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Abstract 

This paper presents a novel approach called Pharmacophore Activity Delta for extracting outstanding pharmacoph‑
ores from a chemogenomic dataset, with a specific focus on a kinase target known as BCR‑ABL. The method involves 
constructing a Hasse diagram, referred to as the pharmacophore network, by utilizing the subgraph partial order 
as an initial step, leading to the identification of pharmacophores for further evaluation. A pharmacophore is classified 
as a ‘Pharmacophore Activity Delta’ if its capability to effectively discriminate between active vs inactive molecules 
significantly deviates (by at least δ standard deviations) from the mean capability of its related pharmacophores. 
Among the 1479 molecules associated to BCR‑ABL binding data, 130 Pharmacophore Activity Delta were identi‑
fied. The pharmacophore network reveals distinct regions associated with active and inactive molecules. The study 
includes a discussion on representative key areas linked to different pharmacophores, emphasizing structure–activity 
relationships.

Keywords Hasse diagram, Partial order graph, Pharmacophore, BCR‑ABL, Siblings, Activity delta

Introduction
The investigation of structure–activity relationships 
(Structure–Activity Relationships, SAR: relationship 
between the structures of chemicals and their biologi-
cal activities) represents one of the most important tasks 
during the early stages of the drug discovery process [1]. 
The definition of pharmacophores as a key to drug design 
is very well accepted in the field of medicinal chemistry 

and is a key point to understand a molecule’s affinity for a 
biological receptor [2]. In our initial publication on topo-
logical pharmacophores [3], we described the logic for 
the definition of a new type of descriptor based on the 
notion of emergent pharmacophores. We repeat some 
points here to clarify the objectives of this work.

A pharmacophore corresponds to the greatest com-
mon structural denominator associated with a group 
of compounds exhibiting the same biological response 
profile [4]. Given a specific target, ligand-based pharma-
cophore elucidation requires the detection of the spa-
tial arrangement of a combination of chemical features 
shared by several active molecules and responsible for 
favorable interactions with the active site. To discover 
these common anchoring features, the usual method 
starts with a careful selection of a small subset of ligands 
known for binding to the same active site with the same 
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binding mode [5]. We have done several studies with this 
approach (see [6] for an example).

In recent years, the integration of large chemical data-
bases [7] into the definition of SARs has been clearly 
explored. With SARs and pharmacophores in mind, we 
have introduced a method that automatically computes 
pharmacophores from a large data set of molecules with-
out any prior supervised selection of a small subset of 
molecules [3]. That method was based on the computa-
tion of the so-called topological pharmacophores [8, 9].

Considering graph theory, 2D topological pharmaco-
phores represent patterns which are present in a number 
of chemical structures. When applied to a data set parti-
tioned into two classes (e.g., active vs inactive molecules), 
emerging pattern mining can identify the patterns that 
occur with higher frequency in one of the two classes [3].

Of these topological pharmacophores, we can high-
light those associated with particular properties. We have 
previously explored a selection based on a growth rate 
value called GR (Growth rate, GR: ratio of frequencies of 
appearance of a pharmacophore in a given class of mole-
cules compared to the other class (active or inactive com-
pounds on BCR-ABL)). It corresponds to the frequency 
of appearance of a pharmacophore in one class (active, 
for example) compared to another. An initial selection 
was based on a value of 3 for the GR (ratio of 3:1 for the 
frequencies between the two groups). A technique named 
Maximal Marginal Relevance Feature Selection (Maximal 
Marginal Relevance Feature Selection, MMRFS: selec-
tion of relevant pharmacophores by considering their 
number of associated chemicals and their GR values) [10] 
has also allowed us to select a restricted subset of these 
topological pharmacophores. This subset keeps the same 
statistical performance as the complete set (sensitivity/
specificity) with equivalent coverage of the compounds. 
First, pharmacophore networks were defined based on 
these subsets by considering a graph editing distance 
[11] for the calculation of the similarity between MMRFS 
pharmacophores and clustering techniques [12]. For 
SAR studies and only for this objective, we have thought 
of inverting the frequencies (inactive vs active) and thus 
characterized topological pharmacophores associated 
with inactive compounds. This gave us new insights into 
our data even if we are far from the historical definition 
of pharmacophores.

In this study, we have chosen to focus on another view 
of our topological pharmacophores with the definition 
of outstanding pharmacophores named Pharmacoph-
ore Activity Delta (Pharmacophore Activity Delta, PAD: 
Pharmacophore for which the discrimination between 
active vs. inactive molecules significantly deviates from 
the mean capability of its related pharmacophores.). To 
find these PADs, a Hasse diagram [13, 14] was defined 

as a representation of the set of pharmacophores. This 
Hasse diagram corresponds to a partial order graph [14, 
15] encoding a partial order between pharmacophores, 
also called a pharmacophore network. In this work, we 
leverage the pharmacophore network to quickly obtain 
the siblings of a given pharmacophore.

