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Abstract

Surface reconstruction from scattered point clouds is the process of generating surfaces from unstruc-
tured data configurations retrieved using an acquisition device such as a laser scanner. Smooth surfaces
are possible with the use of spline representations, an established mathematical tool in Computer-
Aided Design and related application areas. One key step in the surface reconstruction process is the
parameterization of the points, that is, the construction of a proper mapping of the 3D point cloud to
a planar domain that preserves surface boundary and interior points. Despite achieving a remarkable
progress, existing heuristics for generating a suitable parameterization face challenges related to the
accuracy, the robustness with respect to noise, and the computational efficiency of the results. In this
work, we propose a Boundary Informed Dynamic Graph Convolutional Network (BIDGCN) character-
ized by a novel boundary informed input layer, with special focus on applications related to adaptive
spline approximation of scattered data. The newly introduced layer propagates given boundary infor-
mation to the interior of the point cloud, in order to let the input data be suitably processed by
successive graph convolutional network layers. We apply our BIDGCN model to the problem of param-
eterizing three-dimensional unstructured data sets over a planar domain. A selection of numerical
examples shows the effectiveness of the proposed approach for adaptive spline fitting with (truncated)
hierarchical B-spline constructions. In our experiments, improved accuracy is obtained, e.g., from
60% up to 80% for noisy data, while speedups ranging from 4 up to 180 times are observed with
respect to classical algorithms. Moreover, our method automatically predicts the local neighborhood
graph, leading to much more robust results without the need for delicate free parameter selection.

Keywords: geometric deep learning, parameterization, surface fitting, adaptive spline approximation,
THB-splines

1 Introduction

In this paper we use geometric deep learning tech-
niques and spline fitting methods to obtain a

new Boundary Informed Dynamic Graph Convo-
lutional Network (BIDGCN) for parameterization
and spline surface approximation of scattered
point clouds. More precisely, we consider the prob-
lem of generating surfaces from unstructured point
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Fig. 1: BIDGCN point cloud parameterization and adaptive THB-spline fitting. From left to right: an
input scattered point cloud with interior (blue) and boundary (red) points is processed by the proposed
BIDGCN network to predict the input point parameterization. The predicted parameters are subsequently
employed in an adaptive surface reconstruction scheme to get the final hierarchical geometric model.

data retrieved using acquisition devices such as
laser scanners. First, we train and use BIDGCN
to obtain a parameterization of the points, that
is, the definition of a proper mapping of the 3D
point cloud to a planar domain, which preserves
surface boundary and interior points. Second, we
compute smooth surface representations of the
data using adaptive spline models that general-
ize the established tensor-product splines used
in Computer-Aided Design. The workflow of the
proposed method is summarized in Fig. 1.

The parameterization problem is a key step in
different geometric modeling tasks and its solution
is usually the starting point of various data pro-
cessing algorithms. Among others, it is essential
for approximating a scattered three-dimensional
point cloud with high-order geometries, such as
B-splines, NURBS or locally refined (hierarchi-
cal) B-splines. Industrial applications include, for
example, a variety of reverse engineering prob-
lems, as the adaptive re-construction of geometric
models from a 3D scan [1–4]. A class of meth-
ods for scattered point cloud parameterization
was proposed in [5] building upon the methods
from [6] for the related problem of parameteriz-
ing triangulated surface data. In these methods,
the one-dimensional boundary of the point cloud
is parameterized separately to guarantee that it
is properly mapped to the boundary of the
planar domain. The parameterization of the inte-
rior vertices is then found by assuming that the
parameter for each interior vertex is a convex com-
bination of the parameters of a certain vertex
neighborhood. The specific choices of neighbors
and coefficient values considered in the convex

combinations determine the particular method
from this class, see [5]. Recently, machine learn-
ing tools have been applied to the problem of
determining these coefficients [7, 8]. In particu-
lar, [7] builds upon [6] and trains a network for
a fixed triangular mesh, whereas [8] provides a
more general meshless data-driven approach based
on [5]. While these methods lead to an improved
performance compared to the standard choices of
coefficients, they also inherit their limitations in
terms of efficiency, robustness, and sensitivity to
parameter-dependent graph connectivity.

If data are arranged on a regular grid in a
Euclidean space, they can be processed by feed-
forward covolutional neural networks. In these
models the information flows from the input,
through the intermediate convolutions used to
define the architecture, and finally to the output.
There are no feed-back connections in which the
outputs of the model are fed back into itself. Geo-
metric deep learning refers to the generalization
of convolutional neural networks to non-Euclidean
data [9]. These include discrete manifolds, i.e., a
topological spaces that are locally Euclidean [10],
graphs, i.e., finite sets of points together with a
prescribed set of connections (edges) [11], and gen-
eral point clouds, i.e. discrete sets of points in
space. An example of a scattered point cloud is
shown in Fig. 1 (left). Its boundary points are
highlighted in red and its interior points in blue.

In the case of unstructured non-Euclidean
data several different operators that mimic the
behavior of standard convolutional neural net-
works are possible [12]. Most current graph neural
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network architectures are classified as message
passing neural networks [13], meaning that hidden
states at each vertex are computed by aggregat-
ing the output of message functions applied to
the features of the vertex and its neighbors (edge-
connected vertices). In [14] an edge convolution
operator is presented, where the graph used for
message passing is recomputed after each layer
according to the new features, thereby enabling
the network to predict the graph and to transport
the features arbitrarily far in the point cloud.

While graph neural networks have been suc-
cessfully applied to classification tasks such as
shape recognition, segmentation, and registra-
tion [15–18], regression tasks where the network
should predict a (potentially vector-valued) func-
tion on the input geometry are much less stud-
ied [19, 20]. Moreover, graph neural networks
that are used for processing discrete surface data
have mostly been applied to closed surfaces, i.e.
surfaces without boundary. This simplifies the
design of suitable graph convolution operators
significantly, since all vertices of the discrete man-
ifold or point cloud can be handled in the same
way and no explicit distinction between interior
and boundary vertices needs to be made. How-
ever, in many applications in geometric modelling,
geometry processing and numerical analysis, the
input geometries are given as discrete surfaces
with boundary. For a variety of problems bound-
ary conditions are imposed on the corresponding
vertices and often the solution to a problem is
only uniquely determined up to these boundary
conditions. For example, this is the case for bound-
ary value problems of elliptic partial differential
equations on surfaces, as well as for the problem of
scattered point cloud parameterization. In order
to apply deep learning based methods to this kind
of problem it is therefore necessary to devise a
network architecture that takes into account the
boundary conditions in addition to the standard
vertex features. Since boundary conditions can be
regarded as additional features that are defined
only on the boundary vertices but not on the
interior vertices, this means that such a network
architecture needs to be able to handle data with
varying feature dimensions.

The key idea of the Boundary Informed
Dynamic Graph Convolutional Network proposed
in this paper is to treat boundary conditions as
additional features at the boundary vertices of the

point cloud. These features are propagated into
the whole point cloud by a novel graph convolu-
tion operator that contains two separate trainable
message functions: the first one for edges between
interior and boundary vertices, and the second one
for edges between interior vertices. In the sub-
sequent hidden layers, the information stemming
from the boundary conditions is further processed
and used to predict the solution for the problem
at hand. The two main properties of the proposed
network layer are: (i) the ability to incorporate
boundary conditions in its prediction (due to the
boundary input layer) and, (ii) the dynamic pre-
diction of the graph used for message passing
(due to the dynamic edge convolution approach as
in [14]).

We use BIDGCN to obtain boundary-fitted
parameterizations of point clouds, and we con-
sequently apply adaptive fitting with truncated
hierarchical B-splines [21] to reconstruct smooth
surfaces. The performance of the adaptive approx-
imation scheme is enhanced by introducing a
parameter correction step [22] within each itera-
tion of the adaptive strategy, see also [4, 23]. This
extends the case of structured data fitting with
T-splines studied in [24, 25]. Our main contribu-
tions to the problem of parameterizing and fitting
scattered point clouds are summarized as follows:

1. Computational efficiency: After training the
network its evaluation is computationally much
more efficient than applying the classical meth-
ods in [5] and the learning-based method in [8].
In particular, once the training process is com-
pleted, large advantages in computational time
can be observed, ranging from 4 times upto a
speedup of 180 times.

2. Robustness with respect to noise: Our method
is robust with respect to noise and results
in much better approximations when approx-
imating noisy point clouds with polynomial
surfaces. In particular, an improvement in the
accuracy from 60% up to 80% is observed with
respect to existing algorithms.

3. Robustness with respect to adjacency graph:
While for existing methods, e.g., [5, 8], it is
necessary to construct a graph by suitably
choosing the local neighborhoods of each inte-
rior vertex, our method automatically predicts
a suitable graph without the need of free
parameter selection. Note that an improper
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graph selection can even lead to failure of
classic parameterization algorithms due to non-
invertible linear systems in case of sparse
neighborhoods.

The structure of the paper is as follows.
Section 2 introduces the new boundary informed
edge convolution. In Section 3, we summarize the
point cloud parameterization problem that is then
addressed in Section 4 by developing a bound-
ary informed dynamic graph convolutional net-
work devoted to scattered data parameterization.
Section 5 presents the adaptive fitting algorithm
with moving parameters. A selection of numerical
examples on synthetic and real data sets is pre-
sented in Section 6. In particular, the generaliza-
tion capabilities of the proposed parameterization
model are highlighted within the framework of
an adaptive surface reconstruction scheme based
on THB-splines. Finally, Section 7 concludes the
paper.

