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Zusammenfassung  
Die Finite-Elemente-Modellierung (FE) einer Zahnflanke beeinflusst sowohl die Genauigkeit 

der Ergebnisse als auch die benötigte Rechenzeit und Ressourcen. Bei der FE-Analyse 

(FEA) wird die Evolvente durch lineare Segmente modelliert, wodurch Abweichungen von 

ihrer tatsächlichen Geometrie entstehen. Um genauere Ergebnisse zu erzielen, muss das 

FE-Netz möglichst dicht erzeugt werden. Dadurch erhöht sich die Anzahl der Freiheitsgrade 

und damit auch der Rechenaufwand. Dieser inhärente Nachteil der FEA wirkt sich ungünstig 

auf die Berechnung der Druckverteilung aus. 

 

Die isogeometrische Analyse (IGA) ist eine aktuelle Alternative zur FEA. Danach werden 

anstatt von linearen Segmenten B-Splines verwendet. Diese Technologie wird auch in Com-

puter Aided Design (CAD)-Systemen verwendet, um sowohl die Geometrie als auch das Lö-

sungsfeld zu modellieren. Somit wird beim Übergang vom CAD zum geometrischen Analy-

semodell kein geometrischer Fehler eingeführt. Ein inhärentes Merkmal von B-Splines ist die 

Kontinuität zwischen benachbarten Elementen. Darüber hinaus ist das glatte Vektorfeld der 

Oberfläche-Normalen an jedem Punkt im Inneren von den Elementen bekannt. Dies ist be-

sonders für Kontaktalgorithmen von Vorteil, da dadurch die Notwendigkeit spezieller Glät-

tungstechniken, wie sie häufig in der FEA verwendet werden, entfällt. 

 

In der aktuellen Studie wird ein Stirnradpaar simuliert und der Pressungsverlauf an der Kon-

taktfläche berechnet. Die Ergebnisse werden hinsichtlich Genauigkeit und Rechenaufwand 

mit denen der FEA verglichen. 



   

 

   

 

Abstract  
The Finite Element (FE) modelling of a tooth flank affects both the accuracy of the results as 

well as the computational time and resources required. In FE Analysis (FEA), the involute 

curve is modelled by linear segments, thus deviations from its actual geometry are intro-

duced. In order to achieve accurate results, the mesh must be generated as dense as possi-

ble. This increases the number of degrees of freedom and the computational cost along with 

it. This inherent drawback of FEA unfavourably affects the calculation of the pressure distri-

bution of the mating tooth flanks. 

 

Isogeometric Analysis (IGA) is a recent alternative to the FEA. It uses B-Splines, a technolo-

gy used by Computer Aided Design (CAD) systems, to model the geometry as well as the 

solution field. Thus, no geometric error is introduced in the transition from CAD to analysis. 

An inherent characteristic of B-Splines is the continuity between adjacent elements. Further-

more, the smooth normal vector field of the surface is known at every point in the interior of 

elements. This is particularly advantageous for contact algorithms because this alleviates the 

need for special smoothing techniques such as those often used in FEA. 

 

In the current study, a spur gear pair is simulated and the pressure at the contact area is cal-

culated. The results are compared to those obtained by FEA in terms of both accuracy and 

computational cost. 

 

1. Introduction 
Gears are one of the most prominent parts of mechanical transmission systems. Power is 

transmitted from one gear to its mating one through the contacting teeth. Thus, contact is a 

central aspect of a gear’s operation. It also plays a crucial role in a gear’s wear behaviour. 

Some of the major failure modes of gears, such as scuffing, pitting and spalling are surface 

contact induced [1]. As such, it is of great importance for design engineers to accurately pre-

dict the contact pressure of a mating gear pair. 

 

Various methods are used by engineers to estimate the pressure developed at the contacting 

regions. The oldest among them is the analytical solution developed by Heinrich Hertz [2] for 

the contact between two elastic cylindrical bodies. This theory regards the contacting bodies 

as half-spaces of constant curvature. This is almost never the case in real-world applications, 

but it is a good enough first estimate. Analytical solutions have also been provided for vari-

ous other common indenter shapes [3]. 



