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Multi-Vehicle Simulation Framework for Heterogeneous Unconventional MAVs

The growing interest in using aerial vehicles for diverse missions creates the need for higher autonomy and dexterity. Unconventional configurations can potentially satisfy such requirements, at a cost of new challenges in design and control. Simulation environments are often employed to tackle such challenges while minimizing resources expenditure. In this paper, an existing simulation framework has been extended to allow for the modeling of new UAV configurations. Aerodynamic forces and moments generated by propellers and airframes are defined in separate functions to ease the understanding and allow future addition of new vehicle configurations. Incremental nonlinear dynamic inversion and vector field guidance methods are implemented as vehicle agnostic control and guidance solutions. Vehicle models are extracted and implemented into Paparazzi open-source autopilot system, which makes a seamless switch towards real flights and hardware in the loop tests, facilitating control law development. The simulator can also be used within vehicle and mission design environments. With that, the entire closed loop behavior of the system can be addressed from the design stage, allowing for the vehicle and fleet optimization while considering control and operation constraints. Finally,

INTRODUCTION

Simulators have become indispensable tools in aeronautical and robotics research. Their use is one of the factors that led to the increasing interest in deploying aerial robots for real life missions. In a fully computational environment, researchers can evaluate vehicle performance and different control strategies without expending resources to manufacture and test robots. By employing a simulator to train a learning based solution, Loquercio et al. [START_REF] Loquercio | Learning high-speed flight in the wild[END_REF] showed how quadcopters can safely and nimbly navigate through complex environments such as forests and disaster zones. Petracek et al. [START_REF] Petracek | New era in cultural heritage preservation: Cooperative aerial autonomy for fast digitalization of difficult-to-access interiors of historical monuments[END_REF] also used simulations to assure that two unmanned aerial vehicles (UAVs) could be used to document historical buildings without endangering them. Thanks to the successful application of UAVs in different tests or even in real life scenarios, there is an increasing interest in using them in different tasks. Such missions are increasingly complex, covering demands where time plays a major role, such as health [START_REF] Hiebert | The application of drones in healthcare and health-related services in north america: A scoping review[END_REF] related tasks, and the ones involving more interaction with humans, asking for more dexterity, such as construction [START_REF] Choi | An overview of drone applications in the construction industry[END_REF]. To successfully perform more complex missions, novel vehicle configurations are continually being explored. Winged UAVs [START_REF] Vourtsis | Wind defiant morphing drones[END_REF], capable of higher flight ranges, and different propulsion layouts [START_REF] Mancinelli | Dual-axis tilting rotor quad-plane design, simulation, flight and performance comparison with a conventional quad-plane design[END_REF], as the vehicles shown in Figure 1, capable of more dexterous flights, are often preferred. However, they create challenges with respect to accurate physics simulation. Precise aerodynamic modeling of airframes and propellers then becomes of paramount importance in order to correctly account for vehicle dynamics as it enables the as-sessment of vehicle stability, control effectiveness, and performance in various flight regimes. Such models are usually built with high order methods in the aeronautical engineering community, using computational fluid dynamics methods as in [START_REF] Koyuncuoglu | Cfd based multicomponent aerodynamic optimization for wing propeller coupling[END_REF] and [START_REF] Alvarez | High-fidelity modeling of multirotor aerodynamic interactions for aircraft design[END_REF]. However, the use of such computationally heavy tools remains impracticable at system simulation level for a given trajectory or full mission considering sensing and control systems, as a single point simulation can take hours to run. So, the challenge of accurately addressing aerodynamic behavior of unconventional UAVs within an acceptable computational cost for system simulation remains open.

In addition to the challenges associated with creating new vehicle configurations and defining accurate aerodynamic forces and moments, existing simulators often suffer from limited portability and adaptability. Many simulators are designed to run on specific operating systems or hardware, as NVIDIA GPUs, making them less accessible for researchers using different platforms. This can hinder collaboration and the ability to reproduce research findings across different research groups. In this paper, we present an extension to an existing simulation framework based on Bullet physics engine, which is operating system and hardware-agnostic. The simulator is intended to be used to model new vehicle designs, develop control and guidance laws and simulate mission scenarios while testing different vehicle configurations at the same time. The subsequent sections of this paper delve into the details of related work, proposed solution, and usecase scenarios, highlighting the benefits and potential applications of our approach. Contributions of the paper can be summarized as :

• Facilitate the simulation of new vehicle configurations • Easier and more intuitive definition of aerodynamic forces and moments

• Heterogeneous multi-vehicle simulation

• Improved portability through different operating systems

• Implementation into a well known open source autopilot system for rapid transition into hardware flights.