For each pharmacophore, we quantify its level of sig-
nificance using a quality measure function, assigning a 
real number to each pharmacophore. We focus on the 
ratio of active molecules with respect to a specific recep-
tor, making the growth rate one of the functions used to 
assess the quality of our pharmacophores. Pharmacoph-
ores that score very differently than the average of neigh-
boring pharmacophores are considered to be PADs. The 
definition of the neighbors is based on the notion of sib-
lings related to the Hasse diagram (vide infra). Using the 
growth rate, we show experimentally that very few pat-
terns turn out to be PADs.

Methods
Dataset
In line with our previous paper [12], we retrieved a 
ChEMBL compound data set of BCR-ABL ligands [16–
18] (target ChEMBL ID: CHEMBL1862, ChEMBL24 
[19]). After discarding compounds with molecular weight 
above or equal to 800  g/mol, we obtained a data set of 
1479 molecules with either  Ki or  IC50 information. This 
limitation is primarily associated with the combinatorial 
challenge when dealing with a molecule with a signifi-
cant number of pharmacophoric functions (vide infra). 
Of these 1479 molecules, 773 were designated active 
compounds (meaning their  Ki or  IC50 value was below or 
equal to 100 nM).

Pharmacophores
In agreement with our previous description for the gen-
eration of pharmacophores [3, 12], the pharmacophoric 
features correspond to generalized functionalities that 
are involved in favorable interactions between ligands 
and targets, including hydrogen-bond acceptors (|A|) 
and donors (|D|), negatively (|N|) and positively (|P|) 
charged ionizable groups, hydrophobic regions (|H|), 
and aromatic rings (|R|). Therefore, a pharmacophore is 
a fully connected graph where each vertex represents one 
of the specific pharmacophoric features, and the edges 
are labeled with the number of the fewest possible bonds 
between two vertices. The number of vertices, i.e. phar-
macophoric features, composing a pharmacophore is 
called its order.

A notation was fixed for the pharmacophores. We 
started with the vertex of the pharmacophores, e.g., 
|A|A| for a pharmacophore with two As with pipes as 
separators, and we indicated the values of the edges, e.g., 
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|2| for a distance of 2 bonds between the As, with pipes 
as separators (final notation: |A|A| |2|). For a more com-
plex case with four pharmacophoric features and six dis-
tances to integrate, for instance |A|A|H|D| |2|4|5|7|1|3|, 
the six distances correspond to the first one against the 
others (|A|A|, |A|H|, |A|D|) then, the second one against 
the others (|A|H|, |A|D|) and, at the end, the last one 
against the other (|H|D|). In the following, we omit edges 
information and “|” separators in figures when they are 
not necessary for comprehension.

We call “support” the set of molecules supporting a 
given topological pharmacophore, i.e., containing all the 
pharmacophoric features of the pharmacophore with the 
correct distances between them. Let p a pharmacophore 
and D the set of studied molecules. We note Support(p) 
the support of p in D , i.e., its set of supporting molecules.

In agreement with our previous studies [3, 12], the 
minimal support for the extraction of pharmacophores 
was fixed to 10 (minimal number of compounds), and 
the orders (number of pharmacophoric features) were 
between 1 and 7. 112 291 pharmacophores were gener-
ated with these parameters. For the GR calculation (vide 
infra), the cutoff for active derivatives was fixed to be less 
than or equal to 100 nM (773 compounds).

Let p, q be two 2D pharmacophores assimilated to 
graphs with labeled vertices and labeled edges and 
D the set of studied molecules. If p is a subgraph of 
q , noted p ⊂ q , this means that the pharmacophore 

p is included in the pharmacophore q . It also means 
that every single molecule covered by q is also cov-
ered by p . A molecule set covered by a pharmaco-
phore p is the support of a pharmacophore denoted 
Support(p) ⊂ D . Thus, we can state that p ⊂ q implies 
Support(q) ⊂ Support(p).

From the subgraph partial order we can build a Hasse 
diagram [20] called a pharmacophore network. We 
note G(V ,E) a pharmacophore network where each 
vertex v ∈ V  is a pharmacophore and given two vertices 
v1, v2 ∈ V , ∃(v1, v2) ∈ E ( E is the set of edges between 
the pharmacophore network vertices) if and only if 
v1 ⊂ v2 and ∄v3 ∈ V  such that v1 ⊂ v3 and v3 ⊂ v2 . 
Therefore, an edge links two vertices of the network 
v1, v2 ∈ V  if and only if the pharmacophore in v1 is a 
subgraph of the pharmacophore contained in v2 and 
there are no pharmacophores v3 in the pharmacophore 
network subgraph of v2 which has v1 as subgraph.

