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Many engineering problems are described by complex multidisciplinary systems, whose behavior is dictated by a non-linear system of equations called multidisciplinary analysis (MDA). When optimizing these systems, the resolution of the MDA at each evaluated design space point often represents a heavy computational burden, particularly when high-fidelity solvers are used. In this work, we address the high computational cost of the MDA by replacing the disciplinary solvers by Gaussian Process (GP) surrogate models. This approach allows to uncouple the disciplinary solvers, similarly to what is done in the Individual Disciplinary Feasible formulation. Moreover, a procedure for the adaptive enrichment of the disciplinary surrogates is proposed to reduce the uncertainty of the surrogates in the explored regions of the design space. The use of GP surrogates further presents the advantage of an analytical gradient computation, which allows for an easy implementation with gradient-based solvers. The performance of the proposed approach has been tested on the analytical benchmark Sellar test case, as well as an aircraft design problem which couples the aerodynamics and structural disciplines. Both test cases show that the proposed approach requires less disciplinary solver calls than classical gradient-based solvers. Finally, the proposed methodology has been integrated in ONERA's WhatsOpt collaborative environment. WhatsOpt generates the OpenMDAO skeleton code, where the implementations of the disciplines can then be plugged into. Thanks to the graphical interface of WhatsOpt, users can easily implement their models and choose the proposed approach to solve the optimization problem.

INTRODUCTION

Multidisciplinary Design and Optimization (MDO) has become a popular tool when designing complex systems involving several disciplines. By taking into account the interactions between the participating disciplines, MDO is capable of finding more relevant solutions, compared to when the disciplines are optimized sequentially. Formally, the nonlinear coupled system which describes the interactions between the disciplines is called Multidisciplinary Design Analysis (MDA). The MDA is often solved using partitioned approaches, where the disciplinary solvers are called iteratively until the equilibrium of the non-linear coupled system is found. Due to the resulting numerical cost, the use of high fidelity solvers directly in the MDA is often challenging. Many studies have thus focused on the development of MDO formulations which aim to ease the computational burden [START_REF] Martins | Multidisciplinary design optimization: A survey of architectures[END_REF]. Among these formulations are the multidisciplinary feasible (MDF) and the individual disciplinary feasible (IDF) approaches [START_REF] Cramer | Problem formulation for multidisciplinary optimization[END_REF]. In the MDF approach, the MDA is solved at every optimizer iteration. As a result, a physically relevant solution is obtained at every optimization stage. On the other hand, in the IDF approach, the optimizer handles both design and coupling variables, essentially uncoupling the disciplinary solvers, but coupling the resolution of the optimization problem and of the MDA. The IDF approach often results in a lower computational cost than the MDF approach, but a physically non-feasible solution may be returned if the optimization fails or is terminated early.

Another way to address the high computational cost of the MDO is through the use of surrogate models. For instance, one can build an inexpensive approximate function of the MDA quantity of interest based on a given design of experiments. This strategy, however, is not dedicated to multidisciplinary systems and does not take advantage of the partitioned methods used to solve the MDA. Moreover, any enrichment of the built approximate function requires a new resolution of the whole MDA. Therefore, a more interesting solution is to build a surrogate model of each disciplinary solver. This approach has been applied in an MDO context in [START_REF] Zhang | Multidisciplinary design and multiobjective optimization on guide fins of twin-web disk using kriging surrogate model[END_REF][START_REF] Wang | Surrogate based multidisciplinary design optimization of lithium-ion battery thermal management system in electric vehicles[END_REF], where disciplinary solvers were used to perform optimization using a genetic algorithm. Disciplinary surrogates have also been used in [START_REF] Scholten | Uncoupled method for static aeroelastic analysis[END_REF] to perform MDA of an aircraft wing. For the cited applications, disciplinary surrogates were shown to reduce the computational cost, but were required to be sufficiently accurate throughout the entire design space. In an optimization context, where the interest lies only in certain regions of the design space, this may represent a waste of computational effort. A more efficient approach is thus to use adaptive sampling strategies, where the disciplinary solvers are enriched only at points selected by the optimizer. Such an adaptive strategy is proposed in [START_REF] Dubreuil | Towards an efficient global multidisciplinary design optimization algorithm[END_REF], where Gaussian Processes (GPs) are used to approximate each disciplinary solver. The uncertainty introduced by the disciplinary GPs in the resulting random MDA is then quantified and used to determine if the built disciplinary surrogates should be enriched.

In this work we propose to exploit the analytical computation of the disciplinary gradients that can be obtained thanks to the use of disciplinary GPs. Since gradient information is often not available for high-fidelity solvers, the use of gradient-based optimization with expensive disciplinary solvers has been limited. When necessary, gradient information is obtained using approximation methods, which, for coupled systems, can require long computational times. An alternative to these approaches is the coupled-adjoint method [START_REF] Martins | A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design[END_REF], which has been used in recent literature to perform MDO thanks to its computational efficiency [START_REF] Jasa | Open-source coupled aerostructural optimization using Python[END_REF][START_REF] Gray | Open-MDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization[END_REF][START_REF] Bons | Aerostructural design exploration of a wing in transonic flow[END_REF]. The coupled-adjoint method remains, however, an intrusive approach requiring derivative information at a disciplinary solver level. The methodology proposed in this work stands apart from the current state-of-the-art approaches as it avoids the expensive computation of the disciplinary gradients, while still retaining a non-intrusive approach, fit for use with black box disciplinary solvers.

