

d2e2

e1

f1f2

A A′

B′

B

Πe

Γ

C C ′
D

D′

Πi

C C ′

D

D′

A A′

B′

B

a1

d1

c2

e1

f1

d2

a2

e2

f2

b1

c1

b2

C C ′

D

D′

A A′

B′

B

a1

d1

c2

e1

f1

d2

a2

e2

f2

b1

c1

b2

d∗

e∗

b∗

C C ′

D

D′

A A′

B′

B

a1

d1

c2

e1

f1

d2

a2

e2

f2

b1

c1

b2

d∗

e∗

b∗

C C ′

D

D′

A A′

B′

B

Figure 14: A bicolored chord diagram (top left), a representation of the double torus using two squares (center), and a
drawing of the chord diagram without crossings (top right). Dualization of the interior map (bottom left), connection
to the endpoints of the chords not in S (bottom center), and final drawing of the map (and quasi-tree) associated to the
bicolored chord diagram (bottom right).
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7. Rooted maps, Ordered matchings, and Double occurence words

Recall that rooting a mapM = (B, σ, α) consists in selecting a root flag b• ∈ B. Note that
rooting a map kills all the automorphisms of the map, as every flag can be written as µ(b•), for
some µ ∈ ⟨σ, α⟩. It will be convenient to denoteM• the mapM rooted at b•.

a1

a2

b1

b2

a1

a2

b1

b2

Figure 15: A rooted mapM•. The root flag is either indicated using a cross placed just (anti-clockwise) before the root
flag (here a1) at the incident vertex (on the left), or by orienting the corresponding edge from the vertex incident to the
root flag (on the right).

Similarly, rooting a chord diagram consists in selecting a root chord endpoint. Rooting
Λ̃(M, S ) and reading all the flags from the root, while traversing the circle clockwise, we obtain a
linear order on B or, equivalently, a single occurrence word, that is a word whose letters are the
flags, which contains every flag exactly once. This way, we can identify rooted bicolored chord
diagrams and bicolored ordered matchings. For example, the bicolored chord diagram depicted
on the left of Figure 12 and rooted at a1 corresponds to the bicolored ordered matching

Lemma 19. The following objects are in bijection:

- rooted bicolored chord diagrams with m chords,

- bicolored ordered matchings of size 2m,

- pairs (M•, S ), whereM• is a rooted map with m edges and S is a quasi-tree ofM•.

Proof. The chord diagram is defined by τ, which can be computed fromM and S . The bicol-
oration is given by S . Conversely, from the bicolored chord diagram, we can define α (by the
chords) and σ (from τ, α and the bicoloration).

Corollary 20. The sum of ς(M•) over all rooted mapsM• with m edges is (2m)!
m! .

Proof. This sum is 2m times the number of ordered matchings of size 2m.

The pivoting class of a chord diagram Λ is the class of all chord diagrams that can be reached
from Λ by a sequence of pivoting operations.

Lemma 21. The number of distinct pivoting classes of rooted chord diagrams with m chords
equals the number of rooted maps with m edges, and the number ς(M) of quasi-trees of a rooted
mapM• is the size of the pivoting class associated toM•.

Applying the transformation b 7→ b, which maps each flag to the edge it belongs to, we
transform the single occurrence word w defined by the tour of a quasi-tree into a word, whose
letters are edges, which uses every edge exactly twice. We call such a word a double occurrence
word. When using the above labeling scheme, a tour of a rooted map is fully determined by the
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Figure 16: Bijections in the case m = 2. There are 6 rooted maps and 8 pairs (M•, S ), whereM• is a rooted map and S is
a quasi-tree ofM. The set S is in blue and doted curves delineate the pivoting classes.

associated double occurrence word. A natural question is whether we can use a standard quasi-tree,
which could also be recovered from the mere double occurrence word. In full generality, it is
obvious that the answer is negative, as the double occurrence word e, e corresponds to two distinct
maps, one with a single edge linking two vertices (with quasi-tree {e}) and one with a single
loop attached to a vertex (with empty quasi-tree). However, if we restrict ourselves to loopless
maps, we shall prove that some particular quasi-tree (actually, some specific spanning tree) can be
recovered from its associated double occurrence word and that, moreover, the admissible double
occurrence words can be characterized.

