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Abstract—AI-based decision support solutions require life
cycles that adequately address critical steps, such as (i) finding
suitable machine learning (ML) methods for the problem at hand,
(ii) preparing and executing adequate data acquisition processes
and (iii) tractable evaluation of the overall solution. Understand-
ing the data generating processes is key in achieving this. Training
and test data can be seen as a result of a causal data generation
process, a sampling process in which the data is collected from
different sources that are influenced by multiple interdependent
phenomena. This is represented by a Qualitative Model of Data
Generation Processes (QM-DGP), a causal graphical model. QM-
DGP facilitates analysis of the complexity of the underlying data
generating processes that can inform the development of trustable
ML-based solutions in multiple ways. Firstly, this analysis is
the basis for the determination of the required complexity of
the ML models. Secondly, it facilitates the determination of
the quantities of training data supporting good learning results.
Thirdly, it can provide guidance for a systematic simplification of
the models, supporting tractable solutions without significantly
reduced performance. The construction of QM-DGP and the
analysis benefit from sound theoretical concepts, such as d-
separation and I-Maps. Experimental results with simulated data
indicate that the approach can be effective in predicting the
required quantities of training data and the determination of the
modelling complexity using different types of models.

I. INTRODUCTION

Modern decision support systems require increasingly com-
plex fusion solutions relying on Artificial Intelligence (AI)
approaches that make use of Machine Learning (ML). The
use of such technologies, however, introduces substantial
challenges to the development, evaluation and deployment of
mission critical fusion solutions [1], [2], [3], [4]. Some of the
main challenges are the choice of the modelling approaches,
machine learning methods and reasoning mechanisms. As
emphasized in [1], this is not trivial, and it critically influences
the entire development life cycle as well as the proper-
ties of the resulting fusion solutions. Appropriately chosen
representations, associated reasoning mechanisms and ML
techniques facilitate the implementation and understanding of
the required functions that perform within specific operational
constraints. However, if the selected methods do not match
the characteristics of the problem at hand, insurmountable
obstacles can be introduced into the entire life cycle, impacting

the development process as well as the system deployment.
Given the complexity of the targeted problems, many aspects
must be taken into account when making choices related
to the modeling, ML and inference throughout the devel-
opment life cycle. A URREF-driven life cycle [1] approach
was introduced to address these challenges. According to
this approach, different representation and reasoning aspects
must be evaluated in the inception, design, implementation,
commissioning and operational phases. In the inception phase
the following questions must be answered: What types of
functions can in principle be automated? What types of models
are suitable, given the operational conditions? Can models
supporting sufficiently accurate inference be created for the
given application? Can sufficient amounts of training data be
obtained for achieving the needed accuracy? In the design
phase, architects need answers to additional questions: What
is the best model architecture that supports tractable ML and
minimizes the required amounts of training data? How do we
gather sufficient amounts of data for the given application?
In the implementation and evaluation phases, developers need
to answer questions, such as: Can we reliably estimate the
expected accuracy of the resulting solutions? Does the training
data reflect all situations under which the trained models will
operate? Is the solution robust?

Key to answering the above mentioned questions is under-
standing of the domain, in particular the mechanisms of the
processes generating the data that is used for training of the
models as well as inputs to the decision support functions
at runtime. This paper proposes the concept of Qualitative
Models of Data Generating Processes (QM-DGP) that describe
causal dependencies between different phenomena influenc-
ing the generation of observations in a qualitative manner.
The approach is inspired by the principles expressed in [5]
and can be viewed as an extension of the Abstraction flow
concepts introduced in [6]. In particular, QM-DGP supports
modelling of real world entities and processes (RWEPs), the
basis for various types of abstractions and analyses throughout
a system’s life-cycle. The focus in this paper is complexity
analysis of the correlations in the data as well as a coarse
estimation of the quantities of data required for training of



models that operate satisfactory under all relevant conditions.
The QM-DGP approach is agnostic with respect to the adopted
modelling paradigm and the ML methods. The paper shows
how the approach facilitates evaluations in different phases
of the URREF-driven life-cycle. Controlled experiments with
synthetic data are used to demonstrate the effectiveness of
the approach for both Bayesian network models and Neural
Networks.

A. Example Use Case

The concepts in this paper will be illustrated with the help
of a synthetic “ground truth” example data generating process
(DGP) that gives rise to the observed data in a use case, which
simulates aircraft being sensed by a radar. For the sake of clar-
ity, we focus on a snapshot in time that is governed by a prob-
ability distribution P(V) over the set of random variables V =
{Class, F light, Position, Speed,RCS,WindDirection,
Rain, V isibility,WindStrength}, defined as follows:

• States of Class represent airliners, small planes (general
aviation) and helicopters.