We note the edge relation between the vertices of the 
pharmacophore network v1 < v2 and call v1 a parent, 
which means that v2 is called a child. It also means that 
Support(v2) ⊂ Support(v1) . We illustrate the obtained 
structure in Fig. 1.

As we noticed that a large number of pharmaco-
phores appear in the exact same set of molecules, we 
decided to group them into equivalence classes [21] 
(ECs) based on molecule sets.

Fig. 1 Structure of the pharmacophore network. Each circle is a vertex containing a pharmacophore. Only the pharmacophoric features are 
displayed to simplify the example and the separators “|” are removed for ease of readability. Molecules having the pharmacophore are indicated 
in the colored rectangles using set notation. The notation {M3, . . . ,M6} indicates that the set is composed of molecules M3,M4,M5, and M6 . 
The molecules associated to a pharmacophore is determined by the colored area its vertex is in. Edges displays the inclusion relation 
between pharmacophores. The vertex containing AN is connected to the vertices containing ARN and ADN because AN is a subgraph of ARN 
and ADN. Since AN is associated with molecules M1 and M2 , ARN and ADN must be associated to a subset of {M1,M2} . In this example, these 
pharmacophores are associated to the molecule M2.
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GEC, DEC, SEC
The first one is the General Equivalence Class 
(GEC), which groups every pharmacophore cov-
ering the same set of molecules. Let p a pharma-
cophore and G(V ,E) a pharmacophore network 
containing p , its general equivalence class is defined as 
GEC(p,G) = {v ∈ V |Support(v) = Support(p)} . The for-
mula can be transcribed as follows. Given a pharmacoph-
ore p and a graph G , the general equivalence class of p is 
the set of pharmacophores v contained in the vertices V  
of G having the same support as p , i.e. associated to the 
same set of molecules. In Fig. 1, these equivalence classes 
are indicated by the colors of the areas. Meaning that 
pharmacophores of the first layer belong to the same gen-
eral equivalence class because they all are in grey areas.

The second one is the Divided Equivalence Class (DEC), 
which groups every pharmacophore that has the same set 
of molecules and the same order. Let p a pharmacoph-
ore and G(V ,E) a pharmacophore network containing 
p , we label Order(p) its number of pharmacophoric fea-
tures. Then, the divided equivalence class of p is defined 
as DEC(p,G) =

{

v ∈ GEC(p,G)|Order(v) = Order(p)
}

 . 
The formula can be transcribed as follows. Given a phar-
macophore p and a graph G , the divided equivalence 
class of p is the set of pharmacophores contained in the 
general equivalence class of p in G having the same order, 
i.e., having the same number of pharmacophoric features. 
In Fig.  1, pharmacophores in the orange area belong to 
the same general equivalence class but are divided in two 
divided equivalence class regarding the layer they belong 
to, i.e., regarding their orders.

The last one is a specialization of GECs based on 
the connectivity of the pharmacophores in the phar-
macophore network called the Structured Equiva-
lence Class (SEC). To define this class, we introduce 
a new operator. Let p, v two pharmacophores in the 
vertices of the pharmacophore network G(V ,E) ; we 
note p ∼ v if we have p < v or v < p . Thus, given 
v1, . . . , vn ∈ V  , the expression (p ∼ v1 ∼ · · · ∼ vn ∼ v) 
indicates that a path exists in the pharmacophore net-
work going from the vertex p to the vertex v . A struc-
tured equivalence class groups all pharmacophores 
occurring in the same set of molecules having a path 
connecting them inside their GEC. Let p a pharma-
cophore, its structured equivalence class is defined as 
SEC(p,G) = {v ∈ GEC(p,G)|((p ∼ v), or(∃v1, · · · , vn ∈

GEC(p,G), (p ∼ v1 ∼ · · · ∼ vn ∼ v)))} . The formula can 
be transcribed as follows. Given a pharmacophore p and 
a graph G , the structured equivalence class of p is the set 
of pharmacophores v in V  contained in the general equiv-
alence class of p in G which are connected to p by a path 
only visiting pharmacophores contained in the general 
equivalence class of p in G . In Fig. 1, the pharmacophores 

in the grey areas all belong to the same general equiva-
lence class but they all belong to separated structure 
equivalence classes.

The concepts of GEC, DEC and SEC all fall under a 
common concept called Equivalence Classes (EC). We 
can construct a pharmacophore network that minimizes 
redundant information from the ECs within a given 
pharmacophore network by taking ECs as vertices and 
extending the partial order as follows. Let EC1,EC2 be 
two equivalence classes; we say that EC1 < EC2 if and 
only if ∃e1 ∈ EC1, ∃e2 ∈ EC2, e1 < e2 . With the extended 
partial order, we can define a pharmacophore network 
of equivalence classes following the same principles as 
the one used to compute the ECs. Below, we introduce 
methods applied to the pharmacophore network. These 
methods can be applied to either pharmacophores as ver-
tices or equivalence classes as vertices. We refer to it as 
the GEC (respectively DEC and SEC) network when the 
vertices of the network are general (respectively divided 
and structured) equivalence classes.

