
HAL Id: hal-04313629
https://hal.science/hal-04313629

Preprint submitted on 29 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BIDGCN: Boundary informed dynamic graph
convolutional network for adaptive spline fitting of

scattered data
Carlotta Giannelli, Sofia Imperatore, Angelos Mantzaflaris, Felix Scholz

To cite this version:
Carlotta Giannelli, Sofia Imperatore, Angelos Mantzaflaris, Felix Scholz. BIDGCN: Boundary in-
formed dynamic graph convolutional network for adaptive spline fitting of scattered data. 2023.
�hal-04313629�

https://hal.science/hal-04313629
https://hal.archives-ouvertes.fr

BIDGCN: Boundary informed dynamic graph convolutional

network for adaptive spline fitting of scattered data

Carlotta Giannelli1, Sofia Imperatore1, Angelos Mantzaflaris2, Felix Scholz3*

1Dipartimento di Matematica e Informatica, Università degli Studi di Firenze, Italy.
2Centre Inria of Université Côte d’Azur, Sophia Antipolis, France.

3*Institute of Applied Geometry, Johannes Kepler University Linz, Austria.

*Corresponding author(s). E-mail(s): felix.scholz@jku.at;
Contributing authors: carlotta.giannelli@unifi.it; sofia.imperatore@unifi.it;

angelos.mantzaflaris@inria.fr;

Abstract

In this work, we propose a Boundary Informed Dynamic Graph Convolutional Network (BIDGCN)
characterized by a novel boundary informed input layer, with special focus on applications related to
adaptive spline approximation of scattered data. The newly introduced layer propagates given bound-
ary information to the interior of the point cloud, in order to let the input data be suitably processed
by successive graph convolutional network layers. We apply our BIDGCN model to the problem of
parameterizing three-dimensional unstructured data sets over a planar domain. The parameteriza-
tion problem is a key step in the solution of different geometric modeling tasks and in particular for
the design of surface reconstruction schemes with smooth spline surfaces. A selection of numerical
examples shows the effectiveness of the proposed approach for adaptive spline fitting with (truncated)
hierarchical B-spline constructions.

Keywords: Geometric deep learning, Parameterization, Surface fitting, Adaptive spline approximation,
THB-splines

1 Introduction

Geometric deep learning refers to the general-
ization of convolutional neural networks to non-
Euclidean data such as discrete manifolds, graphs
and general point clouds [1]. While for data rep-
resented on a regular grid in a Euclidean space
the convolution operator is uniquely defined for
arbitrary dimensions, in the case of unstructured
non-Euclidean data many different approaches for
the definition of operators that mimic the behavior
of standard convolution have been proposed [2].

Most current graph neural network architec-
tures are classified as message passing neural
networks [3], meaning that hidden states at each
vertex are computed by aggregating the output
of message functions applied to the features of
the vertex and its neighbors, the adjacent vertices
directly connected by an edge.

While graph neural networks have been suc-
cessfully applied to classification tasks such as
shape recognition, segmentation, and registra-
tion [4–7], regression tasks where the network

1

should predict a (potentially vector-valued) func-
tion on the input geometry are much less stud-
ied [8, 9]. Moreover, graph neural networks that
are used for processing discrete surface data have
mostly been applied to closed surfaces, i.e. sur-
faces without boundary. This simplifies the design
of suitable graph convolution operators signifi-
cantly, since all vertices of the discrete mani-
fold or point cloud can be handled in the same
way and no explicit distinction between interior
and boundary vertices needs to be made. How-
ever, in many applications in geometric modelling,
geometry processing and numerical analysis, the
input geometries are given as discrete surfaces
with boundary. For a variety of problems bound-
ary conditions are imposed on the corresponding
vertices and often the solution to a problem is
only uniquely determined up to these boundary
conditions. For example this is the case for bound-
ary value problems of elliptic partial differential
equations on surfaces, as well as for the problem of
scattered point cloud parameterization. In order
to apply deep learning based methods to this kind
of problem it is then necessary to devise a network
architecture that takes into account the bound-
ary conditions in addition to the standard vertex
features of the discrete surface. Since boundary
conditions can be regarded as additional features
that are defined only on the boundary vertices but
not on the interior vertices, this means that such
a network architecture needs to be able to handle
data with varying feature dimensions.

In this paper, we propose a new Boundary
Informed Dynamic Graph Convolutional Network
(BIDGCN) for processing scattered point clouds
based on the dynamic edge convolution intro-
duced in [10]. The distinctive feature of this
dynamic edge convolution is that the graph used
for message passing is recomputed after each layer
according to the new features, thereby enabling
the network to predict the graph and to transport
the features arbitrarily far in the point cloud. The
key idea of the new BIDGCN is that we regard the
boundary conditions as additional features at the
boundary vertices of the point cloud. These fea-
tures are propagated into the whole point cloud
by a novel graph convolution operator that con-
tains two separate trainable message functions:
the first one for edges between interior and bound-
ary vertices, and the second one for edges between
interior vertices. In the subsequent hidden layers,

the information stemming from the boundary con-
ditions is further processed and used to predict the
solution for the problem at hand. To summarize,
the main advantages of the proposed network layer
are: (i) the ability to incorporate boundary condi-
tions in its prediction, (ii) the dynamic prediction
of the graph used for message passing. The second
property is directly inherited from the dynamic
edge convolution approach [10].

As a use case for our new network architec-
ture, we consider its application to the problem
of scattered point cloud parameterization. The
parameterization problem is a key step in differ-
ent geometric modeling tasks and its solution is
usually the starting point of various data pro-
cessing algorithms. Among others, it is essential
for approximating a scattered three-dimensional
point cloud with high-order geometries, such as
B-splines, NURBS or locally refined (hierarchi-
cal) B-splines. Industrial applications include, for
example, a variety of reverse engineering prob-
lems, as the adaptive re-construction of geometric
models from a 3D scan [11–13]. A class of meth-
ods for scattered point cloud parameterization
was proposed in [14] building upon the methods
from [15] for the related problem of parameteriz-
ing triangulated surface data. In these methods,
the one-dimensional boundary of the point cloud
is parameterized separately, which is a much easier
problem. The parameterization of the interior ver-
tices is then found by assuming that the parameter
for each interior vertex is a convex combination
of the parameters of a certain vertex neigh-
borhood. The specific choices of neighbors and
coefficient values considered in the convex combi-
nations determine the particular method from this
class, see [14]. Recently, machine learning tools
have been applied to the problem of determin-
ing these coefficients [16, 17]. In particular, [16]
builds upon [15] and trains a network for a fixed
triangular mesh, whereas [17] provides a more gen-
eral meshless data-driven approach based on [14].
While these methods lead to an improved per-
formance compared to the standard choices of
coefficients, they also inherit their limitations in
terms of efficiency, robustness, and sensitivity to
parameter-dependent graph connectivity.

In our approach, we assume that the boundary
is already parameterized, as in the standard meth-
ods. We then use a network architecture based on

2

the new BIDGCN model to predict the parameter-
ization of the interior vertices. This leads to three
key advantages compared to the classical methods
for scattered point cloud parameterization:

1. Computational efficiency: After training the
network its evaluation is computationally much
more efficient than applying the classical meth-
ods. Since the training process only has to be
completed once, this results in a large advan-
tage in terms of computation time.