• States of Flight denote possible flight phases: depart,
climb, descent, approach, holding and cruise for general
aviation and cruise for airliners.

• States of Position denote discrete areas in which aircraft
execute various flight phases represented by Flight.

• Speed represents speeds in four ranges.
• RCS represents the radar cross section in three ranges.
• WindDirection represents easterly/westerly winds.
• States of Rain represent rain/no rain, respectively.
• Discrete variable V isibility has states good, low, fog.
• WindStrength represents normal, wind and storm.
Fig. 1 shows the directed acyclic graph describing the

dependencies in P(V) influencing the DGP. While the model
is a severe simplification, it captures typical dependencies over
the set of variables. The emphasis is on significant influences
the context exerts on the distribution P(V). Various external
conditions can change the DGP, resulting in major distribution
shifts in the sampled data. E.g. the states of Speed directly
depend on the Class and the flight phase Flight. Moreover,
Position directly depends on the Class, the Flight phase
and the WindDirection. Airliners cruise at a much greater
altitude than small planes. Position also depends on the
WindDirection that determines the landing and departure
directions. RCS depends on the Class (the plane size and
shape) and the relative position of the plane wrt. the radar.
An airliner cruising at a high altitude will inevitably result in
small values for RCS due to great distance between the radar
and the plane. Small planes could have relatively great RCS
when in the vicinity of the airport.

II. APPROACH

This paper assumes that the training data Dtrain is a result
of a causal data generation process (DGP) that can be seen as a
sampling process from some distribution P (V) over correlated
variables V . P (V) influences the frequencies of observations
during the data sampling processes.

Fig. 1. A directed acyclic graph encoding dependencies between phenomena.

A. Complexity of Correlations

The complexity of a trained model Mk defined over a set
of variables Vk ⊂ V can be expressed as the number of
parameters required to specify the model. While Mk should
be as simple as possible, it must be rich enough, i.e. be
defined through a sufficient number of parameters, to capture
the relevant knowledge about the relations between variables
Vk from Dtrain during an ML process. The required model
complexity depends on the complexity of the relations between
variables V reflected in P (V). The complexity of P (V), in
turn, can be expressed with a Qualitative Model of a Data
Generation Process (QM-DGP). This is a directed acyclic
graph that captures the relations in the data generating process
in a qualitative manner. That is, the model contains nodes
representing the phenomena of interest and directed links
representing direct dependencies between these phenomena;
but no strength of these dependencies is considered. Figure 1
shows an example of such a model. A QM-DGP accurately
represents a DGP over set of variables V if it is an Indepen-
dence Map (I-MAP) of the underlying probability distribution
P (V) [7]. In that case we say that QM-DGP is faithful with
respect to the underlying distribution P (V).

Given that a QM-DGP is faithful as a representation of the
data generating process, its topology reveals useful informa-
tion about the process complexity. An important pattern is a
Collider, a variable Xi associated with two or more parent
variables π(Xi). Variables in π(Xi) directly influence the
states of Xi; π(Xi) define the local context of Xi. Colliders
can greatly increase modelling complexity, i.e. a large number
of parameters that often requires a large set of training data to
learn with reasonable accuracy. Namely, a collider variable Xi

is associated with a set of parameters whose size increases ex-
ponentially with the number of its parent nodes π(Xi) unless
modeling assumptions are imposed to control the number of
parameters. For simplicity of exposition it is assumed initially
that all variables are discrete.1 In this case, we can assume
that the DGP samples states of Xi from a discrete distribution
P (Xi|π(Xi)). The number of possible combinations of states
nXi

over which the distribution is defined is expressed as:

nXi
= |Xi|

∏
Yj∈π(Xi)

|Yj |, (1)

1We consider relaxing this assumption later.



where |Xi| and |Yj | denote the number of states of variables
Xi and Yj , respectively. This equation expresses the com-
plexity of the model describing relations between Xi and its
parents π(Xi). In the model shown in Fig. 1, we can identify
multiple colliders: Speed, Position, Class and RCS for
which (1) applies. Given the number of states of each of these
variables and their parents, the estimation of the corresponding
conditional probabilities:

P (Speed|Class, F light,WindForce),
P (Position|Class, F light,WindDirection),
P (RCS|Class, Position) and
P (Class|Rain, V isibility,WindForce)

requires observation of 144, 432, 108 and 6 different
combinations of states, respectively. It is necessary to have
a sufficient number of observations of each combination of
state for reliable estimation of the real-valued parameters
representing the models of such correlations. Section II-D
considers this question.

B. Local Context

Parents π(Xi) define the local context of Xi. That is, the
sampled values of the parents π(Xi) determine the probability
distribution from which Xi is sampled. We call a specific
combination of states of variables Yi ∈ π(Xi) a local context.