   

 

   

 

 

The elastic foundation method [4; 5] offers a compromise between solution time and accura-

cy of results. This method approximates one of the contacting surfaces as a series of linear 

springs, independent of one another. As the influence of adjacent spring elements is ne-

glected, it provides only approximate solutions of the contact pressure, but does that in less 

time than more complex methods. 

 

The Finite Element Method (FEM) has been widely used to simulate contact phenomena. It 

is more thorough than all aforementioned methods, but this comes at the expense of increas-

ing complexity and solution time. Some shortcomings of the finite element method for contact 

modelling are that, since the most commonly used basis functions are linear, geometric error 

is introduced in the discretization process. Furthermore, there is only 𝐶! continuity between 

adjacent elements, regardless of polynomial degree, and thus the surface's normal and tan-

gent vectors are ambiguous in that areas. This has resulted in the creation of various 

smoothing techniques that try to alleviate this flaw [6], at the expense of increased computa-

tional overhead. 

 

Isogeometric Analysis (IGA) [7] is a recent descendant of the FEM. Their core difference is 

that IGA utilizes splines as basis functions, both for geometry as well as for the solution field, 

instead of Lagrange polynomials. Splines have been the basis of choice for most Computer 

Aided Design (CAD) software for many years. This unified approach has many favorable 

characteristics in comparison to the classical FEM [8].  Since the same basis is used for de-

sign and analysis, no geometric error is introduced in the transition between the two. In addi-

tion, splines are invariant under refinement, so remeshing or increasing the degree of a patch 

does not alter it geometrically or parametrically. Furthermore, since Spline patches typically 

have inter-element continuity greater than 𝐶!, the normal and tangent vector fields are well 

defined and are smooth on all points of a patch except the corners.  

 

Isogeometric gear modelling has been the focus of some previous studies [9-11]. In these 

studies, the elasticity equations have been solved using IGA, but the contact has not been 

modelled in an Isogeometric setting. An equivalent concentrated load has been applied in-

stead. In [12], the contact between a 2D pair of gears was modelled using a hybrid IGA - 

meshless formulation. In this study, a pure isogeometric formulation is used to simulate con-

tact between a pair of mating gear teeth. All the presented IGA routines have been imple-



   

 

   

 

mented within the framework of Geometry plus Simulation Modules (G+Smo) [13], an open 

source isogeometric analysis library written in C++. 

 

Section two provides a short summary of isogeometric analysis and Splines. In section three 

the method used to model contact is presented and in section four the benchmarks per-

formed to verify the soundness of the implementation are presented. Section five describes 

the problem setup while the results of the simulations are presented and discussed in the last 

section. 

 

2. Isogeometric Analysis 
In this section the Isogeometric paradigm is briefly reviewed. The seminal paper [7] presents 

the isogeometric method in detail. 

 

2.1 Splines 
Splines are the primary mathematical entities used by modern CAD systems to represent 

arbitrary geometries. The most prevalent type of polynomial splines are basis splines (B-

Splines) and their rational counterpart, namely non uniform rational B-Splines (NURBS). All 

aspects regarding the theory and implementation of NURBS have been discussed in [14] and 

thus the topic is only briefly presented here. 

 

A univariate polynomial B-Spline is computed as the sum of the basis functions which are 

defined by its knot vector, evaluated at parameter value 𝜉, each weighted by a coefficient. 

The knot vector is a non-decreasing sequence of values which essentially discretizes the 

parameter domain into elements. The coefficients of the B-Spline can be d-dimensional, and 

thus can be interpreted as points in ℝ". A B-Spline curve 𝑪(𝑢) of polynomial degree 𝑝 de-

fined by control points 𝑷𝒊 ∈ ℝ", is given as: 

𝐂(𝜉) =-𝑁$
%(𝜉)𝐏𝐢

'

$()

   

 The basis functions 𝑁$
%(𝜉) are evaluated using the Cox-de Boor formula [15] 

𝑁$
%(𝜉) =

𝜉 − 𝜉$
𝜉$*% − 𝜉$

𝑁$
%+)(𝜉) +

𝜉$*%*) − 𝜉
𝜉$*%*) − 𝜉$*)

𝑁$*)
%+)(𝜉) 

where 𝜉$ Is the i-th entry of the knot vector. The same principles are extended to represent 

surfaces (and volumes) by means of the tensor product between univariate bases. By defin-



   

 

   