Thanks to the simplicity of the proposed optimization strategy, the approach described in this work is easily integrated within ONERA's WhatsOpt collaborative environment [START_REF] Lafage | Whatsopt: a web application for multidisciplinary design analysis and optimization[END_REF]. WhatsOpt generates the OpenMDAO [START_REF] Gray | Open-MDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization[END_REF] skeleton code, where implementations of the disciplinary solvers can then be plugged into. By selecting the dedicated option in WhatsOpt graphical interface, the required code to build the disciplinary surrogates is generated. Then, users can select any of the optimizers available in OpenMDAO (e.g. SLSQP [START_REF] Kraft | A Software Package for Sequential Quadratic Programming[END_REF], COBYLA [START_REF] Powell | A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation[END_REF]) to solve the optimization problem.

The remainder of this work is organized as follows. Section 2 introduces the methodology proposed in [START_REF] Dubreuil | Towards an efficient global multidisciplinary design optimization algorithm[END_REF] to build the disciplinary surrogates and solve the resulting random MDA. The analytical computation of the disciplinary gradients used to perform gradientbased optimization is equally detailed in this section. Section 3 describes the existing implementations with ONERA's WhatsOpt collaborative environment. In Section 4 the proposed approach is applied to the analytical test case as well as a wing structural sizing engineering problem. Finally, some conclusions are provided in Section 5.

DISCIPLINARY SURROGATES FOR MDO

Problem definition

The purpose of this work is to solve MDO problems of the form:

arg min x∈X f obj (x, y * c obj (x)) s.t. g m (x, y * cg m (x)) ≥ 0, m = 1, ..., n g h r (x, y * c hr (x)) = 0, r = 1, ..., n h (1) 
where f obj denotes the objective function, which depends on the set of design variables x ∈ X ⊂ R n as well as on the set y * c obj (x) composed of some (or all) of the converged coupling variables. Similarly, g m (x, y * cg m (x)) denotes the set of inequality constraints and h r (x, y * c hr (x)) is the set of equality constraints. In practice y * c obj (x), y * cg m (x) and y * c hr (x) are subsets of y * (x) = {y * i (x), i = 1, ..., n d }, where n d is the number of disciplines in the system and y * (x) is the solution of the non-linear system (MDA), written as:

y i = f i (x, y c i ), i = 1, ...n d ∀x ∈ X (2)
where f i is the disciplinary solver corresponding to discipline i, y c i is the vector of coupling variables that influence y i and c i is a subset of {1, ..., n d } \ {i}. It is assumed that Eq. ( 2) has a unique solution for any x belonging to the design space X .

As previously stated, it is proposed to solve the MDA defined in Eq. ( 2) by replacing the disciplinary solvers by GP surrogate models. In the following, the steps required to obtain the disciplinary GPs and solve the resulting random MDA are described.

Building disciplinary surrogates

The first step of the proposed approach is to replace all disciplinary solvers f i , i = 1, ..., n d by a GP surrogate. Each GP is built from a Design of Experiments DoE f i sampled over the space X × C i , where C i denotes the space of the coupling variables y c i associated with discipline i. The following approximation for each disciplinary solver is obtained:

fi (x, y c i ) = µ i (x, y c i ) + ϵ i (x, y c i ) ( 3 
)
where µ i (x, y c i ) is the mean function of the GP and ϵ i (x, y c i ) is a GP of zero mean conditioned on the respective disciplinary DoE. Note that the bounds for C i are often not known and an initial guess must be made. In this work, we assume that an expert judgment can be used to obtain a reasonable initial guess for the coupling variable space.

Once each disciplinary solver has been replaced by the corresponding GP approximation fi , we obtain the following non-linear system of equations:

ŷi (x, ŷc i ) = µ i (x, ŷc i ) + ϵ i (x, ŷc i ) i = 1, ..., n d (4) 
An illustration of the proposed approximation for a two-discipline system at a fixed value x = x * is shown in Figure 1, where the dotted lines represent the real disciplinary solvers f i while the mean values of the GP approximations fi are given by continuous lines. Figure 1 shows that, for the current disciplinary GP approximations, the surrogate mean solution does not correspond to the real MDA solution at x = x * . In the following section, we will describe how to enrich the disciplinary surrogates until the surrogate mean solution is sufficiently accurate at x = x * . Before we proceed, however, it is worth addressing the case where the coupling variables are not scalar, but rather high dimensional vectors, such as displacement or pressure fields. Additional operations are required when this is the case for one or all disciplinary solvers, since, in order to build the disciplinary GPs, a low dimensional input space is required. Fortunately, this issue has already been addressed in [START_REF] Berthelin | Disciplinary proper orthogonal decomposition and interpolation for the resolution of parameterized multidisciplinary analysis[END_REF], where it is proposed to reduce the coupling variable space using Proper Orthogonal Decomposition (POD) before obtaining the disciplinary GP surrogates. In this work, we will employ the same strategy proposed in [START_REF] Berthelin | Disciplinary proper orthogonal decomposition and interpolation for the resolution of parameterized multidisciplinary analysis[END_REF] any time the coupling variables are high-dimensional vectors. A brief description of the main steps is provided in the following.

Let the high-dimensional vector y i be the output of the disciplinary solver f i . Using POD, y i may be represented in a linear subspace according to:

y i (x, y c i ) ≈ ỹi (x, y c i ) = ϕ i 0 + n i j=1 α i j (x, y c i )ϕ i j ( 5 
)
where ϕ i j , j = 1, ..., n i are the basis vectors, a i j are the corresponding coefficients and ϕ i 0 is a constant vector. Note that n i determines the number of vectors of the basis associated with solver f i and is typically chosen so that a given percentage of the snapshots variance is captured by the POD basis.