The cardinality of |π(Xi)| and the number of states of each
variable Yi ∈ π(Xi) and their correlations together determine
the context complexity, i.e. the number of distinct contexts
leading to manifestly different distributions over the states of
Xi. The number of local contexts cXi

can be expressed as a
product

cXi
=

∏
Yj∈π(Xi)

|Yj | (2)

It is essential to train the models on data Dtrain that was sam-
pled under all relevant local contexts for each variable Xi ∈ V .
Otherwise, the trained models are likely to fail/underperform
when fed with data sampled in a context that was not consid-
ered at the collection of Dtrain.

The variable Class in Fig. 1 has 12 distinct local con-
texts, given the local context set {Rain, WindStrength,
V isibility}. Without additional assumptions, accurately es-
timating P (Class|Rain,WindStrength, V isibility) would
therefore require 12 times as much data as required for an
estimation of the prior distribution P (Class).

Fortunately, structural properties of P(V) may permit esti-
mation of the distribution using much less data. For example,
when the local distribution of Xi satisfies context-specific
independence (CSI) [8], then subsets of different combinations
of states of π(Xi) can be associated with the same distribution
P (Xi|π(Xi)). Another example is independence of causal
influence, or ICI [9]. Common ICI models include Disjunctive
Interaction models (Noisy-OR/Noisy-MAX) [7]. CSI and ICI
are examples of parametric regression models in which the
parent-child relationship is expressed as a parametric model.
The amount of data required to estimate the parameters of

a parametric model is often much less than required for a
separate distribution per context.

In the DGP of Fig. 1, it reasonable to assume that the
relationship of Class to its parents satisfies CSI. While there
exist 12 possible state combinations for the set V isibility,
WindForce and Rain, they result in only three distinct
distributions over states of the variable Class. Therefore,
we need to ensure that we sample Class with sufficient
representation from three these subsets, but ensuring sufficient
representation from each combination of parent states in each
subset is unnecessary.

C. Expressing the DGP complexity

This section provides a high-level analysis of the DGP
complexity that serves as the basis of a heuristic approach to
estimating the quantities of data required for learning adequate
models for the task at hand. Let’s assume a learning task to
obtain a classifier using model Mk defined over variables
Vk ⊆ V . The model relates Xc ∈ Vk and the observed
variables Xi ∈ O ⊂ Vk, where O denotes the set of all
observed features and V is the set of variables corresponding
to the phenomena that occur in the underlying DGP. The
classifier uses Mk to predict the states of the classification
variable Xc given observations of the features represented by
variables Xi ∈ O.

Under the assumption that the QM-DGP is, to good ap-
proximation, a faithful representation of direct dependencies
between the variables in V , it is possible to provide a rough
estimate of the quantities of training data required for training
of a model Mk, for given variables Xi ∈ V . To estimate the
needed quantities of data for training Mk, we must consider
the complexity of the underlying DGP, i.e. P (V) from which
the states of variables in Vk are sampled. The positions of Xc

and the observed variables Xi ∈ O in the QM-DGP graph
reveal a lot about the complexity of the learning task at
hand.

To understand the DGP complexity, we introduce the notion
of DGP context variables. In common parlance, the term con-
text refers to ”the interrelated conditions in which something
exists or occurs”.2 The DGP context variables C ∈ V in a
QM-DGP are intended to represent the background conditions
under which the process operates. Generally, a DGP context
variable Yi ∈ C is either a root node in the DGP graph or,
if not a root node, has no non-context nodes as parents. In
addition, a DGP context variable will not be d-separated [7]
from Xc or Xi ∈ O by other context variables. This means
it has an influence on the class and/or feature variables that
is not accounted for by the other context variables. The set
of DGP context variables satisfying this condition for the set
of observable variables O is called the DGP relevant context
CO ⊆ C, i.e. for any Yj ∈ CO there exists at least one
path between Yj and Xc or Xi ∈ O. Such context variables
influence the occurrence of the states of the variables that
are represented in the trained model Mk. Fig. 2.a shows an

2https://www.merriam-webster.com/dictionary/context



example where O = {X1, X2} and the corresponding relevant
DGP context is defined over CO = {Y1, Y2, Y3, Y4, Y5}. Note
that the architecture of the trained model Mk could
explicitly represent only Xc and the observed variables
Xi ∈ O, i.e. it would not contain variables from CO which
are explicitly represented in the QM-DGP. Yet, whether
included in Mk or not, the variables in CO drive the
QM-DGP by influencing distributions at different places
in the causal process, thus influencing the frequencies of
combinations of observed states of Xc and Xi ∈ O. Thus,
possible combinations of states in CO and states of variables
in the trained model Mk must be explicitly considered when
estimating the required size of the training sets.