2. Robustness: Our method is robust with respect
to noise and results in much better approxima-
tions when approximating noisy point clouds
with polynomial surfaces. In addition, it over-
comes failing issues in the solution of the
involved linear systems in case of sparse neigh-
borhoods.

3. Automatic graph prediction: While for the clas-
sical methods it is necessary to construct a
graph by suitably choosing the local neigh-
borhoods of each interior vertex, our method
automatically predicts a suitable graph without
the need of free parameter selection.

In order to achieve an effective scattered data
approximation scheme, we suitably exploit the
BIDGCN parameterization as starting point for
adaptive fitting with truncated hierarchical B-
splines (THB-splines) [18]. The performance of the
approximation scheme are then enhanced by intro-
ducing a parameter correction step [19] within
each iteration of the adaptive strategy. A similar
idea has been investigated in the case of struc-
tured data fitting with T-splines in [20, 21] and for
template mapping with adaptive splines in [22].

The structure of the paper is as follows.
Section 2 introduces the new boundary informed
edge convolution. In Section 3, we summarize
the point cloud parameterization problem, that
is then addressed in Section 4 by developing a
boundary informed dynamic graph convolutional
network devoted to scattered data parameteri-
zation. Section 5 presents the adaptive fitting
algorithm with moving parameters. A selection of
numerical examples on synthetic and real data
sets is presented in Section 6. In particular,
the generalization capabilities of the proposed
parameterization model are highlighted within the
framework of an adaptive surface reconstruction
scheme based on THB-splines. Finally, Section 7
concludes the paper.

2 Boundary informed edge
convolution

In this section, after briefly describing the clas-
sic dynamic edge convolution operator, we present
our new boundary informed dynamic convolu-
tional network architecture.

2.1 Dynamic edge convolution

We assume to be given a point cloud P together
with vertex features xi ∈ Rn, where n ∈ N is the
input feature dimension. The dynamic edge con-
volution operator defined in [10] computes new
features yi ∈ Rm for all points in P, where m ∈
N is the output feature dimension. To this end,
first the k-nearest neighbor graph Gk is computed
based on the input features. This is a directed
graph where the existence of a directed edge (j, i)
implies that j is among the k nearest neighbors of
i with respect to the Euclidean distance

∥xi − xj∥

of the input features. In the next step, edge fea-
tures are computed for each directed edge in Gk

as follows. For all (j, i) ∈ Gk

eji = hΘ(xi, xj − xi),

is evaluated, where hΘ is a feed-forward neural
network

hΘ : R2n → Rm

with trainable weights Θ. Finally, at each vertex
of Gk, the edge contributions are aggregated as

x′
i = 2(j,i)∈Gk

eji,

where 2 can be the sum, the mean, or the
maximum value. In a dynamic edge convolution
network, the k-nearest neighbor graph is recom-
puted after each layer with respect to the new
features x′

i, thereby allowing the network to pass
information arbitrarily fast across the point cloud.
The dynamic approach enables the network to
automatically predict a suitable graph for mes-
sage passing instead of using a fixed one. We
refer to these graph neural networks character-
ized by dynamic edge convolution operators as
DGCNN (Dynamic Graph Convolutional Neural
Networks).

3

Finally, in the examples presented in this
paper, we replace the k-nearest neighbor graph by
the radius graph, meaning that instead of specify-
ing the number of neighbors k, we specify a radius
r > 0 and add directed edges (i, j) and (j, i) for
all i, j ∈ V such that

∥xi − xj∥ ≤ r.

By dynamically recomputing the radius graph
instead of the k-nearest neighbor graph, we reduce
the dependence of the network architecture on the
local density of the input point clouds. In particu-
lar, the radius graph results in neighborhoods with
a fixed maximum distance, while a k-nearest graph
might associate points with very large distances if
the point cloud is locally sparse.

2.2 BIDGCN: Boundary Informed
Dynamic Graph Convolutional
Network

Based on the dynamic edge convolution, we intro-
duce a new boundary informed input layer that
takes as input the point cloud with its vertex
features as well as the boundary conditions. It
then propagates the boundary conditions into
the new features of the interior points. The out-
put of this layer consists of all interior points
together with new vertex features. We name the
resulting neural network architecture Boundary
Informed Dynamic Graph Convolutional Network
(BIDGCN).

More precisely, we assume that the input point
cloud is decomposed as P = PB ∪ PI into bound-
ary and interior points. Moreover, we assume that
each vertex i ∈ PI comes with features xi ∈ Rn

and every vertex j ∈ PB comes with features
(xj , uj) ∈ Rn × Rd, were we regard uj ∈ Rd as
boundary conditions.

We first compute two different radius graphs

GI→I and GB→I,

where GI→I contains all directed edges

(j, i) with i, j ∈ PI : ∥xi − xj∥ ≤ r,

while GB→I contains all directed edges

(k, i) with i ∈ PI, k ∈ PB : ∥xi − xk∥ ≤ r.

This means that even in GB→I, the edges do not
depend on the boundary conditions uj . Note that
vertices in PB only have outgoing edges and no
incoming ones.

We then compute edge contributions for all
edges using two separate neural networks. For all
(j, i) ∈ GI→I, we compute

eji = hΘ(xi, xj − xi),

where h is a feed-forward neural network

hΘ : R2n → Rm

with output feature size m and learnable weights
Θ.

For edges (k, i) ∈ GB→I, the boundary condi-
tions at the boundary vertices are concatenated
with the vertex features and we compute

eik = gΦ(xi, xk − xi, uk),

where g is another feed-forward neural network

gΦ : R2n+d → Rm

with the same output feature size and independent
learnable weights Φ.

Finally, the edge contributions are aggregated
in the target vertices of the directed edges. By
construction, all target vertices are contained in
PI. For i ∈ PI, we have

x′
i =

(
2j:(j,i)∈GI→I

eji
)
2
(
2k:(k,i)∈GB→I

eki
)
,

where the aggregation operator 2 can be the
sum, the mean or the component-wise maximum
value. The output of the layer consists of features
of dimension m for the interior point cloud PI.
During training Θ and Φ are optimized simulta-
neously. The flow of the input layer is depicted in
Fig. 1 and its application to an interior vertex is
illustrated in Fig. 2.

2.3 Hidden and output layers

The input layer gives as output new features in
Rm for the interior point cloud PI. To further pro-
cess these features, we proceed like in the original
dynamic edge convolution network by computing
a new graph for PI based on the new features

4

interior point cloud PI: |PI| × n

radius graph GI→I,
2(j,i)∈GI→I

hΘ(xi, xj − xi)

|PI| ×m

boundary point cloud PB: |PB| × (n+ d)

radius graph GB→I,
2(k,i)∈GB→I

gΦ(xi, xk − xi, uk)

|PI| ×m2

Output: |PI| ×m

Fig. 1: Boundary informed input layer.

xi

(xk0 , uk0)

(xk1
, uk1

)

xk2

xk3

xk4

gΦ(xi, xk0
− xi, uk)

gΦ(xi, xk1
− xi, uk)

hΘ(xi, xk2
− xi)

hΘ(xi, xk3
− xi)

hΘ(xi, xk4 − xi)

Fig. 2: Edge contributions of the input layer
for xi (blue) computed from the features at the
neighboring boundary vertices (red) and interior
vertices (green).

x′
i ∈ Rm. As a slight modification, while in [10] the

k nearest-neighbor graph was used, we propose to
use the radius graph also in the hidden layers. This
makes our network architecture more independent
of the sampling density of the point cloud. Since
the number of neighbors of the vertices is not con-
stant, we use the mean value as the aggregation
of the edge features, also motivated by the goal of
achieving independence of the sampling density.

