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Abstract. The problem of assigning missions to a fleet of electric vehicles has been thoroughly studied in the 
literature under the name of Electric Vehicle Routing Problem (EVRP), however most versions of such a 
problem do not take battery degradation into account. One of the main difficulties of battery degradation aware 
routing is the necessity of including State of Health (SoH) models that are designed for different operation 
conditions and the necessity of including a realistic State of Charge (SoC) model. In this paper we present a 
version of the EVRP that includes battery degradation as well as the inclusion of decision variables such as 
speed and acceleration limitations. We illustrate our approach through numerical experiments. 

1. Introduction
Electric mobility has become increasingly important. With this new transport paradigm, it is crucial to account 
for battery degradation since this component can cost up to 50% of vehicle cost, Baghdadi et al (2016), and 
has also important environmental consequences. 

To achieve practical degradation aware routing, it is necessary to describe SoH evolution in the optimization 
problem, therefore, most of the known battery stress factors must be modeled and related to the performance 
of missions. As the most important stress factors of batteries are Depth-of-Discharge (DoD) and mean State of 
Charge (mSoC), Rosewater (2019), it is necessary to model the State of Charge (SoC) and connect it to vehicle 
usage. In most EVRP’s, however, SoC models are oversimplified not accounting for the dynamics of the 
battery and variable terminal voltage, Pelletier et all (2019). 

Furthermore, new technologies allow for different decisions to be considered. With today’s connectivity, it 
is possible to change vehicle parameters in order to limit speed or accelerations. Those parameters directly 
influence usage, impacting battery degradation and enrich the optimization potential.

In this work, we propose and solve an optimization problem that accounts for battery degradation using 
realistic SoH and SoC models. In this optimization problem, not only route assignment is considered but also 
vehicle parameters changes, such as maximum speed and acceleration. Therefore, the main contributions of 
this paper can be summed up as:

 The formalization of an EVRP that accounts for battery degradation, maximum vehicle speed 
limitation, and maximum vehicle acceleration limitations.

 A SoH estimation method suited for optimization problems that also includes realistic SoC 
modeling.

 A set of numerical experiments to validate our approach.
Accordingly, Section 2 presents the problem formalization, Section 3 shows the underlying SoH and SoC 
models, Section 4 presents numerical results and section 5 concludes the paper.
2. Problem Formulation
The goal of this paper is to derive a method to optimally assign missions to a fleet of electric trucks. Missions 
are seen as points in space, representing clients, that must be visited. Charging stations are also considered so 
that vehicles can recharge if needed. The mission plan must respect several constraints related to SoC range, 
vehicle capacity, and other logistical aspects that will be presented later on. All vehicles start at the same point, 
the headquarters, and must go back to it after finishing the missions.

To formalize this problem, we consider the graph G =  (N,E) where nodes N represent every point in 
space that can be visited by vehicles. N =  C ∪ S ∪ 0 where C is the set of clients (missions), S is the set of 
recharge stations and 0 is the headquarters. E represents the shortest paths between each node. The set of 
vehicles is denoted by K.

The decision variables of the problem are the following:
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 xijz which is equal 1 if vehicle z performs a displacement from node i to j. 
 wijz which is the payload of vehicle z going from node i to j.
 vmaxz

 which is the maximum allowed speed of vehicle z
 amaxz

 which is the maximum allowed acceleration of vehicle Z
For the sake of notation, we define  Xz =  {xijz =  1,  ∀ i,j ∈ N} representing the mission plan of vehicle 
z. We also consider tij(vmaxz,amaxz), the time necessary to go from node i to j with maximum allowed speeds 
and accelerations vmaxz

and amaxz
, H, the maximum vehicle payload and SoC(t,Xz,vmaxz

,amaxz
) which is 

the SoC at instant t of a vehicle following a mission plan Xz with vmaxz
 and  amaxz

.
The optimization cost C is a combination of degradation, energy and delay costs and can be written as: 

C = Cdeg + Cenergy + Cdelay
                                                                                 (1)

The degradation cost is defined as:
Cdeg =  ∑z∈K cbattΔSoH(Xz,vmaxz,amaxz)                                                       (2)

where cbatt is a constant proportional to the battery cost and ΔSoH is the variation of SoH caused by following 
the mission plan Xz with vmaxz

 and amaxz
.

