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Abstract

The partial wetting is generally defined by a contact angle between the liquid and the surface in the

case of a static equilibrium excluding other types of actions such as gravity, inertia, viscosity, etc. When

these last effects are no longer negligible, the modeling of two-phase flows governed by capillary forces

cannot be reduced to simple geometrical laws on the surface tensions between the phases. The triple

line is subject to accelerations that combine in a complex way to fix in time its motion on the surface.

The macroscopic approach adopted is based on the representativity of the discrete equation of motion

derived from the fundamental law of dynamics expressed in terms of accelerations. The formalism leads

to a wave equation whose form corresponds to the two components of a Helmholtz-Hodge decomposition,

the first to the curl-free and the second to the divergence-free. Like all other contributions, the capillary

effects are expressed in two terms of the capillary potential, an energy per unit mass. The longitudinal

and transverse surface tensions allow for possible anisotropy effects in the tangent plane at the interface.

The assignment of the surface tension values on the triple line related to the contact angle allows to take

into account the partial wetting effects in a dynamic context. Two examples illustrate the validity of this

approach.
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1 Introduction

The physical concepts of partial wetting are now well known at the microscopic and ma-
croscopic scales [1]. If there is an indisputable marker of the wettability of a surface, it is the
contact angle θc, a reproducible measure for a liquid to wet a solid surface in the presence of a
third phase, a gas mixed with the liquid’s vapor. This contact angle is defined at mechanical
equilibrium in the absence of any disturbance that could distort the interpretation of the me-
asurement; gravity, an electric field, the geometrical structure of the surface on a small scale,
the presence of impurities, ... can indeed drastically modify the value of the contact angle. A
general analysis by S. Popinet [2] places the problem of partial wetting in the broader context of
capillary flows.

Apart from the contact angle measured under ideal conditions, it is difficult to find other
indisputable parameters to define the macroscopic connection of the free surface with the solid
wall. Let us consider for example the case of a solid surface inclined by an angle αc on which is
deposited a drop of small dimension which reaches a static mechanical equilibrium.

The observation of the latter leads to define two angles, one upstream of the triple line in the
downstream direction and the other downstream, the angles of advancing and receding. Under
these conditions, the contact angle varies along the triple line defined as the trace of the liquid
on the surface. It is then very difficult to exploit this result to model macroscopically and to
transpose this result to similar experiments for conditions different from the initial experiment.
Similarly, when there is an unsteady motion of the interface due to an external action, the contact



angle θc is no longer respected for different reasons, (i) the viscosity of the fluid and in general
its rheology, (ii) the inertia which depends in a non-linear way on the velocity of the fluid in the
vicinity of the triple line, etc. Consequently, there are no more references allowing to intrinsically
model the motion of the triple line as a function of time. The notion of dynamic contact angle
sometimes used to account for unsteady phenomena related to the triple line is not acceptable
because it ignores the underlying phenomena which have an undeniable reality [3, 1, 4, 5].

Over time, the modeling associated with the contact equilibrium of several phases has been
made from global formulas such as the Young-Dupré law that expresses the value of the contact
angle as a function of the values of the surface tension of the liquid, vapor and that of the
solid. Even if there is a mechanical equilibrium that can be translated into a law of forces or
surface tensions, the interpretation of certain quantities, for example here the surface tension
between the solid and the vapor, does not lead to an intrinsic quantification of the contact angle.
Approaches based on the Cahn and Hilliard’s model and a phase field method [6, 7] enable us to
consider the problem from a thermodynamic angle and extend the concepts to interfaces close
to the critical point. The applications of wetting models are numerous, from the printed droplet
microfluidics, paint spreading, and undeniably justify studies of a theoretical nature [8, 9]. The
methodologies used are also numerous and are based on techniques used in the more general
framework of capillary two-phase flows [10, 11].

The point of view adopted in this framework is different, it postulates that a contact angle
θc is measured under ideal conditions and adopted in the modeling. It can, like the surface
tension itself, depend on the temperature but not on other physical parameters. This angle
should naturally be considered as a solution of the problem if the ideal conditions are applied;
in all other situations, the real contact angle will be different from θc.

The formulation adopted to represent the motion of a fluid in the presence of a triple line is
that of discrete mechanics. This physical model postulates that the acceleration of a particle or
a material medium is equal to the sum of the accelerations imposed on it by the exterior. The
fundamental principle of dynamics becomes an equilibrium of accelerations, the only physical
quantity considered as absolute. This model already includes the main contributions related to
inertia, viscous effects, compression effects, gravitational acceleration, etc. It can be considered
as an alternative to the Navier-Stokes equations for which it allows to find strictly the same
solutions, the momentum being replaced by the acceleration. The modeling of capillary effects
in general and of the triple line in particular is carried out in a manner consistent with the
principles of the derivation of the discrete law of motion. The objective here is to present the
general model of this new approach and to analyze the role played by the contact angle in complex
flows where the physical phenomena are already described.