In Fig. 1, the three pharmacophores appearing only in 
the molecule M1 and M2 (in the blue areas) belongs to the 
same GEC and DEC, but do not belong to the same SEC 
because they are not connected within their GEC, i.e., 
the path linking one to another in the context graph has 
to go through a vertex which covers different molecules 
set. But if you consider pharmacophores, ADN, DNR 
and ARN, they belong to the same SEC (the purple area) 
because ADRN is associated with the same set of mole-
cules. As we can observe, the set inclusion of molecules is 
maintained, which indicates that there is an equivalence 
between the two types of pharmacophore network.

In order to study the equivalence classes, without 
considering every redundant pharmacophore con-
tained, we use the notion of generating pharmacoph-
ores called generators and closed pharmacophores. 
Generators are pharmacophores that have no parents 
in their Equivalence Class (EC), which means they 
are the starting points of the EC. Closed pharmaco-
phores are pharmacophores that have no children in 

Fig. 2 Generating pharmacophore (blue) and closed 
pharmacophores (red) from one EC (right)
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their EC, which means they are the endpoints of their 
EC. In Fig. 2, each circle without label is a pharmaco-
phore (left) contained in the circle labeled EC which is 
an equivalence class (right). Dashed lines symbolize the 
inclusion relation between the pharmacophores and 
the equivalence class. We have one generator in blue 
and two closed pharmacophores in red.

But even with the use of equivalence classes, there 
are still too many vertices to study in the pharmaco-
phore network. Therefore, we use the notion of sib-
lings in a pharmacophore network. From intuition, 
a sibling is a vertex having at least one common par-
ent. For a given pharmacophore p and its pharma-
cophore network G(V ,E) where each vertex v ∈ V  is 
a pharmacophore, the siblings set of p is defined as 
S(p,G) = {v1 ∈ V |∃v2 ∈ V , v2 < p and v2 < v1} . We 
note Card(p,G) the cardinal of the set of siblings of  p , 
i.e., the number of pharmacophores contained in the 
siblings set.

In the pharmacophore network (see Fig.  3), the sib-
lings have at most one pharmacophoric feature which 
differs from the origin pharmacophore. In the con-
densed graph, the siblings cover the closest sets of mol-
ecules which are not included in one another because 
they all have molecule subsets of their common 
parents.

Using the concept of siblings, we will identify the ECs 
whose quality strongly deviates from those of their sib-
lings. We interpret those EC s as key graph elements, as 
they may explain the biological behavior of their sup-
porting molecules. We call in the following the selected 
outstanding pharmacophores the Pharmacophore 
Activity Delta (PAD).

Pharmacophore activity delta
Let p a pharmacophore and D the molecule data set. We 
call the quality of p a real number determined by a func-
tion considering the molecules containing p noted f(p, D). 
In this work, the quality is the normalized growth rate 
of p . We say that a pharmacophore p is a PAD when its 
quality deviates from the mean quality of its siblings S(p, 
G). Let f(p, D) the quality measure’s value of the pharma-
cophore p in the dataset D, the sibling mean µ(S(p, G), D) 
is:

(1)µ(S(p,G),D) =

∑

s∈S(p,G)f (s,D)

Card(S(p,G))

Fig. 3 Getting the siblings ARP, DRP, ADP, ARN, DRN, and ADN (blue) from an origin vertex labeled ADR (bold blue); its parents are AD, AR and DR 
(red)

Fig. 4 Distributions of vertices by order: initial pharmacophore 
network and DEC network
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Then, σ(S(p,G), D) is defined as the standard deviation 
of the siblings:

The pertinence of p is defined as:

The pertinence is the deviation from the mean qual-
ity of the sibling divided by the standard deviation of the 
sibling. It can be transcribed as the deviation propor-
tion of p regarding it sibling. From this equation, a PAD 
is a pharmacophore which pertinence is high enough 
to interest the expert. Therefore, we define our PAD 
selector.

The selector is defined as:

Thus, a pharmacophore p is a PAD if its quality devi-
ates at least δ standard deviations (Eq. 3) from the mean 
of the qualities of its siblings, δ being a user-supplied 
parameter.

We chose to use the standard deviation because we 
want to adapt our selection to each sibling. If the siblings 

(2)

σ(S(p,G),D) =

√

√

√

√

∑

s∈S(p)

(

f (s,D)− µ(S(p,G),D)
)2

Card(S(p,G))

Pert(p,G,D) =
f (p,D)− µ(S(p,G),D)

σ(S(p,G))

(3)PAD
(

G, f ,D, δ
)

= {p ∈ V||Pert(p,G,D)| ≥ δ}

are different from one another, we only want to select the 
one that deviates the most. If the siblings are similar to 
each other, then even a small deviation can be interesting.

