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A Torque Estimator for a Switched Reluctance Motor using an Orthogonal Neural Network

Due to their simple construction, switched reluctance motors are very bad torque actuator. A precise knowledge of the produced torque in real time is necessary in order to design a high-performance speed-controlled motor drive. As the torque is difficult and expensive to measure, a method for estimating the torque of a switched reluctance motor at standstill is described. The non-linearity caused by the magnetic saturation and the rotor position is modeled with an artificial neural network allowing the method to be based on reference currents and measures of the position and currents only. The estimation objective is defined in terms of a reference trajectory that the neural network model output should match as closely as possible. The internal architecture of the network is obtained by using a serial of orthogonal functions. The internal parameters are deduced by using direct minimization of the error estimation. The obtained estimation is compared with the real torque. They are also compared with results given by other neural network architectures.

-INTRODUCTION

Switched Reluctance Motors (SRM) are more and more used in electrical drives mainly in reason of their low cost fabrication. Recently, several modelling methods of the magnetic saturation of SRM have been proposed (see as example [8]). However, the highly non-linear characteristic, which must be described, makes these methods inadequately. Another disadvantage is the variation of motor's parameters according to the rotor position. More over standard drives must be able to operate on different motors. The parameters of the motor have to be known prior to starting the drive. It is wished that an automated process gives the parameters from online measurements of required quantities. The weakness of modelling methods comes from the bad knowledge of the torque characteristic. Improved torque estimation can be achieved by the use of more advanced motor models. Artificial Neural Networks (ANN) have proven their abilities to face these problems and requirements. Recently they have been used for the estimation of stator resistance [1] or for the current's characteristic modelling [START_REF] Elmas | Modelling of a non-linear switched reluctance drive based on artificial neural networks[END_REF]. Many architecture of ANN have been appeared and has to be considered following the classical prospective methodology. Unfortunately, the user has nether the proof that the final architecture is the best one for his application. This fact constrains us to consider a formal design procedure of ANN.

The torque characteristic of SRM is first analytically analysed in section II. Therefore, an approach for torque estimation is proposed in section III. The theoretical basis of artificial neural networks is recalled and the implementation of an orthogonal function based architecture is presented. Then, in section IV, the simulated waveforms of predicted torque are compared with those obtained from a real switched reluctance industrial motor. Results obtained with other ANN architectures are also shown and compared. Conclusion gives possible application of this torque estimator inside a speed control system.

-MODELLING OF THE SWITCHED RELUCTANCE MOTOR

-Fundamentals of SRM

The torque of a SRM is produced by the tendency of its rotor to move to a position where the inductance of the excited winding is maximised. Advantages of SRM have been clearly highlighted [2]:

-Simple and low-cost machine construction due to the absence of rotor winding and permanent magnets -Unidirectional current required by the motor drive makes power electronic drive circuitry simple and reliable.

-Low rotor inertia -Stator phases can be controlled independently and failure or loss of one does not prevent drive operation. Presently, the main disadvantages of SRM are: -The high torque ripple -The higher acoustic noise level. The objective of this paper is turned to a better understanding of the torque modeling. The issue is to design a torque characteristic estimation in order to improve the torque control of the SRM. The studied motor is a two-phase machine with three rotor salient pole pairs and four stator salient pole pairs.

-Electro-Magnetic Equations

Voltage equations are:

• dt d i . r u 1 1 1 Ψ + = • dt d i . r u 2 2 2 Ψ + = 1 Ψ and 2
Ψ are stator winding linkage fluxes, which depend on currents ( 1 i and 2 i ) and rotor position θ .

The flux, which is created by the application of a voltage (u k ) on a winding, is set as:

k k k k i . r u dt d - = Ψ (1)
The SRM equations are similar to variable reluctance stepping motor and are written with the following assumptions: -Mutual inductivities are null -Leakage inductivities are neglected -Saturation is neglected end self-inductivities are only shaped with rotor angle By noting l k , the inductance of the considering phasing, it yields;

dt di . l i . dt d . d dl dt d k k k k k + = θ θ Ψ
Therefore, the expression of the resulting current is obtained by integration of the following equation:

      - = k k k k k i . . d dl dt d . l dt di Ω θ Ψ 1
(2)

-General torque equation

Equation (1) governs the transfer of electrical energy to the SRM magnetic field. Multiplying each side of (1) by the electrical current, i k , gives the instantaneous power of the SRM. 