2 Framework of discrete mechanics

The concepts of discrete mechanics have already been described in the literature. They can be
summarized by the abandonment of some important assumptions of classical mechanics, (i) the
notion of continuous medium, (ii) the notion of global reference frame R(x, y, z) and the change
of reference frame, (iii) the derivation at a point, integration and, in general, mathematical
analysis, (iv) mass and density, (v) the notion of tensor and axial or polar vectors, (vi) the
quantities force and pressure, (vii) the three-dimensional view of volume and (viii) the notion
of fictitious force. These fundamental concepts of classical mechanics are replaced by those of a
very different approach based on the alliance of differential geometry and electromagnetism. The
global frame of reference of classical mechanics is replaced by a local frame of reference on which
all effects are modeled. Unlike conventional procedures, the method we use has the particular
advantage of producing results that can be used directly in numerical calculations, without the
need for additional discretization.
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2.1 Local frame of reference

In the absence of an absolute reference frame, Newtonian mechanics took up the concept of
velocity relativity enunciated by Galileo; this concept became the principle of Galilean relativity
or the principle of inertia or Newton’s first law. Any point body having a velocity in a fixed
direction maintains its rectilinear motion at constant velocity if it is not subjected to an external
force. Its interpretation in discrete mechanics is restricted to two parameters, (i) a length dh
called discrete horizon and (ii) the time interval dt between the mechanical equilibria defined at
time to and t = to + dt. The mechanical equilibrium corresponds to the exact satisfaction of the
discrete law of motion. Length and time allow us to define a velocity or rather a celerity c such
that dh = c dt. An observer located at one end of the line can only distinguish the other for
a time greater than dt, hence the notion of horizon. The velocity v on this rectilinear segment
cannot exceed the celerity c of the medium.

The local reference frame considered is that of the Figure 1; it is composed of the segment
Γ of extremities a and b of length dh oriented by the unit vector t. It is surrounded by a dual
contour ∆ oriented by the unit vector n such that the unit vectors are orthogonal, t ·n = 0. The
association of several rectilinear segments connected by their extremities forms flat polygonal
surfaces S bounded by a family Γ∗ of segments Γ. Similarly, the contour ∆ defines the dual
surface D. Two quantities are respectively related to the vertices of the segments and to the dual
contour, the scalar potential φ and the vector potential ψ oriented along n.

Space vectors do not exist in this context. The velocity v will be defined only on Γ, it is
one of the components of the space velocity which knowledge is not necessary. Similarly, the
acceleration γ is limited to its only component on this segment. Discrete mechanics postulates
that the acceleration γ is the only absolute physical quantity, all the other physical quantities
being relative; the velocity is thus defined by the material derivative γ = dv/dt such that
v = vo + γ dt where vo is the so-called retarded velocity, defined at the instant to. Thus,
without the knowledge of vo it is not possible to predict whether the motion is, at time t, at a
velocity lower or higher than the celerity of the medium, whatever the physical phenomenon of
propagation considered (swell, sound, light).

Figure 1. Primal and dual geometric structures of discrete mechanics. The primal structure
consists of a segment Γ oriented by the unit vector t with ends a and b. The dual closed contour
∆ is oriented by the unit vector n orthogonal to t, t · n = 0. The acceleration γ and velocity v
vectors are restricted to their components on Γ. The scalar potential φ is defined on the vertices
and the vector potential ψ is associated to the dual contour. These two structures define a direct
local reference frame.
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The local frame of reference of Figure 1 represents a discrete form of the existing primal and
dual structures whatever the dimension of the space considered; in one, two or three dimensions,
this scheme will remain unchanged and the law of motion that follows is strictly independent of
the dimension of the space. The dimension dh can take finite values related to the considered
problem but it can also be reduced to zero; in this case, it is the whole frame of reference which
is reduced in a homothetic way. Thus, just as the volume is reduced to zero in continuum
mechanics, this approach leads to a local law. However, unlike classical mechanics, the local
reference frame cannot be reduced to a point, the angles and directions are preserved. The two
representations, discrete and continuous, are thus preserved.

The structure of the discrete reference frame evokes the remarkable idea of J.C. Maxwell [12]
to federate the concepts of magnetism and electrodynamics to define those of electromagnetism.
A direct variable current created by an electric potential difference between a and b of the
Γ segment induces a variable current in the ∆ loop and vice versa. In direct current, the
interaction disappears and the two phenomena become independent. This scheme is used in
discrete mechanics to establish a law of motion in accordance with the fundamental principles
of mechanics, notably Newton’s second law. Since the laws of electromagnetism are currently
dissociated from those of mechanics, how can the two be reconciled? This is only possible by
abandoning some of the concepts of classical mechanics mentioned above. As it is not a simple
analogy between two phenomena, it is necessary to find a unique law of motion applied to
quantities of different nature. This transformation therefore requires the definition of common
quantities by drastically reducing the number of physical quantities and the units in which they
are expressed. The law of motion thus obtained will be representative of motions in fluids, of
stresses and displacements in solids and of wave propagation in all media [13]. The structure of
the discrete equation cannot escape the more recent concepts of relativity.

Since the concepts of mathematical analysis are abandoned, they must be replaced by those
of differential geometry in the form of operators. Only four operators are needed to transform
the information from the primary structure to the dual structure and vice versa. The gradient
operator of the scalar potential ∇φ is the restriction of the classical gradient to its only component
on the segment Γ, ∇φ = (∇eφ · t)∇e where ∇e is the gradient vector of space. The primal curl
∇ × v is defined as the circulation of the vector v on the contour Γ∗, it is carried by the unit
vector n. The discrete divergence ∇ · v corresponds to the sum of the fluxes coming from the
segments associated to the same vertex a. Finally, the dual curl ∇⊗ψ is set by the circulation
of the vector ψ on the contour ∆ and the result is assigned to the oriented primal contour
Γ. The symbol ⊗ usually used in mechanics to denote the tensor product of two vectors is
adopted because it complements in a harmonious way the concept of rotation of a pseudo-vector
in classical mechanics. Since tensors do not exist in discrete mechanics, any confusion is avoided.
Remarkable properties mimic those of the continuous medium:

∇ · (∇⊗ψ) = 0; ∇× (∇φ) = 0, (1)

since ∇ · v is a scalar and ∇ × v is a primal curl, the composition of operators provides the
following identities:

∇ · (∇⊗ (∇× v)) = 0; ∇× (∇ (∇ · v)) = 0. (2)

These properties are always verified whatever the geometrical structure of the physical domain
tessellated by the primary and dual structures; the flat surfaces formed can have any number of
sides and the volumes are any polyhedra.