Using the approximation defined in Eq. ( 5), we can rewrite the reduced MDA as follows:

α i 1 (x, α c i ), ..., α i n i (x, α c i ) = Φ i (x, α c i ) i = 1, ..., n d (6) 
where Φ i denotes the operation allowing to obtain the POD coefficients for the disciplinary solver f i and α c i denote the POD coefficients of the coupling variables influencing the value of α i j , j = 1, ..., n i . In this new reduced space, it becomes possible to build the disciplinary GP approximations. For the disciplinary solver f i , the idea is to replace each coefficient of the POD basis by a GP, and to write the resulting reduced MDA as:

αi j = µ i j (x, αc i ) + ϵ i j (x, αc i ) ∀i = 1, ..., n d ∀j = 1, ..., n i (7) 
Note that, in this case, expert judgment cannot be used to provide an initial guess for the coupling variable space. A solution for the construction of an appropriate DoE for the training of the POD basis is detailed in [START_REF] Berthelin | Disciplinary proper orthogonal decomposition and interpolation for the resolution of parameterized multidisciplinary analysis[END_REF]. To avoid additional disciplinary solver calls, this same DoE is then used to train the disciplinary GPs.

Solving the random MDA

The previous section described how GP approximations of the disciplinary solvers can be obtained. In this section, we will focus on how to solve the random MDA given by Eq. ( 4). As was shown in Figure 1, using only the GPs mean value, we are unable to accurately solve the MDA. This is because the uncertainty of the disciplinary surrogates is not accounted for. This uncertainty is given by the GPs variance, which introduces randomness in the MDA. Thus, the first step in solving the MDA is to model the uncertainty of the disciplinary surrogates and, therefore, evaluate their accuracy.

It is proposed in [START_REF] Dubreuil | Towards an efficient global multidisciplinary design optimization algorithm[END_REF] to model the uncertainty of the disciplinary GPs by considering perfectly dependent GPs, whose correlation function is constant and equal to one. The random MDA is rewritten as:

ŷ′ i (x, y c i ) = µ i (x, y c i ) + σ i (x, y c i )ξ i i = 1, ..., n d (8) 
where σ i (x, y c i ) is the standard deviation and ξ i is a standard Gaussian random variable. It should be noted that the solution of Eq. ( 8) depends on the sample Ξ = {ξ i , i = 1, ..., n d } drawn and thus, by drawing different samples, different solutions of the MDA are obtained. Figure 2 illustrates how different MDA solutions can be obtained at a given x = x * when different samples of the random vector Ξ are drawn.

To characterize the dispersion of the random MDA solutions, a sufficiently large number of samples should be drawn. Nonetheless, because the disciplinary GPs are inexpensive to evaluate, a direct Monte Carlo (MC) method may be used. Then, using the n MC MC simulations, we can estimate the coefficient of variation (CV) of the system's quantities of interest ( QoI), typically the objective and constraint functions. Note that, due to the use of disciplinary GPs, these quantities are now random variables. Their coefficient of variation may be written as:

CV( QoI(x, Ξ)) = V( QoI(x, Ξ)) E( QoI(x, Ξ)) ( 9 
)
where E is the expected value and V is the variance. If the CV of all QoI at a given x = x * is below a given threshold, then the disciplinary surrogates are sufficiently accurate and the surrogate mean solution at x = x * is approximately the real MDA solution. Otherwise, the disciplinary surrogates should be enriched at x = x * .

In [START_REF] Dubreuil | Towards an efficient global multidisciplinary design optimization algorithm[END_REF] it is proposed to enrich both disciplinary solvers simultaneously, however, this is not computationally efficient as only one of the disciplinary surrogates could be inaccurate. An alternative procedure is thus proposed in [START_REF] Berthelin | Disciplinary proper orthogonal decomposition and interpolation for the resolution of parameterized multidisciplinary analysis[END_REF], where the less accurate disciplinary surrogate is chosen according to the Sobol sensitivity indices [START_REF] Sobol | On the distribution of points in a cube and the approximate evaluation of integrals[END_REF], given by:

S i (x) = V[E[ QoI(x) | ξ i ]] V[ QoI(x)] , i = {1, ..., n d } ( 10 
)
where S i is the Sobol index associated with discipline i, and QoI(x) is chosen as the quantity of interest with the highest CV. We note that, in this work, the Sobol sensitivity indices are estimated using a Polynomial Chaos Expansion approximation [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. Once all sensitive indices are obtained, the discipline with the highest S i is selected for enrichment. This process is repeated iteratively until the CV of all QoI is sufficiently small at x = x * . To illustrate the enrichment process, Figure 3 shows the evolution of the disciplinary GPs until they are sufficiently accurate at x = x * . Note that, in the given example, both disciplinary surrogates are enriched. However, there may be points in the design space where the enrichment of only one of the disciplinary surrogates is enough to have a sufficiently accurate solution. Using the above described enrichment strategy, it is possible to find the solution to Eq. ( 4), with a relatively small error, at any point x ∈ X . In the context of gradientbased optimization, enrichment of the disciplinary surrogates is made, whenever necessary, at points queried by the optimizer. This limits the computational effort to regions of the design space relevant for the optimization problem. The following section details how the derivatives of the disciplinary GPs outputs with respect to the design variables are obtained. Note that the derivatives of the objective and constraint functions with respect to the design variables may then be obtained using the chain rule.