GR
Based on the partitioning of the initial dataset into active 
and inactive molecules  (or the inverse) the growth rate 
(GR) of a given pharmacophore corresponds to the ratio 
between the frequencies with which it occurs in each of 
the two subgroups.

The main metric in this study is  GRN, normalized GR 
with values between 0 and 1.

A GR value of 1 (same frequency for active and inac-
tive compounds) corresponds to 0.5 for  GRN. For the two 
extreme values, a  GRN value of 1 indicates that a pharma-
cophore occurs in only active compounds, and a value of 
0, in only inactive compounds. A GR value of 3, classi-
cally used in our previous studies, now corresponds to a 
 GRN value of 0.75.

GR =
Fit frequencywithin actives

Fit frequencywithin inactives

GRN =
GR

(GR+ 1)

Fig. 5 Distributions of pharmacophores by order for initial 
pharmacophore network (blue) and for GECs network (light 
brown) and SECs network (red) when considering the generators 
for the distributions

Fig. 6 Distributions of vertices by order of pharmacophores 
for initial pharmacophore network (blue) and SECs network 
(red) by considering the generators for the distributions and one 
pharmacophore for each SEC
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Fig. 7 All pharmacophoric functions associated with one representative compound (left). Two among the 271 generators of this SEC (center 
and right)

Fig. 8 Best parents with more than 50 filiations

Table 1 Description of SECs (as a function of  GRN values) and PADs (as a function of pertinence values)

Information on the associated number of SECs or PADs and the molecules covered for the PADs. Pertinence is related the Eq. 3

Descriptions of SECs Number

SECs:  GRN ≥ 0.5 /  GRN < 0.5 7534/7926 (SECs)

SECs:  GRN ≥ 0.75 /  GRN ≤ 0.25 4285/3803 (SECs)

SECs:  GRN = 1 /  GRN = 0 1084/979 (SECs)

Description of PADs Number

PADs: pertinence ≥ 1.96 or ≤ ‑1.96 (α = 0.05) 20/22 (PADs)

Molecules covered (active/inactive) 337 (molecules)
(187/150)

PADs: pertinence ≥ 1,64 or ≤ ‑1.64 (α = 0.1) 187/190 (PADs)

Molecules covered (active/inactive) 1202 (molecules)
(698/504)

PADs MMRFS with α = 0.1 63 (0.85)/72 (0.60) (PADs (Recall values))

Molecules covered (active/inactive for above PADs MMRFS (// as separator)) 659/44 // 19/426 (molecules)

Order 2 PADs 5/2 (PADs)

Order 3 PADs 45/56 (PADs)

Order 4 PADs 11/12 (PADs)

Order 5 PADs 2/2 (PADs)
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Pharmacophore (and PAD) stability
Discovering interesting substructures from data always 
risks capturing spurious phenomena particular to the 
data set, instead of fundamental relationships that hold 
more generally. In the case of pharmacophore activ-
ity deltas, this risk is compounded by the fact that each 
PADs identification depends not only on its own support 
and quality, but also on those of its siblings (and, further-
more, on whether those siblings are present in the phar-
macophore network at all).

To assess the stability of discovered PADs, we therefore 
use a ten-fold cross-validation of the data: the data set is 
split into ten equally-sized subsets (folds), which are then 
combined to derive ten subsets, each of which containing 
90% of the whole data, keeping one fold apart each time. 
This allows to modify data sets in a controlled manner. 
PADs are identified independently on each of those 10 
data sets, and we assess how often PAD (re)occurs in the 
different result sets.

Given the construction of the underlying data sets, 
any two such sets will share a proportion of about 
1–10/90 = 0.88889 of the compounds. Simply based on 
this data overlap, we would expected particular phar-
macophores to reoccur k times at most 0.88889 k due to 
chance (e.g. 0.5549 for k = 5). As mentioned above, how-
ever, this probability will be significantly lower for PADs 
since not only their siblings need to reoccur but GR dif-
ferences will also need to be large enough for a pharma-
cophore to be identified as a PAD.

Results and discussion
Pharmacophores and equivalence class network: GEC, DEC, 
SEC
Figure 4 shows the initial pharmacophore network (blue) 
and the DEC network (red) illustrating the distribution of 
vertices regarding their layers. We can see that depend-
ing on the pharmacophore order, the number of DEC 
vertices is strongly reduced when the order increases. 
This phenomenon is predominant for orders 5, 6 and 7: 
those orders place a high number of pharmacophores 
into an equivalence class when considering the DEC defi-
nition. A multiplication of pharmacophores associated 
with the same set of molecules is clearly observed and 
amplified when the number of pharmacophoric features 
is integrated.