Maxwell’s idea leads to a very important result; the direct and induced currents are both
carried by the same Γ segment, so they can add up for variable currents or flow without interacting
in direct current. The representation of a vector by its three components in a global reference
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frame is replaced, in discrete mechanics, by vectors linked to a single direction, that of t. The
physical modeling of all direct and induced phenomena is thus to a single direction of space. The
consideration of the two-dimensional or three-dimensional space is realized from cause to effect,
by the vertices common to two segments. The change of reference frame from R to a distant
reference frame R

′ can only be realized under restrictive conditions; in the theory of relativity
this condition supposes that the celerity of light c0 is constant on its whole path. In the present
case, the celerity is fixed at the vertices of the primary structures and can be variable from one
vertex to another and depend on other quantities, temperature for example.

2.2 Equivalence of conservation of acceleration and energy

The modeling that leads to a unique law of motion for all wave propagation phenomena,
including mechanics, requires a return to the Weak Equivalence Principle (WEP) to modify its
interpretation. Originally, this principle gives mass a privileged status, the equivalence between
inertial and gravitational effects is granted to mass, "inert mass = gravitational mass". However,
this principle only reflects the dynamic effects, two bodies of different nature fall with the same
velocity and acceleration. Newton’s second law confirms Galileo’s point of view, m γ = F with
F = mg. The mass m is the same and yet it is not removed from this relation. Special relativity
will take back this notion of momentum q = m v. Even more surprisingly, the principle of
equivalence between mass and energy will not allow to remove mass from the laws of mechanics.
The postulate of discrete mechanics is to discard this notion of mass and to reformulate the
fundamental law of dynamics in the form :

γ = h. (3)

The intrinsic acceleration γ of a particle or a material medium is equal to the sum h of all
the accelerations applied to it. This is a local law and a law of conservation of total energy.
Indeed the integration over the length dh of the segment Γ of the acceleration is an energy per
unit mass. In general, a vector can always be decomposed as a sum of a gradient of a scalar
potential and a dual curl of a vector potential, it is a Helmholtz-Hodge decomposition. This
decomposition is not unique a priori, it is only defined to within one H field.

γ = −∇φ+∇⊗ψ +H, (4)

where H harmonic term, to divergence-free and curl-free.
If the scalar potential can be defined by a divergence of the velocity φ = ∇·v and the vector

potential by its curl, ψ = ∇ × v, then the harmonic term is eliminated. The demonstration
[14] shows indeed that fields with constant divergence or constant curl are discarded from the
modeling of the intrinsic acceleration. They are related to uniform expansion and rotation
motions with constant velocities. For example, the expansion of the Universe at constant velocity
has no effect on the acceleration of a medium on a Γ segment. It follows that the acceleration,
an absolute quantity, decomposes in the form γ = −∇φ+∇⊗ψ. The conservation of the total
energy is then written:

∫

Γ

γφ · t dl = −
∫

Γ

∇φ · t dl +
∫

Γ

∇⊗ψ · t dl, (5)

where the first integral on the right side is the expansion energy and the second the rotation
energy. The two accelerations ∇φ and ∇ ⊗ ψ are the only two mechanical effects to take
into account. There are however other effects linked to gravitational, capillary, electromagnetic
accelerations, etc.
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The law of discrete motion describes the evolution of a system only between the times to and
t = to + dt. It is therefore essential to define retarded potentials φo and ψo similar to those of
electromagnetism [15]:

φo = −
∫ to

0

c2l ∇ · v dτ, ψo = −
∫ to

0

c2t ∇× v dτ. (6)

The law of motion is thus a continuous memory model, only the acceleration is absolute
and the other current quantities are defined according to their value at time to, the velocity
v = vo + γ dt, the displacement u = uo + v dt, the scalar potential φ = φo + d φ, the vector
potential ψ = ψo + dψ, etc.

2.3 Discrete law of motion

The modeling of the compressive and rotational acceleration increments is done on the basis
of simple experiments where the compressive energy is expressed from the divergence of the
velocity dφ = −dt c2l ∇ · v where cl is the longitudinal celerity which can also be written from
the isentropic compressibility coefficient χS . At the same time, the rotational energy is reflected
by the primal curl and transverse celerity dψ = −dt ct ∇× v. The law of discrete motion then
becomes:

∂v

∂t
= −∇

Å

φo +
1

2
|v|2 − c2l dt∇ · v

ã

+∇⊗
Å

ψo +
1

2
|v|2 n− c2t dt∇× v

ã

+ hs, (7)

where the material derivative is written as a Helmholtz-Hodge decomposition [16]:

γ =
dv

dt
≡ ∂v

∂t
+∇φi −∇d ×ψi =

∂v

∂t
+ κi. (8)

The vector κi represents the curvature of the inertial potential φi = |v|2/2. The two vector
components are also expressed on the segment Γ and can be added or cancelled according to the
problem. The law of discrete motion (7) allows to predict the solution of the current velocity v
from its value at time to. The divergence and primary rotation of the velocity difference, (v − vo)
allows the potentials to be updated from the retarded potentials :

updates







αl φ
o − c2l dt∇ · (v − vo) 7−→ φo;

αt ψ
o − c2t dt∇× (v − vo) 7−→ ψo.

(9)

The quantities αl and αt are respectively the attenuation factors of longitudinal and transverse
waves. When α = 1 the corresponding energy is fully conserved and when α = 0 the waves are
fully dissipated; this is the case for a Newtonian fluid where shear leads to the dissipation of
energy in the form of heat. The equation of motion being a law of conservation of total energy,
the dissipated energy must be compensated in the equation, this is the role of the retarded
potentials φo and ψo. The symbol 7−→ corresponds to the actualization of these.