Note that the circle graph defined by a double occurrence word w gets a natural orientation:
the edge e f of the circle graph is oriented from e to f if e f e f is a subword of w. We denote by
Λ⃗(w) the oriented circle graph defined by the single occurrence word w (see Figure 17).

a b

c

d

e

f

g

h

i

a b c d a e f d g b e g h f i h c i
d

g

c

h

a

b

e

f

i

Figure 17: From a spanning tree of a rooted map (on the left) to a directed circle graph (on the right), via a double
occurrence word (in the middle).
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8. Depth-First Search trees

The depth-first search (DFS) is traversal procedure of a connected graph G that produces a
rooted spanning tree T of G with the property that the two incidences of every edge of G lie in
a leaf-to-root path of T (Trémaux property). It will be convenient to describe this procedure on
a rooted combinatorial map (M, b0). The DFS starts at the vertex incident to b0, which is the
root of T , and explores the graph as far as possible before backtracking. In order to formalize
the DFS, we introduce some terminology and notations. It is convenient to introduce a dummy
flag b0, inserted just before b0 (i.e. σ(b0) = b0). The current position of the search is a flag b,
initially set to b0; We denote by MV (resp MB) the set of visited vertices (resp. of visited flags).
Initially, MB = {b0} and MV = {r}, where r is the vertex incident to b0. To each non-root visited
vertex v ∈ MV \ {r} will be associated a discovery flag bv, which will be the flag incident to v in
the edge linking v to its parent in the constructed spanning tree (or b0 if v is the root). The DFS
can be described as the repetition of the following two steps:

• we look for a non-visited flag incident to the current vertex. If such a flag exists, this
becomes the current flag b (which is now visited and consequently added to MB); otherwise,
if the current vertex is not the root, we backtrack, meaning that the current flag becomes the
discovery flag of v (which is now visited and consequently added to MB); otherwise (i.e. if
all the flags incident to the current vertex have been visited and the current vertex is the
root), the procedure ends.

• if the opposite flag b′ = α(b) of the current flag b is not incident to a visited vertex, then we
traverse the edge, meaning that the current vertex v is now the vertex incident to b′ (which
is now visited and consequently added to MV ), the discovery flag of this vertex is set to b′,
and the current flag is b′ (which is now visited and consequently added to MB).

Notice that in this procedure we do not precise how an non-visited flag is chosen when multiple
choices are possible. In this sense, the DFS is not (formally speaking) a fully deterministic
procedure.

When dealing with combinatorial map, there are two obvious ways of making the above
algorithm fully deterministic, by always selecting the first possible choice or by always selecting
the last possible choice. This way, we construct two special DFS-tree, the Early DFS-tree and
the Late DFS-tree of the rooted map. Note that by reversing the orientation of the map, that is by
considering the map (B, σ−1, α) instead of (B, σ, α), the Early DFS-tree (resp. the Late DFS-tree)
becomes the Late DFS-tree (resp. the Early DFS-tree).

Given a rooted mapM• and a spanning tree S ofM•, it is easily checked whether S has the
Trémaux property, i.e. whether S is a DFS-tree.

Lemma 22. Let S be a spanning tree of a rooted mapM•, and let w be the associated double
occurrence word.

Then S has the Trémaux property if and only if no f has both (in Λ⃗(w)) an in-neighbor and an
out-neighbor in S . In other words S has the Trémaux property if and only w does not contain the
pattern e1 f e1 e2 f e2, with e1, e2 ∈ S .

Proof. First note that if an edge f has a neighbor in S , then f < S . Assume S is a DFS-tree.
Contracting tree edges and deleting cotree edges preserves the property of being a DFS-tree.
This allows us to reduce to the case where M is a cycle. Then either w = f e1 . . . ek f ek . . . e1 or
w = e1 . . . ek f ek . . . e1 f .
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Conversely, assume that for every f < S either all the S -neighbors of f in Λ⃗(w) are in-
neighbors of f or all the S -neighbors of f in Λ⃗(w) are out-neighbors of f and assume for contradic-
tion that E \S contains a transversal edge f = uv. Let x be the least common ancestor of u and v in
S , and let e1, . . . , ek (resp. e′1, . . . , e

′
ℓ) be the path linking x and u (resp. x and v) in S . Again, we can

reduce to case where M is the cycle γ( f ). Then we get w = e1 . . . ek f ek . . . e1 e′1 . . . , e
′
ℓ f e′ℓ . . . , e1

(up to exchange between the paths e1 . . . ek and e′1 . . . e
′
ℓ). Hence, f has both in-neighbors and

out-neighbors in S , contradicting our hypothesis.