        - = = dt dW i . dt d . dt dW . mag k k mec k em Ψ Ω Ω Γ 1 1 θ θ Ψ Γ d dW i . d d mag k k k em - = (3) 
For a controlled constant current and so a constant flux, it simplifies to:

t i mag k em d dW constan         - = θ Γ
It is often desirable to express torque in function of current rather than flux. Therefore, it is necessary to introduce the notion of co-energy (Wco) instead of energy (Wmag). If we let the magnetization curve defines flux as a function of current, the shaded area below the curve (figure 1) represents the magnetic field co-energy: And, so, energy and co-energy are linked by the following relation:

( ) ( ) k k i k k k co di i , i , W 0 ∫ = θ Ψ θ i S to
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Differentiating both sides yields ( )

k co k k k k mag i , dW di . i . d dW θ Ψ Ψ - + = (4) 
Substitution of ( 4) into (3) gives

( ) θ θ θ Ψ Γ d i , dW d di . k co k k k em + - =
The differential co-energy can be written in terms of its partial derivative as,

θ θ θ       ∂ ∂ +       ∂ ∂ = di . i i , W d . i , W i , dW k co i k co k co
Thus, for the usual simplified case of constant current, it is fairly easy to show:

( ) constant i       ∂ ∂ = θ θ Γ k co em i , W k 2.4.

-Simplified torque equation

The assumption of unsaturated operating is often done and therefore the linear relationship from flux to current is given by:

( ) k k k i . l θ Ψ =
The evaluation of the co-energy inside the linear plan of figure 1 yields:

( ) ( ) θ θ k k k co l . i . i , W 2 2 1 =
And, so the torque equation becomes:

( ) θ θ Γ d dl . i . k k emk 2 2 1 = (5)
A Causal Ordered Graph (COG) of implicated relationships is represented on figure 2. The total torque, which is produced by the two windings, is:

Γ Γ Γ + = u k i k Γ em k Ψ k θ Ω (2) (1) ∫ ∫ (5)
Figure 2: COG of one SRM phase

-TORQUE APPROXIMATION

-Motivations

preceding analysis shows that the value of the torque depends on inputs (voltages across windings: u k ) and two state variables; the current and the position of the rotor axis. The real time determination of the inductance (according to the position and the saturation effect) remains an intensive computing task since the inductance is a nonlinear function of both phase current and rotor position. And, so, the objective of the actual work is to design an approximation of the torque relationship [START_REF] Cailleux | Caractérisation électromagnétique, modélisation et comparaison de stratégies pour la commande en régime transitoire de machines à réluctance variable à double saillance[END_REF] with taking account the saturation from known torque values and corresponding values of the position and the current. The torque relationship is viewed as a non-linear mapping from input quantities (position and current) to the output quantity (torque):

( ) i , f θ Γ =
So the artificial neural networks estimator will also be represented as a mapping between values of the two inputs to known values of the torque output to be estimated:

( ) i , f ~ ~ θ Γ =
where Γ ~ is the torque estimation and f ~ is the estimated relation which is implemented inside the network.

-The test set-up

In order to get torque's experimental characteristics the following measure procedure has been followed [START_REF] Cailleux | Caractérisation électromagnétique, modélisation et comparaison de stratégies pour la commande en régime transitoire de machines à réluctance variable à double saillance[END_REF]. The rotor is blocked at a given position θ with an arm on the axis (figure 3). At the end of the arm a force sensor is placed. And at the other side of the arm a weight balances the weight of the sensor. The position is measured with an incremental coder. Only one winding is fed with a controlled current (i) from 0 to Imax. More over measurements have been done for different electrical positions from 0 to 180°. , which will be used for the design of the artificial neural network.
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-Structure of the Artificial Neural Network

This section investigates the design of an Artificial Neural Networks (ANN) for the estimation of the torque. Neurons are generally shaped in regular and highly interconnected topologies. For example, the figure 4 represents a well known ANN called multilayer neural networks with 2 input linear neurons, one hidden layer of N H neurons and an output layer with a single linear neuron. Input I 1 is dedicated to the currents measurement, input I 2 to the position measurement and the output O 1 is the torque estimation.

W 11 ϕ 1 ϕ Ν H W 11 H W 21 H I W 22 I Σ • • • W 1Ν H W 2Ν H W 11 O W Ν 1 O H H H B 1 O B1 H BΝ H H B 1 I B 2 I Σ Σ • • • Σ Σ • • • O 1 H O Ν H O 1 I O 2 I Γ ∼ H Input layer

Hidden layer

Output layer

Signal flow

Error back -propagation (learning algorithm) 

• • • i ( α ) θ ( α )
-

      = a j S j a j O ϕ (7)
Before training the artificial neural network some characteristics remain to be chosen. This includes: -The activation functions -The initialization of weights We have determined these parameters in order to implement three mathematical treatments on sampled values of position and current: -a statistical arrangement of collected data in the input layer -an expanded orthogonal projection of data in the hidden layer [START_REF] Francois | Orthogonal Considerations in the Design of Neural Networks for Function Approximation[END_REF] -an optimal approximation of torque's responses by calculating output weights [START_REF] Francois | Design of a Multilayer Neural Network Applied to Function Approximation[END_REF]. This design method is now detailed.