2 BIDGCN: Boundary
Informed Dynamic Graph
Convolutional Network

The graph convolutional neural network we pro-
pose is characterized by its ability to handle and
propagate point cloud boundary information. This
is achieved by the development of a new bound-
ary informed dynamic edge convolutional layer,
which is an extension of the dynamic edge con-
volution operator originally proposed in [14]. We
first briefly describe the original dynamic edge
convolution operator in Section 2.1. Then, we
present our new boundary informed dynamic con-
volutional layer and the additional layers of the
network architecture in Section 2.2.

2.1 Dynamic edge convolution

We assume to be given a point cloud P together
with vertex features xi ∈ Rn, where n ∈ N is the
input feature dimension. The dynamic edge con-
volution operator defined in [14] computes new
features yi ∈ Rm for all points in P, where m ∈
N is the output feature dimension. To this end,
first the k-nearest neighbor graph Gk is computed
based on the input features. This is a directed
graph where the existence of a directed edge (j, i)
implies that j is among the k nearest neighbors of

i with respect to the Euclidean distance

∥xi − xj∥ (1)

of the input features. In the next step, edge fea-
tures are computed for each directed edge in Gk
as follows. For all (j, i) ∈ Gk

eji = hΘ(xi, xj − xi), (2)

is evaluated, where hΘ is a feed-forward neural
network

hΘ : R2n → Rm (3)

with trainable weights Θ. Finally, at each vertex
of Gk, the edge contributions are aggregated as

x′
i = 2(j,i)∈Gk

eji, (4)

where 2 can be the sum, the mean, or the
maximum value. In a dynamic edge convolution
network, the k-nearest neighbor graph is recom-
puted after each layer with respect to the new
features x′

i, thereby allowing the network to pass
information arbitrarily fast across the point cloud.
The dynamic approach enables the network to
automatically predict a suitable graph for message
passing instead of using a fixed one. This implies
that information can travel arbitrarily far in each
layer, as it is determined by the training process.
In [14] it was shown that updating the graph after
each layer leads to a significantly improved accu-
racy compared to performing edge convolution on
a static graph.

As a slight modification, while in [14] the k
nearest-neighbor graph was used, we propose to
use the radius graph also in the hidden layers.
In particular, instead of specifying the number of
neighbors k, we specify a radius r > 0 and add
directed edges (i, j) and (j, i) for all i, j ∈ V such
that

∥xi − xj∥ ≤ r. (5)

By dynamically recomputing the radius graph
instead of the k-nearest neighbor graph, we reduce
the dependence of the network architecture on the
local density of the input point clouds. In par-
ticular, the radius graph results in neighborhoods
with a fixed maximum distance, while a k-nearest
graph might associate points with very large dis-
tances if the point cloud is locally sparse. Since
the number of neighbors of the vertices is not con-
stant, we use the mean value as the aggregation
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of the edge features, also motivated by the goal of
achieving independence of the sampling density.
We refer to the graph neural networks character-
ized by dynamic edge convolution operators as
DGCNN (Dynamic Graph Convolutional Neural
Networks).

2.2 Boundary informed dynamic
edge convolution

Based on the dynamic edge convolution, we intro-
duce a new boundary informed input layer that
takes as input the point cloud with its vertex
features as well as the boundary conditions. It
then propagates the boundary conditions into
the new features of the interior points. The out-
put of this layer consists of all interior points
together with new vertex features. We name the
resulting neural network architecture Boundary
Informed Dynamic Graph Convolutional Network
(BIDGCN).

More precisely, we assume that the input point
cloud is decomposed as P = PB ∪ PI into bound-
ary and interior points. Moreover, we assume that
each vertex i ∈ PI comes with features xi ∈ Rn

and every vertex j ∈ PB comes with features
(xj , uj) ∈ Rn × Rd, were we regard uj ∈ Rd as
boundary conditions.

We first compute two different radius graphs

GI→I and GB→I, (6)

where GI→I contains all directed edges

(j, i) with i, j ∈ PI : ∥xi − xj∥ ≤ r, (7)

while GB→I contains all directed edges

(k, i) with i ∈ PI, k ∈ PB : ∥xi−xk∥ ≤ r. (8)

This means that even in GB→I, the edges do not
depend on the boundary conditions uj . Note that
vertices in PB only have outgoing edges and no
incoming ones.

We then compute edge contributions for all
edges using two separate neural networks. For all
(j, i) ∈ GI→I, we compute

eji = hΘ(xi, xj − xi), (9)

interior point cloud PI: |PI| × n

radius graph GI→I,
2(j,i)∈GI→I

hΘ(xi, xj − xi)

|PI| ×m

boundary point cloud PB: |PB| × (n+ d)

radius graph GB→I,
2(k,i)∈GB→I

gΦ(xi, xk − xi, uk)

|PI| ×m2

Output: |PI| ×m

Fig. 2: Boundary informed input layer.

where h is a feed-forward neural network

hΘ : R2n → Rm (10)

with output feature size m and learnable weights
Θ.

For edges (k, i) ∈ GB→I, the boundary condi-
tions at the boundary vertices are concatenated
with the vertex features and we compute

eik = gΦ(xi, xk − xi, uk), (11)

where g is another feed-forward neural network

gΦ : R2n+d → Rm (12)

with the same output feature size and independent
learnable weights Φ.

Finally, the edge contributions are aggregated
in the target vertices of the directed edges. By
construction, all target vertices are contained in
PI. For i ∈ PI, we have

x′
i =

(
2j:(j,i)∈GI→I

eji
)
2
(
2k:(k,i)∈GB→I

eki
)
, (13)

where the aggregation operator 2 can be the
sum, the mean or the component-wise maximum
value. The output of the layer consists of features
of dimension m for the interior point cloud PI.
During training Θ and Φ are optimized simulta-
neously. The flow of the input layer is depicted in
Fig. 2 and its application to an interior vertex is
illustrated in Fig. 3.

The input layer gives as output new features in
Rm for the interior point cloud PI. These features
can then be processed by further hidden layers,
e.g., based on dynamic edge convolution. Through
the application of the different layers, the informa-
tion that was transported by the input layer from
the boundary vertices to their neighbors in GB→I
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gΦ(xi, xk0
− xi, uk)

gΦ(xi, xk1 − xi, uk)
hΘ(xi, xk2

− xi)

hΘ(xi, xk3
− xi)

hΘ(xi, xk4
− xi)

Fig. 3: Edge contributions of the input layer
for xi (blue) computed from the features at the
neighboring boundary vertices (red) and interior
vertices (green).

is propagated further into the interior of the point
cloud.

3 Scattered point cloud
parameterization for
(THB-spline) surface fitting

In this section, we introduce the problem of scat-
tered point cloud parameterization for approxima-
tion with smooth surfaces. We summarize stan-
dard parameterization methods of scattered point
clouds and we introduce tensor-product B-splines
and their generalization to truncated hierarchical
(TH) B-splines.

3.1 Problem formulation

For a given point cloud P such that each point
i ∈ P is equipped with a feature xi ∈ R3, a
parameterization is defined as a mapping

u : P → Ω, (14)

where Ω ⊂ R2 is called the parameter domain. We
write ui = u(i) for the parameter of i ∈ P.

Finding a suitable parameterization of a point
cloud is an important step in different geometry
processing frameworks. In particular, we consider
the task of approximating a point cloud sampled
from a surface with a smooth parametric surface
defined on Ω = [0, 1]2:

S : [0, 1]2 → R3 (15)

with

S (u) :=

N∑
j=0

cj Bj (u) , for u ∈ [0, 1]2 (16)

defined in the spline space spanned by the basis
{B0, . . . , BN}, with Bj : [0, 1]2 → R for j =
0, . . . , N . In this paper, we consider either the
tensor-product Bernstein polynomials [26, 27]
or truncated hierarchical B-splines (THB-splines)
[21] as basis functions Bj .

The objective of surface fitting is to find the
best approximating surface, i.e.

min
c0,...,cN∈R3,

u1,...,u|P|∈[0,1]2

|P|∑
i=1

∥S(ui)− xi∥2 . (17)

Optimizing the parameterization u as well as
the surface S at the same time is a compli-
cated non-linear problem that can be simplified
by separating the optimization with respect to the
parameterization ui ∈ [0, 1]2 and the optimization
with respect to the control points cj ∈ R3.

Once a parameterization u of P has been deter-
mined, the best-approximating surface S can be
found by solving the linear least-squares problem

min
c0,...,cN∈R3,

|P|∑
i=1

∥∥∥∥∥
N∑
j=0

cjBj(ui)− xi

∥∥∥∥∥
2

(18)

using standard techniques from computational lin-
ear algebra. Our goal is find the parameterization
u that minimizes the residual of (18).