RELATED WORK

The desire for a simulation tool to evaluate different vehicle designs in [START_REF] Baskaya | A novel robust hexarotor capable of static hovering in presence of propeller failure[END_REF][START_REF] Luiz | Development of a missiontailored tail-sitter mav[END_REF], and novel control strategies for such vehicles, as in [START_REF] Barth | Model-free control algorithms for micro air vehicles with transitioning flight capabilities[END_REF], led to the search of available solutions. The interest in testing different guidance strategies [START_REF] Bilgin | Panel Method Based Guidance for Fixed Wing Micro Aerial Vehicles[END_REF] and even learning approaches [START_REF] Hovell | Learned multiagent real-time guidance with applications to quadrotor runway inspection[END_REF] increased even further the need for a reliable and flexible tool. The several available simulators for aerial vehicles are different in terms of objective, implementation, available vehicles, flexibility, and so on. So, the choice of evaluating existing solutions and selecting the most suitable one was made. Fadri et al. [START_REF] Furrer | Robot Operating System (ROS): The Complete Reference (Volume 1), chapter RotorS-A Modular Gazebo MAV Simulator Framework[END_REF] presented the Ro-torS, a simulator for different multicopter vehicles. The implementation in Robot Operating System (ROS) and Gazebo facilitates inclusion of sensors for odometry and an Inertial Measurement Unit (IMU). In the same vein, Baca et al. [START_REF] Baca | The mrs uav system: Pushing the frontiers of reproducible research, real-world deployment, and education with autonomous unmanned aerial vehicles[END_REF] presented the MRS UAV system, a ROS-based solution to simulate different vehicles while enabling real world deployment and facilitating reproducible research. Yunlong et al. [START_REF] Song | Flightmare: A flexible quadrotor simulator[END_REF] presented the Flighmare, a flexible quadrotor simulator based on Unity and a physics engine that allows for the inclusion of sensing system on the simulation, evaluation of reinforcement based strategies for control, and more. From the same research group, Foehn et al. [START_REF] Foehn | Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight[END_REF] presented Agilicious, an open-source and open-hardware agile quadrotor for visionbased flights. This solution comes with agilib, a library with minimal dependencies to integrate Agilicious into a given infrastructure, and agiros, a ROS based library that allows for easy simulation and real flight. Fernandez-Cortizas et al. [START_REF] Fernandez-Cortizas | Aerostack2: A software framework for developing multi-robot aerial systems[END_REF] presented the Aerostack2, a ROS2 based simulator for multiaerial-robots systems. Keipour et al. [START_REF] Keipour | A simulator for fully-actuated uavs[END_REF] presented a Matlab based simulator for fully-actuated vehicles. With the main focus of studying learning based methods, Kulkarni et al. [START_REF] Kulkarni | Aerial gym -isaac gym simulator for aerial robots[END_REF] presented the Aerial Gym Simulator, based on the NVIDIA Isaac Gym. Panerati et al. [START_REF] Panerati | Learning to fly-a gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter control[END_REF] also presented a Python based simulator adapted for learning methods. The authors introduced an environment called Gym-Pybullet-Drones, based on the Bullet physics engine, which supports multiple quadcopters and provides realistic collisions, aerodynamic effects, and reinforcement learning interfaces. With the objective of helping in education, Folk et al. [START_REF] Folk | Rotorpy: A python-based multirotor simulator with aerodynamics for education and research[END_REF] presented the RotorPy, a python based multirotor simulator that considers aerodynamic effects. More simulation frameworks and research directions can be found in the extensive review by Mairaj et al. [START_REF] Mairaj | Application specific drone simulators: Recent advances and challenges[END_REF]. Considering the needs of adding different vehicle configurations and aerodynamic and propeller modeling, as well as some aspects of the available simulators, such as maturity, ease of integration with the Paparazzi autopilot system and design environment, we opted to use the Gym-Pybullet-Drones, extending it according to our interest.

EXTENSIONS

Simulating heterogeneous fleets was one of the main objective for the improvement of the existing framework. However, a unified controller, suitable with most of the new and unconventional vehicle configurations (such as coaxial birotors, fully-actuated hexacopters, and tail-sitters), is also implemented. Some of these vehicles require higher-fidelity models to correctly represent aerodynamic forces and moments. Additionally, for the purpose of mission simulations, a more generic guidance algorithm becomes necessary. All of these issues have been addressed and presented below. This tool is under active development. So new vehicles, control strategies and improvements are added in an ongoing basis.