Trough the application of the different lay-
ers, the information that was transported by the
input layer from the boundary vertices to their
neighbors in GB→I is propagated further into the
interior of the point cloud. Since the radius graph
is recomputed after each layer, the information
can travel arbitrarily far in each layer, as it is
determined by the training process.

3 Scattered point cloud
parameterization for surface
fitting

In this section, we introduce the problem of scat-
tered point cloud parameterization for approxima-
tion with smooth surfaces. Moreover, we shortly
summarize the standard methods for this prob-
lem. In the following section, we will then report
on how we use a network architecture based on
BIDGCN to tackle this problem.

3.1 Problem formulation

For a given point cloud P such that each point
i ∈ P is equipped with a feature xi ∈ R3, a
parameterization is defined as a mapping

u : P → Ω,

where Ω ⊂ R2 is called the parameter domain. We
write ui = u(i) for the parameter of i ∈ P.

Finding a suitable parameterization of a point
cloud is an important step in different geometry
processing tasks. In particular, we consider the
task of approximating a point cloud sampled from
a surface with a smooth parametric surface

S : [0, 1]2 → R3

with

S (u) :=

N∑
j=0

cj Bj (u) , for u ∈ Ω (1)

defined in the spline space spanned by the basis
(Bj). In this paper, we consider either the tensor-
product Bernstein polynomials or (truncated hier-
archical) B-splines as basis functions Bj .

The objective of surface fitting is to find the
best approximating surface, i.e.

min
c0,...,cN ,u1,...,u|P|

|P|∑
i=1

∥S(ui)− xi∥2 .

Optimizing the parameterization u as well as
the surface S at the same time is a compli-
cated non-linear problem that can be simplified
by separating the optimization with respect to the

5

parameterization ui ∈ [0, 1]2 and the optimization
with respect to the control points cj ∈ R3.

Once a parameterization u of P has been deter-
mined, the best-approximating surface S can be
found by solving the linear least-squares problem

min
c0,...,cN ,

|P|∑
i=1

∥∥∥∥∥
N∑
j=0

cjBj(ui)− xi

∥∥∥∥∥
2

. (2)

using standard techniques from computational
linear algebra.

Our goal is then to look for the parameteriza-
tion u that minimizes the residual of (2).

3.2 Standard methods

In order to demonstrate the efficiency and accu-
racy of our proposed method, we will compare
its performance with the three parameterization
methods presented in [14]: uniform parameteriza-
tion, inverse distance parameterization and shape
preserving (SP) parameterization. In these three
methods the parameterization of the boundary
of the point cloud is first determined separately.
This can be done using standard methods such
as uniform, chord length and centripetal param-
eterization [23] and their improvements [24, 25],
using iterative schemes [26, 27] as well as using
feed-forward neural networks [28, 29].

Then, a graph of the input point cloud P =
PI∪PB is constructed by choosing neighborhoods
Ni ⊂ P for all i ∈ PI. Once the parameterization
weights λik > 0 with

∑
k∈Ni

λik = 1 are chosen,
the parameterization is determined by the system
of equations

ui =
∑
k∈Ni

λikuk, (3)

where the given parameters uj for j ∈ PB serve as
boundary conditions.

For the uniform and the inverse distance
parameterization, the neighborhoods Ni are cho-
sen as Ni = {k ∈ P : ∥xk − xi∥ ≤ r} for some
radius r and the weights are set to

λik =
1

|Ni|
(uniform)

or to

λik =

1
∥xk−xi∥∑

ℓ∈Ni

1
∥xℓ−xi∥

(inverse distance).

For the shape preserving weights, the neigh-
borhoods Ni are chosen by first projecting all
points xk in a large ball neighborhood of xi onto
their best approximating plane and then finding
a Delaunay triangulation of the resulting planar
point cloud. The neighbors of i in the Delau-
nay triangulation form the neighborhood Ni and
the weights λij are the shape preserving weights
for triangulations presented in [15]. Their defining
property is that they preserve the distribution of
the angles of the triangulation around xi.

4 Point cloud
parameterization using
BIDGCN

In order to predict the optimal parameteriza-
tion we propose a network architecture based on
BIDGCN. As detailed in the previous section, the
task for our trained neural network is to predict
parameters ui ∈ [0, 1]2 ⊂ R2 for the given point
cloud such that the resulting solution c0, . . . cN ∈
R3 of (2) results in the smallest possible residual.

The neural network should then approximate
an operator that assigns to each sufficiently large
set of input features a parameterization that is
optimal with respect to (2). Without fixing some
of the parameter values a priori, this operator is
not uniquely defined, making it difficult to directly
train neural network for this task. Inspired by
the standard methods summarized in Section 3.2,
we fix the parameters uj for the boundary points
using the standard one-dimensional parameteri-
zation algorithms. This determines a well-defined
specific parameterization operator that takes as
input the positions of all points, together with
the boundary parameterization, and gives as out-
put the unique optimal parameterization of the
interior points. We train our neural network to
approximate this operator.

In order to predict the optimal parameteriza-
tion with respect to a specific choice of boundary
parameters, the neural network needs to take into
account the boundary parameters as boundary
conditions. This motivates our choice to apply
BIDGCN to the parameterization problem.

6

4.1 Network architecture

We design a neural network based on the
new boundary informed input layer described in
Section 2. More precisely, our network consists of
the boundary informed input layer, four hidden
dynamic edge convolution layers, and a multi-
layer perceptron as the output layer. In the input
layer, we have two multi-layer perceptrons (MLP),
one for the edges in GI→I and one for the edges
GB→I. For GI→I we train an MLP with layer sizes
{6, 64, 64}, while for GB→I we train a MLP with
layer sizes {8, 64, 64}. Note that the input dimen-
sion corresponds to the edge features in the two
different graphs. In all hidden dynamic edge con-
volution layers the MLP has size {128, 64}. The
output feature dimension of the hidden layers is
deliberately chosen to be moderate because a new
radius graph is computed after each layer with
respect to the output features, which can be costly
for high dimensions. Finally, the output of the last
hidden layer is concatenated with the output of
all hidden layers and fed into a final MLP of size
{320, 256, 256, 2}.

After each hidden layer, the ReLu activa-
tion function is applied. Finally, after the output
layer, the sigmoid activation function is applied to
enforce that the predicted parameters lie in [0, 1]2.
Since all layers in our network are convolutional
except for the last layer that is applied vertex-
wise, the network can be applied to any point
cloud, independent of its size.

The overall number of trainable parameters in
this network architecture is 192,130. The architec-
ture of our point cloud parameterizing network is
shown in Fig. 3.

4.2 Training data

In our training, we employ tensor-product Bézier
surfaces, meaning that Bj(u) = Bab(u1, u2) are
the tensor-product Bernstein polynomials of bide-
gree (p1, p2), defined as

Bab(u1, u2) =(
p1
a

)(
p2
b

)
(1− u1)

p1−a(u1)
a(1− u2)

p2−b(u2)
b,

where a(j), b(j) is an ordering of {0, . . . , p1} ×
{0, . . . , p2}. This choice of the discrete space has
the advantage that for a sufficiently large point

Input data: PI (|PI| × n) and PB (|PB| × (n+ d))

Boundary informed input layer
MLP sizes {6, 64, 64} and {8, 64, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Dynamic edge convolution
MLP size {128, 64}
ReLu

|PI| × 64

Concatenation

MLP size {320, 256, 256, d}
Sigmoid

|PI| × d

Fig. 3: Network architecture of the point cloud
parameterizing network, n = 3 is the dimension
of the point cloud and d = 2 is the parametric
dimension.

cloud the best approximation with respect to a
fixed parameterization of the point cloud is well
defined without further regularization.