It is possible to group the potentials with the inertia term to obtain the Bernoulli potentials,
φo
B = φo + |v|2/2 and ψo

B = ψo + |v|2/2. The equation of motion then becomes

∂v

∂t
= −∇

(

φo
B − c2l dt∇ · v

)

+∇d ×
(

ψo
B − c2t dt∇× v

)

. (10)

The form (10) shows two Lagrangians, the first for the expansion terms and the second for
the rotation. Each of them is composed of a potential energy, φo

B or ψo
B and a kinetic energy

term expressed as a function of the velocity v. This form is the condition for the application of
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Noether’s theorem [17] which theoretically states that when a law can be written in the form of
a Lagrangian or a Hamiltonian, then it has symmetry and invariance properties. Each of them
is related to the conservation of a certain physical quantity. In this case, the time invariance
ensures the conservation of the total energy, the first term of the second member conserves the
compression energy and the last term ensures the conservation of the angular acceleration.

The law of motion (7) has other properties due to its structure. One of them shows that it
is relativistic, it integrates the concepts and results of special relativity and general relativity.
Consider the displacement u = uo + v dt and suppose that the velocities cl and ct are equal, the
classical relation of differential calculus :

∇2u = ∇ (∇ · u)−∇×∇× u, (11)

allows then to transform the discrete equation of motion into a nonlinear wave equation:

1

c2
d2u

dt2
−∇2u = −∇φo +∇×ψo, (12)

where the first member can be written as a Dalembertian when inertia is neglected:

�u ≡ 1

c2
∂2u

∂t2
−∇2u, (13)

but here the equation is non-linear and, by grouping the retarded terms, the equation becomes:

1

c2
d2u

dt2
−∇2 (u− uo) = 0. (14)

It is then easy to show that a wave equation is relativistic. It is enough to apply the Lorentz
transformation of the reference frame R to show an identical equation corresponding to the re-
ference frame R

′. It thus remains invariant with respect to the considered transformation. This
invariance is not incompatible with the invariance resulting from the Galilean transformation
related to inertia. On the contrary, it is necessary to (i) ensure the filtering of uniform trans-
lational and rotational motions and (ii) describe the blocking of the velocity of a particle in its
accelerated motion on a linear trajectory at the celerity of the medium.

The nonlinear wave equation (14) is naturally deduced from Newton’s second law. It is not
derived from a Lorentz transformation nor from the use of the factor γ = 1/

√

1− v2/c2. The
approaches of SRT and discrete mechanics are very different even if the results are identical. The
discrete model presented here allows to fully recover the solutions of the Navier-Stokes equation
for fluids in a wider context describing waves in general (swell, acoustic waves, light).

The boundary conditions associated with the law of motion (7) are directly integrated in the
latter in the form of operators, −∇q +∇⊗ r where q corresponds to a surface flux and r to a
shear stress at the walls. These two potentials allow to simulate any kind of boundary condition
in a way consistent with the formulation.

3 Concepts of capillary motion

The abandonment of certain concepts of classical mechanics has an impact on the treatment
of capillary flows. First of all, the discarding of mass and density has an effect on the quantities
used to simulate two-phase flows in the presence of capillary effects. The surface tension γ used
classically becomes σ = γ/ρ, named surface tension per unit mass, this one is expressed in m3s−2.
Its product by the curvature κ is an energy per unit mass, the capillary energy σ κ and, like the
others, it will be a scalar or vector potential depending on the term in which it appears. The
experimental values assigned to γ will also be those used for σ because the pressure itself becomes
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φo = p/ρ. The density thus disappears from all the adimensional quantities and parameters that
usually characterize capillary effects. Moreover, we find the grouping γ/ρ in most of them.

3.1 Capillary motion law

The capillary potentials noted φc = σ κ and ψc = σ κ n are also energies per unit mass and
the quantity cc =

√
σ κ is the capillary wave celerity which can be interpreted as the capillary

velocity vc. The capillary acceleration γc can also be modeled by stating that it is equal to the
sum of the accelerations imposed on it. This leads to an equation of capillary motion:



























γc =
dvc
dt

= −∇ (φo
c − σl κl dt∇ · vc) +∇⊗ (ψo

c − σt κt dt∇× vc) ,

φo
c − σl κl dt∇ · (vc − vo) 7−→ φo

c ,

ψo
c − σt κt dt∇× (vc − vo) 7−→ ψo

c .

(15)

It has exactly the same structure as the equation of motion. It is of course free of the
compression and rotation terms of the general law. It applies to the case of a Σ surface, for
example a liquid sheet having a surface tension σ and a local curvature κ, these two quantities
being defined for the longitudinal and transverse waves. This equation (15) allows to calculate
the evolution of the velocity over time of a surface subjected to motions generated by variations
of surface tension and curvature. It is possible to represent the stationary solution of a catenoid
surface, a minimal surface constrained by two circles, from any initial solution.

Since capillary effects are sometimes modified by gravity, it is desirable to rewrite the equation
of fluid dynamics subjected to this acceleration; this should of course lead to the stationary
solutions of fluid statics, compressible or not. Its modeling is similar to the general law of
motion where the gravitational energy is equal to g r where r is a fixed coordinate with respect
to a reference frame; it reads:































γg =
dvg
dt

= −∇
(

φo
g − g · t r dt∇ · vg

)

+∇⊗
(

ψo
g − g · n r dt∇× vg

)

,

φo
g − g · t r dt∇ · (vg − vo) 7−→ φo

g,

ψo
g − g · n r dt∇× (vg − vo) 7−→ ψo

g ,

(16)

where ∇(g · t r) = (g · t) t corresponds to the projection of the gravity vector onto Γ; the other
component projects in the same way onto ∆.