Vehicle Agnostic Controller

The controller is based on the work of Van Wijngaarden et al. [START_REF] Van Wijngaarden | Flight code convergence: fixedwing, rotorcraft, hybrid[END_REF] and revolves around the control of the angular accelerations in an incremental way. The attitude control law cal-culates the new command (u c ) as a function of the current command (u f ), current angular acceleration ( Ωf ) and thrust (T f ) as:

u c = u f + G + (ν -Ωf T f ) (1) 
where G + is the Moore-Penrose pseudoinverse of the control effectiveness matrix G and ν is a virtual control law that uses a proportional feedback (k Ω ) to control the angular rates as:

ν = k Ω (Ω ref -Ω) T d (2) 
where T d is the desired thrust, calculated by the outer loop, and Ω ref is calculated as a function of the quaternion attitude error (q err ) , obtained with the Kronecker product between the reference quaternion and the conjugate of the state quaternion:

Ω ref = k η q T err (3) 
The velocity control law is:

v = v f + m [G T (η, T ) + G L (η, V )] -1 (a ref -a f ) (4)
where a ref and a f are the reference and current accelerations respectively, v f is the current velocity, and G T (η, T ) and G L (η, V ) are velocity effectiveness matrices for thrust and lift forces, obtained with the derivatives of such forces with respect to the control vector for the outer loop, defined as roll, pitch, and thrust ([ϕ, θ, T ]). The subscript [.] f represents the filtered signal for the current acceleration and velocity vectors. The Bullet physics engine runs at 240 Hz, while the controls run at 96 Hz.

Vector Field Guidance

A generic guidance law becomes beneficial when a wide variety of vehicle configurations needs to be simulated. So we implemented the Vector Field Guidance method from De Marina et al. [START_REF] Garcia | Guidance algorithm for smooth trajectory tracking of a fixed wing uav flying in wind flows[END_REF]. The basic guidance law uses the velocity error to generate the reference acceleration as:

a ref = [v ref -v] k v (5) 
where, v is the current velocity, k v is decomposed as speed and heading gains for tangential and radial directions, and v ref is the reference velocity coming from a predefined vector field. The acceleration terms are neglected, and only velocity information is used. The implementation requires an analytical formulation of the trajectory that is used as a reference, e.g., a circle x 2 + y 2 + r 2 = 0. At any point in the environment, a "level-set" can be calculated which has a non-Euclidean distance metric with respect to the reference trajectory, and by driving this distance error towards zero, the vehicle converges to the reference trajectory. Figure 2 shows an example of the outcome of the vector field guidance. The desired velocity (direction and module) for a vehicle at each point in the space (represented by the arrows) is calculated in such a way that the desired trajectory, represented by the circle with radius 100 m, is correctly tracked. 

Propeller Aerodynamics

To calculate in real time the thrust and moments generated by propellers assuming different geometries and flight including forward flight, four methodologies are implemented. Both low order data-driven methodologies proposed by Gill and D'Andrea [START_REF] Gill | Computationally efficient force and moment models for propellers in uav forward flight applications[END_REF] are implemented and indicated when experimental data for thrust and moments for the specific propeller are known. The hybrid blade element momentum (HBEM) by Davoudi and Duraisamy [START_REF] Davoudi | A hybrid blade element momentum model for flight simulation of rotary wing unmanned aerial vehicles[END_REF] is implemented to account for cases where no performance data is known, only the propeller geometry. In order to use the latter, a valid Matlab license is needed. Lastly, surrogate models can also be used to account for higher fidelity models, enabling a compromise between computational cost and accuracy. Regardless of the surrogate technique or generation strategy, any Pickle file containing the model can be read and used for the calculation. Surrogate models created using CCBlade [START_REF] Ning | Using blade element momentum methods with gradient-based design optimization[END_REF] were used alongside the simulator in [START_REF] Luiz | Assessment of closed loop dynamics in the multidisciplinary design and optimization of small uavs[END_REF] to simulate and optimize a tail-sitter in cruise flight. In [START_REF] Luiz | Assessment of methods for propeller performance calculation at high incidence angles[END_REF] seven different methodologies for propeller performance calculation were compared using the proposed simulator. The goal was to observe if, by changing the calculation method in a quadcopter trajectory simulation, the impact in the control input would be noticeable. Despite the fact that desired trajectory was correctly tracked by the vehicle independently of the propulsion methodology, we obtained a significant difference in motor rpm commands, as shown in Figure 3, that compares both methods by Gill and D'Andrea [START_REF] Gill | Computationally efficient force and moment models for propellers in uav forward flight applications[END_REF] and HBEM [START_REF] Davoudi | A hybrid blade element momentum model for flight simulation of rotary wing unmanned aerial vehicles[END_REF]. The HBEM led to smaller rpm values, which could lead to a smaller battery requirement during the design phase of a vehicle. 