Moreover, for each Vk we can obtain a reduced model from
the full QM-DGP relating Xi ∈ O, Xc and CO. Fig. 2.b
shows such a reduced model that was obtained from the QM-
DGP in Fig. 2.a. In case the conditional probabilities for all
relations in the QM-DGP were known, the model shown in
Fig. 2.b could be obtained through marginalization of all latent
variables along the paths connecting CO, Xc and Xi ∈ O
in Fig. 2.a. If all context variables CO are removed from the
reduced model, we obtain a core model defined over Xc and O
with joint probability distribution P (Xc,O). In other words,
P (Xc,O) is embedded in the set of relevant DGP context
variables CO; i.e. there exist different versions of P (Xc,O),
each corresponding to a different context. In Fig. 2.b joint
distribution P (Xc, X1, X2) over the core model is embedded
in the set of relevant DGP contexts defined over variables
CO = {Y1, Y2, Y3, Y4, Y5}.

Let ncore denote the number of combinations of states over
which the P (Xc,O) of a core model is defined. Then the
number of different combinations of states nVk

of Xc, O and
the relevant DGP context CO in the reduced model can be
expressed as follows:

nVk
= ncore

∏
Yj∈CO

|Yj |, (3)

where |Yj | denote the cardinality of the discrete DGP context
variables. Note that equation (3) takes into account different
contexts which may not be observed. Still, these variables must
be considered as their states drive the DGP and thus influence
the observable variables.

In the case of a fully connected QM-DGP, ncore is simply
the product of the numbers of states of all variables Xc and
O. However, if the graph is sparsely connected, then fewer
parameters are required to capture P (Xc,O). Furthermore,
if suitable learning methods are used, then subsets of the
parameters could be learned independently of each other,
requiring less training data. For example, consider a PGM Mk

whose topology is identical to the DGP model in Fig. 1, with
the set of feature variables O = {Speed,RCS, Position}.
This is also a core model featuring two fragments defined over
F1 = {Class,RCS, Position} and F2 = {Class, Speed},
respectively. These two fragments are conditionally indepen-
dent given the states of variable Class, i.e. they are d-
separated. Fragments F1 and F2 are associated with 108

and 12 combinations of states, respectively. For a given
context the parameters in each fragment can be learned in-
dependently. Except in special cases, it is likely that more
training data is required to learn P (Class,RCS, Position)
than P (Class, Speed). Moreover, as each record di ∈ Dtrain

contains observations of the states of variables from both
fragments, i.e. O = {Speed,RCS, Position}, the required
number of data records is dictated by the more complex
fragment. Therefore, in (3) we use ncore = 108, the number
state combinations of the more complex fragment F1.

Fig. 2. a.) An example QM-DGP describing dependencies in V . The black
nodes correspond to the variables that are relevant for the estimation of the
complexity of the relations between the class variable Xc and the observed
variables X1 and X2 in the trained model Mk . Gray nodes are observed
context and feature variables that are irrelevant for inference over Xc. b.) A
reduced model explicitly relating only Xi ∈ O, Xc and CO .

Thus far, we have considered only discrete variables with
unconstrained probability distributions. Continuous variables
are sometimes addressed with discretization, as was done for
the model of Fig. 1. Here, we enounter a tension: a fine
discretization improves accuracy of inference in the discretized
model, but can dramatically increase the data required for
learning an unconstrained distribution. This tension can be
addressed using a suitable parametric model. Examples include
the normal or exponential distribution, or mixtures thereof.
Parametric models can generally be learned with many fewer
data points than a fine discretization. Accuracy can sometimes
be improved with mixtures of parameterized distributions. If
discretization is needed, discretization can be performed after
learning. Of course, this requires using an appropriate param-
eter estimation method. The methods of this paper assume
unconstrained discrete distributions, but could be extended to
parameterized continuous distributions.

D. Estimating the Required Data Quantities

The DGP complexity expressed with equation (3) is the
basis for a heuristic approach to estimating the quantities of
data required for learning adequate models for the classifica-
tion task at hand. With equation (3) we can express a coarse



estimate of the required size of the training set Dtrain to train
model Mk:

|Dtrain| = κ · nVk
, (4)

where κ denotes the minimum number of occurrences of a
specific combination of states of involved variables, such that
the corresponding parameter can be estimated to the desired
accuracy. Note that the choice of κ is heuristic, but it is often
possible to make a rough estimate of the expected accuracy
in advance of data collection. In this paper κ = 10, i.e. it
is assumed that 10 · |Xi| measurements are required for a
variable with |Xi| states for a given local context, i.e. a specific
combination of states of Xi’s parents π(Xi). As the number of
states grows also the number of required observations grows,
improving the chances of capturing multi-modal distributions
that variables with many states can represent.