Lemma 23. Let S be a spanning tree of a rooted mapM•, and let w be the associated double
occurrence word. Then,

• S is the Early DFS ofM• if every e ∈ S is a source of Λ⃗(w) (or, equivalently, if w does not
contain the pattern f e f e with e ∈ S and f < S );

• S is the Late DFS ofM• if every e ∈ S is a source of Λ⃗(w) (or, equivalently, if w does not
contain the pattern e f e f with e ∈ S and f < S ).

We now deduce a duality results about DFS-trees of planar maps (see Figure 18).

i

h

f

b

j

g

d

a

c e

Figure 18: Illustration of the duality between the Early DFS of a planar map and the Late DFS of its dual. Note that
because of our definition of the duality of maps, the Early DFS of the primal map M corresponds to a DFS giving
precedence to the leftmost admissible edge. Re-rooting the dual DFS-tree at σ−1(b•) we get also a DFS giving precedence
to the leftmost admissible edge.

Corollary 24. Let S be a DFS-tree of a rooted 2-connected planar mapM•. Then the complement
S of S is a DFS-tree ofM∗• (the dual map rooted at the same flag b•) if and only if

• either S is the Early DFS ofM• and S is the Late DFS ofM∗•,

• or S is the Late DFS ofM• and S is the Early DFS ofM∗•.

Proof. AsM is planar, S is a spanning tree ofM∗.
Assume S is the Early (resp. the Late) DFS ofM•. As the double occurrence word associated

to the spanning tree S ofM• is the same as the double occurrence word associated to the quasi-tree
S ofM∗•, we deduce from Theorem 23 that S is the Late (resp. the Early) DFS ofM∗•.

Assume S is a DFS-tree ofM∗•. According to Theorem 22, for every f < S , either all the
S -neighbors of f in Λ⃗(w) are in-neighbors of f (we say that f has type 1) or all the S -neighbors of
f in Λ⃗(w) are out-neighbors of f (we say that f has type 2). Dually, for every e ∈ S , either all the
S -neighbors of e in Λ⃗(w) are in-neighbors of e (we say that e has type 2) or all the S -neighbors of
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f in Λ⃗(w) are out-neighbors of f (we say that e has type 1). Let Γ⃗ be the bipartite sub-digraph
of Λ⃗(w) induced by the parts S and S . It is immediate that the neighbors of an edge of type i in
Γ⃗ have also the type i. AsM is 2-connected, the graph Γ⃗ is connected (as easily follows from
Theorem 12). Hence, all the edges have the same type. According to Theorem 23, we deduce that
either S is the Early DFS ofM• (and S is the Late DFS ofM∗•) or S is the Late DFS ofM• (and
S is the Early DFS ofM∗•).

9. The Quasi-tree poset

One can define a poset on the set of all the quasi-trees of a rooted map as follows: to each pair
(w, I), where w is a double occurrence word and I is a subset of letters of w we associate the binary
word b(w, I) obtained by extracting from w the subword formed by all the first occurrences of the
letters, replacing each letter not in I by 0 and all letters in I by 1. Denote by <bin the lexicographic
order on the binary strings. Then, a quasi-tree S ofM is smaller than another quasi-tree S ′ ofM
is there exists a sequence S 0 = S , S 1, . . . , S k = S ′ of quasi-trees ofM, where |S i △ S i−1| = 2 and
b(w(S i−1), S i−1) <bin b(w(S i), S i) (for 1 ≤ i ≤ k), where w(S ) denotes the first-occurrence word
defined by the quasi-tree S . Note that one interpret this poset as a partial order on a pivoting class
of (rooted) circle graphs.
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a b e d a e c d b c
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{a, b}
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{a, c}

{a, b, c, d}

{a, b, c, e}

{a, c, d, e}

d

e b

ca

M
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Figure 19: The poset of the quasi-trees of a rooted map. The yellow zone corresponds to spanning trees, while the pink
zone corresponds to quasi-trees with genus 1. The minimum element of the poset is the Late DFS-tree, while the maximum
one is the complement of the Late DFS-tree of the dual rooted map.