The energy cost can be written as:
Cenergy =  ∑z∈K ∑i∈N ∑j∈C ceeijz(vmaxz,amaxz)xijz                                      (3)

where ce is a constant representing the price of energy and eijz(vmaxz,amaxz) is the energy consumed 
going from node i to j with vmaxz

 and amaxz
.

Finally, the delay cost is:
Cdelay =  ∑z∈K ∑i∈N ∑j∈C cdxijzmax[yijz - lj,0]                                          (4)

The complete optimization problem can then be written as:

minC (5)
subjected to:

∑z∈K ∑j∈C xijz = 1,    ∀i ∈ N (6)
∑j∈N xijz = 1,    ∀z ∈ K (7)
∑j∈S xijz ≤ 1    ∀i ∈ N,∀z ∈ K (8)

∑z∈K ∑j∈S xijz - ∑z∈K ∑j∈S xjiz = 0    ∀i ∈ N (9)
∑z∈K ∑j∈S wijz - ∑z∈K ∑j∈S wjiz = hi    ∀i ∈ N (10)

hjxjiz ≤ wijz ≤ (H - hj)xjiz    ∀i ∈ N,∀z ∈ K (11)
y0jz ≥ t0j(vmaxz,amaxz)x0jz    ∀j ∈ C ∪ S,∀z ∈ K (12)

∑z∈K ∑j∈S yijz - ∑z∈K ∑j∈S yjiz = tij(vmaxz,amaxz)xjiz   ∀i ∈ N (13)

minSoC(t,Xz,vmaxz,amaxz) ≥ SoCcrit ,∀z ∈ K (14)
xijz ∈ {0,1} (15)
wijz ≥ 0 (16)
yijz ≥ 0 (17)

vmaxz
 ∈  [v-

max,v+
max] (18)

amaxz
 ∈  [a-

max,a+
max] (19)

Inequality (6) imposes that every client is visited once, Constraint (7) guarantees that the number of vehicles 
used does not exceed the size of the fleet, Constraint (8) limits the number of visits to recharge stations and 
Constraint (9) imposes that for each incoming arc there is a corresponding outgoing arc. Constraint (10) 
guarantees that, at each delivery, the payload is reduced according to hi which is the payload variation at client 
i ( hi = 0 if point i is the headquarter or a charging station), while Constraint (11) ensures that the maximum 
payload H is respected and it makes wijz= 0 when xijz = 0. Constraints (12) and (13) describe arrival time 
evolution, ensuring that the displacement duration is respected. Notice that in this formulation, charges are 
considered to happen instantly as well as deliveries. Constraint (14) imposes the range limitations through 
SoC. 
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Constraints (15) through (19) define the proper range of the decision variables. And a-
max, a+

max, v-
max, v+

max 
are the acceptable limits of amaxz

 and  vmaxz
 respectively.

Additionally, in this model, we consider that anytime a recharge station is visited or a vehicle goes back to the 
headquarter, it will recharge its battery fully.
The next section presents the models used to compute ΔSoH(Xz,vmaxz,amaxz), eijz(vmaxz,amaxz) and 
SoC(t,Xz,vmaxz

,amaxz
) based on the decisions variables of the problem.

3. SoH and SoC estimation methods
3.1 SoH modeling
To compute the term ΔSoH(Xz,vmaxz,amaxz) it is necessary to employ a model that can connect SoH 
variation to vehicle operation. This requires a degradation model that can be used for application with different 
usage conditions. We employ the model used by Xu et al (2016) in which SoH is expressed as:

SoH(t) =  e-fd(SoC(t)) (20)
with fd being defined as:

fd(SoC(t)) =  ∑n(SoC(t))
i=1 ωiSσSδST (21)

where n(SoC(t)) is the number of SoC cycles that are obtained through the rainflow-counting algorithm 
Downing  et al (1982) of the SoC signal up to time t. Sδ, Sσand ST are stress coefficients related DoD, mSoC 
and temperature and ωi is either 1 in a full cycle or 0.5 in a half cycle. The stress factors coefficients are taken 
from Xu et al (2016) and can be expressed as:

Sσi
=  eKσ(σi- σref) (22)

Sδi
=  (Kδ1δ

δ2
i +  +  Kδ3)

-1
(23)