-Statistical arrangement of collected data

The mean values of each input is calculated as: 

-Principal component analysis

The covariance matrix of data

[ ] [ ]

I I T I I O O . O O C 2 1 2 1 r r r r =
is a semi-definite matrix and, then can be developed as

V . . V C T ∆ =
where ∆ is a diagonal matrix containing the two eigenvalues of C, and

[ ] 2 1 V V V r r =
is a matrix containing the two orthogonal eigenvectors [START_REF] Matsuoka | A Self Organizing Neural Net with Three Functions Related to Principal Component Analysis[END_REF]. Using these vectors as an orthogonal basis, all data have an equivalent orthogonal representation, which is:

[ ] 2 2 1 1 2 1 V . P V . P O O I I r r r r + =
with the principal component vectors of C:

[ ] T I I V . O O P 1 2 1 1 r r r = and [ ] T I I V . O O P 2 2 1 2 r r r = (9)
It can be shown that by setting

T H V W 1 1 r = and T H V W 2 2 r =
the hidden layer of the ANN performs an orthogonal projection of data into an orthogonal frame.

Proof:

The summation in one hidden neuron is written as:

[ ]         = H k H k I I H k W W . O O S 2 1 2 1 r r [ ] H k W . r = [ ] I I O O 2 1 r r [ ] [ ] H k I I W . O O r r r 2 1 = (8)
which corresponds also to a principal component.

3.6-Activation functions of the hidden layer

The activation functions of the hidden layer are orthonormal and ensure only one minimum on the error curve versus the weights. So, with this particular choice, no local minima exists. With the use of a backpropagation algorithm we are sure that the final error will be the smallest. 

( ) ∑ ∞ = = 1 i H i H i i S ϕ α Γ ,
where the i α are the generalized Fourier's coefficients. Now, if the torque is estimated by a finite sum of orthonormal functions :

( ) ∑ = = N j H j H j O j S W ~1 ϕ Γ
, we can calculate the weights in order to minimize the squared Euclidean distance:
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For a continuous variation of input variables H i S and with the properties of orthonormal functions the mean error is expressed as:
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So, the mean error is minimal if the weights O i W are equal to the generalized Fourier's coefficients i α .

Then the greatest are the number N of neurons of the hidden layer, the smallest the error is. The number N is chosen to have a small error with a reasonable time of computation. We have chosen Legendre's polynomials because these orthonormal functionsare easily calculated by recurrence. Each activation function -

1 1 = H O - H H S O 2 2 = -… - H j H j H j H j O j j O S j j O 1 1 1 1 1 1 2 - + + + - + + =
The domain ∆ where the Legendre's polynomials are orthonormal is (-1,1) and the input data must respect this condition to herite the properties of these polynomials.

-Best approximation

Data, which are generated through activation functions, are gathered into vectors as:

( ) [ ] T H k H k . . . O . . . O α =
Therefore responses of the artificial neural network are: 
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The computation of this pseudo inverse can be done by an algorithm, which is based on the Greville's theorem [START_REF] Ben-Israel | Generalized Inverses: Theory and Applications[END_REF].

-RESULTS

We have compared experimental torque responses with the approximation given by this orthogonal ANN with 20 hidden neurons. After the initialization the mean error on the available data is 8.6 . So, we have applied a back propagation algorithm to adapt the values of weights. After 6000 epochs, the mean error shut down to 9.10 -2 . As shown on figure 5, the approximation is very closed to real values. The torque estimation from the orthogonal ANN has been also compared to the torque estimate derived from an ANN with 20 classical sigmoid hidden neurons. After a training of 10 000 epochs, weights keep constant values but results are not satisfactory for low values of the torque (figure 6). It is interesting to remark that an orthogonal neural network is more precise and the weight convergence is faster. 

i = 12A i = 10A i = 8A i = 6A i = 4A i = 2A

-CONCLUSION

Obtained results have shown that an ANN with orthonormal activation functions in its hidden layer can track the torque with a very good degree of accuracy. It provides a completely independent method not computationally intensive and has been shown to provide superior results to other classical ANN architectures. The significant advantages associated with using an ANN is that the network can be trained automatically.

The commissioning engineer simply initiates training without any need to input motor or load related data other than that usually required from the motor nameplate. No detailed knowledge of material thermal properties, cooling rates etc is required: these are effectively learnt. The major, as shown, is that a long time is required for commissioning. The work described here is still in its early stages. The method needs to be expanded to on-line operating. This includes the requirement to measure the speed in real time and therefore to deduce a torque estimation. Initial experimentation are however encouraging. 
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