 

ing the bivariate basis functions as  𝑁$,-
%./(𝜉, 𝜂) = 𝑁$

%(𝜉)𝑁-
/(𝜂) we can now define a B-Spline 

surface in the same manner: 

𝐒(𝜉, 𝜂) =--𝑁$,-
%,/(𝜉, 𝜂)𝐏𝐢,𝐣

1

-()

'

$()

   

This framework is flexible and easy to use, but it lacks the ability to exactly represent conic 

sections, which are of great interest in engineering applications. This is achieved with the 

introduction of rational basis functions. Every basis function, or equivalently every control 

point, is equipped with a “weight” coefficient 𝑤$,-. The rational basis functions are then de-

fined as follows: 

𝑅$,-
%,/(ξ, η) =

𝑁$
%(ξ)𝑁-

/(η)𝑤$,-
∑ ∑ 𝑁2̂

%(ξ)𝑁4̂
/(η)𝑤2̂,4̂1

4̂()
'
2̂()

 

A NURBS surface is calculated in the same manner as before but using the rational basis 

functions instead. 

𝐒(𝜉, 𝜂) =--𝑅$,-
%,/(𝜉, 𝜂)

1

-(

𝐏𝐢,𝐣

'

$()

 

 

Since the Isogeometric Analysis follows the isoparametric concept [16], the same basis is 

used to approximate the solution field as well. So, the displacement field 𝒖 will take the fol-

lowing form: 

𝐮(𝜉, 𝜂) =--𝑅$,-
%,/(𝜉, 𝜂)

1

-(

𝐮𝐢,𝐣

'

$()

 

2.2 Linear Elasticity 
Using this discretization, one can now proceed with the formulation of the problem in the 

same manner as with classical FEM. Assuming plane strain conditions the constitutive equa-

tion for a linear elastic isotropic body is 𝜎(𝐮) = 2𝜇𝜀 + 𝜆 𝑡𝑟𝑎𝑐𝑒(𝜀)𝐼, with Lame’s parameters:  

λ =
𝐸ν

(1 + ν)(1 − 2ν)
, 	 µ =

𝐸
2(1 + ν)

 

Strain is given by the infinitesimal strain equation: 

𝜀(𝒖) =
1
2
[∇𝒖 + (∇𝒖)5] 

The weak form of the equilibrium equation −𝑑𝑖𝑣 𝜎(𝒖) = 𝐟 subject to: 𝐮 = 𝒖𝒅 on  Γ7, 𝜎(𝒖) ⋅

𝒏 = 𝐭 on Γ8 is then given as: 



   

 

   

 

Y𝛔(𝐮)
𝛀

: 𝛆(𝐯)𝐝𝛀 = Y𝐟
𝛀
⋅ 𝐯𝐝𝛀 +Y 𝐭

𝚪𝐍
⋅ 𝐯𝐝𝜞 

By substituting the spline discretization of 𝒖 in the weak form, one can retrieve the discrete 

system for linear elasticity. 

 

3. Contact Modelling 
The review of De Lorenzis et al. [17] provides a very concise summary of the available algo-

rithms for contact modelling in an isogeometric setting. The algorithms are grouped into three 

categories: a) collocation approaches, b) Gauss Point to Surface (GPTS) algorithms and c) 

mortar methods. The methods have been presented in order of increasing complexity as well 

as fidelity of the results. In the current study, the GPTS algorithm was preferred as the review 

noted that it is relatively straightforward to implement, and it provides reasonably accurate 

results. 

 

3.1 Gauss Point to Surface Algorithm 
The Gauss Point to Surface algorithm has been named as such, because the contact ine-

qualities are evaluated and enforced at the integration (Gauss) points of the master-worker 

interface. Not all integration points are taken into account when integrating the interface 

equations, but only those in the region where contact between the two bodies has occurred. 

 

In order to distinguish between the regions of the body where contact occurs, it is necessary 

to define a gap function. Such a function takes a point on the perimeter of body 1, hereafter 

“worker” body, and returns its distance to the point of the body 2, hereafter “master” body, 

which is closest to it. Thus, a closest point projection must be performed. In our implementa-

tion, a Newton iterative scheme has been employed for the task of closest point projection. 