The equation of motion of capillary effects (15) and that of fluid statics (16) can be combined
in the general law of motion (7). The new scalar potential is then written φo+φc+φg 7−→ φo and
similarly for ψo and for the global velocity v. Since all potential source terms are written in the
form of a Helmholtz-Hodge decomposition, the form of the general equation remains unchanged:































dv

dt
= −∇

(

φo −
(

c2l + σl κl + g r
)

dt∇ · v
)

+∇⊗
(

ψo −
( ν

dt
+ σt κt + g r

)

dt∇× v
)

,

φo −
(

c2l + σl κl + g r
)

dt∇ · (v − vo) 7−→ φo,

ψo − (ν/dt+ σt κt + g r) dt∇× (v − vo) 7−→ ψo,

(17)

where ν, the kinematic viscosity replaces the generic term dt c2t for viscous fluids with large time
constants where these effects are always present.
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The groupings dt ∇ · v and dt ∇ × v are dimensionless; the explicit presence of the time
lapse dt between two mechanical equilibria has a very special meaning that does not exist for the
Navier-Stokes equations. For small time constants, the exchanges between the potential energy,
fixed by φo or ψo, and the kinetic energy, associated to ∇ · v or ∇× v, are important. For large
time constants, the products dt∇ ·v and dt∇×v remain of the same order of magnitude as the
other terms in the equation, but ∇ · v and ∇× v tend to zero or to constants. The acceleration
γ becomes zero when the motion is stationary and the two terms −∇φ+∇⊗ψ define the new
mechanical balance.

Let us now consider the respective roles of each of the expansion c2l , capillary σ κl and
gravitational g r and those of the vector potentials. Let us fix for that orders of magnitude com-
patible with the capillary movements in a viscous liquid subjected to gravity, σl = 10−4 m3s−2,
κ = 1/R = 103 m, cl = 103 ms−1, g = 10 ms−2 and ν = 10−6 m2s−1. Let us summarize the
different potential groupings by considering that is of the same order of magnitude as the ratio
of a dimension by a celerity dt = 1/(κ

√
σ κ) ≈ 10−2 s :

σl κl
c2l

= 10−7;
g

κl c
2

l

= 10−8;
ν

dt σt κt
= 10−3;

ν κt
dt g

= 10−2;
g

σl κ
2

l

= 10−1;
g

σt κ2t
= 10−1. (18)

The groupings (g/κl)/c
2

l and (g/κl)/c
2

l show that the effects due to capillarity or gravity are
respectively seven and eight orders of magnitude smaller than those related to the compressibility
of the liquid and can therefore be neglected. The same is not true for rotation where the quantities
related to viscosity, capillarity and gravity form sets closer to unity. Of course, this exercise
must be reproduced according to the problem at hand, but it shows the interest of such a global
approach to define adimensional parameters whose quantities are all expressed exclusively by a
length and a time. Contrary to the classical adimensional analysis, the adimensional parameters
are not defined by orders of magnitude of the velocity, the density or a characteristic length
whose choices can be discussed.

There are many dimensionless parameters related to capillary effects, for example the Weber
number We = ρ v2 L/γ, the capillary number, Ca = v µ/γ, the Froude number, Fr = v/

√
g L,

the Laplace number, La = γ L ρ/µ2, the Ohnessorge number, Oh = µ/
√
ρ γ L or the Bond

number, Bo = ρ g L2/γ, to name a few. They are not all independent and can be combined to
form others. There are of course a few in the list (18) including the Bond number, Bo = g/(σκ2)
as the ratio of gravitational energy to capillary energy.

The most notable difference is the presence of the ratio ν/dt, representing the energy per unit
mass of viscous friction. The true notion of viscosity is complex. The fact that it is measured
by steady-state experiments does not give it the desired general character. Moreover, Newton’s
shear law τ = µ dv/dy induces a paradox in the Navier-Stokes equation at small time constants
when a sudden shear is imposed on a fluid at a given time. The perturbation is theoretically
instantaneously felt at infinity and the initial stress is itself infinite. The hyperbolic character of
the discrete equation (7) overcomes this drawback.

3.2 Modelization of partial wetting

This section presents how this formulation (17) is likely to take into account the notion of
partial wetting between a surface and a liquid. Many models are based on the static contact
angle which is sometimes extended in dynamics. In fact these approaches are set aside in the
framework of the presented formulation. Indeed, it is very difficult to predict what happens to
the contact angle when capillary effects are intermingled with those due to viscosity, inertia,
gravity, etc. The principle adopted here is different, the modeling of all the effects is carried
out in a coherent way and, if the equation of motion is representative of the phenomena, it is
then used without trying to analyze each phenomenon separately. Indeed, the instantaneous
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local angle is a complex function of the terms of the equation of motion. Young-Dupré’s law,
cos θ = (γSV − γSL)/γLV where γSV is the surface tension between the solid and the vapor,
γSL, the surface tension between solid and liquid, and γLV , the surface tension between liquid
and vapor, provides an equilibrium relation but does not allow to describe the dynamics of the
interface formation; moreover, the tension γSV is difficult to quantify.