Figure  5 shows the pharmacophore distributions for 
the initial pharmacophore network (blue), the GEC net-
work (light brown) and the SEC network (red). For each 
EC, we have kept the number of initial pharmacophores 
for a particular view of the modifications. The new distri-
bution of pharmacophores through the notion of ECs in 
the order is based on the generators (smallest pharmaco-
phore for each EC) for each EC. We can see clearly that 

the GECs and SECs have the same distributions and the 
pharmacophores of orders 5–7 are redistributed, through 
the generators, to orders 3 and 4.

The last representation (see Fig.  6) shows the distri-
bution of vertices in the initial pharmacophore network 
and in the SECs network by considering the order of the 
generators for each SEC. From 112 291 pharmacoph-
ores in our initial data set, we move to 15,477 SECs to be 
assessed.

Fig. 9 Pharmacophore Activity Delta network with active 
pharmacophores in red and inactive pharmacophores in cyan. The 
symbols are related to the order of the pharmacophores (order 2 
(arrow), order 3 (triangle), order 4 (square), order 5 (hexagon)))

Fig. 10 PAD network with the three areas (green, pink and black) 
for active pharmacophores
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SEC/generators/parents
Of the 15,477 SECs, 1745 are associated with at least two 
generators (vide supra for the definition). These 1745 
SECs cover 1301 out of 1479 compounds. Of these 1745 
SECs, 443 are associated with at least 5 generators, 25 
with at least 30 generators, 10 with at least 50 generators 
and 1 with 271 generators. To give a first explanation of 

these results, the size of the molecules and the associated 
number of pharmacophoric functions were analyzed. 
In the initial dataset, 99 compounds have a molecular 
weight ≥ 500  g/mol and a number of pharmacophoric 
functions ≥ 20. Of these 99 compounds, 51 are associated 
with a SEC with at least 30 generators. So, the molecu-
lar weight and the number of associated pharmacophoric 

Fig. 12 PAD1 and PAD2 with two representative compounds (top). Below, pharmacophore 1 corresponding to a combination of PAD1 and PAD2 
(left) and pharmacophore 2 (with ponatinib) derived from the nine compounds fitting pharmacophore 1 

Fig. 11 PADs between two active groups (left, solid red) and proximities between active and inactive pharmacophores (right) corresponding 
to three areas (solid yellow, green, blue)
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functions give a first and clear explanation for the 
observed number of generators associated with some 
SECs. The SEC with 271 generators corresponds to 13 
compounds, all inactive (see Fig.  7 for illustrations of 
this SEC), compounds in agreement with the previous 
remark.

Starting from the 1745 previous SECs, we analyzed the 
parents of these SECs. We wanted to see if some parents 
have particular characteristics in terms of filiations. These 
1745 SECs are associated with 7517 parents. Among 
them, 669 have more than 20 filiations and 201 have 
more than 50 filiations. Among the last group, 18 parents 
are associated with active compounds  (GRN ≥ 0.75) and 5 
parents have a  GRN value ≥ 0.9. The best ones (w.r.t.  GRN 
values), |R|D|H| |1|5|9| and |R|R|H| |0|3|5|, are asso-
ciated with 406 and 461 compounds, respectively (see 
Fig. 8). These pharmacophores correspond to important 
pharmacophores of this kinase with structural charac-
teristics associated with the interaction with the hinge 
region and the key methyl group, often related to the 
back pocket region of the binding site (see Xing et al. [22] 
and our latest publication [12]).

Among the parents, the best one for the number of fili-
ations, |A|R| |2|, has 276 filiations. It covers 1366 com-
pounds out of 1475, with a  GRN value of 0.53.

Outstanding pharmacophores: from SECs to PADs
With EP mining in mind, we applied the SEC network 
to our pharmacophore file and retrieved the  GRN values 
for each SEC. Table 1 shows information about the dis-
tribution of SECs as a function of the  GRN values. For the 
selection of PADs among the SECs, the pertinence value 
(Eq.  3, δ value) was considered first to be 1.96 (p-value 
of 0.05). 42 PADs (Table 1) were obtained, but with low 
coverage of the initial data set (22%). As a result, we have 
lowered the pertinence value to 1.64 (p-value of 0.1), and 