Gradient computation

In the previous section we detailled how to solve the random MDA obtained when the disciplinary solvers are replaced by perfectly dependent GPs (see Eq. ( 8)). In this section, we are interested in obtaining the derivatives of the disciplinary surrogates with respect to the design variables in order to perform gradient-based optimization. For this purpose, we distinguish the case where the coupling variables are scalars from the case where they are high-dimensional vectors.

For the first case, where the coupling variables are scalars, the partial derivative of ŷ′ i (x, y c i ) with respect to the design variable x k is written as:

∂ ŷ′ i (x, y c i ) ∂x k = ∂µ i (x, y c i ) ∂x k + ∂σ i (x, y c i ) ∂x k ξ i i = 1, ..., n d (11) 
where the partial derivatives of the mean and standard deviation functions depend on the choice of mean trend and correlation function used. For the second case, where the coupling variables are high-dimensional vectors, we will here assume that model order reduction using POD approximation was first performed and that ŷ′ i (x, y c i ) is of the form:

ŷ′ i (x, αc i ) = ϕ i 0 + n i j=1 αj i (x, αc i )ϕ i j (12) 
where αj i (x, y c i ) denotes the GP approximation of the POD coefficient associated with the basis vector ϕ i j . In this case, the partial derivative of ŷ′ i (x, y c i ) with respect to the design variable x k can be written as:

∂ ŷ′ i (x, αc i ) ∂x k = n i j=1 ∂µ i j (x, αc i ) ∂x k + ∂σ i j (x, αc i ) ∂x k ξ i j ϕ i j i = 1, ..., n d (13) 
The expressions presented above allow an analytical computation of the disciplinary gradients with respect to the design variables, which can be used to perform gradient-based optimization while still treating the disciplinary solvers as black boxes. The following section describes the integration of the proposed strategy within ONERA's WhatsOpt collaborative environment.

THE WHATSOPT COLLABORATIVE ENVIRONMENT

An important objective envisioned for the approach presented in this work is its rapid implementation and compatibility with any black box solver input in the system. To that end, the approach proposed in this work has been integrated with ONERA's WhatsOpt collaborative environment.

Basic WhatsOpt usage

WhatsOpt is a web application which allows users to define multidisciplinary analysis problems in terms of disciplines and data exchanges [START_REF] Lafage | Whatsopt: a web application for multidisciplinary design analysis and optimization[END_REF]. Once the problem has been defined, WhatsOpt generates the OpenMDAO [START_REF] Gray | Open-MDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization[END_REF] skeleton code where implementations of the disciplinary solvers can be plugged into. Figure 4 displays the user graphical interface when a generic two-discipline MDO problem is generated using WhatsOpt. Figure 4 shows that when implementing an MDO problem in WhatsOpt an interactive eXtended Design Structure Matrix (XDSM) [START_REF] Lambe | Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes[END_REF] of the problem is generated automatically, allowing users to easily control the flow of information between the different disciplines. Additionally, an interactive table allows users to define all disciplinary inputs and outputs as design or state variables as well as objective or constraint functions. The bounds for the design variables can also be defined at this step.

Once users are done with the problem definition, they can request WhatsOpt to generate the required scripts to run the problem. For all disciplines, objective and constraint functions, WhatsOpt will generate a python script where the respective output computations should be implemented by the user. WhatsOpt will equally generate the required files to solve the MDA and MDO problems. The latter will use by default OpenMDAO solver options. The list of generated files for the problem represented in Figure 4 is:

• Disc1 base.py, Disc2 base.py, Functions base.py: these files contain connection information (inputs and outputs) for all defined disciplines; • Disc1.py, Disc2.py, Functions.py: these are python class files where the disciplines computations should be implemented by the user; • MDO Problem base.py, MDO Problem.py: these files contain the definition of the problem as a whole; • mda init.py, run mda.py, run mdo.py: these files allow to solve the MDA and MDO problems using the real disciplinary solvers.

Some additional files are also generated, but they are not relevant for the implementations proposed in this work. As a result we will abstain from providing further details on them.

Disciplinary surrogate option

To solve the MDA according to the approach proposed in Section 2 users must state that they want the disciplinary solvers to be replaced by surrogates, as proposed in the Efficient Global Multidisciplinary Design Optimization (EGMDO) algorithm [START_REF] Dubreuil | Towards an efficient global multidisciplinary design optimization algorithm[END_REF]. This option is available under the OpenMDAO tab of the WhatsOpt graphical interface. It should be noted that when ticking the 'EGMDO surrogate' option users are required to provide an initial guess for the coupling variable space. This can be done in the interactive table shown in Figure 4. Then, all users have left to do is to ask WhatsOpt to generate the code. Since the option 'EGMDO surrogate' has been selected, WhatsOpt will automatically generate the necessary scripts to solve the problem using the approach presented in Section 2. In addition to the scripts described in Section 3.1, the following files are generated:

• algorithms.py: this is the main file containing the implementation of the proposed methodology, as it was described in Section 2; • doe factory.py: this file is responsible for the initial sampling used to build the disciplinary surrogates; • gp factory.py: this file serves both for the creation of the disciplinary surrogates as well as for the updating of the surrogates whenever enrichments are performed; • random analysis.py: this file solves the random MDA at n MC samples of the random vector Ξ; • MDO Problem egmda.py: this file contains the problem definition, when the disciplinary solvers are replaced by their respective surrogates; • run egmda.py, run egmdo.py: these files allow to solve the MDA and MDO problems using the disciplinary surrogates.