In order to train the network for parameter-
izing scattered point cloud data, we generate a
data set consisting of 100,000 point clouds. Each
point cloud P = PI ∪ PB contains 1000 interior
points and 34 boundary points and thus the ratio
of interior points to boundary points is equiva-
lent to a uniformly distributed point cloud. The

7

point clouds are sampled from biquadratic tensor-
product Bézier surfaces whose control points cij
were randomly sampled from

Cij =
[
i

2
− 1

4
,
i

2
+

1

4

]
×
[
j

2
− 1

4
,
j

2
+

1

4

]
× [−1, 1]

for i, j = 0 . . . 2 according to the uniform distri-
bution. This choice of sampling space ensures a
large variation of complexity of the surfaces while
avoiding self-intersections. In order to achieve
rotation-invariance, we rotate each surface around
a randomly sampled axis in R3 by a random
angle. Besides the vertex features xi ∈ R3 for all
interior and boundary points, we store the exact
parameters ui ∈ R2 for all boundary points.

Note that the choice of point cloud size in
the the training data set does not mean that
the trained network is limited to point clouds of
this size. The network described in the previous
section can be applied to any point cloud and we
will observe in the numerical experiments that it
performs well for a large range of point cloud sizes.

4.3 Normalization

Before evaluating the network on a point cloud
from the training, validation and test data sets or
from a real-world sample, we normalize the vertex
features xi ∈ R3 by translating and scaling them
so that they lie in [0, 1]3. Due to the affine invari-
ance of Bézier and B-spline surfaces this does not
affect the optimal choice of parameters ui ∈ R2.

4.4 Loss function

As we want to train the neural network to pre-
dict parameters that minimize (2), we follow
an unsupervised strategy and use the predicted
parameters for the interior points as well as the
prescribed parameters for the boundary points to
fit a biquadratic polynomial surface to the point
cloud. More precisely, we assemble the collocation
matrix

Aij = Bj(ui),

for i = 1, . . . , |P| and j = 0, . . . , 8. Here,Bj are the
biquadratic tensor-product Bernstein polynomials
and ui ∈ [0, 1]2 are the prescribed parameters if
i ∈ PB and the parameters predicted by the neural
network if i ∈ PI.

The right hand side b ∈ R|P|×3 is given by the
features of the point cloud, i.e.

bi = xi.

We then have reformulated (2) into the linear
least squares problem

min
c∈R9×3

∥Ac− b∥2 (4)

that we solve using QR decomposition, keeping
track of the gradients with respect to the learnable
weights of the neural network. The loss for the
predicted parameterization of the interior points
is the residual of (4).

We train the network using stochastic gradient
descent. We start the training with learning rate
0.1 and decrease the learning rate whenever the
loss plateaus.

5 Adaptive THB-spline fitting
with moving parameters

The need of automatic representations in terms
of free-form spline models which ensure sufficient
flexibility, effective geometric modeling options,
high approximation accuracy, while simultane-
ously preserving low computational costs, led
to the developement of (truncated) hierarchi-
cal B-spline (THB-spline) adaptive approximation
schemes, see e.g. [30] among others. The trun-
cated basis for hierarchical B-splines was origi-
nally introduced in [18] to recover the partition
of unity property in the hierarchical spline set-
ting and reduce the interaction of hierarchical
B-splines inserted at different refinement levels.

We consider a hierarchical spline model
S : [0, 1]2 → R3 of the form (1) that approximates
the input point cloud P, where Bj : [0, 1]2 → R
are bivariate THB-splines [18]. State of the art
of scattered point cloud fitting schemes address
the data parameterization and the design of the
hierarchical spline model separately, see [11–13].
Given a point cloud P, a suitable parameteri-
zation {u1, . . . , u|P|} is initially computed and,
subsequently, on such a fixed parameterization,
the hierarchical spline space is iteratively refined
within the adaptive approximation scheme. We
here consider as a starting point the adaptive

8

global THB-spline least squares approach, origi-
nally proposed in [11]. Let the features xi ∈ R3

be the Cartesian coordinates of the items i ∈ P,
and

{
u1, . . . , u|P|

}
a suitable parameterization.

By starting with the initial polynomial approxi-
mation, a THB-spline approximation is iteratively
computed until the error satisfies a given tolerance
or a maximum number of iterations is reached.
At each iteration of the adaptive loop a set of
elements is marked for refinement based on the
error computation, and the hierarchical mesh is
subsequently refined. More precisely, the itera-
tive approximation scheme is characterized by four
main steps. First, a solution of the current fitting
problem is computed. In particular, for a fixed
(TH)B-spline space, the control points in (1) are
computed by solving the penalized least squares
problem

min
c0,...,cN

1

2

|P|∑
i=1

∥S (ui)− xi∥22 + λJ (c0, . . . , cN) ,

(5)
where the regularization term J is the thin-plate
energy functional, i.e.

J (c0, . . . , cN) =∫
[0,1]2

∥∥∥∥∂2S

∂u2
1

∥∥∥∥2
2

+

∥∥∥∥ ∂2S

∂u1∂u2

∥∥∥∥2
2

+

∥∥∥∥∂2S

∂u2
2

∥∥∥∥2
2

du1du2,

whose influence is tuned by the weight λ ≥ 0.
In the second step of each iteration, the THB-

spline approximant is evaluated on the parameter
sites {u1, . . . , u|P|} related to the data points

P and the pointwise distance ∥S(ui)− xi∥22 is
measured for each i ∈ P. The pointwise error
constitutes the error indicator on which the last
two steps (marking and refinement) of the adap-
tive scheme are developed. The parameter values
ui ∈ [0, 1]2 associated to the points i ∈ P whose
error exceeds a certain input threshold ϵ > 0 are
marked to be refined, since they identify regions
of the parametric domain that need to be refined.
The hierarchical mesh elements that contain at
least one marked parameter ui ∈ [0, 1]2 are dyad-
ically refined, together with a certain number of
neighboring cells, see [11] for detailed information.
The iteration of these four steps is performed until
the maximum point wise errors is within an input
tolerance or a maximum number of iterations is
reached.

Note that any adaptive fitting scheme of this
kind is characterized by an iterative enrichment of
the approximation space to progressively improve
the accuracy of the result. Consequently, in our
setting, even if the the parametric values asso-
ciated to the input observations are initially
(quasi-)optimal, there is no evidence that optimal-
ity is preserved when the hierarchical spline space
is adaptively refined. We then introduce a param-
eter correction step [19] at every iteration of the
fitting scheme, after the (local) refinement step.