As the Late DFS-tree is the minimum of this poset, it is a good candidate to serve as a standard
quasi-tree. An immediate property of this tree T is that no tree edge is interlaced on the right. In
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other words, tree edges are sinks of Λ⃗(w). On the other hand, if an edge is not in the tree, it is
interlaced with at least one tree edge, as we assumed that the map is loopless. Thus, the set of
sinks of Λ⃗(w) dominates Λ⃗(w).

Lemma 25. Double occurrence words w with |w| = 2m such that the set of sinks of Λ⃗(w) dominates
Λ⃗(w) are in bijection with rooted loopless maps with m edges.

Example 26. There are 14 orientable rooted loopless maps with 3 edges, which correspond to the
double occurrence sequences distinct from abacbc (see Figure 20).

aabbcc

aabcbc

aabccb

abccba

ababcc

abaccb

abbacc

abbcac

abbcca

abcabc

abcacb

abcbac

abcbca

abccab

∅ {a} {b} {c} {a, b} {a, b, c}{b, c}{a, c}I
w

abacbc

Figure 20: Maps defined by double occurrence words on 3 symbols. In Λ⃗(abacbc), the only sink is c and it does not
dominate a.

Theorem 25 can easily be specialized to planar maps.

Lemma 27. Double occurrence words w with |w| = 2m every vertex of Λ⃗(w) is a source or a sink
(i.e. such that no symbol of w is interlaced both on the left and on the right) are in bijection with
rooted loopless planar maps with m edges.

Proof. Consider the bijection between double occurrence words w with |w| = 2m such that the set
of sinks of Λ⃗(w) dominates Λ⃗(w) and rooted loopless maps with m edges (see Theorem 25). In
this bijection, the set of all vertices T (w) of Λ⃗(w) that have no out-neighbors forms a spanning
tree of the map. Thus, the map associated to a word w is planar if and only if the partition
(T (w),V(Λ⃗(w)) \ T (w)) is a partition into two independent sets, that is if and only if no two
symbols of w with an out-neighbor in Λ⃗(w) are adjacent in Λ⃗(w). This is clearly equivalent to the
property that no vertex has both an in-neighbor and an out-neighbor.
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10. Counting Loopless Rooted Maps

A 1-2 occurrence word is a word in which each letter appears either once or twice. Let w
be an 1-2 occurrence word. The symbols that appear only once in w are the unmatched symbols
of w, and they form the set U(w). The symbols that appear twice are the matched symbols of w.
Removing the unmatched symbols from w, we get the double occurrence word w◦. An unmatched
symbol a is covered by a matched symbol b in w if b a b is a pattern of w.

We define two properties for words:

• Property P: a word w has property P if it is a double occurrence word such that the sinks of
Λ⃗(w) form a dominating set; in other words, every symbol interlaced on the right (non-sink)
is interlaced on the right by a symbol that is not interlaced on the right.

• Property Q: a word w has property Q if it is a 1-2 occurrence word, w◦ has property P, and
no unmatched symbol of w is covered in w by a sink of Λ⃗(w) (i.e. by a matched symbol of
w not interlaced on the right).

Note that property P obviously implies property Q and that theorem 25 expresses that rooted
loopless maps with n edges are in bijection with the double occurrence words with n symbols that
satisfy the property P.

Lemma 28. Let w be a 1-2 occurrence word.
Then w has property Q if and only if

• either w is empty,

• or w = w′ a, where a is an unmatched symbol of w and w′ has the property Q,

• or w = w1 a w2 a, where no unmatched symbol of w is in w2, w◦2 has property P, and w1 has
property Q.

Moreover, such a decomposition, if it exists, is unique.

Proof. First, notice that the uniqueness of the decomposition (when it exists) is straightforward.
We prove the statement by induction on the number of symbols in w. If w is empty, the statement
is obviously satisfied. If the last symbol a of w is unmatched in w (so w = w′ a) it is immediate
that w has property Q if and only if w′ has property Q. So we can assume that w decomposes as
w = w1 a w2 a.