3.2 Standard and learning-based
parameterization methods for
scattered data

In order to demonstrate the efficiency and accu-
racy of the proposed method, we will compare
its performance with the three parameterization
methods presented in [5], i.e., the uniform, the
inverse distance, and the shape preserving (SP)
parameterizations, as well as the learning-based
parameterization method proposed in [8], denoted
as PARGCN. In all these methods the parame-
terization of the boundary of the point cloud is
first determined separately. This can be done using
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standard techniques such as uniform, chord length
and centripetal parameterization [28] and their
improvements [29, 30], using iterative schemes
[31, 32] as well as using feed-forward neural net-
works [33, 34].

Then, a graph of the input point cloud P =
PI∪PB is constructed by choosing neighborhoods
Ni ⊂ P for all i ∈ PI. Once the parameterization
weights λik > 0 with

∑
k∈Ni

λik = 1 are chosen,
the parameterization is determined by the system
of equations

ui =
∑
k∈Ni

λikuk, (19)

where the given parameters uj for j ∈ PB serve as
boundary conditions.

For the uniform and the inverse distance
parameterizations, the neighborhoods Ni are cho-
sen as

Ni = {k ∈ P : ∥xk − xi∥ ≤ r} (20)

for some radius r and the weights are set to

λik =
1

|Ni|
(uniform) (21)

or to

λik =

1
∥xk−xi∥∑

ℓ∈Ni

1
∥xℓ−xi∥

(inverse distance). (22)

For the shape preserving weights, the neigh-
borhoods Ni are chosen by first projecting all
points xk in a large ball neighborhood of xi onto
their best approximating plane and then finding
a Delaunay triangulation of the resulting planar
point cloud. The neighbors of i ∈ P in the Delau-
nay triangulation are its neighbors in the local
projection graph. The corresponding weights are
found based on the shape preserving weights for
triangulated surfaces presented in [6]. For each
interior point i, the neighbors are ordered counter-
clockwise and intermediate local parameters ũ are
determined such that for all j ∈ Ni

∥ũi − ũj∥ = ∥xi − xj∥ (23)

and

∠(ũj , ũi, ũj+1) =
2π∠(xj , xi, xj+1)∑

k,(k+1)∈Ni
∠(xk, xi, xk+1)

,

(24)
i.e. the lengths and the angle ratios around xi are
preserved. Finally, corresponding weights λij are
computed from the parameters ũj .

For the PARGCN parameterization, the neigh-
borhoods Ni are radius-neighborhoods as in (20).
Their collection yields a radius graph embedding
the proximity information to each 3D point in
the point cloud. This graph is subsequently con-
verted to its line graph [35], which encodes point
distances and attaches corresponding parameteri-
zation weights to each edge. The line graph is used
as input to a geometry-informed graph convolu-
tional neural network trained to predict optimal
parameterization weights. By solving the linear
system in (19) with the weights predicted by the
network, the parameter values are obtained. As
a further processing step, their Delaunay trian-
gulation [36] is computed and for each interior
point i ∈ PI , the shape preserving weights λij

with respect to the corresponding neighbors j ∈
P in the planar triangulation are determined.
The PARGCN parameterization is obtained by
solving the linear system (19) once more based
on the neighborhoods defined by the Delaunay
triangulation and the shape preserving weights.

3.3 (TH)B-spline constructions

The basis {B0, . . . , BN} used to define the para-
metric surface S : [0, 1]2 → R3 as in (16), is
fundamental, since it significantly influences the
geometrical and numerical features of the approx-
imant S. Because of their beneficial properties
and the simplicity of their construction, spline
have been largely adopted for geometric modelling
applications, see e.g., [27, 28].

3.3.1 B-splines

The standard Computer-Aided Design represen-
tation for univariate splines are B-splines. More
precisely, let [0, 1] ⊂ R be the considered param-
eter domain, let d ∈ N be a polynomial degree,
k := d + 1 the corresponding order, and let t :=
[t0, . . . , tN+k] be a vector of non-decreasing real
values, with tk−1 ≡ 0 and tN+1 ≡ 1, called knot-
vector. Moreover, indicate with 1 ≤ µj ≤ d the
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number of times the knot value tj appears in t, for
j = 0, . . . , N + k. The N + 1 univariate B-splines
of degree d over [0, 1] can be recursively generated
[37]. To this purpose, let βj,1 : R → R indicate
the j-th B-spline of order 1, for each j = 0, . . . , N .
More specifically, for u ∈ R,

βj,1(u) :=

{
1 if u ∈ [tj , tj+1)

0 otherwise
(25)

and βj,1(tN+1) = 1. Subsequenlty, let βj,r : R→ R
indicate the j-th B-spline of order 2 ≤ r ≤ k, then

βj,r(u) = ωj,r(u)βj,r−1(u)

+ (1− ωj+1,r(u))βj+1,r−1(u),
(26)

where ωj,r : R → R is a piecewise linear polyno-
mial of the form

ωj,r(u) =

{
u−tj

tj+r−1−tj
, if u < tj+r−1

0 otherwise.
(27)

For r = k, the maximum desired polynomial order,
it follows that Bj = βj,k. In particular, each
B-spline Bj for j = 0, . . . , N is a piecewise poly-
nomial function of degree d that has maximum
local smoothness on each subinterval of the parti-
tion t, whereas the regularity at each unique knot
tj ∈ t is d − µj . Univariate B-splines are charac-
terized by three key properties: (1) non-negativity,
Bj ≥ 0 for all u ∈ R, (2) local support, Bj(u) =
0 if u ̸∈ [tj , tj+k), and (3) partition of unity,∑N

j=0 Bj(u) = 1 if u ∈ [tk−1, tn+1] ≡ [0, 1]. The
spline space of order k and knots t is generated by
{B0, . . . , BN}, namely

V = span {B0, . . . , BN} . (28)

Finally, note that with an appropriate choice of
the knot-vecotr t, as

t = [0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
k

], (29)

Bernstein polynomials [26, 27] can be recovered
from B-spline constructions.

3.3.2 Tensor-product B-splines

A straightforward extension of univariate B-
splines to higher dimensions can be achieved by

considering a tensor-product construction. Within
the bivariate framework, let Ω = [0, 1]2 be the
unit-square domain of R2, d = (d1, d2) the poly-
nomial bidegree, k = (k1, k2) the correspond-
ing polynomial biorder and G the tensor-product
mesh, defined by suitable knot vectors in each
parametric direction t1, t2. A bivariate tensor-
product B-spline Bj : R2 → R is then defined
as the product of 2 univariate B-splines, for each
j ∈ Γk := {j = (j1, j2) | jh = 1, . . . , nh, h =
1, 2}. An example of a tensor product mesh, a
tensor-product basis with bidegree (3, 2) and two
tensor-product B-spline basis functions is depicted
in Fig. 4. Similarly to the univariate case, note
that by choosing t1 and t2 as in (29), the tensor-
product Bernstein polynomials can be recovered
from tensor-product B-spline constructions.

Because of the tensor construction, many of
the simple algebraic properties of the univariate B-
splines hold. In particular, non-negativity, locality,
and partition of unity are preserved. The tensor-
product spline space of biorder k with respect to
the tensor-product grid G is the space

V := span{Bj | j ∈ Γk}. (30)

3.3.3 (Truncated) Hierarchical
B-splines

Hierarchical B-splines provide a natural strategy
to overcome the limitation imposed by standard
tensor-product B-spline constructions. In partic-
ular, hierarchical B-splines [38] allow to develop
adaptive and locally refined spline models.

Let Ω = [0, 1]2 and let d = (d1, d2) be a poly-
nomial bidegree, while k = (d1 + 1, d2 + 1) is
the corresponding biorder. Consider a sequence
of nested linear vector spline spaces defined by
V 0 ⊂ . . . ⊂ V ℓ ⊂ V ℓ+1 ⊂ V L−1, where the index
ℓ of V ℓ is called its level. We assume that

V ℓ = span
{
Bℓ

0, . . . , B
ℓ
Nℓ

}
= span

{
Bℓ

j | j ∈ Γℓ
k

}
(31)

has finite dimension Nℓ = dimV ℓ where the
B-spline basis

{
Bℓ

0, . . . , B
ℓ
Nℓ

}
is defined by the

polynomial biorder k and spline basis functions
Bℓ

j : Ω → R. In addition, for each level ℓ, we
assume that the boundaries of the supports of all
basis functions Bℓ

j , for j = 0, . . . , Nℓ, partition the

8



Fig. 4: From left to right: bivariate tensor-product mesh; the corresponding bivariate tensor-product
basis with bidegree (3, 2); two examples of basis functions.

domain Ω into a certain number of connected cells
of level ℓ. Furthermore, let Ω ≡ Ω0 ⊃ . . . ⊃ Ωℓ ⊃
Ωℓ+1 ⊃ . . . ⊃ ΩL ≡ ∅ be a sequence of nested
open subdomains, where each Ωℓ represents a local
region of Ω = [0, 1]2. In particular, we assume that
the closure of each subdomain Ωℓ coincides with
the closure of a collection of cells of level ℓ. The
hierarchical spline basis is defined as

Hk :=
{
Bℓ

j | j ∈ Aℓ
k, ℓ = 0, . . . , L− 1

}
(32)

with the indices

Aℓ
k :=

{
j ∈ Γℓ

k |
supp

(
Bℓ

j

)
⊆ Ωℓ ∧ supp

(
Bℓ

j

)
̸⊆ Ωℓ+1

}
(33)

where supp
(
Bℓ

j

)
denotes the intersection of the

support of Bℓ
j with Ω0. The corresponding hier-

archical space is defined as V = span {Hk}. An
example of univariate hierarchical B-spline basis
with degree d = 2, constructed over 3 levels is
illustrated in Fig. 5 (left). The coarser to finer
level hierarchy is represented from top to bot-
tom and the subdomain Ω1 ⊃ Ω2 are highlighted
in red. More precisely, for ℓ = 0, 1, 2 any spline
basis function of level ℓ whose support is com-
pletely contained in Ωℓ+1 is replaced by splines at
successively hierarchical levels.