Equation (4) is a very crude estimate as it does not consider
the strength of correlations in P (V) from which DGP samples.
It fails to account for the fact that some combinations of
states might never materialize while other could be so rare
that the chance of capturing a sufficient number of cases
in the training data is very low. The distribution over these
combinations depends on the phenomena corresponding to the
Xi’s ancestor variables in the QM-DGP. Ultimately, there exist
one or more DGP context variables in CO that influence the
values of Xi ∈ O and all variables on the paths between CO
and Xi.

However, an improved estimate |Dtrain|′ for the required
data can be obtained, if some amount of training data is
already available at the time of the analysis. We introduce
an auxiliary PGM Maux with the topology corresponding
to the reduced QM-DGP, as for example the graph in figure
2.b. Such a Maux is trained on the currently available data
using simple Maximum Likelihood estimation based on state
counting 3. The learned Maux encodes the frequencies of
the state observations of all variables. For any context C(O)
we can find the state combination with the smallest estimated
probability. For each variable Yj ∈ C(O) we find the state with
the smallest marginal probability Pmin(Yj) and determine the
probability of the least likely combination of states in C(O):

Pmin(C(O)) =
∏

Yj∈C(O)

Pmin(Yj). (5)

With Pmin(C(O)) and ncore we can compute factor c(Vk),
a ratio between the number of required training cases to
sufficiently cover all combinations of the states of the core
model during learning and the expected number of occurrences
of the least likely combination of C(O)’s states in Dtrain:

c(Vk) = ncore · κ/(|Dtrain| · Pmin(C(O))). (6)

This equation is relevant for simple learning approaches
that cannot benefit from the underlying data structure dur-
ing the training process. However, some training techniques
can exploit structural properties of the graph and/or local

3Note that Mauxis not supposed to be used in the classification task.

distributions. If so, the analysis can be carried out on con-
ditionally independent modelling fragments Fi and we can
investigate whether the frequency of observations of their state
combinations can support good machine learning. A fragment
Fi is identified in Maux, given the class variable Xc and
observations. Examples are F1 and F2 identified in the graph
from Fig. 1, given the Class variable (see section II-C).
Such a fragment Fi is associated with its relevant context
C(Oi), where Oi denotes the set of observed variables in Fi.
Like in the derivation of (5), we determine for each variable
Yj ∈ C(Oi) the state with the smallest marginal probability
Pmin(Yj) and determine the probability of the least likely
combination of states in C(Oi):

Pmin(C(Oi)) =
∏

Yj∈C(Oi)

Pmin(Yj). (7)

As next we determine the subset of variables F ′
i ⊆ Fi that

are directly influenced by at least one variable Yj ∈ C(Oi) in
the fragment’s context. The set F ′

i can be viewed as a hyper
variable whose possible combinations of states nF ′

i
can be

determined as follows:

nF ′
i
=

∏
Yk∈F ′

i

|Yk|. (8)

With Pmin(C(Oi)) and nF ′
i

we can compute factor c(Fi) for
a specific fragment, a ratio between the number of required
training cases to sufficiently cover all combinations of Fi’s
states for learning and the expected number of occurrences of
the least likely combination of C(Oi)’s states in Dtrain:

c(Fi) = nF ′
i
· κ/(|Dtrain| · Pmin(C(Oi))). (9)

After executing this computation for all fragments in Maux,
we take the greatest c(Fi) as a corrective factor to determine
an adapted size of the training data considering the actual
distributions of MG: |Dtrain|′ = cmax · |Dtrain|.

If in fragment Fi there exists a subset F ′′
i = Fi \ F ′

i ̸= ∅,
then the same procedure can be repeated for F ′′

i , by using F ′
i

as the context of F ′′
i . By recursively repeating this procedure

for all fragments Fi until F ′′
i = ∅, an improved estimate

of the required training data size can be obtained, properly
considering the dependencies throughout the DGP.

It may be that some of the context variables are controllable,
either by setting them to particular values (e.g., choosing
a setting on a sensor) or by collecting data when they are
in certain states (e.g., waiting to collect data until given
weather conditions occur). In such cases, if we determine that
some combinations of conditions have insufficient data for
reliable estimation, we can collect additional data for those
circumstances and adjust the learned probabilities accordingly.

Also, the problem complexity can be controlled through the
resolution of the variables used in the trained model. While
reducing the resolution of variables results in smaller |Dtrain|,
we might be losing some precision and accuracy.