Assume w has property Q. As a is not interlaced on the right (i.e. is a sink of Λ⃗(w)) we get
that no symbol in w2 is unmatched in w. That w◦1 and w◦2 have property P follows directly from
the hypothesis that w◦ has property Q. Finally, consider an unmatched symbol f of w1 and assume
for contradiction that f is covered by a matched symbol e of w1 that is not interlaced on the right
in w1 (i.e. is a sink of Λ⃗(w1)). Assume first that e is interlaced on the right in w by some matched
symbol g of w (i.e. that e is not a sink of Λ⃗(w)). Then g is interlaced on the right by a in w.
As this holds for all possible choices of g it follows that e is not dominated by a sink in Λ⃗(w),
contradicting the assumption that w has property Q. Hence, e is a sink of Λ⃗(w). As w has property
Q we get that f is matched in w. But then e is interlaced on the right by f in w, contradicting the
fact that e is a sink of Λ⃗(w). It follows that w1 has property Q.

Conversely, assume that w = w1 a w2 a, no unmatched symbol of w is in w2, w◦2 has property
P, and w1 has property Q. We first prove the next claim, which determines the unmatched symbols
of w.
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� Claim 1. A symbol e is a sink of Λ⃗(w) if and only if it is a sink of Λ⃗(w1) or Λ⃗(w2).

Proof of the claim. The left to right implication is straightforward, so we are left with the right to
left implication.

The symbol a is not interlaced on the right, thus is a sink of Λ⃗(w). Every source of Λ⃗(w2) is
not interlaced on the right in w2 so cannot be interlaced on the right in w (as the first occurrences
of matched symbols of w that are unmatched in w2 are on the left of w2) hence are sinks of Λ⃗(w).
Consider a sink e of Λ⃗(w1) . If e is not a sink of Λ⃗(w), then it covers the first occurrence of a
matched symbol f of w, whose second occurrence is in w2. But then e covers f in w1 and f is
unmatched in w1, contradicting the assumption that w1 has property Q. �

Consider a matched symbol f that is not a sink of w. If both occurrences of f belong to w1
(resp. to w2) then f is interlaced on the left by a sink of Λ⃗(w1) (resp. a source of Λ⃗(w2)), which is
(by above claim) a source of Λ⃗(w). Otherwise, if the first occurrence of f belongs to w1 and the
second to w2, then f is interlaced on the right by the sink a of w. Altogether, we get that w◦ has
property P.

Assume for contradiction that some unmatched symbol of w is covered in w by some sink e of
Λ⃗(w). According to the assumptions, as f is unmatched in w, it belongs to w1. The sink e of Λ⃗(w),
having its first occurrence in w1 cannot be a or a sink of Λ⃗(w2). Hence, by the above claim, it is a
sink of Λ⃗(w1). It follows that f is covered in w1 by a sink of Λ⃗(w1) contradicting the assumption
that w1 has property Q.

Let Gn,m denote the number of 1-2 occurrence words with n matched symbols and m unmatched
symbols that satisfy the property Q if n,m are both non-negative integers, and let Gn,m = 0
otherwise.

Lemma 29. For every n ≥ 1 and m ≥ 0 we have G0,m = 1 and

Gn,m = Gn,m−1 +

n−1∑
i=0

n−1−i∑
j=0

(2i + j)!
(2i)!

(
m + j

j

)
Gi,0 Gn−1−i− j,m+ j (3)

Proof. This is a direct consequence of theorem 28: every 1-2 occurrence word w with n matched
symbol and m unmatched symbols decomposes either as w′ a, where w′ as n matched symbols and
m − 1 unmatched symbols, or is obtained (by w = w1 a w2 a), for some pair (i, j) of non-negative
integers with i + j ≤ n − 1, from a double occurrence word with property P with i symbols (w◦2)
and an 1-2 occurrence word w1 with n−1− (i+ j) matched symbols and m+ j unmatched symbols
with property Q (w1) by inserting j place-holders in w◦2 to match j unmatched symbols of w1 (this
gives

(
2i+ j

j

)
choices), selecting in w1 the j symbols that will be matched in w2 (

(
m+ j

j

)
choices) and

choosing a matching between these symbols and the place-holders in w2 ( j! choices).