This simple definition, however, leads to dif-
ferent overlaps of coarse and fine B-spline sup-
ports, and partition of unity of the basis is lost.
Truncated hierarchical B-splines (THB-splines)
were introduced in [21] to reduce the interaction
between hierarchical functions at different levels
and recover the partition of unity property. For
any ℓ = 0, . . . , L − 2, a spline s ∈ V ℓ ⊂ V ℓ+1 can

be represented in terms of the basis of the refined
space V ℓ+1 as

s(u) =
∑

j∈Γℓ+1
k

cℓ+1
j (s)Bℓ+1

j (u), for u ∈ Ω, (34)

for suitable coefficients cℓ+1
j (s), for each j ∈ Γℓ+1

k .

The truncation of s ∈ V ℓ at level ℓ+1 is defined as

truncℓ+1 (s) :=
∑

j∈Γℓ+1
k

supp(Bℓ
j )̸⊆Ωℓ+1

cℓ+1
j (s)Bℓ+1

j (35)

and the cumulative truncation with respect to all
finer levels is

Truncℓ+1 (s) :=truncL−1
(
truncL−2 (. . .(

truncℓ+1 (s)
)
. . .

)
) ,

(36)

with TruncL(s) ≡ s, for s ∈ V L−1. An exam-
ple of the truncation mechanism over one level of
refinement is represented in Fig. 6. Finally, the
THB-spline basis for the hierarchical space can be
defined as

Tk := {T ℓ
j = Truncℓ+1

(
Bℓ

j

)
| j ∈ Aℓ

k,

ℓ = 0, . . . , L− 1},
(37)

where the B-spline Bℓ
j is the mother B-spline

of the truncated T ℓ
j . THB-splines (1) are non-

negative, (2) have local support, (3) form a par-
tition of unity, and span the same space of the
hierarchical B-spline basis, V = span {Hk} ≡
span {Tk} [21]. Fig. 5 (right) shows an example
of univariate truncated hierarchical B-spline basis
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Fig. 5: Univariate HB- (left) and THB-splines of degree 2 over three hierarchical levels (from top to
bottom). The refinement region of interest at each level is highlighted in red.

Fig. 6: Example of truncation between two con-
secutive hierarchical levels for univariate THB-
spline. The domain of interest Ωℓ+1 is highlighted
in red; the B-splines of level ℓ+1 are depticted as
thin blue lines; the THB-spline is represeted with
a thick blue line and its mother B-spline of level ℓ
is illustrated with a blue dashed line.

with degree d = 2, constructed over 3 levels. In
particular, it consists of the truncated counterpart
of the hierarchical basis shown on the left part of
the same figure. As concerns the bivariate case,
Fig. 7 shows a hierarchical mesh characterized by
local refinement along its diagonal and the corre-
sponding HB- and THB-spline bivariate basis of
bidegree (2, 2). Because of their properties, THB-
splines are a desirable tool for building flexible
geometric models. The effectiveness of employing
THB-splines both for geometric design and isoge-
ometric analysis has been shown in [39], among
others.

THB-splines have been here presented in their
bivariate form on [0, 1]2, yet their construction
can be developed in any parametric and physical
dimension, namely for any Ω ⊆ RD, and D ≥ 2.

4 Point cloud
parameterization using
BIDGCN

In the following, we present how a network archi-
tecture based on BIDGCN can be used to address
the parameterization problem of scattered point
clouds. As detailed in the previous section, the
task for our trained neural network is to predict
parameters ui ∈ [0, 1]2 ⊂ R2 for the given point
cloud such that the resulting solution c0, . . . cN ∈
R3 of (18) results in the smallest possible resid-
ual. The neural network should then approximate
an operator that assigns to each sufficiently large
set of input features a parameterization that is
optimal with respect to (18). Without fixing some
of the parameter values a priori, this operator is
not uniquely defined, making it difficult to directly
train neural networks for this task. Inspired by
the standard methods summarized in Section 3.2,
we fix the parameters ui for the boundary points
using standard one-dimensional parameterization
algorithms. This determines a well-defined specific
parameterization operator that takes as input the
positions of all points, together with the boundary
parameterization, and gives as output the unique
optimal parameterization of the interior points.
We train our neural network to approximate this
operator.

In order to predict the optimal parameteriza-
tion with respect to a specific choice of boundary
parameters, the neural network needs to take into
account the boundary parameters as boundary
conditions. This motivates our choice to apply
BIDGCN to this setting.

10



Fig. 7: Hierarchical mesh (left) and the corresponding bivariate HB- (center) and THB-spline (right)
basis of bidegree (2, 2).

4.1 Network architecture

To tackle the point cloud parameterization prob-
lem, we design a neural network based on the
new boundary informed input layer described in
Section 2.

The architecture of our proposed network
is shown in Fig. 8. Our network consists of
the boundary informed input layer, four hidden
dynamic edge convolution layers, and a multi-
layer perceptron as the output layer. In the input
layer, we have two multi-layer perceptrons (MLP),
one for the edges in GI→I and one for the edges
GB→I. For GI→I we train an MLP with layer sizes
{6, 64, 64}, while for GB→I we train a MLP with
layer sizes {8, 64, 64}. Note that the input dimen-
sion corresponds to the edge features in the two
different graphs. In all hidden dynamic edge con-
volution layers the MLP has size {128, 64}. The
output feature dimension of the hidden layers is
deliberately chosen to be moderate because a new
radius graph is computed after each layer with
respect to the output features, which can be costly
for high dimensions. Finally, the output of the last
hidden layer is concatenated with the output of
all hidden layers and fed into a final MLP of size
{320, 256, 256, 2}.

After each hidden layer, the ReLu activa-
tion function is applied. Finally, after the output
layer, the sigmoid activation function is applied to
enforce that the predicted parameters lie in [0, 1]2.
Since all layers in our network are convolutional
except for the last layer that is applied vertex-
wise, the network can be applied to any point
cloud, independent of its size.

The overall number of trainable parameters in
this network architecture is 192,130. We remark
that the choice of using four hidden layers takes
into account a suitable trade-off between computa-
tional time and error. Indeed adding more hidden
layers slightly increased the computation times
without effective gains in accuracy.

4.2 Data generation

In our training, we employ tensor-product Bézier
surfaces, meaning that the basis Bj(u) =
Bab(u1, u2), for j(ab) = 0, . . . , N , that we use
for fitting a surface is the tensor-product B-spline
basis with knot vectors chosen as (29) for both
directions. This choice of the discrete space has
the advantage that for a sufficiently large point
cloud the best approximation with respect to a
fixed parameterization of the point cloud is well
defined without further regularization.

In order to train the network for parameter-
izing scattered point cloud data, we generate a
data set consisting of 100,000 point clouds. Each
point cloud P = PI ∪ PB contains 1000 interior
points and 34 boundary points and thus the ratio
of interior points to boundary points is equiva-
lent to a uniformly distributed point cloud. The
point clouds are sampled from biquadratic tensor-
product Bézier surfaces whose control points
cj(a,b) were randomly sampled from

Ca,b =
[
a

2
− 1

4
,
a

2
+

1

4

]
×
[
b

2
− 1

4
,
b

2
+

1

4

]
× [−1, 1]

(38)
for a, b = 0 . . . 2 according to the uniform distri-
bution. This choice of sampling space ensures a
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Input data: PI (|PI| × 3) and PB (|PB| × (3 + 2))

Boundary informed input layer
MLP sizes {6, 64, 64} and {8, 64, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Concatenation

MLP size {320, 256, 256, 2}
Sigmoid

|PI| × 2

Fig. 8: Proposed network architecture of the point
cloud parameterizing network based on BIDGCN.

large variation of complexity of the surfaces while
avoiding self-intersections. In order to achieve
rotation-invariance, we rotate each surface around
a randomly sampled axis in R3 by a random
angle. Besides the vertex features xi ∈ R3 for all
interior and boundary points, we store the exact
parameters ui ∈ R2 for all boundary points.

Note that the choice of point cloud size in the
training data set does not mean that the trained
network is limited to point clouds of this size. The
network described in the previous section can be
applied to any point cloud and we will observe in

Algorithm 1: Generation of a Bézier
scattered point cloud P, with interior
points PI , boundary points PB , and
boundary parameters UB .

Input: Polynomial bidegree (d, d),
number of interior points n,
number of boundary points b.