III. EXPERIMENTAL RESULTS

This section illustrates how the QM-DGP based analysis
can facilitate the determination of the model architecture and
the estimation of the required training data volumes. Known
ground truth models Mi

G were used to sample training and
testing data. This enabled objective comparison of different
modelling paradigms with respect to the modelling complexity
and the requirements for training good quality models.

A. Model Complexity

The QM-DGP provides guidance on the determination of
the architecture, complexity and resolution of different types
of ML-based models. To illustrate this different models were
used. M1, M2 and M3 were PGMs whose topology is
shown in Fig. 3. Their architecture was obtained from the
graph in Fig. 1 by adding a ContextSummary variable
between the Rain, WindStrength, V isibility and Class.
ContextSummary is a latent variable introducing the knowl-
edge that there exist three groups of local contexts of Class.
Also M4 was a PGM whose topology was defined over
a subset of the nodes indicated by emphasized frames in
Fig. 3. The PGMs were trained by using the Expectation
Maximization (EM) algorithm. Moreover, M5 was a Multi-
Layer Perceptron (MLP) with 3 hidden layers of 16 neurons
each and leaky ReLU activation. While QM-DGP directly
provides guidance on the suitable topology of the PGMs, there
is no easy way of translating QM-DGP to a Neural Network
architecture. Still, the QM-DGP can be helpful in finding a
good model. Namely, by being able to estimate the necessary
size |Dtrain|, we know that the search of the architecture and
subsequent optimization of a neural network M5 is carried
out on a data set that is likely to carry information from all
relevant types of situations in which M5 will operate; i.e.
the model will be exposed to all relevant contexts during the
training sufficiently often. Thus, M5 was obtained by training
different architectures on the same Dtrain and choosing the
simplest architecture that was also yielding the smallest cross
entropy loss given a large validation set of a fixed size.

For the sake of completeness, also a full Joint Probability
Distribution (JPD) model M6 was used. M6 was defined over
all variables shown in Fig. 3 and its parameters were obtained
through Maximum Likelihood parameter estimation based on
simple counting of state combinations.

B. Adequate Quantities of Training Data

A series of experiments confirmed that the presented QM-
DGP approach can provide useful information on the quan-
tities of training data that increase the chances of learning
a good model. The experiments were carried out with three
versions of ground truth model M1

G, M2
G and M3

G. All
versions had the topology shown in Fig. 1 and the same condi-
tional probabilities, where P (Position|Class, F light) varied
between 0.032 and 0.47, P (Speed|, F light, Class) varied be-
tween 0.048 and 0.89 while P (RCS|Class, Position) varied
between 0.05 and 0.88. M1

G used a set of prior probabil-
ities for the context variables: P (Rain = true) = 0.1,

Exp |Dtrain| |Dtrain|’ |Dtrain|flat errorflat errormin

1 38880 36000 ≈ 36000 15.47% 15.33%
2 38880 72000 ≈ 40000 16.06% 15.98%
3 38880 42300 ≈ 40000 7.02% 6.92%
4 2160 6000 ≈ 6000 23.63% 23.54%
5 155200 172000 ≈ 160000 7.02% 6.92%
6 155200 540000 ≈ 540000 7.04% 6.92%

TABLE I
ESTIMATED TRAINING DATA VOLUMES |Dtrain| AND |Dtrain|′ VS. THE

SUFFICIENT DATA VOLUMES |Dtrain|flat .

P (V isibility = good) = 0.7, P (V isibility = low) = 0.2,
P (WindForce = normal) = 0.9, P (Flight) varied between
0.1 and 0.5 while P (WindDirection = east) = 0.5.
M2

G used priors that were the same as M1
G, except that

P (WindForce = normal) = 0.97. In M3
G all priors over

the context variables were uniform.
Each Mi

G was used to sample (i) a large test set Dtest

with 500000 records and (ii) a series of training data sets
Dtrain of increasing sizes. For each set of training data Dtrain

the experiments were repeated ten times. The averages of the
error rates were plotted for different data set sizes allowing
visual determination of the point |Dtrain|flat after which no
significant improvements of the error rates took place. This
point corresponded to errorflat. Each ground truth model
Mi

G was also used for optimal classification yielding the
smallest possible error rate errormin, given the underlying
distribution represented by Mi

G. Moreover, as there was a
significant class imbalance, the F1 score was monitored. In all
experiments the F1 score improved with the overall accuracy.