To compute values of Gn,0 it may be helpful to introduce Mn,m = m! Gn,m. (Note that Gn,0 =

Mn,0.) Then M0,m = m! and we have the following recurrence:

Mn,m = m Mn,m−1 +

n−1∑
i=0

n−1−i∑
j=0

(
2i + j

j

)
Mi,0 Mn−1−i− j,m+ j.

Using this recurrence, we computed the values of Gn,0 for 1 ≤ n ≤ 20, namely:
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1, 3, 14, 87, 672, 6204, 66719, 820395, 11370212, 175583880, 2992513416, 55838871492,
1132934744671, 24846387327825, 585953052416226, 14791975514747882, 398109420366969728,
11382340640393570304, 344600158836813725696, 11015256001205535506432.

Let s = 2n + m, t = n + m, and Ns,t = Ms−t,2t−s. Then we have

Ns,t = (2t − s)Ns−1,t−1 +

s−t−1∑
k=0

2k∑
ℓ=k

(
ℓ

k

)
N2(ℓ−k),ℓ−kNs−2−ℓ,t−1.

11. Back to the Planar Case

Interestingly, a variant of the problem of enumerating rooted maps in which only separating
loops are forbidden was solved by Walsh and Lehman [24] for any given genus. As every loop of
a planar map is separating, it results from their work that the number of loopless rooted planar
maps with n edges is given by the closed expression 2 (4n+1)!

(n+1)! (3n+2)! =
(

4n+1
n+1

)
− 9

(
4n+1
n−1

)
(sequence

A000260 of the On-line encyclopedia of integer sequences). We refer the interested reader to [1]
for more results on enumerations of loopless planar maps.

In this section, we consider how this problem is connected to the bijections we defined in the
general case. We define two new properties for words:

• Property N: a word w has property N if it is a double occurrence word such that every vertex
of Λ⃗(w) is a source or a sink or, equivalently, if no symbol of w is interlaced both on the left
and on the right;

• Property N′: a word w has property N′ if it is a 1-2 occurrence word, w◦ has property N, and
every symbol covering an unmatched symbol of w is a sink of Λ⃗(w) (i.e. is not interlaced
on the right).

Note that property N obviously implies property N′ and that theorem 27 expresses that rooted
loopless planar maps with n edges are in bijection with the double occurrence words with n
symbols that satisfy the property N.

For a word w, we denote by w̃ the reversal of w, that is the word obtained from w by reversing
the order of the letters.

b ba ac cdd ee ff gg hhii jj kkll mm

w0a aw1u2w2u3w3u4

Figure 21: Example of a decomposition of a double occurrence word with property N. The words u1 and w4 are empty.

Lemma 30. Let w be a non-empty 1-2 occurrence word. Then w has property N′ if and only if
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• either w is empty,

• or w = w′ a where a is an unmatched symbol of w and w′ has property N′,

• or w = wk uk . . .w1 u1 a w0 a, where ‘

– a is a symbol,

– the words u1, . . . , uk contain (together) exactly the first occurrences of the matched
symbols of w that belong to w0 but are unmatched in w0,

– the words u2, . . . , uk and w1, . . . ,wk−1 are not empty,

– the pattern z of w0 with all symbols in U(w0) \ U(w) satisfy uk . . . u1 = z̃,

– every symbol in z occurs before all the elements of U(w0) ∩ U(w),

– w0 and wk have property N′,

– every wi with 1 ≤ i < k has property N.

Moreover, the decomposition, if it exists, is unique.

Proof. Let w be a non-empty 1-2 occurrence word whose last symbol is matched in w and let
w = wk uk . . .w1 u1 a w0 a, where a is a symbol, u1, . . . , uk contain the first occurrences of the
matched symbols of w that belong to w0 but are unmatched in w0, u2, . . . , uk are not empty, and
wi is not empty if 1 ≤ i < k. Note that this decomposition is uniquely defined. Let z be the pattern
of w0 with all symbols in U(w0) \ U(w).