Assuming that the disciplinary solvers have been previously implemented in the respective Disc1.py and Disc2.py files, users don't need to make any additional imple-mentations in order to solve the MDA or MDO problems using the approach proposed in Section 2. Some remarks should nonetheless be made concerning the generated scripts. Sampling of the design and coupling variable spaces is made using a Latin Hypercube Sampling [START_REF] Mckay | A comparison of three methods for selecting vales of input variables in the analysis of output from a computer code[END_REF] strategy. Moreover, the GP surrogates are built using the KRG class of the SMT: Surrogate Modelling Toolbox [START_REF] Bouhlel | A python surrogate modeling framework with derivatives[END_REF]. By default constant mean and squared exponential correlation functions are used. Finally, WhatsOpt generates all necessary code to compute the derivatives of the disciplinary surrogates outputs with respect to the design variables using the SMT predict derivatives function. OpenMDAO will then use this information when gradient-based optimizers are chosen to solve the MDO problem. In the following we will use the code generated by WhatsOpt to solve an analytical benchmark test case, as well as an engineering structural sizing problem.

APPLICATIONS

In this section we will use the methodology described in Section 2 to solve two MDO problems. To that end, both problems will be defined in the WhatsOpt graphical interface and the generated scripts will be used to solve the optimization.

Analytical Sellar benchmark test case

The Sellar benchmark test case [START_REF] Sellar | Response surface based, concurrent subspace optimization for multidisciplinary system design[END_REF] is a constrained MDO problem using analytical disciplinary solvers. It is defined as: arg min

z∈Z z 3 3 + z 2 + y * 1 + exp(-y * 2 ) s.t. 3.16 -y * 1 ≤ 0 y * 2 -24 ≤ 0 ( 14 
)
where z = {z 1 , z 2 , z 3 } is the set of design variables, Z is the design space defined as Z = [-10, 10] × [0, 10] × [0, 10], and y * = {y * 1 , y * 2 } is the solution of the following nonlinear system of equations:

y 1 = z 2 1 + z 2 + z 3 -0.2y 2 y 2 = √ y 1 + z 1 + z 2 (15) 
The Sellar problem has a local minimum at z ′ ≈ {-1.7171, 0.1384, 0.1128} and a global minimum at z * ≈ {1.9776, 0, 0}.

To assess the performance of the approach proposed in this work, we first implemented the Sellar problem in the WhatsOpt graphical interface. There, we ticked the options 'EGMDO surrogate' for both disciplinary solvers and provided the initial guess for the coupling variable spaces as y 1 ∈ [0, 25] and y 2 ∈ [0, 25]. Once the problem was defined, WhatsOpt generated all codes required to solve the optimization problem using both the real disciplinary solvers as well as the disciplinary GPs. We then manually implemented the disciplinary, objective and constraint function computations in the respective python class files. Finally we solved the optimization problem by running the run mdo.py and run egmdo.py files from five randomly generated starting points. The chosen optimizer was the gradient-based Sequential Least SQuares Programming (SLSQP) [START_REF] Kraft | A Software Package for Sequential Quadratic Programming[END_REF] for both approaches and the number of points used to build the initial disciplinary GPs was four. Table 1 shows the results obtained when the real disciplinary solvers were used in the MDA while Table 2 presents the results obtained when the disciplinary surrogates were used. We note that the same five starting points were used for the two methods.

Table 1: Optima found and number of disciplinary solver calls obtained when solving the MDO using the real disciplinary solvers in an MDF approach. Optimization results obtained from five different starting points. As is shown, when using the real disciplinary solvers, the optima found depend solely on the starting point. Contrarily, when using the disciplinary surrogates, the optima found vary slightly depending on the quality of the surrogate approximations (for instance, for starting point #2 the solution does not correspond exactly to the global minimum and a small error is committed). Concerning the computational cost, we note that when using the real disciplinary solvers, an average of 138.4 calls were made to each disciplinary solver. On the other hand, when disciplinary GPs were used, an average of n 1 = 16.6 calls were made to the first disciplinary solver, while an average of n 2 = 14.8 calls were made to the second disciplinary solver.

z 0 z * 1 z * 2 z * 3 f * obj n 1 n 2 #1
The results presented in Table 1 were obtained using an MDF approach. Nevertheless, the IDF approach often results in a lower computational cost since the MDA is not solved in every iteration. For this reason, we have implemented the Sellar problem using the IDF approach. The resulting XDSM, obtained using the WhatsOpt graphical interface, is shown in Figure 6. As is shown, when using the IDF approach, consistency constraints must be added to the problem to assure the feasibility of the optimal solution.

The results obtained when solving the MDO using the real disciplinary solvers in an IDF approach are displayed in Table 3. We remark that, while the selected starting Figure 6: Implementation of the Sellar problem in using the IDF approach. XDSM obtained using the WhatsOpt graphical interface. points for the design variables are the same as the ones used in Tables 1 and2, for the IDF approach we must also provide an initial guess for the coupling variable values. For each initial starting point a random value was generated to initialize the coupling variables.