In the case of capillary flows without connection to a triple line, the equation (17) allows
to find the classical results [18]. For example the solution of the Laplace problem of a drop of
average curvature κl+κt = 2/R, p/ρ = φc = 2σκ is obtained exactly (to machine precision). The
dynamic case of an ellipse oscillating around a mean position is solved precisely (to second order)
from an Arbitrary Lagrangian Eulerian method to obtain the theoretical oscillation frequency
equal to f = m (m2 − 1) σ R3 [19]. Many other cases of two-phase flows show the validity of the
proposed approach. In all cases, the static or dynamic solution of the problem does not depend
on the density, which is integrated both in the capillary potential φ = p/ρ and in the surface
tension per unit mass, σ = γ/ρ. Moreover, the notion of average curvature is replaced by the two
curvatures κl and κt which form an orthogonal reference of the tangent plane of the interface.

Let us now introduce the concept of partial wetting in the discrete model associated with the
equation of motion (17). In fact this equation remains unchanged, it is only necessary to introduce
an information on the desired contact angle at the capillary equilibrium. Indeed this notion of
contact angle defined as a property of a surface-liquid couple is only realized in one case, the
one where all the other effects, inertial, viscous, gravitational, compressible are negligible before
the surface tension. In this situation, the shape of the surface of the liquid in contact with the
solid is a portion of a sphere and this is also true for more complex situations, for example a
lens of a liquid in equilibrium between two other liquids. In other cases, the contact angle is
not respected either in static or in dynamic. Simplistic laws or reasoning neglecting other effects
cannot represent the reality of such complex phenomena. The point of view adopted is based on
an equation of motion which already describes correctly all physical phenomena. Only a global
model allows to assemble the contributions linked to each of them in an essentially macroscopic
vision; the effects at very small scale will not be taken into account.

Figure 2. Drop of surface Σ placed on a solid plane; two facets S and S ′, associated to the
common segment Γ of the triple line ℓ, respectively of normals n and n′ define the dihedral angle
additional to the contact angle θc.

Let us consider the Σ interface of the Figure 2, for example that of a drop of liquid on a solid

surface partially wetted by it. The liquid is in contact with the solid on a surface delimited by

the triple line ℓ. This line is formed by the line segments Γ whose ends a and b are oriented
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by the unit vector t. The interface Σ and the solid surface are tessellated by surfaces such as S
and S ′ which have, in this case, the triple line segment ℓ in common. The normals to these
two facets are called n and n

′. As in the general case of capillary flows, the capillary
accelerations are written as a Helmholtz-Hodge decomposition:

−∇ (σl κl) +∇⊗ (σt κt n) . (19)

The first term is evaluated from the quantity σlκl defined at the vertices of the segment
Γ and the second term is the dual curl related to the circumferences of the two primary
facets. The center of S located at c is the intersection of the perpendicular bisectors of
the triangle sides. In general, the curvature is related to the divergence of the normals
on the interface. The use of the dihedral angle is particularly well suited in this context
because the normals n and n

′ are defined exactly from the coordinates of the vertices of
each triangle. The dihedral angle θd is defined by the two normals n and n

′ such that
cos θd = n ·n′, it is the supplementary angle of the contact angle θc = π−θd. It is possible
to define a contact curvature named κℓ by the outer product of the normals n and n

′

attributed to the segment Γ oriented by t is obtained by considering a distance, the one
joining the circumferences of the two triangles:

κℓ =
n ∧ n

′

‖c c′‖ , (20)

where ‖c c′‖ is the norm of the distance between the circumcenters of the two facets S
and S ′. The symbol ∧ defines the exterior product which corresponds to the component
normal to the considered surface, of the vector product noted with the symbol ×. In
the absence of a global reference frame, the outer product is particularly adapted to the
writing of the laws of discrete mechanics. Unlike the vector product which is defined for a
three dimensional space, the outer product is defined for any n dimensional vector space.

The quantity κℓ can also be named curvature of the triple line, it characterizes in-
deed, with the surface tension σℓ, the acceleration due to the partial wetting. Thus the
transverse curvature κt applied to all the facets of the interface Σ will take, on the triple
line, the value κℓ. The global formulation then remains unchanged, only the transverse
curvatures will be kept equal to κℓ during a simulation. The link between the experi-
mentally evaluated contact angle θc and the curvature of the triple line is direct. In the
case of a drop of radius R, the contact curvature, at capillary equilibrium, is equal to
κℓ = 2/R. From a practical point of view, the calculation of the curvature of a tessellated
interface by triangles computed from the formula (20) provides a good approximation of
the theoretical value.

Let us consider the case of an evolution in time of the shape of an interface Σ subjected
to various accelerations due to the effects of gravity, viscosity, inertia, etc. The value of
the contact curvature κℓ, once defined as a function of the contact angle θc, is maintained
over time on the triple line of the equation (17) but not, for all that, the value of the
normals n and n

′, and, in general, the shape of the interface is not fixed. It appears
only as a constraint to be satisfied, in the absence of these actions, to reach the capillary
equilibrium. For example, let us consider a drop that spreads on a partially wetting
surface characterized by a contact angle θc in the presence of a gravitational field. In this
case, the contact angle at capillary equilibrium is not θc, it results from an equilibrium
including the gravitational acceleration. The velocity at equilibrium is strictly zero.

Thus, mechanical equilibrium, whether static or dynamic, cannot be defined by a single
parameter such as the contact angle (static or dynamic). The physics of these phenomena
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is complex but it is inscribed in the law of motion (17). Its resolution is essentially com-
putational because it is non-linear and the interactions between the different phenomena
it models are particularly intertwined. From an initial condition fixed by the shape of
the interface Σ and the source terms at time to, the solution of the equation allows to
predict the solution on the velocity v at the current time to + dt; the potentials φo and
ψo are updated and the new shape of the interface is computed using this velocity. If
a static equilibrium is possible, the velocity tends to zero, but all terms that no longer
depend on it must still strictly satisfy the equation. A conservation equation must always
be satisfied, even when the velocity tends to zero; no residual velocities must remain, e.g.
the unphysical stray currents frequently reported in the literature.