Assume w has property N′. As every symbol in z is interlaced on the right by a, no symbol
in z is interlaced on the left, thus no symbol in u1, . . . , uk is covered in wk uk . . .w1 u1. As uk is
not empty, there exists a symbol f with second occurrence in w0 and first occurrence in uk. The
symbol f is interlaced on the right by a in w. By property N′, f does not cover any unmatched
symbol. In particular, wk−1, . . . ,w1 do not contain any unmatched symbol of w. Moreover no
symbol f can have a first occurrence in w j and a second occurrence in wi for 1 ≤ i < j ≤ k
as otherwise it would interlace on the left a symbol e with second occurrence in w0 and first
occurrence in u j (such a symbol exists as u j is not empty), which is itself interlaced on the right
by a, contradicting the hypothesis that w◦ has property N. It follows that all the wi with 1 ≤ i < k
are double occurrence words. It is straightforward that if w′ is a pattern of w with U(w′) ⊆ U(w)
then w′ has property N′. Hence we get uk . . . u0 = z̃ (by considering the pattern including the two
occurrences of a of the symbols in z), that wi has property N for 1 ≤ i < k, and that wk has property
N′. Also, assume that some e ∈ U(w)∩U(w0) appears before some f ∈ U(w0) \U(w) in w0. Then
f covers e in w and f is interlaced on the right by a in w, contradicting the hypothesis that w has
property N′. We now prove that w0 has property N′. First note that every symbol in U(w) ∩ U(w0)
is not covered in w0 by a symbol that is interlaced on the right in w0, for otherwise the same would
hold in w, contradicting property N′. Let f ∈ U(w0) \ U(w) and assume for contradiction that f is
covered by e in w0 that is interlaced on the right by g. Then e is interlaced (in w) on the right by g
and on the left by f , contradicting the hypothesis that w has property N′.

Conversely, assume that uk . . . u1 = z̃ and that w0,wk have property N′, that all wi with 1 ≤ i < k
have property N, and that all the elements in U(w0) ∩ U(w) are on the left of all the elements in
U(w0) \ U(w). Assume for contradiction that w does not have the property N′. Then either there
exists a matched symbol f interlaced both on the left and on the right, or there exists an unmatched
symbol f covered by a symbol e that is interlaced on the right. Assume that there exists a matched
symbol f interlaced both on the left and on the right. Obviously f , a. Also, f is not a symbol in
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z as these symbols are interlaced only on the right. If f belongs to wi with 1 ≤ i ≤ k then the two
occurrences of f as well as the two occurrences of every symbol interlaced with f in w belong to
wi, contradicting the assumption that wi has property N′. Hence the two occurrences of f belong
to w0. As w0 has property N′ the symbol f is not interlaced both on the left and on the right in
w0. It follows that f is interlaced on the right in w0 and is interlaced on the left by some symbol
g in z, contradicting property N′. Now assume that there exists an unmatched symbol f covered
by a symbol e that is interlaced on the right. Then either f belongs to w0 or f belongs to wk. If
f belongs to wk so do the two occurrences of e as well as the two occurrences of any symbol
interlaced with e, contradicting the hypothesis that wk has property N′. If f belongs to w0 then
either the two occurrences of e (as well as the two occurrences of the symbol interlaced with e on
the left) belong to w0, contradicting the assumption that w0 has property N′, or e ∈ U(w0) \ U(w),
contradicting the hypothesis that all the elements of U(w0) ∩ U(w) (like f ) are on the right of all
the elements in U(w0) \ U(w) (like the second occurrence of e).

Remark that the condition uk . . . u1 = z̃ and the condition that all the elements in U(w0)∩U(w)
are on the right of all the elements in U(w0) \ U(w) simply mean that we do not have any choice
when we will match unmatched symbols of w0, what will simplify the counting.

Let Tn,m be the number of 1-2 occurrence words with n matched symbols and m unmatched
symbols that satisfy property N′.

Lemma 31. Let
F(x, y) =

∑
n≥0

∑
m≥0

Tn,m xn ym.