Table 3: Optima found and number of disciplinary solver calls obtained when solving the MDO using the real disciplinary solvers in an IDF approach. 3 shows that, when using the real disciplinary solvers, the IDF approach presents a computational cost that is half of the one obtained when the MDF approach was used. Nevertheless, for starting point #3 the IDF approach did not find the local nor the global optimum. Finally we note that, while the methodology proposed in this work can only be used in an MDF approach, it still requires significantly less disciplinary solver calls than when the real disciplinary solvers are used with either MDF or IDF approaches.

z 0 z * 1 z * 2 z * 3 f * obj n 1 n 2 #1

Wing structural sizing test case

An aircraft wing is a multidisciplinary system, whose coupled behavior is described by the aerodynamic and structural disciplines. Together, these disciplines define the following non-linear system of equations:

u s = M s (x, f a ) f a = M a (x, u s ) (16) 
where u s ∈ C s ⊂ R d s is the structural displacement of the wing, f a ∈ C a ⊂ R d a is the vector of aerodynamic forces acting upon the wing, M s and M a are, respectively, the chosen structural and aerodynamics models and x ∈ X is some set of the design variables which influences the aerodynamic behavior, the structural behavior, or both. In this section, we will optimize the wing structure in order to minimize the wing mass under structural failure constraints. To that end, we consider the following disciplinary solvers.

To obtain the structural displacement u s , the wing is modeled using the finite element solver Code Aster [START_REF] Edf | Finite element code aster , analysis of structures and thermomechanics for studies and research[END_REF] and a linear elastic behavior is assumed. To obtain the aerodynamic forces f a , the non-linear Euler equations are solved using the finite volume solver SU2 [START_REF] Economon | SU2: An opensource suite for multiphysics simulation and design[END_REF]. Figure 7 illustrates the structural mesh (Figure 7(a)) and the aerodynamic surface mesh (Figure 7(b)) used to obtain u s and f a , respectively. We note that, for the structural mesh, the upper skin was removed to facilitate the visualization of the wing internal structure. As is shown, the wing structure is composed of shell elements used to model the wing's ribs, skins and spars. In terms of geometry, a high aspect ratio wing (AR = 15) is defined, presenting a half span of 20.53 meters. The number of spars was set to two, placed at 35% and 60% of the chord and the number of ribs was set to 68. For the flight conditions ground level (0ft) and subsonic flight (Mach number of 0.64) are chosen.

To transfer the loads and displacements between the non-coincident structural and aerodynamic meshes, interpolation across the fluid-surface interface is made. It seeks to ensure the conservation of energy, force and moment, according to:

δW = δu T s f s = δu T a f a ( 17 
)
where δW is the virtual work, δu are the virtual displacements and f are the force vectors.

An interpolation matrix H ∈ R d a ×d s is then defined using Radial Basis Functions (RBF), as proposed in [START_REF] Rendall | Unified fluid-structure interpolation and mesh motion using radial basis functions[END_REF]. This matrix allows to write the displacements of the aerodynamic nodes as u a = Hu s and the structural loading at the nodal points as f s = H T f a . A structural sizing optimization problem is now defined. It seeks to minimize the mass of the wing structure with respect to failure constraints, according to:

arg min x∈X m w s.t. VMIS ≤ σ y 2 (18) 
where x is a set of structural design parameters, m w is the wing mass, VMIS denotes the maximum value of the Von Mises stress and σ y is the material yield stress, set to 270 MPa. In practice the failure constraint is evaluated for a 2.5g pull-up maneuver condition. As a result, for each set of structural input parameters x queried by the optimizer, a subproblem is solved to find the angle of attack for which L = 2.5W is verified, where L is the lift and W is the aircraft weight. In WhatsOpt this is achieved by defining a single-discipline problem for the structural sizing, as shown in Figure 8(a). The discipline 'trim mdo' is then defined as a sub-problem where the MDA is included (Figure 8 The structural input parameters are chosen as the thicknesses of the different structural components, i.e., the thickness of the wing ribs (t r ), skins (t sk ) and spars (t sp ). The range of variation of each input is scaled to take values in [0, 1], however, the unscaled thickness bounds were chosen so that a sufficient variation of the MDA outputs is obtained. Table 4 summarizes the defined optimization problem, whereas Figure 9 illustrates the displacement fields obtained for the L = 2.5W condition when all input parameters are set to either zero or one. As is shown, for the same flight condition, the wing tip displacement is much greater when all input parameters are set to zero, with a maximum observed wing tip displacement of 2.32 meters. The structural sizing problem is first solved using the real disciplinary solvers. For that, the OpenMDAO non-linear block Gauss-Seidel solver (NLBGS) was chosen to solve the MDA and a relative tolerance of 0.01 was selected. For the optimizer the gradientbased SLSQP optimizer is used, with a relative tolerance set to 10 -3 . Additionally, since gradient information for the real disciplinary solvers is not available, the derivatives are approximated at each iteration using finite differences with a step size of 10 -4 . The computational cost of the gradient approximation is included in the overall cost of the framework. Finally, to assess the existence of local minima, the optimizer is run from three different starting points. The obtained results are summarized in Table 5.

Table 5 shows that, for all three starting points tested, the optimizer found similar solutions, suggesting that there is only one optimum. Moreover, during the three runs performed, an average of 623 calls were made to each disciplinary solver. This number can be expected to increase if a more complex problem is considered, for instance, by increasing the number of design variables or constraint functions. This justifies the need for an optimization framework that is computationally more efficient.