377 PADs were obtained with a coverage of 81% of the 
initial data set (of the 277 compounds missing, 75 are 
actives).

To analyze the PADs, we have chosen to represent 
them as a pharmacophore network. A similarity matrix 
was defined for the initial chemical data set with ECFP4 
as molecular fingerprint descriptors. The Tanimoto coef-
ficient was used as the similarity measure. The similarity 
between the PADs was defined as the average similarity 
between the molecules associated with the PADs. The 
orders of the PADs are different, so it was impossible to 
integrate a graph edit distance in agreement with our pre-
vious studies for the similarities between the PADs [12]. 
To decrease the number of PADs and in line with our ini-
tial studies, we decided to summarize the initial PADs set 
using the MMRFS technic. The method is described in a 
previous publication [3]. MMRFS aims to generate a sub-
set of pharmacophores characterized by discriminating, 
distinct, and representative elements of the active mol-
ecules. 135 PADs (see Table 1) out of the 377 initial PADs 
were selected in this case with a coverage, for the data 
set, of 77% (instead of 81% without MMRFS selection). 
Most of the PADs have order 3, corresponding to three 
pharmacophoric functions (see Table 1). As described in 
our previous publication, we focused, for the network, on 
the nearest neighbors of each PAD. The neighbors of each 
PAD were ranked in descending order based on similar-
ity coefficient values. Using this method, the nearest two 
neighbors of each pharmacophore were retained (we 
also analyzed the nearest five and ten neighbors, but the 
nearest two neighbors were best for the analysis of the 
network). The two neighbors corresponded to the mini-
mum number of neighbors because several of the edges 
within a given network can exhibit identical values for 
the similarity coefficient. We have chosen the Compound 
Spring Embedder [23] for the layout (PAD network) in 

Fig. 13 PAD3 (only inactive compounds) and PAD4 (only active compounds) showing the inversion of the amide function (between two aromatic 
rings) for the two representative compounds of each PAD
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Cytoscape [24]. The final PAD network allows us to get a 
view of our data set (see Fig. 9) with active PADs in solid 
red and inactive PADs in solid cyan.

From this PAD network, we can distinguish, at first 
glance, three areas for active PADs (see Fig.  10). A 
description of the PADs (in brackets, the number of asso-
ciated chemicals) for these three areas and their repre-
sentative compounds are provided in Tables  2, 3 and 4. 
The first one, in solid green, groups 26 PADs and covers 
467 molecules (442 actives) with a recall value of 0.57 
(57% of all actives). The second one, in solid pink, groups 
19 PADs and covers 179 molecules (170 actives). The last 
area, in solid black, is more isolated. It groups 18 PADs, 
17 actives and one inactive. The 17 active PADs cover 175 
molecules (160 actives).

It is impossible in this publication to describe all the 
PADs. We have therefore chosen to focus on some spe-
cific areas of this PAD network. The first one concerns a 
connection between two active areas. In fact, the green 
area is connected to the pink area by two PADs (simi-
larity of 0.39 between the two PADs; see Figs. 10 and 11 
(left), solid red).

One of these two PADs has 24 compounds (PAD1, 
|A|R|R| |14|3|8|; see Fig. 12), and the other has 10 com-
pounds (PAD2 |A|D|H| |2|23|21|; see Fig.  12). They 
share 9 compounds (90% of the compounds associated 
with PAD2 are in PAD1). By combining PAD1 and PAD2, 
pharmacophore 1, with 5 pharmacophoric features, can 
be derived (see Fig. 12). To analyze the possible proximity 
of other scaffolds to these nine compounds, we derived 
all the pharmacophores with 5 features from these nine 
compounds and extracted those associated with the max-
imum number of derivatives. Among the 56 pharmaco-
phores generated, the best one (in terms of the number 
of compounds) is associated with 65 chemicals (pharma-
cophore 2, GR = 58) and is related to the ponatinib-like 
family [25].

For the other areas, we analyzed the situation where 
active PADs are close to inactive ones (similarity ≥ 0.3 
for the PADs). This is the case for three areas (solid yel-
low, green, blue; see Fig. 11). The first one, in solid yellow, 
allows us to understand the importance of one |A| func-
tion included in an aromatic group and a specific posi-
tion of the |D| function for similar compounds. In fact, 

Fig. 14 PAD5 and PAD6 with two representative compounds (top). PAD5 with the only active compound (bottom) associated to this PAD 
and for which the key methyl group is present
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for PAD3 with only inactive compounds, we observed 
(see Fig. 13) for the representative compound the inver-
sion of the amide function compared to the representa-
tive compounds of PAD4 (with only active compounds), 
and moreover, one |A| function is missing compared 
to the representative compound of PAD4. PAD4 is the 

pharmacophore clearly associated with the nilotinib-like 
family [26].