4 Analyses of some capillary flows

4.1 Spreading and equilibrium of a drop

The dihedral angle and the contact curvature κℓ are implemented in the case of the
spreading of a drop of liquid partially wetting the substrate on which it is placed under
the assumption that the initial equilibrium is not assured. In this situation, the liquid
spreads or retracts in order to finally satisfy the theoretical contact angle θc between the
liquid and the solid surface.

A drop having the shape of a semicircle of radius R = 0.62510−3m is placed on a plane
whose wettability can be modified over time from the contact curvature κℓ. The density
of the fluid is equal to ρ = 1000 and its viscosity equal to µ = 10−2 kg m−1 s−1 and the
external medium is air. The curvature of the initial semicircle is equal to κℓ = 1600. From
the initial time we impose a contact curvature κℓ = 750 to simulate a wetting surface
and, from a time equal to t = 0.2 s we modify this value which is brought to κℓ = 2230
to represent a non wetting surface. The table (1) gives the characteristics of the drop for
each step of the simulation.

Curvature Radius of meniscus Contact angle Capillary pressure

1600m−1 0.625 10−3 m 90° 112 Pa

750m−1 1.333 10−3 m 48.2° 52.5 Pa

2230m−1 0.415 10−3 m 150° 155.04 Pa

Table 1. Evolution of a drop on a plane; characteristics of the meniscus for each step of the
simulation.

The simulation is performed using equation (17) and maintaining on the contact line
the κℓ curvature in two space dimensions. The computational methodology used is that
described previously [18]; the unstructured primal mesh, composed of regular triangles,
tessellates the two domains, the initially hemispherical drop and the complement of the
rectangular cavity shown in Figure 3. The interface tracking method is similar to Front-
Tracking [19], the triple line corresponds to a line of the mesh and this and all vertices
of the primal mesh are advected by the velocity field v. The boundary condition on the
horizontal plane corresponds to a non-slip except on the segment where the junction point
of the Σ interface and the plane is located, i.e. on the triple line. Indeed the condition
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Figure 3. Simulation of the evolution of a drop on a flat surface as a function of the curvature
applied to the wall. On top a drop in equilibrium where the curvature κℓ = 1600 and the contact
angle θc = 90° are given as initial condition, in the center the curvature κℓ = 750 (θc = 48.2°) is
imposed on the triple line and at a time of t = 0.2 s we impose κℓ = 2230 (θc = 150°).

of adhesion would lead to a zero velocity of the triple line on the plane which is false. In
fact this problem of inadequacy of the boundary condition of the triple line results from
the globalization of the velocity field v which contains in fact two components, one at the
absence of divergence and the other at the absence of curvature. The triple line must be
free to move on a solid surface, which corresponds only to the condition v · n = 0. In the
present case, the Γ segment of the plane containing the vertex of the triple line is thus
kept sliding, the other segments of the plane ensuring the condition of no sliding.

The Figure 4 shows the shape of the drop in each quasi-stationary state where the
velocities are negligible. The pressure inside the drop is then almost constant. As soon
as the κℓ is changed, the forces exerted on the triple line act to bring the drop back to
an equilibrium state where the κℓ contact curvature is satisfied. Over time, the velocities
evolve in the domain first to spread the drop to a contact angle of 48.2° and then to
contract the interface to a contact angle of 150°.

Figure 4 shows the evolution of the scalar potential difference φo between the interior
and exterior of the drop as a function of time; in each of the two domains, liquid and gas,
the potential is uniform and the velocity and inertia become very low very quickly after a
phase of rapid evolution of the interface. The results obtained from the computationally
simulated data are consistent with the theoretical predictions. In this example, the inter-
faces correspond exactly to a constant curvature, for example of spheres (or cylinders in
two spatial dimensions). This is of course no longer the case when gravity is taken into
account, the interfaces between air and liquid are no longer spheres and the contact angle
θc is no longer respected; the real angle of static equilibrium is a complex function of the
capillary potentials φc and that of gravity φg.

This first characteristic example of capillary flows translates the principle of the use
of the law of discrete motion (17), only the physical parameters are adjusted according
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Figure 4. Evolution of the average energy difference per unit mass (in m2 s−2) between the
drop and the exterior on a flat surface as a function of time with respect to curvature variations
at the wall. The asymptotes of the capillary potential lie at φo = 52.5 10−3 and φo = 155 10−3.

to the considered problem but the form of the equation itself remains unchanged. For
example, when the incompressibility of the flow is required, it is not the divergence term
of the velocity ∇ · v = 0 that is removed from the equation but the value of the celerity
is increased. Similarly, when a contact angle θc between a liquid and a solid is desired, it
is not maintained explicitly and will not be assured if there are other constraints.

4.2 Capillary rise between two vertical planes

The problem of the capillary rise of a liquid in a pipe is particularly emblematic of
capillary flows. The phenomenon is simple to describe, the liquid rises in the pipe of
radius r and partially wets the walls of the pipe, eventually stabilizing at a height h fixed
by Jurin’s law. This law is established on the basis of an equilibrium taking into account
the weight of the liquid column of density ρ, Fp = π r2 hρg and that of the capillary force
given by Fc = 2πr γ cos θc où θc where θc is the contact angle and γ is the surface tension;
an energy balance per unit mass instead of a force balance leads to the same conclusion:

h =
2 γ cos θc

ρ g r
=

2 γ

ρ g R
=

σ κ

g
, (21)

where σ = γ/ρ; as for the other laws related to capillary effects it is the surface tension
that appears naturally.