To solve the problem using the approach described in this work, we first need to reduce the dimension of the coupling variable space. We remark that the dimension of u s is the number of degrees of freedom obtained for the defined structural model (in this work d s = 51048) while the dimension of f a is the number of nodes in the wing surface mesh (in this work d a = 15697). Using the POD approximation described in Section 2, these dimensions can be reduced, allowing for the construction of the disciplinary GPs. It is worth noting that, while the POD bases cannot be built using the code generated by WhatsOpt, the DoE used to train the POD approximations can be fed directly to the gp factory.py file to construct the initial disciplinary GPs. Table 6 shows the number of POD coefficients, as well as the number of disciplinary solver calls made during the training of the disciplinary POD bases.

Table 6 shows that, using POD approximation, the aerodynamics discipline may be represented by as little as 10 coefficients while the structural discipline is represented by as little as 3 coefficients. Moreover, we see that, during the training of the POD bases, an average of 36 calls are made to the aerodynamics disciplinary solver while an average of 26 calls are made to the structural disciplinary solver. In the following, the computational cost of this initial training stage will be accounted for in the overall cost of the framework.

As was done before, the problem is solved from different initial starting points. For each starting point, new disciplinary POD bases are generated and the initial disciplinary GPs Table 7 shows that, when using the disciplinary GPs, the optimum value of mass obtained close to the one found using the real disciplinary solvers, with the disciplinary GPs being slightly more optimistic. The maximum relative error is obtained for starting point #1 where the mass obtained using the disciplinary GPs is 4.03% lower than the one given by the real disciplinary solvers. Despite obtaining close objective function values, the optimal sets of design variables found using the disciplinary GPs were not the same as those presented in Table 5, suggesting that either objective or constraint functions are not sufficiently well captured by the random MDA. To test this hypothesis the true MDA was solved at the points found using the disciplinary surrogates. Table 8 compares the results obtained using the true and random MDAs.

Table 8 shows that, as expected, the random MDA commits a small error in the value of the constraint function, leading the algorithm to believe that the points found belong to the feasible region and therefore allowing for more optimistic results. This a consequence of the chosen criterion for the CV, which was set to 0.03. More accurate results could possibly be obtained by choosing a stricter criterion, however, some conducted tests showed that this often leads the algorithm to enrich the disciplinary surrogates several times at the same design space point, resulting in poorly constructed GP approximations.

Finally, we compare the computational cost obtained using the real disciplinary solvers with that obtained using the disciplinary GP approximations. Table 7 shows that, when using the disciplinary GPs, an average of 48 calls were made to structural disciplinary solver while an average of 49 calls were made to the aerodynamics solver. This represents a reduction by a factor of 12 compared to the number of disciplinary solver calls made when the real disciplinary solvers were used directly in the MDA (see Table 5).

CONCLUSIONS

This work proposes a gradient-based optimization framework that uses disciplinary surrogates to reduce the computational cost of solving the MDA. To that end, the methodology proposed in [START_REF] Dubreuil | Towards an efficient global multidisciplinary design optimization algorithm[END_REF] is used to build and enrich the disciplinary surrogates. The derivatives of the disciplinary surrogates are then provided to the optimizer to perform gradientbased optimization. Thanks to ONERA's WhatsOpt [START_REF] Lafage | Whatsopt: a web application for multidisciplinary design analysis and optimization[END_REF] collaborative environment the proposed methodology is fully implemented within NASA's OpenMDAO framework [START_REF] Gray | Open-MDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization[END_REF].

Application to an analytical benchmark test case as well as an engineering test case confirmed the interest of the proposed methodology. For the analytical benchmark test case, both MDF and IDF approaches were tested and it was shown that the proposed methodology required less disciplinary solver calls than either approach. For the structural sizing problem, where the disciplinary solvers are high-fidelity solvers, the obtained results were subject to a small error, leading to slightly optimistic results compared to those obtained using the real disciplinary solvers.

Lastly, the main difficulty of the proposed methodology lies in handling high-dimensional coupling variables. In this work, this challenge was tackled using the DPOD+I strategy proposed in [START_REF] Berthelin | Disciplinary proper orthogonal decomposition and interpolation for the resolution of parameterized multidisciplinary analysis[END_REF], which uses POD approximations to obtain a low dimensional coupling variable space, over which the disciplinary surrogates are built. Nonetheless, it can be expected that for more non-linear disciplinary solvers the number of POD coefficients required to obtain a small projection error may be too large for the combined used with GP interpolation. Future work is thus expected to address this challenge by exploring alternative model order reduction techniques [START_REF] Boncoraglio | Piecewise-global nonlinear model order reduction for pde-constrained optimization in high-dimensional parameter spaces[END_REF][START_REF] Barnett | Quadratic approximation manifold for mitigating the kolmogorov barrier in nonlinear projection-based model order reduction[END_REF].

Figure 1 :

 1 Figure 1: Illustration of the obtained MDA when the disciplinary solvers are approximated by GPs. Comparison of true MDA solution with the surrogate mean solution.

Figure 2 :

 2 Figure 2: Illustration of the different MDA solutions obtained when drawing different samples of the random vector Ξ.

  (a) Initial surrogates. (b) First enrichment. (c) Second enrichment. (d) Last enrichment.

Figure 3 :

 3 Figure 3: Illustration of the disciplinary surrogate enrichment process at x = x * . (a) Initial disciplinary GPs. (b) Enrichment of first disciplinary surrogate. (c) Enrichment of the second disciplinary surrogate. (d) Re-enrichment of the first disciplinary surrogate. After this iteration, the disciplinary GPs are sufficiently accurate at x = x * .
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 4 Figure 4: WhatsOpt graphical interface. Implementation of a generic two-discipline MDO problem.