The quantities associated with the master point that are evaluated on the result of this projec-

tion, are hereafter denoted with a subscript (⋅)%. Once the two points have been identified, 

the gap is simply the difference between their current position vectors 𝒅 = 𝐱(𝟏) − 𝐱𝐩
(𝟐). The 

normal gap is the inner product of the gap with the master surface's normal vector 𝑔8 = 𝐝 ⋅

𝐧𝒑(𝟐).  



   

 

   

 

 
Figure 1:  Master and worker bodies and the kinematic quantities. 

With the use of the normal gap, it is easy to see that penetration has occurred where 𝑔8 < 0. 

For two contacting bodies, the normal gap between them must be zero where contact occurs 

and greater elsewhere, i.e. 𝑔8 ≥ 0. This constraint is enforced with the penalty method. A 

penalty parameter ϵ must be specified and with it the contact pressure is identified as 𝑝  =

	𝜖⟨− 𝑔8  ⟩. The system's total energy Π = ΠABCDE$F + ΠAGEAH'CB is augmented with an extra con-

tact penalty term, integrated on the worker side of the contact interface 𝑐()): 

ΠFI'ECFE =
1
2
Y 𝜖⟨−𝑔8⟩J𝑑𝑎
F(#)

 

Following the procedure described in detail in [18] but in a two-dimensional setting, we arrive 

at the variation of the contact penalty integral, which is calculated as: 

δΠFI'ECFE = Y ϵ𝑔8δ𝑔8𝑑𝑎
F(#)

= − - 𝐑𝐈(𝟏)δ𝐪𝐈(𝟏)
L∈8(#)

− - 𝐑𝐉(𝟐)δ𝐪𝐉(𝟐)
O∈8(')

 

𝑹𝑰(𝟏) = − - 𝜖𝑤$𝐽())(𝑢$)𝑁L
())(𝑢$) s𝒙(𝟏)(𝑢$) − 𝒙𝐩

(𝟐)u
$∈Q(#)

 

𝑹𝑱(𝟐) = - 𝜖𝑤$𝐽())(𝑢$)𝑁O
(J)v𝑢%w s𝒙(𝟏)(𝑢$) − 𝒙𝐩

(𝟐)u
$∈Q(#)

 

where the index 𝑖 denotes the integration point belonging to the set 𝐺()) of integration points 

of the worker side (1) within the contact area 𝑐()). 𝑤$ , 𝐽(𝑢$) are the quadrature weight and 

Jacobian at point 𝑖. 

 

Since the residuals depend on the current configuration of the bodies, the problem is non-

linear, and thus needs to be solved iteratively, in this case with the Newton method. This re-

quires the computation of the contributions of the contact residuals to the tangent stiffness 

matrix. The process is also presented in [18], but here it has been adapted to the two-

dimensional case. 

 



   

 

   

 

3.2 GPTS-2p & 2hp 
In the standard GPTS method described above, the contact integral is integrated only on the 

worker side of the interface.  Notice that even the residual of the master body, 𝑹𝑱
(𝟐), is inte-

grated on the worker side. This induces an inherent bias between the master and worker 

sides, in the sense that the quantities of the master side are misrepresented in the contact 

integral, as they are not evaluated at the master surface’s integration points. To alleviate this 

imbalance, two modifications to the standard method have been proposed. 

 

The first alternative, GPTS two-pass (GPTS-2p), is named as such because the integral is 

calculated twice, each time switching the role of worker and slave, and the two results are 

averaged. 

𝛿ΠFI'ECFE ≈
1
2
Y 𝜖{𝛿𝐱(𝟏) − 𝛿𝐱(𝟐)|
F(#)

⋅ {𝐱(𝟏) − 𝐱(𝟐)|𝑑𝑎 +
1
2
Y 𝜖{𝛿𝐱(𝟐) − 𝛿𝐱(𝟐)|
F(')

⋅ {𝐱(𝟐) − 𝐱(𝟏)|𝑑𝑎 

As will be shown later, this approach does not fully address the issue, but tries to lessen its 

extent by dispersing the error on both sides of the interface.  

 

The second variation of the method, GPTS two-field  (also known as two-half-pass), similarly 

splits the integral in two, evaluated with the roles of master and worker switched. This time 

only the terms associated with the current integration side, are considered on the respective 

integral. This is equivalent to introducing two independent pressure fields, one for each side 

of the interface. 