The solid green area is associated with pharmacophoric 
variations around the scaffold associated with imatinib 
[27]. PAD6 (see Fig. 14) has three pharmacophoric func-
tions translating the position of two polar functions (|A| 

Fig. 15 PAD7, PAD8, PAD9, PAD10 with representative compounds. PAD7 is active and the other ones are inactives. PAD7 and PAD8 have different 
positions of the hydroxy group for phenol functions. No phenol group in PAD9 compared to PAD7. PAD10 with a polar function (amine) instead 
of a hydrophobic function for PAD7

Table 5 Number of pharmacophores (Phar.), SEC and PADs for each fold. Cumulative presence of the PADs in the folds

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Phar 98,053 92,727 77,346 92,742 105,875 95,596 108,556 90,708 91,588 93,638

SEC 14,257 14,278 13,836 13,717 14,058 13,529 13,378 13,415 13,547 13,791

PADs 153/199 168/173 174/144 152/122 130/126 117/149 126/148 130/208 127/180 115/169

Presence of the PADs in the folds (cumulative: at least x folds)

x fold 10 9 8 7 6 5 4 3 2 1

Pertinence ≥ 1.64 26 70 111 146 192 225 261 304 349 364

Pertinence ≤ ‑1.64 14 33 60 101 139 194 221 268 355 481
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and |D|) and, above all, the size of the compound with a 
hydrophobic group being at a distance of 19 (19 edges) 
from the aromatic ring bearing the |A| function. PAD5 
is, on the contrary, associated with inactive derivatives. 
We observed with PAD5 the typical scaffold associated 
with imatinib without the terminal amine functions. We 
can notice that one compound fitting PAD5 is active with 
the typical methyl group for some kinase inhibitors of 
ABL1 related to the back pocket binding site [12], also 
described previously with the best parent (see Fig. 8).

The last solid blue area is associated with the only 
active PAD surrounded by inactive PADs (see Fig.  9). 
PAD7 is active, and the other ones are inactive (see 
Fig.  15). For this chemical series, we can clearly see 
the importance of the |H| function in alpha position 
to the |A| function of the phenol group (PAD7). For 
PAD8, always on the phenol group, the |H| function is 
not in the same position (methoxy group in this case). 
For PAD 9, we do not have a phenol group and the |A| 
function is in a different position. For PAD10, a |P| 
function is present. So, some clear structure–activity 
relationships could be identified from the analysis of 
these PADs.

Cross‑validation studies and stability of PADs
We performed a stratified tenfold cross-validation 
study (i.e. each fold contained the same proportions of 

active and inactive compounds) on the initial dataset 
(using scikit-learn/Kfold [28]). The method (extraction 
of pharmacophores and definitions of pharmacophore 
network/SECs/PADs) was applied independently to 
each subset.

As implied by, and supporting, our earlier explana-
tion, we extract on average 15.6% fewer pharmaco-
phores (5.7%-31.1%). The number of SECs varies less, 
between 7.75 and 13.5% fewer, for an average of 10.9% 
fewer SECs. A total of 364 active PADs were obtained 
by combining the result derived from the 10 subsets, 
fewer than the 377 PADs derived from the full data. The 
method was found to be more stable than we expected. 
Indeed, of these active PADs, 61% are present in at least 
5 subsets (as compared to the 55.49% of pharmacoph-
ores one would expect to reoccur 5 times) and 26 PADs 
are present in the results of all the subsets. Of these 
26 active PADs, |D|A|R| |2|3|2|, with 470 compounds, 
is associated with the highest number of compounds. 
Inactive PADs are less stable, with 40% present in at 
least 5 folds, and 14 PADs are present in all the folds 
(Table 5).

Conclusions
In an effort to develop a tool that can rapidly provide 
information from a dataset of molecules regarding active 
or inactive compound characteristics, we conducted 
structural elucidation using a fully annotated dataset of 

Fig. 16 Workflow associated to the different steps of our process from the extraction of pharmacophores to the representation of a network 
associated to the PADs
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molecules extracted from the ChEMBL database. The 
various steps involved in this workflow are summa-
rized in Fig. 16. The extraction of pharmacophores with 
Norns is the most time-consuming process, taking sev-
eral minutes with our configuration. We processed 1479 
molecules to generate topological pharmacophores con-
taining 1 to 7 motifs, with the support of at least 10 mol-
ecules. As part of our objective to involve a human expert 
in pharmacophore elucidation, we established a specific 
method to identify outstanding pharmacophores known 
as PADs.

The extraction of PADs is initially linked to defining the 
15,477 SECs from the initial 112,291 pharmacophores. 
Subsequently, calculations of  GRN were performed for 
each SEC. A threshold for the pertinence values associ-
ated with each SEC led to the extraction of 377 PADs. In 
the end, a PAD network was constructed using Cytoscape 
starting from a representative set of 135 PADs (MMRFS). 
This network incorporates the similarity between the 
PADs for link definition (the 2NNs of each PAD).

The interestingness of this reduced set of 135 PADs is 
based on the diversity of information it provided, equally 
shared between active and inactive compounds. Cross-
validation studies can be also a basis for the selection of 
interesting PADs. The proximity between these PADs 
allows us to explain some key SARs with the four illustra-
tions in this publication.
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