1 Initialize UB ← array of dimension b× 2,
P ← array of dimension (n+ b)× 3, C ←
array of dimension (d+ 1)× (d+ 1)× 3.

2 Sample α, β, γ ← Uniform(0, 2π)
for i = 0, . . . , d do

3 for j = 0, . . . , d do

4

x← Uniform( i
d −

1
2d ,

i
d + 1

2d )

y ← Uniform( jd −
1
2d ,

j
d + 1

2d )
z ← Uniform(-1, 1)
C[i, j]← Rotate(x, y, z, α, β, γ)

5 end

6 end
7 for k = 1, . . . , n do

8

u1 ← Uniform(0, 1)
u2 ← Uniform(0, 1)
P [k]← EvalBezier(u1, u2, C)

9 end
10 for l = 1, . . . , b do

11

u1 ← Uniform(0, 1)
u2 ← Uniform(0, 1)
UB [l]← (u1, u2)
P [n+ l]← EvalBezier(u1, u2, C)

12 end
Output: Scattered point cloud

P = PI ∪ PB ; boundary
parameters UB .

the numerical experiments that it performs well
for a large range of point cloud sizes.

For our experiments, we also need to gen-
erate data from surfaces of higher degree. The
procedure is analogous to the biquadratic case
and it is summarized in Algorithm 1. The code
for data generation is available at https://github.
com/felixfeliz/BIDGCN.

Before evaluating the network on a point cloud
from the training, validation and test data sets or
from a real-world sample, we normalize the vertex
features xi ∈ R3 by translating and scaling them
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so that they lie in [0, 1]3. Due to the affine invari-
ance of Bézier and B-spline surfaces this does not
affect the optimal choice of parameters ui ∈ R2.

4.3 Loss function

As we want to train the neural network to pre-
dict parameters that minimize (18), we follow
an unsupervised strategy and use the predicted
parameters for the interior points as well as the
prescribed parameters for the boundary points to
fit a biquadratic polynomial surface to the point
cloud. More precisely, we assemble the collocation
matrix

Aij = Bj(ui), (39)

for i = 1, . . . , |P| and j = 0, . . . , 8. Here,Bj are the
biquadratic tensor-product Bernstein polynomials
and ui ∈ [0, 1]2 are the prescribed parameters if
i ∈ PB and the parameters predicted by the neural
network if i ∈ PI.

The right hand side b ∈ R|P|×3 is given by the
features of the point cloud, i.e.

bi = xi. (40)

We then have reformulated (18) into the linear
least squares problem

min
c∈R9×3

∥Ac− b∥2 (41)

that we solve using QR decomposition, keeping
track of the gradients with respect to the learnable
weights of the neural network. The loss for the
predicted parameterization of the interior points
is the residual of (41).

5 Adaptive THB-spline fitting
with moving parameters

The need of automatic representations in terms
of free-form spline models, which ensure sufficient
flexibility, effective geometric modeling options,
high approximation accuracy, while simultane-
ously preserving low computational costs, led
to the development of (truncated) hierarchical
B-spline (THB-spline) adaptive approximation
schemes, see e.g., [39] among others.

We consider a hierarchical spline model
S : [0, 1]2 → R3 of the form (16) that approx-
imates the input point cloud P, where Bj :

[0, 1]2 → R are bivariate THB-splines [21], whose
definition and key properties are briefly recalled
in Section 3.3. The state of the art of scattered
data fitting schemes address the data parameter-
ization and the design of the hierarchical spline
model separately, see [1–3]. Given a point cloud P,
a suitable parameterization {u1, . . . , u|P|} is ini-
tially computed and, subsequently, on such a fixed
parameterization, the hierarchical spline space is
iteratively refined within the adaptive approxi-
mation scheme. We here consider the adaptive
THB-spline least squares fitting scheme with mov-
ing parameterization, recently proposed in [4]. Let
the features xi ∈ R3 be the Cartesian coordi-
nates of the items i ∈ P, and

{
u1, . . . , u|P|

}
a

suitable parameterization. By starting with the
initial polynomial approximation, a THB-spline
approximation is iteratively computed until the
error satisfies a given tolerance or a maximum
number of iterations is reached. At each itera-
tion of the adaptive loop, a set of elements is
marked for refinement based on the error compu-
tation, and the hierarchical mesh is subsequently
refined. More precisely, the iterative approxima-
tion scheme is characterized by four main steps.
First, a solution of the current fitting problem is
computed. In particular, for a fixed (TH)B-spline
space, the control points in (16) are computed by
solving the penalized least squares problem

min
c0,...,cN

1

2

|P|∑
i=1

∥S (ui)− xi∥22 + λJ (c0, . . . , cN ) ,

(42)
where the regularization term J is the thin-plate
energy functional, i.e.

J (c0, . . . , cN ) =∫
[0,1]2

(∥∥∥∥∂2S∂u21

∥∥∥∥2
2

+

∥∥∥∥ ∂2S

∂u1∂u2

∥∥∥∥2
2

+

∥∥∥∥∂2S∂u22

∥∥∥∥2
2

)
du1du2,

(43)

whose influence is tuned by the weight λ ≥ 0.
In the second step of each iteration, the THB-

spline approximant is evaluated on the parameter
sites {u1, . . . , u|P|} related to the data points

P and the pointwise distance ∥S(ui)− xi∥22 is
measured for each i ∈ P. The pointwise error
constitutes the error indicator on which the last
two steps (marking and refinement) of the adap-
tive scheme are developed. The parameter values
ui ∈ [0, 1]2 associated to the points i ∈ P whose
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error exceeds a certain input threshold ϵ > 0 are
marked to be refined, since they identify regions
of the parametric domain that need to be refined.
The hierarchical mesh elements that contain at
least one marked parameter ui ∈ [0, 1]2 are dyad-
ically refined, together with a certain number of
neighboring cells, see [1] for detailed information.
The iteration of these four steps is performed until
the maximum point wise errors is within an input
tolerance or a maximum number of iterations is
reached.

Note that any adaptive fitting scheme of this
kind is characterized by an iterative enrichment of
the approximation space to progressively improve
the accuracy of the result. Consequently, in our
setting, even if the the parametric values asso-
ciated to the input observations are initially
(quasi-)optimal, there is no evidence that opti-
mality is preserved when the hierarchical spline
space is adaptively refined. The authors in [4] then
introduced a parameter correction step [22] at
every iteration of the fitting scheme. The parame-
ter correction approach addresses an optimization
problem to identify the optimal intrinsic parame-
terization of a given spline model. The points P
are projected on the current spline model S(u) and
for each i ∈ P, its foot-point S(ûi) is identified.
Hence, if ∥S(ûi)− xi∥2 < ∥S(ui)− xi∥2, the new
(corrected) parameter for the point i ∈ P corre-
sponds to ūi = ûi, otherwise ūi = ui. Note that,
for each i = 1, . . . , |P|, the projection is performed
by considering the problem

ûi = min
u∈[0,1]2

∥S(u)− xi∥22 , (44)

which can be solved, for example, with a Newton-
like method. Once the updated parameter values
{ū1, . . . , ū|P|} are computed, the surface is also
updated, and a new projection can be performed.
Very few iterations of parameter correction are
usually enough to obtain higher accuracy. Since
we here repetitively applied the parameter update
within the adaptive loop, a single correction step
at any iteration is considered to suitably update
the fitting result with respect to the current
hierarchical spline configuration.

Note that, as shown in Section 6.3, the ini-
tial parameterization plays a fundamental role
to obtain high quality results. The THB-spline

Algorithm 2: Adaptive THB-spline fit-
ting scheme with moving parameters.

Input: Point cloud {xi}mi=1 and initial
parameterization {ui}mi=1, an
initial tensor-product B-spline
space V 0, the error tolerance ϵ > 0,
a maximum number of hierarchical
levels L, and a maximum number
of parameter correction steps cmax.

1 Compute the initial tensor-product
B-spline approximation S ∈ V 0 and the
point-wise errors ei = ∥S(ui)− xi∥2, for
each i = 1, . . . ,m and set ℓ = 0
while maxi ei > ϵ and ℓ < L do

2 Solve the least squares problem

min
c0,...,cN

1

2

|P|∑
i=1

∥S (ui)− xi∥22 +

λJ (c0, . . . , cN ) ,

for step = 1, . . . , cmax do
3 Compute the foot-point projections

min
xi∈[0,1]2

1

2
∥S (ui)− xi∥22 ,

for each i = 1, . . . ,m, and update
the parameters and control points
of the spline geometry.

4 end
5 Compute the errors

ei = ∥S(ui)− xi∥2, for i = 1, . . . ,m.
Mark the domain elements where
ei > ϵ.
Refine the marked cells and the two
surrounding rings of cells.
Update the hierarchical mesh and
hierarchical space V ℓ.
Set ℓ = ℓ+ 1.

6 end
Output: S : [0, 1]2 → R3, the THB-spline

approximant.

fitting scheme with moving parameterization is
summarized in Algorithm 2.
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6 Numerical results

We implemented our method using the
PyTorch [40] and PyG [41] libraries. The
code for training and testing is available at
https://github.com/felixfeliz/BIDGCN.

We trained the network architecture described
in Section 4.1 and visualized in Fig. 8 on our
data set consisting of 100,000 point clouds sam-
pled from biquadratic surfaces according to Algo-
rithm 1. Refering to Section 4.3, the loss function
during training is the fitting error. We train the
network using stochastic gradient descent. In the
beginnging of the training we set the learning rate
to 0.1 and decrease it whenever the loss plateaus.