Vertical takeoff and landing UAVs

Modeling the aerodynamic forces and moments experienced by vertical takeoff and landing (VTOL) UAVs remains an open challenge. This kind of vehicle flies in a larger flight envelope than general aviation aircraft, including post-stall conditions. To account for that, the Φ-theory based model, as proposed by Lustosa et al. [START_REF] Lustosa | Global singularity-free aerodynamic model for algorithmic flight control of tail sitters[END_REF] was implemented. This model is algebraically simple and does not rely on angles of attack and sideslip, thus becoming singularity-free, while taking into account the influence of the wing, the deflection of wing control surfaces, and propeller-wing interaction. The same model has already being used by Tal et al. [START_REF] Tal | Global incremental flight control for agile maneuvering of a tailsitter fly-ing wing[END_REF] to develop a control law capable of enabling agile flight of tailsitters. In order to make this module applicable for any flying wing configuration, the contributions generated by the propeller-wing interaction in the forces and moments are not taken into account and left for future work, as the original formulation is specific for vehicles with two propellers. Below, we provide a brief explanation of how the aerodynamic forces and moments are generated. For further information, we refer the reader to [START_REF] Lustosa | Global singularity-free aerodynamic model for algorithmic flight control of tail sitters[END_REF]. Considering a flying wing UAV with 2 elevons and assuming the use of thin airfoils, three Φ-coefficients are needed to build the model using the Φtheory: the velocity-to-force coefficient Φ (f v) , the velocityto-moment coefficient Φ (mv) , and the angular-velocity-tomoment coefficient Φ (mω) :

Φ (f v) =   C D0 0 0 0 C Y0 0 0 0 2π + C D0   (6) 
where C D0 and C Y0 are the minimum drag and side force coefficients, respectively.

Φ (mv) =   0 0 0 0 0 -c -1 ∆r(2π + C D0 ) 0 b -1 ∆ r C Y0 0   (7) 
where b, c, and ∆ r are the wing span, wing mean aerodynamic chord, and flap chord percentage, respectively.

Φ (mω) =   C lp C lq C lr C mp C mq C mr C np C nq C nr   (8) 
where each coefficient accounts for the variation of the rolling (l), pitching (m), or yawing (n) moment coefficient with dimensionless rate of change of roll p, pitch q, or yaw r rate [START_REF] Roskam | Airplane Flight Dynamics and Automatic Flight Controls. Number p. 1 in Airplane Flight Dynamics and Automatic Flight Controls[END_REF]. Additionally, it is necessary to model the so-called elevon effectiveness for both aileron and elevator configurations ζ f and ζ m ∈ R 3 . With that, the aerodynamic force on the body frame (F b ) at the aerodynamic center is calculated as:

F b = - 1 2 ρSΦ (f v) vv b + 1 4 ρSΦ (f v) [ζ f ×](δ 1 + δ 2 )vv b - 1 2 ρSΦ (mv) vBω b + 1 4 ρSΦ (mv) [ζ f ×](δ 1 + δ 2 )Bvv b (9) 
where [ζ f ×] represents the vector product operation matrix of ζ f , ρ is the air density, S the wing area, δ 1 and δ 2 are the deflections of each elevon, v is the airspeed, v b and ω b are linear and angular speed in the body frame, respectively, and B a matrix defined as a function of wing span (b) and mean aerodynamic chord (c) as:

B =   b 0 0 0 c 0 0 0 b   (10) 
The aerodynamic moment (M b ) acting on the body frame at the aerodynamic center is calculated as:

M b = - 1 2 ρSBΦ (mv) vv b - 1 2 ρSBΦ (mw) vω b + 1 4 ρSBΦ (mv) [ζ m ×](δ 1 + δ 2 )vv b + 1 4 ρSBΦ (mω) [ζ m ×](δ 1 + δ 2 )vBω b (11) 
Figure 4 shows a visual comparison between a real and a simulated UAV. 