Then F(x, y) is a solution of the equation

F(xy, y) = 1 + yF(xy, y) + xy
F(xy, y)2

1 − yF(xy, 0)
(4)

Proof. The first summand is 1, for the empty word; the second is yF(xy, y) for w′ followed by a;
the third summand corresponds to a matched a (xy), the word wk with property N′ (F(xy, y)), a
sequence ((1 − (F(xy, 0 − 1)y(1 − y)−1))−1) of words formed a non-empty sequence of unmatched
symbols (y(1− y)−1) followed by by a non-empty words with property N (F(xy, 0)− 1), a sequence
of unmatched symbols ((1 − y)−1), and finally the word w0 with property N′ (F(xy, y)).

References

[1] E.A. Bender and N.C. Wormald, The number of loopless planar maps, Discrete Mathematics 54 (1985), no. 2,
235–237.

[2] A. Bouchet, Greedy algorithm and symmetric matroids, Mathematical Programming 38 (1987), no. 2, 147–159.
[3] A. Champanerkar, I. Kofman, and N. Stoltzfus, Quasi-tree expansion for the Bollobás–Riordan–Tutte polynomial,

Bulletin of the London Mathematical Society 43 (2011), no. 5, 972–984.
[4] S. Chmutov, Topological Tutte polynomial, arXiv:1708.08132, 2017.
[5] R. Cori, Un code pour les graphes planaires et ses applications, vol. 27, Société Mathématique de France, Paris,

1975.
[6] , Indecomposable permutations, hypermaps and labeled dyck paths, Journal of Combinatorial Theory, Series

A 116 (2009), no. 8, 1326–1343.
[7] R. Cori and A. Machì, Maps, hypermaps and their automorphisms, Expo. Math. 10 (1992), 403–467.
[8] H. de Fraysseix and P. Ossona de Mendez, On a Characterization of Gauss Codes, Discrete & Computational

Geometry 22 (1999), no. 2, 287–295.
[9] J. Edmonds, A combinatorial representation for polyhedral surfaces, Notices of American Mathematical Society 7

(1960), 643.

24



[10] H. de Fraysseix, Local complementation and interlacement graphs, Discrete Mathematics 33 (1981), 29–35.
[11] , A Characterization of Circle Graphs, European Journal of Combinatorics 5 (1984), 223–238.
[12] , Tracé de graphes non planaires associé à une suite à double occurences; logiciel POLHOR, Tech. report,

PRC Maths Info, 1986.
[13] L. Heffter, Über das Problem der Nachbargebiete, Mathematische Annalen 8 (1891), 17–20.
[14] A. Jacques, Sur le genre d’une paire de substitutions, Comptes Rendus de l’Académie des Sciences, Paris 267

(1968), 625–627.
[15] A Kotzig, Quelques remarques sur les transformations κ, Séminaire P. Rosenstiehl, Paris 25 (1977), 164–171.
[16] S.K. Lando and A.K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences,

vol. 141, Springer, 2004.
[17] B. Mohar and C. Thomassen, Graphs on surfaces, The Johns Hopkins University Press, 2001.
[18] P. Ossona de Mendez and P. Rosenstiehl, Transitivity and connectivity of permutations, Combinatorica 24 (2004),

no. 3, 487–502.
[19] R.C. Read and P. Rosenstiehl, On the Gauss crossing problem., Colloquia Mathematica Societatis János Bolyai

(Hungary), 1976, pp. 843–875.
[20] N.Y. Reshetikhin and V.G. Turaev, Ribbon graphs and their invaraints derived from quantum groups, Communica-

tions in Mathematical Physics 127 (1990), no. 1, 1–26.
[21] P Rosenstiehl, Characterization des graphes planaires par une diagonale algebrique, cr acad, Sc. Paris 283 (1976).
[22] L. Schneps (ed.), The Grothendieck theory of dessins d’enfants, London Math. Soc. Lect. Note Ser., vol. 200,

Cambridge Univ. Press, 1994.
[23] W.T. Tutte, A census of planar maps, Canadian Journal of Mathematics 15 (1963), 249–271.
[24] T.R.S. Walsh and A. B. Lehman, Counting rooted maps by genus III: Nonseparable maps, Journal of Combinatorial

Theory, Series B 18 (1975), no. 3, 222–259.
[25] A.T. White, Graphs, Groups and Surfaces, revised ed., Mathematics Studies, vol. 8, North-Holland, Amsterdam,

1984.
[26] J.W.T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. and Mech. 12 (1963), 303–315.

25