After the training, we tested the deep learn-
ing model on unseen data sets, generated in the
same way as the training data, as described in
Section 4.2, as well as on a number of real-
world data sets. Moreover, we also consider noisy
data, where we added Gaussian noise with vary-
ing standard deviation. We start with an ablation
study (Section 6.1) of our new boundary informed
layer to demonstrate its fundamental role in tack-
ling the parameterization problem. We then show
the comparison of the proposed method with the
three standard approaches described in Section 3.2
(see Sections 6.2.1, 6.2.2, 6.2.3, and 6.2.4). In
order to further test the generalization capabilities
of BIDGCN on complex data sets and adaptive
spline constructions, we consider in Sections 6.3
and 6.4 the adaptive THB-spline approximation
scheme with moving parameters introduced in
the previous section. To evaluate the accuracy
of the hierarchical approximation model, in addi-
tion to the mean square error, we report also the
maximum approximation error, and the directed
Hausdorff distance from the point cloud to the
final geometry.

The training, as well as all evaluations of the
different methods, was performed on a standard
workstation computer with an NVIDIA GeForce
GTX 1060 GPU. The hyperparameters for train-
ing and testing our method are summarized in
Table 1.

In order to test the performance of our method,
we generate several test data sets using Algo-
rithm 1. Each data set consists of 100 point clouds
sampled from tensor-product polynomial surfaces.
We generated distinct test data sets by varying the
polynomial degree, the amount of noise and the

No. trainable parameters 192,130
No. DGCNN layers 4
Optimizer Stochastic gradient descent
Learning Rate 0.1, decreased on plateaus
Batch size 1
Training set size 100,000
GPU NVIDIA GeForce GTX 1060
Floating point precision double
Degree in test data 2, 3, 4, 5
Noise in test data 0, 0.005, 0.01, 0.05

Table 1: Summary of hyperparameters.

number of sample points. In particular, we used
polynomial bidegrees 2, 3, 4 and 5, Gaussian noise
with standard deviation 0.005, 0.01 and 0.05, and
sample sizes between 200 and 2000 inner points.
The number of boundary points was always set so
that the ratio between inner points and boundary
points is equivalent to the one of a uniform mesh.

6.1 Ablation study and comparison
with learning-based methods

In our first experiments, we compare the per-
formance of our network architecture with two
other methods based on deep neural networks.
The first method we compare with is the standard
dynamic graph convolutional neural network pro-
posed in [14]. In order to ensure a fair comparison,
we trained a network with the same architecture
as our BIDGCN shown in Fig 8, with the only dif-
ference being that instead of our novel BIDGCN
input layer, we use as input layer another stan-
dard dynamic edge convolution layer. Thus, this
comparison serves at the same time also as an
ablation study for our novel boundary informed
input layer. We trained this network on the same
dataset that we used for training BIDGCN, as
described in Section 4.2. In our plots, we will
denote this method by DGCNN.

The second learning-based method that we
compare with is the PARGCN method recently
proposed in [8]. As described in Section 3.2,
PARGCN is based on the standard parameter-
ization methods but it uses a graph convolu-
tional neural network to predict parameterization
weights instead of determining them heuristically.
Since the parameterization weights are defined
edge-wise, PARGCN generates a line graph of
the initial radius graph, which can be costly.
Moreover, it applies a post-processing step called
shape-preserving correction, which is similar to
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the shape-preserving parameterization described
in Section 3.2. PARGCN was trained on a dataset
consisting of point clouds of size 200, sampled from
randomly generated biquadratic surfaces.

6.1.1 Point clouds sampled from
biquadratic surfaces

We first apply the three methods to a test
data set consisting of point clouds sampled from
biquadratic surfaces with sample size varying
between 200 and 2000. Note that while our net-
work was trained only on point clouds of size 1000,
it is important to ensure that it gives good results
for point clouds of any size.

We use each predicted parameterization to fit
the input point cloud with a biquadratic sur-
face and compute the mean squared error of the
approximation. The computation time as well as
the mean squared fitting error is shown in the
left column of Fig. 9. All the plots are semi-
log plots with a logarithmic scale used for the
time and error axes. Our first observation is that
the mean squared error resulting from DGCNN
is prohibitively large while the network based on
our novel BIDGCN input layer results in a very
good approximation. This is expected since, as
described earlier, the parameterization problem
cannot be solved without taking into account the
parameterization of the boundary curves and a
boundary-informed input layer is therefore neces-
sary. This ablation study demonstrates this fact
and moreover shows that our novel BIDGCN
layer is indeed able to correctly process the given
boundary information.

In order to better visualize the difference of
the predicted parameterizations of BIDGCN and
DGCNN, we plot two examples from our test data
set in Fig. 10. We observe that the parameteri-
zation predicted by DGCNN contains large voids
and is far from the original. This is expected,
since the optimal parameterization is not uniquely
defined by the positional vertex features only.
On the other hand, BIDGCN correctly takes the
boundary conditions into account and predicts
parameters that are very close to the original ones,
leading to a much better approximation with a
biquadratic surface.

A second observation from Fig. 9 is that the
performance of our network does not depend sig-
nificantly on the size of the scattered data set,

even if the network was trained exclusively on data
with 1000 points per point cloud.

Comparing our method with PARGCN, we
observe that the mean squared error is of the same
order with PARGCN, which was trained with sam-
ple size 200, having a slight edge for smaller point
clouds. However, the difference in computation
time is very large and the speed-up of BIDGCN
over PARGCN is over two orders of magnitude.
We note that a large part of PARGCN’s com-
putational complexity is due to its reliance on
an expensive post-processing step. Our BIDGCN-
based parameterization method does not need
an expensive post-processing and the predicted
parameters can directly be used for fitting a
surface to the point cloud.

6.1.2 Comparison on noisy data

Measured real-world data is always subjected
to noise. For this reason, we study the behav-
ior of BIDGCN, DGCNN, and PARGCN when
applied to noisy data. In particular, we evalu-
ate all methods on 100 point clouds sampled
from biquadratic surfaces that were generated as
described in Section 4.2 with added Gaussian noise
of standard deviation 0.005 and 0.01.

In the middle and right columns of Fig. 9 we
show the MSE and computation time when apply-
ing the methods to noisy data with Gaussian noise
of standard deviation 0.005 and 0.01, respectively.
As in the non-noisy case, the plain DGCNN does
not result in acceptable fitting errors in the pres-
ence of noise. We observe that BIDGCN is more
robust than PARGCN with respect to noise and
results in better approximations for larger point
clouds while needing much smaller amount of com-
putation time. In particular, this means that our
proposed network is able to predict good parame-
terizations even for data that it is not of the same
class as the data that it was trained on.

6.2 Comparison with standard
methods

In this section, we compare our method with
the standard meshless parameterization methods
described in Section 3.2.
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Fig. 9: Mean squared error (top) and computation time (bottom) when applying the three learning-
base methods BIDGCN, DGCNN, and PARGCN to point clouds of different sizes sampled from 100
biquadratic surfaces without noise (left), with Gaussian noise of standard deviation 0.005 (middle) and
with Gaussian noise of standard deviation 0.01 (right).
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Fig. 10: Comparison of our BIDGCN network with a plain DGCNN trained for the point parameteri-
zation problem. Top row: Original parameters and parameters predicted by the networks. Middle row:
Input data and the evaluation of the fitted surfaces at the predicted parameters. Bottom row: The origi-
nal surface and the fitted biquadratic surfaces.

6.2.1 Point clouds sampled from
biquadratic surfaces

First, we study the performance on test data from
the same class as the training data, i.e., data
sampled from biquadratic surfaces without noise.

We compare our method with the three param-
eterization methods presented in [5], namely the
parameterizations with uniform, inverse distance
and shape preserving weights. For these methods,
we choose the radius for defining the local neigh-
borhoods adaptively depending on the number of
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points per point cloud as

r =
3√
|P|

. (45)

Choosing the optimal radius r for these methods
is a complicated manual task that for general data
cannot be solved efficiently. Here, the factor

√
|P|

is derived from the number of points on an axis-
aligned line in a uniformly distributed point cloud.
The factor 3 was determined empirically to be
close to optimal for the standard methods when
parameterizing point clouds of 200 points.

As in the previous section, we evaluate the
four methods on a sequence of test data sets, each
consisting of 100 point clouds of a fixed size, all
sampled from biquadratic surfaces. For each test
data set, we report the mean squared error of the
fitted surface as well as the total computation time
needed to parameterize and approximate all point
clouds. As in the previous section, we study the
dependence of the accuracy and the computation
time on the number of points in each point cloud.
The left column of Fig. 11 shows the comparison
of the methods on point clouds sampled from sur-
faces that were generated in the same way as the
training data set for our neural network, described
in Section 4.2. The plots are semi-log plots. We
observe that the mean squared errors obtained
with our method are much smaller than the ones
resulting from the uniform and inverse distance
parameterization. On the other hand, while the
accuracy of our method on this synthetic data is
similar to the one of the shape preserving param-
eterization, the computation time of the neural
network based method is much lower than the
time needed for the three other methods. In par-
ticular, SP is very costly, with a computation time
that is about two orders of magnitude higher than
the one of BIDGCN.