In each experiment the required quantities of training data
were estimated in two steps: (i) estimate initial |Dtrain| using
equation (4) with κ = 10 and (ii) train Maux and compute
|Dtrain|′ using (9) for the PGMs and the MLP and (6) for the
full JPD model, respectively. The Maux’s architecture corre-
sponded to the topology shown in Fig. 3 and its parameters
were obtained via Maximum Likelihood parameter estimation,
i.e. simple counting of state combinations in a training set of
10000 records. ContextSummary in Maux was a determin-
istic function of the states of the context variables. By running
inference algorithm, marginal distribution over the sates of
ContextSummary was estimated, providing the inputs for
(7). Multiple scenarios were investigated:

• Exp 1: Sampling on M1
G, ncore = 108, nV1

= 3888.
• Exp 2: Sampling on M2

G, ncore = 108, nV2
= 3888.

• Exp 3: Sampling on M3
G, ncore = 108, nV3

= 3888.
• Exp 4: Sampling on M1

G, ncore = 12, nV4
= 216.

• Exp 5: Sampling on M3
G, ncore = 432, nV5 = 15520.

• Exp 6: Sampling on M3
G, ncore = 432, nV6 = 15520

As table I shows, the initial estimates |Dtrain| using (4)
indicated the right order of magnitude for the needed data
quantity in all cases. Also the corrected |Dtrain|′ resulting
from the analysis of the auxiliary PGM was a safe estimate
as |Dtrain|′ ≥ |Dtrain|flat. Except in Exp 2, the classifier
achieved close to optimal performance when the size of the
training set was close to the estimated |Dtrain|′ . In Exp 2 ,



|Dtrain|′ was almost two times larger than |Dtrain|flat. This
is likely a consequence of very small probability of certain
state combinations, such that even in the cases of suboptimal
parameter estimation these cases did not have a significant
impact on the overall classification accuracy. It is also evident
that the MLP model in Exp 5 requires significantly more
training data to achieve close to optimal performance than the
PGM models. This is a consequence of the training method
which does not fully benefit from the data structure as is the
case with the EM algorithm. Still, the MLP learning seems to
be able to exploit some structure in the data, as the required
quantities of training data were still significantly smaller than
in Exp 6. The hypothesis is that the MLP approach could not
use the conditional independence between fragments F1 and
F2, but it could exploit the d-separation between RCSdisc

and the rest of the variables via the observations of Class,
Speed and Position. This is supported by the fact that for
the MLP, accurate |Dtrain|′ was obtained by using (9) on
the entire core model (a single fragment). Exp 6 clearly
demonstrates the consequences of ignoring the data structure,
resulting in huge quantities of training data to achieve close to
optimal classification performance. In this case |Dtrain|′ was
accurately predicted by using equation (6) .

Fig. 3. Topology of the basic PGM model defined over variables V captured
by the QM-DGP shown in Fig. 1. Variable ContextSummary was added
as it was known that there are three types of contexts influencing Class.

IV. USING QM-DGP IN LIFE CYCLES

The presented approach can play an important role at
multiple stages of a system life cycle involving components
obtained through machine learning. It provides support for
informed decisions throughout a life-cycle. In particular, this
paper assumes a URREF-driven life cycle [1] that puts the
evaluation of uncertainty representations and reasoning mech-
anisms at the center of all stages of system development
and operation. At a high level, the URREF life-cycle can be
subdivided into three main phases: (i) Inception, (ii) Design,
implementation and Testing, and (iii) Operation. In each phase
the choices are based on different types of evaluations [1] that
can be supported by the presented QM-DGP based analysis.

A. Inception

In the Inception phase of a URREF-driven life cycle the
viability of AI-based solutions is investigated and decisions

are made about the use of specific AI techniques and the data
acquisition processes. This is the phase in which the QM-DGP
graph is constructed by using qualitative knowledge of the
dependencies between the relevant variables. Such knowledge
is likely to be available if the data is produced by (i) processes
whose physical properties are understood at a high level or (ii)
by processes that are governed by clear protocols. Examples
of the former are human made cyber-physical systems where
direct influences between different data producing components
are known. An example of the latter is the presented aviation
use case, where it is known that the air crews use clear
rules in different flight phases establishing direct dependencies
between the flight phases, the speed, and the location. Also, we
know that the RCS depends on the distance from the sensor
and the aircraft type. Moreover, it is known that there are
three weather situations, such that a.) only jetliners can fly, b.)
small planes and helicopters are rare and c.) all three types of
aircraft are likely. Even when the DGP is not known exactly,
it can often be specified to good approximation through expert
judgemnt. In such cases, the approximate QM-DGP can still
be useful to provide a rough guide to the necessary number
of training samples.