The case proposed here is that of a liquid of density ρ2 = 1000 and viscosity µ2

in capillary ascent between two planes whose contact angle θc with the vertical walls
corresponds to cos θc = 0.9; the average curvature of the interface is thus equal to κℓ =
1800. The medium above the liquid has density ρ1 = 1 and viscosity µ1. The surface
tension γ = 0.055555 is constant. The domain is planar, rectangular, of dimensions
[−0.0005, 0.0005]× [0, 0.01] and the base of the interface between the two fluids in static
equilibrium is placed at y = 0.005. The value of gravity in the downward vertical direction
is chosen to obtain an upward or downward shift of the interface or static equilibrium.
The primal topology corresponds to a mesh based on regular triangles bounding the two
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media by a mesh line. The boundary conditions are associated with vertical solid walls
(v = 0) and horizontal free walls where the pressure is constant and equal to p = 0. The
pressure difference on both sides of the interface resulting from the simulations must be
equal to ∆p = γ κ or φ = σ κ at static equilibrium.

Figure 5. Static mechanical equilibrium defined by the two scalar φo (left) and vector ψo (right)
potentials; the two images on the right show the details of these two potentials near the interface.

When gravity is less than the value corresponding to static equilibrium, capillary forces
are dominant and the heavier fluid is pulled upward near the walls. These same forces
then act to restore a shape close to the circle and a curvature equal to κℓ = 1/R where R
is the radius of curvature. The unsteady vortex motions are induced by all the physical
phenomena present in the problem. On the contrary, when gravity is more important, the
associated forces pull the interface down until static equilibrium is reached in more or less
important times which depend on the exchanges between inertia and viscosity forces. We
observe that the boundary conditions of the problem are well satisfied, in particular that
the top and bottom of the cavity are at the same pressure and that the pressure jump at
the interface corresponds to the exact value ∆p = 100. The value of gravity used for the
static situation is equal to g = 19.636112. We notice that the height of the meniscus h to
be considered to find Jurin’s law is not the minimum height of the meniscus on the axis
but the average value which is h = 5.092657 10−3m.

Figure 5 shows the result obtained for the static equilibrium; the velocity is zero in the
whole domain at the accuracy of the machine and the two potential fields of compression
φo and rotation ψo alone define this mechanical equilibrium:

−∇φo +∇⊗ψo = 0. (22)

The two scalar and vector potentials integrate, respectively for compression and ro-
tation, the energies accumulated over time by the terms of viscosity, inertia, gravity and
capillary effects. The law (22) represents what remains of the equation of motion (17)
when the velocity is equal to v = 0. Thus the dynamics of the capillary rise leads to
a static state which respects Jurin’s law; this is what is observed experimentally, the
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velocity becomes strictly zero. This result is remarkable from the point of view of mech-
anical equilibrium in a system where the phenomena are complex and intertwined. From
a mathematical point of view, the relation (22) translates the equality of two orthogonal
components which are both projected on the same segment Γ and which can thus add
up. This simulation carried out from the Navier-Stokes equation, with strictly the same
parameters, does not lead at all to the same conclusions; when the velocity is equal to zero
in the latter one obtains ∇po = 0 or po = 0, a wrong solution. Since static equilibrium
cannot be reached, the velocities predicted by the simulation can never be attenuated and
large spurious currents remain near the triple line. This result is one of the paradoxes of
the Navier-Stokes equation, which does have the equivalent of the scalar potential, the
pressure, but does not have the vector potential that accumulates the shear stress.

Static equilibrium (22) represents a general law satisfied in particular by an elastic solid
subjected to compressive and shear stresses but also in the case of a fluid whose velocity
physically tends towards zero as in the example treated in this section. Moreover, it is
valid in the case of a stationary flow where the velocity field v does not depend on time
but remains defined by all effects, viscous, gravitational, inertial, capillary, etc. There are
two possibilities, (i) to use only one of the potentials, φo or ψo, and obtain a non-zero
velocity field v, and (ii) to keep both potentials which leads to a zero velocity field. In
the first case, the solution is written (φo,v) or (ψo,v) and in the second case, it takes
the form (φo,ψo) ; the velocity field is not part of the solution anymore. We show that
the knowledge of one of the potentials introduced in the discrete equation of motion
leads instantaneously to the velocity field v retained previously. In the case of persistent
unsteady solutions, for example for a periodic, chaotic or turbulent flow, the acceleration
is non-zero and all the terms of the discrete equation are nested.

5 Conclusions

The modeling of two-phase flows dominated by capillary phenomena requires to retain
multiple other physical phenomena related to viscosity, gravity, inertia, etc. It is difficult,
if not impossible, to predict the evolution of these flows over time or even the static
solutions except in a few canonical examples. The principle adopted in discrete mechanics
is to derive an equation of motion as general as possible, likely to represent at least the
flows of fluids, the stresses and displacements of solids or the propagations of waves. The
law of motion thus established requires a thorough validation that will give it sufficient
legitimacy to apprehend other complex situations.

The law of motion, which can already account for two-phase flows in general, is con-
fronted with capillary phenomena related to the triple line. The contact angle is most
often the parameter most used to translate the phenomenon of partial wetting between a
liquid and a solid in the presence of a gas. This parameter is well measured by different
techniques in the case of a static equilibrium. As the spatial scales chosen in the presence
of the Earth’s gravity are necessarily small, the time constants are small and the static
equilibrium is reached very quickly. The application of an essentially static parameter to
dynamic flows must be done with some precautions, it is not possible, for example, to
impose a contact angle, static or dynamic, explicitly. The notion of contact curvature is
more flexible because it does not have to be satisfied formally, it allows to obtain the cor-
rect contact angle at static equilibrium without explicitly imposing its value in dynamics.
The two examples provided highlight some aspects of its use.
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