𝛿ΠFI'ECFE ≈ Y 𝜖
F(#)

 𝛿𝐱(𝟏) ⋅ {𝐱(𝟏) − 𝐱(𝟐)|𝑑𝑎 +Y 𝜖
F(')

 𝛿𝐱(𝟐) ⋅ {𝐱(𝟐) − 𝐱(𝟏)|𝑑𝑎 

 

4. Benchmarks 
To verify the integrity of our implementation of the aforementioned algorithms in G+Smo, two 

benchmark problems were solved. First the contact patch test which was introduced in [19] 

and second the classical two-dimensional Hertzian contact [2]. 

 

4.1 Patch Test 
The contact patch test consists of two dissimilar rectangular patches, with the smaller of the 

two resting on top of the other. An ambient vertical traction of -100 N/mm is applied on all the 

exposed upper horizontal surfaces of both patches. The lower patch is fixed along the verti-

cal direction, on its bottom side (Figure 2a). The expected solution is to recover a uniform 

stress field all throughout the two patches. 



   

 

   

 

 
Figure 2: From left to right: a) Setup of patch test, stress field with b) standard method, c) 

two-field method. 

In agreement with the observations of previous studies, the standard and 2p methods fail to 

pass the patch test exactly. While the bulk mostly behaves as expected, oscillations of the 

stress are observed within the contact region, as is shown on Figure 2b. These are accredit-

ed to the master-worker bias that was discussed previously, and on the dissimilarity of the 

elements meshes on the interface. The two-field method, on the other hand, does recover a 

truly uniform stress field on both patches and thus passes the patch test, as it can be seen in 

Figure 2c. 

 

4.2 Hertzian Contact 
Hertzian theory provides analytical solutions to the cases of contacting cylinders and contact-

ing spheres, under the assumption of small deformations. For the purpose of this study, the 

contact between an infinitely long cylinder and a half-space is considered. Due to the nature 

of the problem, it is examined at a two-dimensional section perpendicular to the cylinder’s 

axis. Exploiting the symmetry of the geometry, only a quarter of the disk is modelled, and the 

relevant symmetry boundary conditions are applied. The quarter-disk is loaded with a uni-

formly distributed load on its top edge whereas the plane is fixed along the vertical direction 

on its lower side, as it can be seen in Figure 3a. 



   

 

   

 

 
Figure 3: From left to right: a) Setup of Hertzian contact benchmark b) resulting von Mises 

stress field c) comparison of analytic and calculated contact pressure. 

Figure 3c shows the resulting contact pressure calculated with the two-field method com-

pared to the one predicted by the analytical formulas. Both axes have been normalized by 

the analytical values. The oscillation observed close to the edge of the contact area agrees 

with what has been observed in previous studies. Due to the smooth nature of the basis used 

to represent the geometry as well as the solution field, the kink between the contacting area 

and the free surface cannot be captured exactly, thus oscillations occur. This problem can be 

mitigated by further refining the region close to the edge of the contact zone, thus allowing 

for a more accurate representation of the transition. Another possibility is to perform adaptive 

knot insertion to the basis, similar to the rp-FEM method presented in [20]. In this way the 

continuity of the basis can be lowered to 𝐶! at the crossing point, so that the kink can be rep-

resented exactly. Furthermore, a modified version of the GPTS algorithm that aims to im-

prove on the aspect of oscillations has been proposed in [21]. For the present study howev-

er, this is not critical for the analysis since the calculated maximum contact pressure, as well 

as the contact width are in good agreement with the analytical solution. 

 

5. Problem setup 
5.1 Geometry and positioning 
The generation of the NURBS geometry for standard involute gears is performed automati-

cally with the established engineering parameters as input. First, two point sets are created 

by following the procedure described in [22]. The two sets correspond to the involute and 

fillet regions of the tooth. Then a Bezier spline of user-specified degree, is fitted to each of 

these sets of points, by means of minimizing the least square error. As is evident the accura-

cy of the resulting geometry is affected by the choice of degree. These two splines are then 



   

 

   

 

spliced into one, and extended radially from the root to the hub diameter. The resulting spline 

forms one side of the bivariate patch. 