The developed QM-DGP graph supports the initial as-
sessment of the relevant variables that should be explicitly
modeled in Mk. Based on the QM-DGP graph, we can see
the relevance of variables for the task at hand and assess
the complexity of correlations. This step is an example of
the evaluation of Expressivity, Relevance and Weight Of
Information criteria from the URREF ontology and provides
guidance for the type and the architecture of the model Mk.
For example, if the nodes in the QM-DGP indicate different
types of (discrete) observations correlated in complex ways,
a Probabilistic Graphical Model (PGM) approach could be
a good choice. On the other hand, if the nodes represent
multi dimensional continuous measurements, such as images
or other raw signals, Neural Networks may be preferred. In
some cases, the Mk complexity can be estimated in terms of
required numbers of parameters as a consequence of the QM-
DGP topology and the choice of the discretization, which is
straightforward if PGMs are used. Moreover, the assessment
of |Dtrain| based on equation (4) provides useful input in
the Inception phase. By knowing |Dtrain| and the relevant
variables in the QM-DGP, the viability of the data acquisition
process can be evaluated, a data collection plan prepared and
the initial estimate of its costs can be made. Thus, at an early
stage in the life cycle we can see whether certain parts of the
system can be automated in reliable and economical ways.
This is an example of an evaluation that contributes to the
Correctness criterion from the URREF ontology.

B. Design, Implementation and Testing

The second phase of the URREF-driven life cycle consists
of multiple iterations of design, implementation and testing
steps. In this phase the QM-DGP provides guidance for the
determination of the model architecture and the model reso-
lution. As it explicitly encodes the qualitative dependencies



between the variables that are also represented in Mk, it can
provide guidance for systematic architectural simplifications
leading to models with fewer parameters, without jeopardizing
the overall classification performance. For example, given the
direct dependencies in the example QM-DGP in Fig. 1, it
is obvious a Naive Bayes model is likely to be inadequate.
[10] provides an example where such a technique was used to
obtain significantly simpler models for vessel track forecasting
by introducing latent variables. While the direct dependencies
often cannot be ignored, the complexity of the models can
be controlled by choosing a lower resolution for discretization
of variables or use of parametric models, thus reducing the
number of parameters. This is an example of the evaluation of
the Expressivity criteria according to the URREF ontology. As
illustrated with the MLP experiment, in case of model types for
which the architecture cannot be directly derived from the QM-
DGP, the training data of sufficient size increases the chances
that the search for suitable architectures will produce models
that can cope with all major settings under which the input
data is produced during operation.

An important step in this phase is the preparation of
adequate training data sets that cover all major operational
conditions. As the data is obtained, corrected |Dtrain|’ can be
estimated according to equation (9) or (6), dependent on the
training method. In this way the forecast of the data acquisition
costs can be re-estimated and the chances of training a good
model can be improved.

V. CONCLUSIONS

Life-cycles of decision support solutions involving AI tech-
nologies must include the following critical development steps:

• Choosing suitable AI techniques.
• Acquisition of sufficient amounts of training data.
• Determining the complexity of the models, such that the

key knowledge can be extracted from the available data.
The presented qualitative causal models of the Data Gen-
erating Processes (QM-DGP) facilitate the above mentioned
steps. The QM-DGP’s topology exposes the complexity of the
relations between different phenomena in a data generating
process (DGP). This provides the guidance for the determi-
nation of (i) the model’s complexity capable of absorbing the
key information during the ML process, (ii) the volumes of
training and testing/validation data required for the extraction
of adequate models and (iii) the types of data the acquisition
process should focus on. Based on the dependencies encoded
in the QM-DGP, simple analysis rules enable coarse estimation
of the data volumes enabling the training of good quality
models. It should be noted that the QM-DGP based approach
is agnostic to the used AI paradigm. Controlled experiments
using synthetic data sampled from known ground truth models
were carried out with Bayesian Networks and Neural Net-
works. The results suggest that the approach could indeed
provide useful guidance for the preparation of the training
data and generation of models covering all major contexts.
For the used experimental setup, near perfect models could be
trained with the data quantities estimated with the presented

method. The experimental results are consistent over different
parametrizations of the ground truth model. However, the
ground truth model always had the same topology. Moreover,
the approach can be viewed as a tool that is used through-
out a system life cycle. In particular, the paper shows how
the method supports critical evaluations in a URREF-driven
life cycle. Such evaluations provide critical feedback for the
technical choices and guidance for the planning of activities,
making different phases of the life cycle more efficient and
making high-quality results more likely.

The future work will focus on multiple aspects of the
presented approach. Firstly, the effectiveness of the approach
will be validated with more experiments based on a variety of
ground truth models. While no special modelling “tricks” were
used when building the ground truth model used in this paper,
it might still be biased, due to unintended special structural
and parametric properties. Secondly, the exploitation of as-
sumptions allowing the use of parametric distributions as well
as simplifications based on Context-Specific Independence and
Independence of Causal Influence will be further investigated.
In this way the estimates of the required sizes of the training
data sets could get closer to the true required data set sizes.
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