6.2.2 Evaluations on noisy data

We perform the comparison of our proposed
method with the previously considered standard
methods on noisy data. The middle column of
Fig. 11 shows the behavior of all four meth-
ods when applied to data with Gaussian noise
of standard deviation 0.005, while the right col-
umn of Fig. 11 shows their behavior on surfaces
with Gaussian noise of standard deviation 0.01.

We observe that when applied to noisy data,
BIDGCN performs much better than the three
other methods.

As in the non-noisy data case, we observe
that the evaluation of our method is much faster
than the evaluations of the other methods. In
particular, the speed-up with respect to SP is
significant.

A further advantage of BIDGCN is that it is
very robust with respect to the presence of noise,
even if the noise becomes very large. For the stan-
dard methods suitably choosing the radius that
determines the local neighborhood becomes near
impossible when the data is non-regularly dis-
tributed. For a fixed choice of radius or our simple
adaptive choice (45), this means that these meth-
ods often fail due to neighborhoods that are too
small. In particular, SP needs enough points in
each neighborhood to generate a Delaunay trian-
gulation. Fig. 12 shows how many surfaces out of
100 surfaces with Gaussian noise of standard devi-
ation 0.05 could be successfully parameterized by
the four methods. We observe that BIDGCN was
always successful, while the number of surfaces
that could be parameterized using SP strongly
decreases with the number of points per point
cloud. One possible way to tackle this problem
could be by suitably choosing a different radius ri
for each point i ∈ P; however, there is no obvi-
ous way how to realize such an adaptive local
choice in a robust way. Moreover, a local choice,
if one exists, would further increase the compu-
tational complexity and overall efficiency risks to
deteriorate even further.

Finally, we report the mean squared errors of
the surfaces that were successfully parameterized
in Fig. 13. Also in this case the neural network
results in significantly smaller errors.

6.2.3 Generalization to higher degrees

In order to test the generalization properties of
the neural network in terms of degree, we apply
it to point clouds sampled from surfaces of higher
bidegree, namely (p, p) with p = 3, 4, 5, with and
without Gaussian noise. In doing so, we use tensor-
product Bézier surfaces of the same degree for
fitting the parameterized point clouds. Fig. 14
shows the mean squared errors as well as the tim-
ings for point clouds without noise. We observe
that BIDGCN results in similar mean squared
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Fig. 11: Mean squared error (top) and computation time (bottom) when applying BIDGCN and the
three standard methods to point clouds of different sizes sampled from 100 biquadratic surfaces from
a test data set without noise (left), with Gaussian noise of standard deviation 0.005 (middle) and with
Gaussian noise of standard deviation 0.01 (right).
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Fig. 12: Number of successfully parameterized
surfaces out of 100 biquadratic surfaces with
added Gaussian noise of size 0.05.

errors compared to the SP parameterization. How-
ever, the computation time for BIDGCN is more
than one order of magnitude smaller with respect
to SP.

Fig. 15 shows the results on point clouds with
added Gaussian noise of standard deviation 0.01.
We observe that in this case BIDGCN results in
improved mean squared errors compared to the
SP parameterization, while the computation time
is still over one order of magnitude smaller.
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Fig. 13: Mean squared error when applying
BIDGCN and the three standard methods to
point clouds of different sizes sampled from 100
biquadratic surfaces with added Gaussian noise of
standard deviation 0.05. All cases where a method
did not succeed were removed from the computa-
tion of the mean squared error.

6.2.4 Visual comparison of the
methods

While the error in the previous examples was
averaged over a large number of point clouds, we
will now present particular examples that visu-
ally demonstrate the approximation power of our
neural network. We applied the BIDGCN as well
as SP to two point clouds of size 1000 sampled
from biquadratic surfaces, one of them without
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Fig. 14: Mean squared error (top) and computation time (bottom) when applying BIDGCN and the
three standard methods to point clouds of different sizes sampled from 100 surfaces of bidegree (3, 3)
(left), (4, 4) (middle) and (5, 5) (right).
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Fig. 15: Mean squared error (top) and computation time (bottom) when applying BIDGCN and the
three standard methods to point clouds of different sizes sampled from 100 of bidegree (3, 3) (left), (4, 4)
(middle) and (5, 5) (right), with added Gaussian noise of standard deviation 0.01.

noise and the other one with added Gaussian
noise. For SP we present two choices of the radius:
r = 0.09 ≈ 3/

√
|P| and r = 0.2. Fig. 16 and 17

show the parameters, the evaluation of the result-
ing surface at the parameters as well as the fitted
surface for both methods as well as the input
data. While the point cloud in Fig. 16 does not
have any noise, we added Gaussian noise of stan-
dard deviation 0.01 to the point cloud shown in
Fig. 17. We observe that the neural network pre-
dicts parameters that are visually very close to the

original parameters, both for the noisy and the
non-noisy case. On the other hand, the behavior of
SP largely depends on the choice of the radius r.
For r = 0.09, SP parameterization performs well
but appears to result in larger deviations from the
original parameters compared to BIDGCN. For
the choice r = 0.2, the parameterization contains
large gaps in the interior of the parameter domain.
This shows that for using SP effectively, one needs
to carefully choose the radius r, while BIDGCN is
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Fig. 16: Visual comparison of the BIDGCN and
SP for radius r = 0.2 and r = 0.09 on a point cloud
of size 1000 sampled from a biquadratic surface
without noise.

Input data
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 BIDGCN parameters

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Original parameters

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 SP parameters, r=0.20

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 SP parameters, r=0.09

BIDGCN surface at paramsSP surface at params, r=0.20 SP surface at params, r=0.09

Original surface BIDGCN surfaceSP surface, r=0.20 SP surface, r=0.09

Fig. 17: Visual comparison of the BIDGCN and
SP for radius r = 0.2 and r = 0.09 on a point cloud
of size 1000 sampled from a biquadratic surface
with Gaussian noise of standard deviation 0.01.

able to predict the optimal graph in the first lay-
ers of the network architecture and therefore does
not require any fine-tuning.

6.3 Reconstruction and comparison
on real-world data

In this experiment we process real world point
clouds of different size, representing a Nefertiti
face model and we lead a comparison between
the standard parameterization methods and the
proposed BIDGCN, in terms of accuracy and
computational time. As concerns the standard
parameterization methods, a suitable choice of

the radius r needs to be selected. To produce
fair comparisons and avoid unreasonable param-
eter value distributions, as illustrated in Fig. 16
and 17, we execute an heuristic search for r =

3√
|P|

, 0.05, 0.075, 0.1, . . . , 0.25, 0.275, 0.3 on each

dataset by computing the polynomial approxima-
tion of bidegree (2, 2), and select the radius r
giving the best mean squared error. By analyzing
the value of the error with respect to r, we decide
to fix the radius as defined in (45) since it leads to
the best approximation results for almost all the
real data point clouds.

As first analysis, we collect 6 data sets of
532, 1043, 2062, 3253, 6024, 8818 points, acquired
from the same Nefertiti face model. We then
compute the parametric values for each Nefertiti
point cloud with the standard and the proposed
BIDGCN methods to subsequently construct a
polynomial biquadratic least squares approxima-
tion. For each method we report the mean squared
error associated with the reconstructed polyno-
mial surface and the total computational time
needed to parameterize and approximate each
point cloud in Fig. 18. In line with the trends
observed on the synthetic data investigated in
the previous sections, the uniform and inverse
distance parameterizations lead to mean squared
errors that are, in general, much higher than SP
and BIDGCN. On the other hand, the error val-
ues obtained with BIDGCN and SP are similar
but our method scales favourably with the dimen-
sion of the point cloud always having the lowest
computational time.

As a second analysis on the Nefertiti model,
we consider the adaptive THB-spline fitting of the
point cloud of size 8818, shown in Fig. 19 (left).
In this case, we parameterize the input scattered
data with the standard SP method as well as
the proposed BIDGCN method and subsequently
reconstruct the THB-spline model by performing
the adaptive fitting scheme with moving parame-
ters described in Section 5 and Algorithm 2. Note
that among all the listed values for the radius of
the shape preserving method that we tested on
this point cloud, the choice r = 3√

|P|
gives the

best results in terms of polynomial approximation.
We start from a tensor-product space V 0 with
bidegree (2, 2) and perfom 8 adaptive iterations,
each of them characterized by 1 step of param-
eter correction. To properly compare the results,
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Fig. 18: Quantitative comparison of the com-
putation time and mean squared error of the
approximating biquadratic surface when parame-
terizing the point clouds of different size sampled
from the Nefertiti bust model using BIDGCN and
the standard methods.

the refinement tolerances are chosen such that the
final THB-models have (almost) the same number
of degrees of freedom. Both BIDGCN and SP are
characterized by 4 uniformly refined and 4 locally
refined hierarchical levels. Moreover, when the SP
method is considered, we obtain a THB-spline
model with 5672 degrees of freedom, which is 64%
of the total number of scattered input items, char-
acterized by a mean squared error of 5.50 ·10−6, a
maximum error of 3.34·10−2, and a directed Haus-
dorff distance from the points to the surface of
1.22. If we parameterize the Nefertiti data with the
BIDGCN method, the THB-spline approximation
has 5404 degrees of freedom, i.e. 61% of the num-
ber of points, and a corresponding mean squared
error of 1.75 · 10−6, maximum error of 1.41 · 10−2,
and directed Hausdorff distance from the data
points to the surface of 3.46·10−1. The THB-spline
approximations, scaled error distributions on the
point cloud, parameter values, and hierarchical

Fig. 19: Nefertiti (left) and face (right) point
clouds characterized by 8818 and 9283 points,
respectively.

meshes obtained with SP and BIDGCN parame-
terizations are shown on the top and bottom of
Fig. 20, respectively. We observe that BIDGCN
leads to better results in terms of final model accu-
racy, since in average a smaller error is registered
and the sharp features are better reproduced. In
particular, close to the mouth of the model, the
shape preserving parametric values tend to be
clustered, a behaviour that clearly affects the final
quality of the adaptive spline approximation.