Adding new extensions

Within the simulation environment, every robot is defined in a Unified Robot Description Format (URDF) file. So, defining a new vehicle and its "physics" consists in creating a new URDF file and defining a new function in the base aviary. In this new function, each force and moment acting on the vehicle has to be declared, as well as where (or which link) it is applied. Every existing physics can also be updated to account for new methods, such as a new methodology for propeller performance. Control and guidance strategies are implemented in the control aviary, so new solutions should be added to this Python script.

USE-CASE SCENARIOS

In the preceding sections, we have outlined the essential building blocks of the framework necessary for simulating a comprehensive use-case. In this section, we present potential applications for the tool. The primary aim is to demonstrate the framework's potential and provide guidance and motivation for other researchers by offering ready-to-use templates to initiate their own investigations. 

Drone Racing : Time Optimal Trajectory Tracking

Drone racing has emerged as an exciting and rapidly growing sport, captivating both enthusiasts and researchers alike. With its unique blend of speed, agility, and precision, drone racing poses unique challenges that require advanced control strategies and trajectory tracking techniques. In the example shown in Figure 5, seven gates have been positioned in order to create a figure-eight maneuver. The drone starts from the middle section of the track, and calculates the fastest trajectory through the gates with a predefined sequence. The trajectory is generated by minimizing the snap of the polynomial trajectory, passing through the center of the gates. It can be seen that the desired trajectory calculated by the minimum snap (blue), and the actual flown trajectory (red) has a significant discrepancy. Other planning and control strategies can be implemented and evaluated in this context before real flights.

Vehicle Design and Control Law Optimization

The proposed simulation framework was used in a multidisciplinary optimization process applied to a tail-sitter vehicle. A UAV designed in [START_REF] Luiz | Development of a missiontailored tail-sitter mav[END_REF] for the IMAV20221 presented an undesired overshoot under high wind conditions, as shown in Figure 6. So, in [START_REF] Luiz | Assessment of closed loop dynamics in the multidisciplinary design and optimization of small uavs[END_REF], the entire vehicle simulation was embedded in an optimization problem, where the energy consumption for a circular lap was minimized, while reinforcing its wind robustness via constraints. The propulsion layout of the vehicle and the guidance control law gains were the designs variables for the problem. With the process, a more energy efficient and robust to wind vehicle was obtained. Figure 7 shows the differences in the flight path of the baseline and optimized vehicle.

IMPLEMENTATION TO PAPARAZZI AUTO PILOT SYSTEM

The integration of a simulator environment with a real drone autopilot system, such as Paparazzi [START_REF] Hattenberger | Using the Paparazzi UAV System for Scientific Research[END_REF], offers numerous advantages for the development and verification of control and guidance algorithms. By enabling the seamless trans- fer of code between simulation and real-world environments, this approach provides a powerful tool for iterative development, testing, and validation processes. The current develop- ment state allows for the use of Paparazzi's ground control station to simulate an entire mission. The bridge between simulation and Paparazzi enables the full replacement of the real system with the simulation, while assuming perfect sensing, for the moment. By harnessing the power of simulation, advancements in drone technology can be accelerated, leading to improved aerial capabilities and expanded applications across various industries.

CONCLUSION

We presented the extension of an existing framework for simulating aerial robots adapted to account for different vehicle configurations, control and guidance strategies. This open-source solution can be used during design phase, evaluating unconventional vehicle configurations and their perfor-mance with respect to a given mission. It can also be used for control and guidance laws development, testing, and benchmark. Its simple structure and the usage of Python allows for easy implementation of new features. This tool has already been used for different applications, such as drone racing and tail-sitter design and optimization. Ultimately, it will be used as well for simultaneous mission and heterogeneous swarm of vehicles design.
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 1 Figure 1: Different vehicle configurations flying together are shown in the simulation environment.
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 2 Figure 2: Illustration of vector field guidance, the arrows indicate the velocity direction at each point in the plane.

Figure 3 :

 3 Figure3: Discrepancies found in rpm commands for a quadcopter for different propeller methods: HBEM and the ones by Gill[START_REF] Luiz | Assessment of methods for propeller performance calculation at high incidence angles[END_REF].
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 4 Figure 4: Simulated and real vehicle.
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 5 Figure 5: Simulation of a drone passing through gates, representing an example drone racing scenario, with the desired trajectory in blue and the simulated one in red.

Figure 6 :

 6 Figure 6: Flight trajectory in the IMAV2022 competition: overshoot in one of the turns caused by strong winds.

Figure 7 :

 7 Figure 7: Flight trajectories of baseline and optimized vehicles under wind conditions, with error bounds defined as ±30[m].

Figure 8 :

 8 Figure 8: Simulation model running by Paparazzi Autopilot system.
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