  Figure 5 displays the OpenMDAO menu, where the option 'EGMDO surrogate' has been ticked for the two disciplinary solvers of the MDO problem defined in Figure 4.
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 5 Figure 5: WhatsOpt OpenMDAO menu. Option 'EGMDO surrogate' selected for both disciplinary solvers.

  (a) Structural mesh.(b) Aerodynamic surface mesh.
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 7 Figure 7: Structural mesh (a) and aerodynamic surface mesh (b) used in the wing structural sizing test case.

  (b)).

  (a) Structural sizing problem. (b) Trim mdo sub-problem.

Figure 8 :

 8 Figure 8: XDSM of the structural sizing problem (a) and trim sub-problem (b) obtained in the WhatsOpt graphical interface.

Figure 9 :

 9 Figure 9: Wing displacement fields obtained for different sets of input parameters. The undeformed wing shape is given as reference.

Table 2 :

 2 Optima found and number of disciplinary solver calls obtained when solving the MDO using the disciplinary surrogates in an MDF approach. Optimization results obtained from five different starting points.

		1.9776	0.0	0.0	3.1834	127	127
	#2 1.9776	0.0	0.0	3.1834	125	125
	#3 -1.7171 0.1384 0.1128	4.1307	188	188
	#4 -1.7171 0.1384 0.1128	4.1307	142	142
	#5 1.9776	0.0	0.0	3.1834	110	110
	Average number of disciplinary solver calls 138.4 138.4
	z 0	z * 1	z * 2	z * 3	f * obj	n 1	n 2
	#1 1.9776	0.0	0.0	3.1834	15	14
	#2 1.9783	0.0	0.0	3.1828	10	10
	#3 -1.7089 0.1287 0.1492	4.1223	13	11
	#4 -1.7157 0.1407 0.1153	4.1306	13	9
	#5 1.9776	0.0	0.0	3.1834	12	10
		Number of disciplinary DoE points	4	4
	Average number of disciplinary solver calls 16.6 14.8

Table

  

	1.9776	0.0	0.0	3.1834	56	56
	#2 1.9776	0.0	0.0	3.1834	50	50
	#3 -1.5655 0.7879 0.1210	4.3304	61	61
	#4 1.9776	0.0	0.0	3.1834	67	67
	#5 1.9776	0.0	0.0	3.1834	62	62
	Average number of disciplinary solver calls 59.2 59.2

Table 4 :

 4 Structural sizing problem. Bounds for design variables and constraint functions are provided, where applicable.

	Quantity		Lower bound Upper bound
	Minimize Wing mass (m w ) w.r.t. Wing rib thickness (t r )	--0	--1
	Wing skin thickness (t sk )	0	1
	Wing spar thickness (t sp )	0	1
	s.t.	Von Mises stress (VMIS) ≤ σ y /2

Table 5 :

 5 Mass minimization problem. Optima found and number of disciplinary solver calls obtained when solving the MDO using the real disciplinary solvers. Optimization ran from three different starting points.

	x 0 m 0 [kg] t * r	t * sk	t * sp	m * w [kg] VMIS * [MPa] n evala n evals
	#1 14175.7 0.0 0.1943 0.1988 5167.8	135.03	787	787
	#2 14132.7 0.0 0.1950 0.1973 5172.1	134.98	492	492
	#3 14360.1 0.0 0.1934 0.2034 5170.4	135.00	590	590
		Average number of disciplinary solver calls 623	623

Table 6 :

 6 Number of coefficients in the aerodynamics (n a ) and structural (n s ) POD bases obtained for three different runs. Number of disciplinary solver evaluations (n evala and n evals ) made during the training stage. The default options of constant mean trend and squared exponential correlation function are used. The random MDA is then solved at each point queried by the optimizer according to the methodology described in Section 2.3. A sample size n MC of 2500 is used and a threshold of 0.03 is set for the CV of both objective and constraint functions. For the optimizer, the SLSQP solver is chosen with the same convergence criteria used for the real disciplinary solvers. The analytical disciplinary gradients are obtained as described in Section 2.[START_REF] Wang | Surrogate based multidisciplinary design optimization of lithium-ion battery thermal management system in electric vehicles[END_REF] The obtained results are presented in Table7.

		n a	n s n evala n evals
	Run #1 10	4	36	26
	Run #2 11	3	36	26
	Run #3 10	3	36	26
	E	10.3 3.3	36	26
	are built.			

Table 7 :

 7 Mass minimization problem. Optima found and number of disciplinary solver calls obtained when solving the MDO using the disciplinary GPs.

	x 0 m 0 [kg]	t * r	t * sk	t * sp	m * w [kg] VMIS * [MPa] n evala n evals
	#1 14174.7 0.0 0.1980 0.1199 4959.66	134.97	46	53
	#2 14132.5 0.0 0.1800 0.2102 5013.87	135.04	44	43
	#3 14360.1 0.0 0.1593 0.3139 5076.71	135.02	54	51
			Average number of disciplinary solver calls	48	49

Table 8 :

 8 Mass minimization problem. Optima found and number of disciplinary solver calls obtained when solving the MDO using the disciplinary GPs.

			m w [kg]			VMIS [MPa]
	x *	Real	GPs	Error [%] Real	GPs Error [%]
	#1 4959.69 4959.66 #2 5013.88 5013.87 #3 5076.72 5076.71	≤ 10 -3 ≤ 10 -3 ≤ 10 -3	137.99 134.97 137.02 135.04 136.97 135.02	2.19 1.44 1.44
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