The parameter correction approach addresses
an optimization problem to identify the opti-
mal intrinsic parameterization of a given spline
model. The points P are projected on the current
spline model S(u) and for each i ∈ P, its foot-
point S(ûi) is identified. Hence, if ∥S(ûi)− xi∥2 <
∥S(ui)− xi∥2, the new (corrected) parameter for
the point i ∈ P corresponds to ūi = ûi, other-
wise ūi = ui. Note that, for each i = 1, . . . , |P|,
the projection is performed by considering the
problem

ûi = min
u∈[0,1]2

∥S(u)− xi∥22 , (6)

which can be solved, for example, with a Newton-
like method. Once the updated parameter values
{ū1, . . . , ū|P|} are computed, the surface is also
updated, and a new projection can be performed.
Very few iterations of parameter correction are
usually enough to obtain higher accuracy. Since
we here repetitively applied the parameter update
within the adaptive loop, a single correction step
at any iteration is considered to suitably update
the fitting result with respect to the current
hierarchical spline configuration.

Note that, as shown in the last examples of the
next section, the initial parameterization plays a
key role to obtain high quality results.

6 Numerical results

We implemented our method using the
PyTorch [31] and PyG [32] libraries. We tested
the deep learning model on unseen data sets, gen-
erated in the same way as the training data, as
described in Section 4.2, as well as on a number of
real-world data sets. Moreover, we also consider
noisy data, where we added Gaussian noise with
varying standard deviation. We start with an

9

ablation study (Section 6.1) of our new boundary
informed layer to demonstrate its fundamental
role in tackling the parameterization problem.
We then show the comparison of the proposed
method with the three standard approaches
described in Section 3.2 (see Sections 6.2, 6.3,
6.4, and 6.5). In order to further test the gen-
eralization capabilities of BIDGCN on complex
data sets and adaptive spline constructions, we
consider in Sections 6.6 and 6.7 the adaptive
THB-spline approximation scheme with moving
parameters introduced in the previous section.

The training, as well as all evaluations of the
different methods, was performed on a standard
workstation computer with an NVIDIA GeForce
GTX 1060 GPU.

6.1 Ablation study

As previously described, the parameterization
problem cannot be solved without taking into
account the parameterization of the boundary
curves. In order to demonstrate this necessity
empirically and also to show that it is fulfilled
by our new boundary informed layer, we first
compare the performance of our network with a
trained DGCNN, see Section 2, whose architecture
is equal to the one of our point cloud parameteriz-
ing network shown in Fig. 3, but with a standard
dynamic edge convolution layer as input layer
instead of the boundary informed input layer. This
means that for boundary vertices, this network
only acts on the positional features in the same
way as it acts on interior layers.

In Fig. 4, we show the results on two sur-
faces from our test data set. We observe that the
parameterization predicted by DGCNN contains
large voids and is far from the original. This is
expected, since the optimal parameterization is
not uniquely defined by the positional vertex fea-
tures only. On the other hand, BIDGCN correctly
takes the boundary conditions into account and
predicts parameters that are very close to the
original ones, leading to a much better approxi-
mation with a biquadratic surface. Quantitatively,
DGCNN results in a mean squared error of 7.49 ·
10−4 for the surface on the left and 5.25 · 10−4

for the surface on the right while BIDGCN results
in a mean squared error one order of magni-
tude smaller, namely 5.26 · 10−5 and 3.50 · 10−5,
respectively.

When looking the average mean squared error
over 100 point clouds that were sampled from
quadratic surfaces in our test set, we observe that
DGCNN resulted in a mean squared error of 2.93 ·
10−3 and BIDGCN resulted in a mean squared
error of 6.38 · 10−5. This shows that the boundary
informed layer results in a large improvement of
the accuracy. This is in line with the theoretical
consideration, that the optimal parameterization
that is to be predicted is only uniquely defined
when taking into account boundary conditions.
As the network architectures of the two networks
is similar, their evaluation times does not differ
significantly.

6.2 Point clouds belonging to the
test data set

In our first experiment, we study the performance
of our neural network when applied to data from
the same class as the training data, i.e., data
sampled from biquadratic surfaces. As a bench-
mark, we use the three parameterization methods
presented in [14], parameterization with uniform,
inverse distance and shape preserving weights. For
these methods, we choose the radius for defining
the local neighborhoods adaptively depending on
the number of points per point cloud as

r =
3√
|P|

. (7)

Choosing the optimal radius r for these methods
is a complicated manual task that for general data
cannot be solved efficiently. Here, the factor

√
|P|

is derived from the number of points on an axis-
aligned line in a uniformly distributed point cloud.
The factor 3 was determined empirically to be
close to optimal for the standard methods when
parameterizing point clouds of 200 points.

In order to compare the methods, we evaluate
them on 100 point clouds and report the mean
squared error as well as the total computation
time needed to parameterize and approximate all
100 point clouds.

In particular, we study the dependence of the
accuracy and the computation time on the number
of points in each point cloud. Note that while our
network was trained only on point clouds of size
1000, it is important to ensure that it gives good
results for point clouds of any size. The left column

10

Fig. 4: Comparison of our BIDGCN network with a pure dynamic edge convolution network trained
for the point parameterization problem. Top row: Original parameters and parameters predicted by the
networks. Middle row: Input data and the evaluation of the fitted surfaces at the predicted parameters.
Bottom row: The original surface and the fitted biquadratic surfaces.

1e-5

1e-4

1e-3

1e-2

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e-5

1e-4

1e-3

1e-2

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e-5

1e-4

1e-3

1e-2

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

Fig. 5: Mean squared error (top) and computation time (bottom) when applying the four methods to
point clouds of different sizes sampled from 100 biquadratic surfaces from the same class as the training
data set without noise (left), with Gaussian noise of standard deviation 0.005 (middle) and with Gaussian
noise of standard deviation 0.01 (right).

of Fig. 5 shows the comparison of the methods on
point clouds sampled from surfaces that were gen-
erated in the same way as the training data set
for our neural network, described in Section 4.2.
All the plots are semi-log plots with a logarith-
mic scale used for the time and error axes. We
observe that the mean squared errors produced

by our method are much smaller than the ones
resulting from the uniform and inverse distance
parameterization. On the other hand, while the
accuracy of our method on this synthetic data is
similar to the one of the shape preserving param-
eterization, the computation time of the neural
network based method is much lower than the

11

time needed for all three other methods. In partic-
ular, SP is very costly, with a computation time
which is about two orders of magnitude higher
than the one of BIDGCN. Moreover we note that,
even if the network was trained exclusively on data
with 1000 points per point cloud, the performance
of BIDGCN does not depend on the size of the
scattered data set.

6.3 Evaluations on noisy data

Measured real-world data are always subjected to
noise. For this reason, we study the behavior of
the trained network and the benchmark methods
when applied to noisy data. We evaluate all meth-
ods on 100 point clouds sampled from surfaces
that were generated as described in Section 4.2.
We added Gaussian noise of standard deviation
0.005 and 0.01 to all surfaces.

The middle column of Fig. 5 shows the behav-
ior of all four methods when applied to data with
Gaussian noise of standard deviation 0.005, while
the right column of Fig. 5 shows their behavior
on surfaces with noise of size 0.01. We observe
that when applied to noisy data, BIDGCN per-
forms much better than the three other methods.
This means that the network is able to predict
good parameterizations even for data that it was
not trained on. As in the non-noisy data case, we
observe that the evaluation of our method is much
faster than the evaluations of the other methods.
In particular, the speed-up with respect to SP is
significant.