 

This side is subsequently mirrored, and the bulk of the patch is created by assuming a circu-

lar geometry along the other direction. This justifies the need for NURBS basis, so that the 

circular parts of the gear are represented precisely. The resulting patch constitutes a single 

tooth of the gear, centered along the Y axis. Once the patches for both gears have been ini-

tialized, they need to be appropriately positioned in their mating configuration. To specify the 

desired position, the distance along the line of action, between the desired contact point and 

the pitch point is specified and then the rotation angles are computed accordingly. 

 

As contact is a highly localized phenomenon and as has been shown in previous studies 

[17], a further refinement in the vicinity of the contact point is required. Since the contact 

point is known a priori from the positioning routine, a zone centered on this point is further 

refined on both gears by means of knot insertion. An example of the created element mesh 

created by this automatic procedure can be seen in Figure 4. 

 

The specific gear pair under consideration, is the well-known FZG-A, as given in [23]. The 

key parameters for the gear pair are summarized in the following table. 

 

Table 1: Parameters of gear pair. 

 Module Teeth Profile shift coef. Centre distance Tip diameter 

Gear 
4.5 

24 -0.5 
91.5 

112.5 

Pinion 16 0.8532 88.77 

 

5.2 Boundary Conditions 
The boundary conditions applied to the pair of gears are as follows. The gear tooth is fixed in 

all degrees of freedom along its innermost edge as well as on the fictitious edges where it 

would normally be joined with the rest of the gear. On the pinion, a prescribed rotation is ap-

plied on the same edges as on the gear. An applied torque would have been a more appro-

priate loading for this case, but this would require a constraint on the pinion so that it only 

rotates around its center. Unfortunately, this sort of constraint mechanism is not yet support-

ed in G+Smo. A schematic of the problem setup can be seen in the following figure. 



   

 

   

 

 
Figure 4:  Left: Setup of gear teeth and applied boundary conditions. Right: example of one 

of the employed NURBS meshes. 

6. Results and Discussion 
The two-field algorithm was applied to meshes of consecutive element subdivision steps, to 

investigate their convergence behavior. For every such mesh, elements of different types of 

bases were used, to compare their relative performance. NURBS bases of degree 2 and 3 

were examined, as well as linear Lagrange elements, the elements most commonly em-

ployed by the Finite Element Method. 

 
Figure 5:  Error in maximum contact pressure vs. total solution time plot. 

As can be seen in Figure 5 both the IGA and FEM models, converge to the same maximum 

pressure value, so there is good agreement between the two methods. The advantage of 



   

 

   

 

IGA that has been observed in our experiments is that for a given amount of computation 

time, superior accuracy results with respect to FEM are attained. It is clear from the data, that 

the second order NURBS basis has converged to less than 1% within the final value already 

from the simulation that took 2 seconds with 8468 degrees of freedom (DOF), whereas the 

simulation with linear basis functions requires approximately 9 seconds and 67544 DOF to 

reach the same result. The contact pressure profile recovered from the two aforementioned 

simulations is compared in Figure 6b. There is very good agreement between the two both in 

terms of the maximum pressure, as well as the contact area width. 

 

The cost per degree of freedom for the linear Lagrange basis is much lower than for the IGA 

bases. Indeed, the higher degree and larger support of NURBS basis functions increases the 

computational cost of the system’s assembly and solution. However, this increased cost 

translates to improved solution accuracy. In addition, due to the higher degree and continuity 

of NURBS, quantities that are derived from the solution field, like strains and stresses, can 

be evaluated and are continuous throughout the domain, which is not the case with the FEM. 

The high smoothness of the acquired solution with quadratic NURBS basis functions can be 

observed in Figure 6a. 

 

 
Figure 6:  From left to right a) resulting von Mises stress field, b) contact pressure compari-

son between linear and NUBRS bases. 

 



   

 

   

 

Concluding, NURBS based isogeometric analysis is a promising alternative to the estab-

lished practices. It offers a significantly more precise description of the geometry and attains 

results of higher accuracy in less time, compared to the linear basis. Naturally there is still 

room for improvement. As the cost per degree of freedom is higher for IGA, using a basis 

that allows for local refinement might be beneficial. Candidates are the Truncated Hierar-

chical B-Splines (THB-Splines) and T-Splines. On the aspect of contact formulation, the mor-

tar method has been shown to deliver some advantages over the GTPS algorithms, mainly in 

the sense of robustness and absence of the observed oscillatory behavior in the contact 

pressure, at the expense of increased computational effort. 
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