6.4 Hierarchical spline
reconstruction of different
degrees

In this last example we investigate the generaliza-
tion capabilities of our BIDGCN parameterization
to spline configurations of different bidegrees for
the reconstruction of different point clouds. We
start by performing an adaptive THB-spline fit-
ting of a human face model of 9283 points, shown
on the right of Fig. 19. In particular, we recon-
struct the THB-spline models of the input point
cloud by performing the adaptive fitting scheme
with moving parameters described in Section 5
and Algorithm 2, both for bidegree (3, 3) and
(4, 4).

In the first case, we start from a tensor-product
space V 0 with bidegree (3, 3) and perfom 8 adap-
tive iterations, each of them characterized by 1
step of parameter correction. The smoothig weight
λ is set to 10−6 and the refinement threshold is
ϵ = 8 · 10−4. The final reconstructed geome-
try has 4 uniformly refined and 4 locally refined
hierarchical levels. Moreover, it has 2687 degrees
of freedom (29% of the number of points) that
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Fig. 20: Hierarchical spline model reconstruction of the Nefertiti point cloud shown on left of Fig. 19 for
SP parameterization with 5492 degrees of freedom (top), as well al for the BIDGCN parameterization
with 5288 degrees of freedom (bottom) with bidegree (2, 2). The reconstructed THB-spline models are
shown together with the scaled error distributions on the point cloud, the computed parametric values,
and the corresponding hierarchical meshes (from left to right).

approximate the input point cloud registering a
mean square error of 1.45 ·10−8, a maximum error
of 1.03 · 10−3, and the directed Hausdorf distance
from the point cloud to the surface is 3.43 · 10−2.
In the second case, the algorithm settings are the
same of the previous configuration, except for the
bidegree, which is not set to (4, 4), and the refine-
ment threshold, which is lowered to 6.5 ·10−4. The
final reconstructed model is a THB-spline geome-
try with 4 uniformly refined and 4 locally refined
hierarchical levels, and 2793 degrees of freedom
(30% of the number of points) that approximates
the input point cloud with a mean squared error of
1.44·10−8, a maximum error of 1.07·10−3, and the
directed Hausdorf distance from the point cloud
to the surface is 3.23 · 10−2. The reconstructed
THB-spline models, their scaled error distribu-
tions on the point cloud, the computed parametric
values, and the corresponding hierarchical meshes
are illustrated in Fig. 21.

We end by considering two additional point
clouds of 9636 items collected from a ship hull
and a wind turbine. In particular, we approximate

the two scattered data sets by performing 8 itera-
tions of the adaptive THB-spline fitting algorithm
with moving parameters, starting from a tensor-
product polynomial space V 0 with bidegree (5, 2).
The point clouds, the reconstructed THB-spline
model, the point wise error distribution on the
scattered data and the hierarchical meshes are dis-
played in Fig. 22 for both the ship hull (top) and
the wind turbine (bottom). As concerns the ship
hull data, we set smoothig weight λ = 10−6 and
the refinement threshold is ϵ = 1 · 10−5. The final
THB-spline model has 5 uniformly refined and
3 locally refined hierarchical levels. More specif-
ically, it has 4092 degrees of freedom (i.e. 42%
of the number of points), a mean square error
equal to 1.30 · 10−10, a maximum error equal to
2.27 · 10−4, and registers a directed Hausdorff dis-
tance from the points to the surface equals to
8.45 · 10−2.

Finally, for the wind turbine point cloud we
set the smoothig weight as λ = 10−6 and the
refinement threshold as ϵ = 5 · 10−5. The final
THB-spline model has 5 uniformly refined and 3
locally refined hierarchical levels, 2449 degrees of
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Fig. 21: Hierarchical spline model reconstruction of the face point cloud shown on the right of Fig. 19 for
bidegree (3, 3) (top) and (4, 4) (bottom) using the BIDGCN parameterization. The reconstructed THB-
spline models are shown together with the scaled error distributions on the point cloud, the computed
parametric values, and the corresponding hierarchical meshes (from left to right).

freedom, equivalent in magnitude to 25% of the
number of input data, a mean squared error of
2.13 · 10−10, a maximum error of 4.57 · 10−4, and
directed Hausdorff distance from the points to the
surface of 1.66 · 10−1.

7 Discussion

In this final section we give an overview of the
presented results and elaborate on possible future
research directions.

7.1 Concluding remarks

We introduced the novel graph convolutional neu-
ral network BIDGCN for learning on point clouds.
In particular, we developed a new input layer
that takes into account boundary conditions and
propagates this information into the interior of
the point cloud. Further hidden layers can then
incorporate the boundary information into the
prediction.

We applied this network to the problem
of point cloud parameterization for surface
approximation. When compared to standard
parameterization methods, the architecture based

on BIDGCN parameterization scheme achieves
higher accuracy with less computational time,
especially in the presence of noise in the data. In
addition, BIDGCN is parameter independent and
robust, avoiding failure issues in the case of sparse
neighborhoods. Finally, we demonstrate the suit-
ability of the network parameterization results for
adaptive surface reconstruction with a THB-spline
fitting scheme with moving parameters.

One key advantage of our approach is that
no manual tuning is needed, and the results out-
perform classical methods, even when they are
fine-tuned for the input instance. For example,
63% better accuracy and a speedup of more than
180 is observed with respect to the shape pre-
serving method, as well as 85% better accuracy
and a speedup of around 4 with respect to inverse
distance (Fig. 5). BIDGCN behaves favorably
also when compared to other parameteriazion
learning methods, see e.g., the comparison with
DGCNN and PARGCN in Section 6.1, where the
improved scalability of the present approach is
also highlighted.

As observed in [14], the dynamic graph
approach offers better accuracy results. Computa-
tionally, this adds the cost of computing one k-th
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Fig. 22: The point cloud, the hierarchical spline model reconstruction, the scaled error distribution and
the hierarchical mesh for a ship hull (top) and a wind turbine (bottom) using the BIDGCN parameteri-
zation with bidegree (5, 2).

nearest neighbor graph in each GCN layer. We did
not test the use of a static graph, which might
have been faster, yet less accurate.

7.2 Future work

In this work, we obtained valuable results on real-
world data with BIDGCN trained on synthetic
data. However, the performance of this new archi-
tecture can be highly optimized in real application
settings by a suitable training on complex data
sets in line with the specific test cases. This spe-
cialized training will be an important subject of
our future work.

Furthermore, we have focused in this work on
minimizing the fitting error that is introduced
when approximating a point cloud with a smooth
spline surface. In future work we will explore
the possibilities of using BIDGCN-based networks
to optimize point cloud parameterization with
respect to more general metrics.

While we successfully treat the case of a
point cloud that can be approximated by a single
quadrilateral surface patch, surfaces in real world
applications can have a more complicated topol-
ogy. In order to generalize our method to these

cases, we will add a neural network-based segmen-
tation step that makes it possible to approximate
such a point cloud with multiple patches, all
paramterized using our method.

Moreover, we plan to apply the new bound-
ary informed graph convolutional layer to different
computational tasks where boundary conditions
play a role. A promising potential application
of BIDGCN is the solution of partial differential
equations on point cloud data. This could be done
directly by adding Dirichlet or Neumann bound-
ary conditions to the boundary vertices features
and training a network to predict the solution of
a specific PDE. Alternatively, a neural network
based on BIDGCN can perform a supporting task
for classical numerical methods for solving PDE,
such as the mesh generation problem considered
in [42], where adaptive mesh refinement for planar
geometries was investigated.

25



Declarations

Funding

CG acknowledges the contribution of the National
Recovery and Resilience Plan, Mission 4 Compo-
nent 2 – Investment 1.4 – CN 00000013 “CEN-
TRO NAZIONALE HPC, BIG DATA E QUAN-
TUM COMPUTING”, spoke 6. CG and SI
are members of the INdAM group GNCS. The
INdAM-GNCS support is gratefully acknowl-
edged. CG, SI, AM also acknowledge the PHC
GALILEE project 47786N and AM acknowledges
H2020 Marie Sklodowska-Curie grant GRAPES
No. 860843. The support of the Italian Min-
istry of University and Research (MUR) through
the PRIN project NOTES (No. P2022NC97R),
funded by the European Union - Next Generation
EU, is also acknowledged.

Competing interests

The authors have no relevant financial or non-
financial interests to disclose.

Data availability

The code for generating the synthetic
training and test data is archived at the
Software Heritage servers: https://archive.
softwareheritage.org/browse/origin/https:
//github.com/felixfeliz/BIDGCN.

References

[1] Kiss, G., Giannelli, C., Zore, U., Jüttler, B.,
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