A further advantage of BIDGCN is that it is
very robust with respect to the presence of noise,
even if the noise becomes very large. For the stan-
dard methods suitably choosing the radius that
determines the local neighborhood becomes near
impossible when the data is non-regularly dis-
tributed. For a fixed choice of radius or our simple
adaptive choice (7), this means that these meth-
ods often fail due to neighborhoods that are too
small. In particular, SP needs enough points in
each neighborhood to generate a Delaunay trian-
gulation. Fig. 6 shows how many surfaces out of
100 surfaces with Gaussian noise of standard devi-
ation 0.05 could be successfully parameterized by
the four methods. We observe that BIDGCN was
always successful, while the number of surfaces
that could be parameterized using SP strongly
decreases with the number of points per point

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 s

uc
ce

ss
fu

lly
 p

ar
am

et
e

riz
ed

 s
ur

fa
ce

s

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

Fig. 6: Number of successfully parameterized sur-
faces out of 100 biquadratic surfaces with added
Gaussian noise of size 0.05.

cloud. One possible way to tackle this problem
could be by suitably choosing a different radius ri
for each point i ∈ P; however, there is no obvi-
ous way how to realize such an adaptive local
choice in a robust way. Moreover, a local choice,
if one exists, would further increase the compu-
tational complexity and overall efficiency risks to
deteriorate even further.

1e-4

1e-3

1e-2

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

Fig. 7: Mean squared error when applying the
four methods to point clouds of different sizes
sampled from 100 biquadratic surfaces with added
Gaussian noise of standard deviation 0.05. All
cases where a method did not succeed were
removed from the mean.

Finally, we report the mean squared errors of
the surfaces that were successfully parameterized
in Fig. 7. Also in this case the neural network
results in significantly smaller errors.

12

6.4 Generalization to higher degrees

In order to test the generalization properties of
the neural network in terms of degree, we apply
it to point clouds sampled from surfaces of higher
bidegree, namely (p, p) with p = 3, 4, 5, with
and without Gaussian noise. In doing so, we use
tensor-product Bézier surfaces of the same degree
for fitting the parameterized point clouds. Fig. 8
shows the mean squared errors as well as the tim-
ings for point clouds without noise. We observe
that BIDGCN results in similar mean squared
errors compared to the SP parameterization. How-
ever, the computation time for BIDGCN is more
than one order of magnitude smaller with respect
to SP.

Fig. 9 shows the results on point clouds with
added Gaussian noise of standard deviation 0.01.
We observe that in this case BIDGCN results in
improved mean squared errors compared to the
SP parameterization, while the computation time
is still over one order of magnitude smaller.

6.5 Visual comparison of the
methods

While the error in the previous examples was
averaged over a large number of point clouds, we
will now present particular examples that visually
demonstrate the approximation power of the neu-
ral network. We applied the BIDGCN as well as
SP to the first two point clouds of size 1000 in
our test data set, with and without noise, sampled
from biquadratic surfaces. For SP we compare two
choices of the radius: r = 0.09 ≈ 3/

√
|P| and

r = 0.2. Fig. 10 and 11 show the parameters, the
evaluation of the resulting surface at the parame-
ters as well as the fitted surface for both methods
as well as the input data. While the point cloud in
Fig. 10 does not have any noise, we added Gaus-
sian noise of standard deviation 0.01 to the point
cloud shown in Fig. 11. We observe that the neu-
ral network predicts parameters that are visually
very close to the original parameters, both for the
noisy and the non-noisy case. On the other hand,
the behavior of SP largely depends on the choice
of the radius r. For r = 0.09, SP parameterization
performs well but appears to result in larger devi-
ations from the original parameters compared to
BIDGCN. For the choice r = 0.2, the parameter-
ization contains large gaps in the interior of the

parameter domain. This shows that for using SP
effectively, one needs to carefully choose the radius
r, while BIDGCN is able to predict the optimal
graph in the first layers of the network architecture
and therefore does not require any fine-tuning.

6.6 Reconstruction and comparison
on real-world data

In this experiment we process real world point
clouds of different size, representing a Nefertiti
face model and we lead a comparison between
the standard parameterization methods and the
proposed BIDGCN, in terms of accuracy and
computational time. As concerns the standard
parameterization methods, a suitable choice of
the radius r needs to be selected. To produce
fair comparisons and avoid unreasonable param-
eter value distributions, as illustrated in Fig. 10
and 11, we execute an heuristic search for r =

3√
|P|

, 0.05, 0.075, 0.1, . . . , 0.25, 0.275, 0.3 on each

dataset by computing the polynomial approxima-
tion of bidegree (2, 2), and select the radius r
giving the best mean squared error. By analyzing
the value of the error with respect to r, we decide
to fix the radius as defined in (7) since it leads to
the best approximation results for almost all the
real data point clouds.

As first analysis, we collect 6 data sets of
532, 1043, 2062, 3253, 6024, 8818 points, acquired
from the same Nefertiti face model. We then
compute the parametric values for each Nefertiti
point cloud with the standard and the proposed
BIDGCN methods to subsequently construct a
polynomial biquadratic least squares approxima-
tion. For each method we report the mean squared
error associated with the reconstructed polyno-
mial surface and the total computational time
needed to parameterize and approximate each
point cloud in Fig. 12. In line with the trends
observed on the synthetic data investigated in
the previous sections, the uniform and inverse
distance parameterizations lead to mean squared
errors that are, in general, much higher than SP
and BIDGCN. On the other hand, the error val-
ues obtained with BIDGCN and SP are similar
but our method scales favourably with the dimen-
sion of the point cloud always having the lowest
computational time.

As a second analysis on the Nefertiti model,
we consider the adaptive THB-spline fitting of

13

1e-5

1e-4

1e-3

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e-5

1e-4

1e-3

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e-5

1e-4

1e-3

 200 400 600 800 1000 1200 1400 1600

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

Fig. 8: Mean squared error (top) and computation time (bottom) when applying the four methods to
point clouds of different sizes sampled from 100 surfaces of bidegree (3, 3) (left), (4, 4) (middle) and (5, 5)
(right).

1e-5

1e-4

1e-3

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e-5

1e-4

1e-3

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e-5

1e-4

1e-3

 200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

1e4

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e0

1e1

1e2

1e3

 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

Number of points per point cloud

uniform
inverse distance

shape preserving
BIDGCN

Fig. 9: Mean squared error (top) and computation time (bottom) when applying the four methods to
point clouds of different sizes sampled from 100 of bidegree (3, 3) (left), (4, 4) (middle) and (5, 5) (right),
with added Gaussian noise of standard deviation 0.01.

the point cloud of size 8818, shown in Fig. 13
(left). In this case, we parameterize the input
scattered data with the standard SP method as
well as the proposed BIDGCN method and sub-
sequently reconstruct the penalized least square
adaptive spline model by performing the algo-
rithm for bidegree (2, 2). Note that among all the
listed values for the radius of the shape preserv-
ing method that we tested on this point cloud, the
choice r = 3√

|P|
gives the best results in terms of

polynomial approximation. To properly compare

the results, the refinement tolerances are chosen
such that they result in (almost) the same num-
ber of degrees of freedom in the final hierarchical
spline model. When the SP method is consid-
ered, we obtain a THB-spline model with 5492
degrees of freedom, which is 62% of the total num-
ber of scattered input items, characterized by a
mean squared error of 9.32e−4. If we parameter-
ize the Nefertiti data with the BIDGCN method,
the THB-spline approximation has 5228 degrees
of freedom, i.e. 59% of the number of points, and

14

Fig. 10: Visual comparison of the BIDGCN and
SP for radius r = 0.2 and r = 0.09 on a point cloud
of size 1000 sampled from a biquadratic surface
without noise.