STi
=  e

KT(Ti- Tref)Tref
Ti                                                                      (24)

where Kσ, KT, Kδ1
, Kδ2

, Kδ3
 are constants estimated through experiments, σref and Tref are experimental 

references. σi and δi are the cycle amplitude and cycle mean obtained through rainflow-counting and Ti is the 
mean temperature of the cycle, considered to be normally distributed around the target temperature of the 
battery management system.
Finally, the SoH variation is expressed as:

ΔSoH(Xz,vmaxz,amaxz) = SoH0 -SoH(Xz,vmaxz,amaxz) (25)
where SoH0 is the SoH before following a mission plan and SoH(Xz,vmaxz,amaxz) is the SoH obtained after 
performing mission plan Xz with maximum speed and acceleration vmaxz

, and amaxz
 respectively 

3.2 SoC modeling
Since the SoH model relies on the cycle decomposition of SoC(t), it is necessary to estimate SoC while 
following a mission plan.  Most EVRP’s that are no concerned with degradation effects approximate SoC to 
be proportional to the travelled distance or consider SoC variation to be equal to energy consumption  Pelletier 
et al (2017). 
To achieve realistic SoH estimation those approximations are limiting, and battery dynamics must be 
considered. Battery and vehicle dynamics can be combined to obtain SoC by solving the following system of 
algebraic differential equations:

v = a(t,Xz,vmaxz
,amaxz

) (26)

Pmec(t) = ρair Cw A v(t)3

2
+m g v(t)sinα +m g Cr v(t)cosα +m a(t)v(t) (27)

Pelec(t) = Pmec(t)

η(v(t),a(t))
(28)

I(t) = 1

2R
(VOC(SoC(t) - Vl(t) - Vs(t) - (VOC(SoC(t)) - Vl(t) - Vs(t))2 - 4R0Pelec(t) ) (29)

Vs =  - Vs

RsCs
+ I(t)

Cs
(30)

Vl =  - Vl

RlCl
+ I(t)

Cl
(31)

SoC =  - I(t)

Q0
(32)
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Equation (26) is the cinematic relation of vehicle speed v(t) and acceleration a(t,Xz,vmaxz
,amaxz

).
Equation (27) expresses the mechanical power as a function of vehicle mass m, gravity acceleration g, road 
inclination α, Cr is the rolling resistance coefficient and Cw is the drag coefficient and A is the frontal area of 
the vehicle. Equation (28) expresses the electrical power with η(v(t),a(t)) being the power train efficiency 
which is a function of instantaneous speed and acceleration.
Equation (29) to (32) represent the dynamic of the battery that is modeled as a second order circuit. Rl, R0 
and Rs are the resistances of the equivalent circuit, Cl and Cs the capacitances and Q0 the nominal capacity 
of the battery.
For the system to be solved, it is necessary to estimate the function a(t,Xz,vmaxz

,amaxz
) and the function 

Voc(Soc). In this work, the acceleration function is estimated using the same method of Longhitano et al 
(2022) and Basso et al (2019). It consists of using road information of the path defined by Xz, such as the 
presence of traffic lights, crossroads and maximum allowed speed, road stretches lengths, and the maximum 
speed, vmaxz

 and acceleration, amaxz
. Voc(Soc) can be obtained empirically or is made available by battery 

suppliers as a look-up table.
With those equations, the decisions variables of the problem can be used to define the acceleration function 
and determine the SoC profile which in turns define the variation of SoH. Energy can be computed simply by 
integrating the electrical power.
4. Results
4.1 Degradation effect on Routing
To validate the interest of considering degradation on the optimization model we perform numerical 
experiments on the synthetic grid shown in Figure 1. In those experiments, first we generate different instances 
of the problem (a set of random clients, C and random charging stations, S). Each instance is solved three 
times: once considering cbatt = 0, which is equivalent to classical EVRP formulations in which only energy 
consumption is minimized, once considering ce = 0 which is equivalent to minimizing only battery 
degradation and finally once with cbatt ≠ 0 and  ce ≠ 0. 
Table 1 shows the different routes found solving the optimization problem in the different cases and Figure 1 
illustrate the different routes found for instance 1. 
Due to the computational complexity added by the non-linearity of the degradation model and the differential 
equations of SoC, those instances are solved using genetic programming techniques.