Fig. 11: Visual comparison of the BIDGCN and
SP for radius r = 0.2 and r = 0.09 on a point cloud
of size 1000 sampled from a biquadratic surface
with Gaussian noise of standard deviation 0.01.

a corresponding mean squared error of 6.32e−4.
The THB-spline approximations, scaled error dis-
tributions on the point cloud, parameter values,
and hierarchical meshes obtained with SP and
BIDGCN parameterizations are shown on the top
and bottom of Fig. 14, respectively. We observe
that BIDGCN leads to better results in terms of
final model accuracy, since in average a smaller
error is registered and the sharp features are bet-
ter reproduced. In particular, close to the mouth
of the model, the shape preserving parametric val-
ues tend to be clustered, a behaviour that clearly

1e-4

1e-3

1e-2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ea

n
sq

ua
re

d
er

ro
r

Number of points in the point cloud

uniform
inverse distance

shape preserving
BIDGCN

1e-2

1e-1

1e0

1e1

1e2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

tim
e

(s
)

Number of points in the point cloud

uniform
inverse distance

shape preserving
BIDGCN

Fig. 12: Quantitative comparison of the com-
putation time and mean squared error of the
approximating biquadratic surface when parame-
terizing the point clouds of different size sampled
from the Nefertiti bust model using BIDGCN and
the standard methods.

Fig. 13: Nefertiti (left) and face (right) point
clouds characterized by 8818 and 9283 points,
respectively.

affects the final quality of the adaptive spline
approximation.

15

Fig. 14: Hierarchical spline model reconstruction of the Nefertiti point cloud shown on left of Fig. 13 for
SP parameterization with 5492 degrees of freedom (top), as well al for the BIDGCN parameterization
with 5288 degrees of freedom (bottom) with bidegree (2, 2). The reconstructed THB-spline models are
shown together with the scaled error distributions on the point cloud, the computed parametric values,
and the corresponding hierarchical meshes (from left to right).

6.7 Hierarchical spline
reconstruction of different
degrees

In this last example we investigate the general-
ization capabilities of our BIDGCN parameteriza-
tion to spline configurations of different bidegrees
for the reconstruction of different point clouds.
We start by performing an adaptive THB-spline
fitting of a human face model of 9283 points,
shown on the right of Fig. 13. In particular, we
reconstruct the THB-spline models of the input
point cloud by performing adaptive penalized
least squares approximation for bidegree (3, 3) and
(4, 4). In the first case, the final reconstructed
geometry has 2687 degrees of freedom (29% of the
number of points), that approximate the input
point cloud registering a mean square error of
6.86e−5. As concerns the fitting for bidegree (4, 4),
the final reconstructed model is a THB-spline
geometry with 2793 degrees of freedom (30%
of the number of points) that approximates the
input point cloud with a mean squared error of
6.08e−5. The reconstructed THB-spline models,

their scaled error distributions on the point cloud,
the computed parametric values, and the corre-
sponding hierarchical meshes are illustrated in
Fig. 14.

We end by considering two additional point
clouds of 9636 items collected from a ship hull
and a wind turbine. In particular, we approxi-
mate the two scattered data sets by performing
adaptive THB-spline fitting for bidegree (5,2).
The point clouds, the reconstructed THB-spline
model, the point wise error distribution on the
scattered data and the hierarchical meshes are dis-
played in Fig. 16 for both the ship hull (top) and
the wind turbine (bottom). In addition, the final
THB-spline model for the ship hull geometry has
4092 degrees of freedom (i.e. 42% of the number of
points), and a mean square error equal to 3.38e−6,
whereas the THB-spline model for the wind tur-
bine has 2449 degrees of freedom, equivalent in
magnitude to 25% of the number of input data,
and a mean squared error of 5.61e−6.

16

Fig. 15: Hierarchical spline model reconstruction of the face point cloud shown on the right of Fig. 13 for
bidegree (3, 3) (top) and (4, 4) (bottom) using the BIDGCN parameterization. The reconstructed THB-
spline models are shown together with the scaled error distributions on the point cloud, the computed
parametric values, and the corresponding hierarchical meshes (from left to right).

Fig. 16: The point cloud, the hierarchical spline model reconstruction, the scaled error distribution and
the hierarchical mesh for a ship hull (top) and a wind turbine (bottom) using the BIDGCN parameteri-
zation with bidegree (5, 2).

7 Conclusion

We introduced the novel graph convolutional neu-
ral network BIDGCN for learning on point clouds.

17

In particular, we developed a new input layer
which takes into account boundary conditions and
propagates this information into the interior of
the point cloud. Further hidden layers can then
incorporate the boundary information into the
prediction.

We applied this network to the problem
of point cloud parameterization for surface
approximation. When compared to standard
parameterization methods, the architecture based
on BIDGCN parameterization scheme achieves
higher accuracy with less computational time,
especially in the presence of noise in the data. In
addition, BIDGCN is parameter independent and
robust, avoiding failure issues in the case of sparse
neighborhoods. Finally, we demonstrate the suit-
ability of the network parameterization results for
adaptive surface reconstruction with a new THB-
spline fitting scheme with moving parameters.
While we obtain valuable results on real-world
data with BIDGCN trained on synthetic data,
the performance of this new architecture can be
highly optimized in real application settings by
a suitable training on complex data sets in line
with the specific test cases. This specialized train-
ing will be an important subject of our future
work. Moreover, we plan to apply the new bound-
ary informed graph convolutional layer to different
computational tasks where boundary conditions
play a role. A promising potential application
of BIDGCN is the solution of partial differential
equations on point cloud data. This could be done
directly by adding Dirichlet or Neumann bound-
ary conditions to the boundary vertices features
and training a network to predict the solution of
a specific PDE. Alternatively, a neural network
based on BIDGCN can perform a supporting task
for classical numerical methods for solving PDE,
such as the mesh generation problem considered
in [33], where adaptive mesh refinement for planar
geometries was investigated.

Declarations

Funding

CG acknowledges the contribution of the National
Recovery and Resilience Plan, Mission 4 Compo-
nent 2 – Investment 1.4 – CN 00000013 “CEN-
TRO NAZIONALE HPC, BIG DATA E QUAN-
TUM COMPUTING”, spoke 6. CG and SI

are members of the INdAM group GNCS. The
INdAM-GNCS support is gratefully acknowl-
edged. CG, SI, AM also acknowledge the PHC
GALILEE project 47786N and AM acknowledges
H2020 Marie Sklodowska-Curie grant GRAPES
No. 860843.

Competing interests

The authors have no relevant financial or non-
financial interests to disclose.

Data availability

The datasets generated during and/or analysed
during the current study are available from the
corresponding author on reasonable request.

References

[1] Bronstein, M.M., Bruna, J., LeCun, Y.,
Szlam, A., Vandergheynst, P.: Geometric
deep learning: Going beyond Euclidean data.
IEEE Signal Processing Magazine 34(4), 18–
42 (2017)

[2] Wu, Z., Pan, S., Chen, F., Long, G., Zhang,
C., Philip, S.Y.: A comprehensive survey on
graph neural networks. IEEE transactions on
neural networks and learning systems 32(1),
4–24 (2020)

[3] Gilmer, J., Schoenholz, S.S., Riley, P.F.,
Vinyals, O., Dahl, G.E.: Neural message pass-
ing for quantum chemistry. In: International
Conference on Machine Learning, pp. 1263–
1272 (2017). PMLR

[4] Welling, M., Kipf, T.N.: Semi-supervised
classification with graph convolutional net-
works. In: International Conference on Learn-
ing Representations (ICLR) (2017)

[5] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Point-
net: Deep learning on point sets for 3d clas-
sification and segmentation. In: Proceedings
of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 652–660 (2017)

[6] Hanocka, R., Hertz, A., Fish, N., Giryes, R.,
Fleishman, S., Cohen-Or, D.: Meshcnn: a net-
work with an edge. ACM Transactions on
Graphics (TOG) 38(4), 1–12 (2019)

18

[7] Sharp, N., Attaiki, S., Crane, K., Ovsjanikov,
M.: DiffusionNet: Discretization agnostic
learning on surfaces. ACM Transactions on
Graphics (TOG) 41(3), 1–16 (2022)

[8] Berrone, S., Della Santa, F., Mastropietro,
A., Pieraccini, S., Vaccarino, F.: Graph-
informed neural networks for regressions on
graph-structured data. Mathematics 10(5),
786 (2022)

[9] Fan, L., Ji, D., Lin, P.: Arbitrary surface data
patching method based on geometric convo-
lutional neural network. Neural Computing
and Applications 35(12), 8763–8774 (2023)

[10] Wang, Y., Sun, Y., Liu, Z., Sarma, S.E.,
Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds.
Acm Transactions On Graphics 38(5), 1–12
(2019)

[11] Kiss, G., Giannelli, C., Zore, U., Jüttler, B.,
Großmann, D., Barner, J.: Adaptive CAD
model (re-)construction with THB-splines.
Graphical Models 76(5), 273–288 (2014).
Geometric Modeling and Processing 2014

[12] Bracco, C., Giannelli, C., Großmann, D., Ses-
tini, A.: Adaptive fitting with THB-splines:
Error analysis and industrial applications.
Computer Aided Geometric Design 62, 239–
252 (2018)

[13] Bracco, C., Giannelli, C., Großmann, D.,
Imperatore, S., Mokrǐs, D., Sestini, A.:
THB-Spline Approximations for Turbine
Blade Design with Local B-Spline Approx-
imations. In: Barrera, D., Remogna, S.,
Sbibih, D. (eds.) Mathematical and Com-
putational Methods for Modelling, Approxi-
mation and Simulation, pp. 63–82. Springer,
Cham (2022)

[14] Floater, M.S., Reimers, M.: Meshless param-
eterization and surface reconstruction. Com-
puter Aided Geometric Design 18(2), 77–92
(2001)

[15] Floater, M.S.: Parametrization and smooth
approximation of surface triangulations.

Computer aided geometric design 14(3), 231–
250 (1997)

[16] Yavuz, E., Yazici, R.: A dynamic neural
network model for accelerating preliminary
parameterization of 3D triangular mesh sur-
faces. Neural Computing and Applications
31(8), 3691–3701 (2019)

[17] Giannelli, C., Imperatore, S., Mantzaflaris,
A., Scholz, F.: Learning meshless parame-
terization with graph convolutional neural
networks. In: Lecture Notes in Networks
and Systems, World Conference on Smart
Trends in Systems, Security and Sustain-
ability. Springer, London (2023). to appear.
https://inria.hal.science/hal-04142674

[18] Giannelli, C., Jüttler, B., Speleers, H.: THB-
splines: The truncated basis for hierarchical
splines. Computer Aided Geometric Design
29(7), 485–498 (2012)

[19] Hoschek, J.: Intrinsic parametrization for
approximation. Computer Aided Geometric
Design 5(1), 27–31 (1988)

[20] Wang, Y., Zheng, J.: Curvature-guided adap-
tive T-spline surface fitting. Computer-Aided
Design 45(8), 1095–1107 (2013)

[21] Shang, C., Fu, J., Feng, J., Lin, Z., Li, B.:
Effective re-parameterization and GA based
knot structure optimization for high quality
t-spline surface fitting. Computer Methods
in Applied Mechanics and Engineering 351,
836–859 (2019)

[22] Sajavičius, S., Jüttler, B., Špeh, J.: In:
Giannelli, C., Speleers, H. (eds.) Template
Mapping Using Adaptive Splines and Opti-
mization of the Parameterization. Springer
INdAM Series, vol. 35, pp. 217–238. Springer,
Cham (2019)

[23] Piegl, L., Tiller, W.: The NURBS Book (2nd
Ed.). Springer, Berlin, Heidelberg (1997)

[24] Fang, J.-J., Hung, C.-L.: An improved
parameterization method for B-spline curve
and surface interpolation. Computer-Aided
Design 45(6), 1005–1028 (2013)

19

https://inria.hal.science/hal-04142674

[25] Balta, C., Öztürk, S., Kuncan, M., Kandilli,
I.: Dynamic centripetal parameterization
method for b-spline curve interpolation.
IEEE Access 8, 589–598 (2020)

[26] Hoschek, J.: Intrinsic parametrization for
approximation. Computer Aided Geometric
Design 5(1), 27–31 (1988)

[27] Saux, E., Daniel, M.: An improved Hoschek
intrinsic parameterization. Computer Aided
Geometric Design 20, 513–521 (2003)

[28] Laube, P., Franz, M.O., Umlauf, G.: Deep
Learning Parametrization for B-Spline Curve
Approximation. In: 2018 International Con-
ference on 3D Vision (3DV), pp. 691–699.
IEEE Computer Society, Los Alamitos, CA,
USA (2018)

[29] Scholz, F., Jüttler, B.: Parameterization for
polynomial curve approximation via resid-
ual deep neural networks. Computer Aided
Geometric Design 85, 101977 (2021)

[30] Giannelli, C., Jüttler, B., Kleiss, S.K.,
Mantzaflaris, A., Simeon, B., Špeh, J.: THB-
splines: An effective mathematical technology
for adaptive refinement in geometric design
and isogeometric analysis. Computer Meth-
ods in Applied Mechanics and Engineering
299, 337–365 (2016)

[31] Paszke, A., Gross, S., Massa, F., Lerer, A.,
Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison,
A., Köpf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., Chintala, S.: PyTorch:
An Imperative Style, High-Performance Deep
Learning Library. Curran Associates Inc.,
Red Hook, NY, USA (2019)

[32] Fey, M., Lenssen, J.E.: Fast graph represen-
tation learning with PyTorch Geometric. In:
ICLR Workshop on Representation Learning
on Graphs and Manifolds (2019)

[33] Chan, C.L., Scholz, F., Takacs, T.: Locally
refined quad meshing for linear elasticity
problems based on convolutional neural net-
works. Engineering with Computers 38(5),

4631–4652 (2022)

20

	Introduction
	Boundary informed edge convolution
	Dynamic edge convolution
	 BIDGCN: Boundary Informed Dynamic Graph Convolutional Network
	Hidden and output layers

	Scattered point cloud parameterization for surface fitting
	Problem formulation
	Standard methods

	Point cloud parameterization using BIDGCN
	Network architecture
	Training data
	Normalization
	Loss function

	Adaptive THB-spline fitting with moving parameters
	Numerical results
	Ablation study
	Point clouds belonging to the test data set
	Evaluations on noisy data
	Generalization to higher degrees
	Visual comparison of the methods
	Reconstruction and comparison on real-world data
	Hierarchical spline reconstruction of different degrees

	Conclusion
	Funding
	Competing interests
	Data availability