Instance cbatt ce Mission plan Cost C
€ € €

1 10000 0.18 A0, E0, E1*, E3, D5, A4, A2, A0 8.60
1 0 0.18 A0, E0, E3, D5, A4, A2, A0 8.63
1 10000 0 A0, E0, E1*, E3, D4*, D5, A4, A2, A0 8.62
2 10000 0.18 A0, E0, E1*, E3, E5, A4, A2, A0 9.55
2 0 0.18 A0, E0, E3, E5, A4, A2, A0 9.60
2 10000 0 A0, E0, E1, E3, E5, D4*, A4, A2, A0 9.57
3 10000 0.18 A0, B1, C5, F5, F2, D2*, A2, A0 9.56
3 0 0.18 A0, B1, C5, F5, F2, A2, A0 10.52
3 10000 0 A0, B1, C5, F5, F2, D2*, A2, A1*, A0 9.68
4 10000 0.18 A0, B1, B3, D3*, F3, C0, A0 7.65
4 0 0.18 A0, B1, B3, F3, C0, A0 7.73
4 10000 0 A0, B1, B3, D3*, F3, C1*, C0, A0 7.68

Table 1: Solutions of different instances of the problem considering only energy consumption, only battery 
degradation and both. The symbol * indicates recharging stations.

As can be seen, including battery degradation changes the optimal mission plan. When accounting for 
degradation, more recharges are added to the plan. They are not necessary from the point of view of ensuring 
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a minimum SoC level, however they reduce DoD and consequently, degradation. Whenever a vehicle 
recharges, it stops and needs to accelerate again to leave it, thus spending more energy. Our optimization model 
can handle this trade-off and find better solutions than the one found by considering only energy consumption 

or only battery degradation.
 Figure 2 shows the SoC trajectories of the different solutions for instance 1. It shows that the extra charges 
indeed reduce SoC amplitude and even if they introduce extra cycles, since their amplitude is smaller, they 
create less damage.
Figure 1. Routes found for instance 1. The red route indicates the solution when accounting for degradation 
and energy consumption (Case A). The green route indicates the solution of the classic EVRP version where 

only energy is considered. The blue route is the solution considering only degradation.

Figure 2. SoC trajectories for different routes found for instance 1.
Accounting for degradation leads to cost improvement in all instances. It is important to highlight that even in 
instances where the cost reduction is subtle, since SoH evolves slowly, small reductions in degradation add up 
through time and can lead to several extra months of operations.

4.2 Speed and acceleration effect
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To isolate the effect of the parameters vmaxz
 and amaxz

 a second set of experiments is performed. Instances 
of the problem are generated randomly. Each instance is solved twice, once with vmaxz

 and amaxz
 as decision 

variables and once with them set as v+
max and a+

max. Results are shown in Table 2.

Table 2: Solutions of different instances of the problem considering the possibility of affecting maximum 
vehicle speed and acceleration.

As can be seen, limiting speeds and accelerations has a positive impact on the overall cost. This is a direct 
consequence of equation 27. The cost reduction is a reflex of less energy consumption but also less degradation, 
since SoC cycles will have smaller amplitudes because of affecting such parameters.  

5. Conclusion
This paper presented a variation of the EVRP that accounts for degradation and limitation on speeds and 
accelerations. To make it useful for degradation minimization in realistic scenarios, the optimization model is 
built upon a realistic SoC estimation method. Since both the degradation and SoC models are computationally 
challenging to incorporate in optimization problems, a genetic algorithm was used to solve it. Through 
numerical experiments, the importance of realistic SoC modeling, degradation-aware decision-making and 
limiting speeds and accelerations is shown. Incorporating degradation and extending the set of possible actions 
of the problem yields to better solutions than the most usual optimization models. In real life applications, this 
can have a beneficial impact since it can extend the useful life of vehicles and reduce the long-term exploitation 
cost.
In future works, it is necessary to compare the proposed model with real vehicle data, both for SoC and SOH 
calibration. Incorporating stochastic elements is also desirable. For example, traffic randomness can highly 
affect energy consumption and delays and must, therefore, be accounted for. Long-term routing methods are 
also interesting paths for future research.
From an algorithmic point of view, developing new optimization techniques for this problem is also an 
interesting research path since genetic algorithms do not necessarily converge to a global minimum and due to 
the computational complexity, performance is still a limiting factor for solving bigger instances.
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