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Regularized Tapered Sample Covariance Matrix
Esa Ollila, Senior member, IEEE and Arnaud Breloy

Abstract—Covariance matrix tapers have a long history in
signal processing and related fields. Examples of applications
include autoregressive models (promoting a banded structure) or
beamforming (widening the spectral null width associated with an
interferer). In this paper, the focus is on high-dimensional setting
where the dimension p is high, while the data aspect ratio n/p
is low. We propose an estimator called TABASCO (TApered or
BAnded Shrinkage COvariance matrix) that shrinks the tapered
sample covariance matrix towards a scaled identity matrix.
We derive optimal and estimated (data adaptive) regularization
parameters that are designed to minimize the mean squared
error (MSE) between the proposed shrinkage estimator and the
true covariance matrix. These parameters are derived under the
general assumption that the data is sampled from an unspecified
elliptically symmetric distribution with finite 4th order moments
(both real- and complex-valued cases are addressed). Simulation
studies show that the proposed TABASCO outperforms all com-
peting tapering covariance matrix estimators in diverse setups.
An application to space-time adaptive processing (STAP) also
illustrates the benefit of the proposed estimator in a practical
signal processing setup.

Index Terms—sample covariance matrix, shrinkage, regular-
ization, elliptically symmetric distributions, tapering, banding,
sphericity.

I. INTRODUCTION

Consider a set of p-dimensional (real-valued) vectors
{xi}ni=1 sampled from a distribution of a random vector x
with unknown mean vector µ = E[x] and unknown positive
definite symmetric p × p covariance matrix Σ ≡ cov(x) =
E[(x−µ)(x−µ)⊤]. In the high-dimensional case and when
the sample size n is of the same order as p (p = O(n))
or p ≫ n, one is required to use regularization (shrinkage)
in order to improve the estimation accuracy of the sample
covariance matrix (SCM) and to obtain a positive definite
matrix estimate. A popular estimate of Σ in such a setting
is the regularized SCM (RSCM), defined by

Sβ = βS + (1 − β) tr(S)
p I, (1)

where β ∈ [0, 1] is the regularization (or shrinkage) parame-
ter, and where

S =
1

n − 1

n

∑
i=1

(xi − x̄)(xi − x̄)⊤, (2)

denotes the unbiased sample covariance matrix (SCM), i.e.,
E[S] = Σ. Above tr(⋅) denotes the matrix trace, defined
as tr(A) = ∑i aii for all square matrices A = (aij).
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Note also that in (2), x̄ =
1
n
∑n
i=1 xi denotes the sample

mean vector. Automatic data-adaptive computation of optimal
(oracle) parameter β for which Sβ in (1) attains the minimum
mean squared error (MMSE) in Frobenius norm has been an
active area of research. See for example [1], [2], [3], [4] to
name only a few.

In many applications, the estimation accuracy (or another
performance criterion) can alternatively be improved by us-
ing a so-called tapered SCM. Such estimate is defined as
W ◦ S, where ◦ denotes the Hadamard (or Schur) element-
wise product (i.e., (W ◦ S)ij = wijsij for (W)ij = wij and
(S)ij = sij), and where W is a tapering matrix (also referred
to as covariance matrix taper), i.e., a template that imposes
some additional structure to the SCM.

Covariance matrix tapers have been used in many appli-
cations in diverse fields. A first main example in statistics
is related to covariance matrices with a diagonally dominant
structure (e.g., in autoregressive models). This means that
the variables have a natural order in the sense that ∣i − j∣
large implies that the correlation between the ith and the jth
variables is close to zero. In this settings, popular estimation
approaches are to use a banding-type tapering matrices such
as thresholding [5], [6]:

(W)ij = {1, ∣i − j∣ < k
0, ∣i − j∣ ≥ k (3)

for some integer k ∈ [[1, p]] (called the bandwidth parameter),
or softer thresholding variants. Notably, the strong theoretical
merits of a linear decay of the form

(W)ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, ∣i − j∣ ≤ k/2

2 − 2
∣i − j∣
k

, k/2 < ∣i − j∣ < k
0, ∣i − j∣ ≥ k

(4)

were studied in [7]. A second major example concerns the
signal processing literature, in which tapering matrices have
been developed in order to improve several spectral properties
of adaptive beamformers, or to compensate subspace leakage
and calibration issues [8]. Most notably, the tapering matrices
of the form

(W)ij = sinc((i − j)∆/π) (5)

where ∆ ∈ R+, attracted interest as a null broadening
technique for fluctuating interference [9], [10], [11], [12], [13].

A first approach to combine regularization with tapering was
proposed in [14] with the shrinkage to tapering (ST) estimator,
defined as the convex combination of the SCM and the tapered
SCM:

SST,β = βS + (1 − β)(W ◦ S), (6)

where β ∈ [0, 1] is a shrinkage parameter. The authors
then derived the optimal oracle parameter βo minimizing the
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MSE E[∥SST,β−Σ∥2
F], and proposed a shrinkage to tapering

oracle approximating (STOA) estimator β̂o of βo under the
assumption of Gaussian data. Authors in [15] also studied
the ST estimator and derived an alternative oracle estimator
of the shrinkage parameter both under Gaussian and non-
Gaussian data. Data adaptive selection of the bandwidth k
in (3) was also addressed with cross validation [14] or oracle
estimation [15]. A possible issue with the ST estimate is that
it inherently destroys the tapering template structure (e.g.,
sparsity for banded matrices) since it can be expressed as the
modified tapered SCM SST,β = (β11

⊤ + (1 − β)W) ◦ S.
Hence, shrinkage is applied to the tapering matrix itself rather
than to the SCM. In the high dimensional case, it should also
be noted that both W◦S and SST,β are not necessarily positive
semidefinite matrices, i.e., they can have negative or null
eigenvalues. A possible solution for this problem is to compute
their eigenvalue decomposition (EVD) and then replacing the
invalid eigenvalues by small positive constants. However, such
a post-processing step further deteriorates the template pattern
of the covariance matrix estimator, and is computationally
restrictive when dealing with high-dimensional data.

In this paper we provide a solution to the aforementioned
problems by jointly leveraging shrinkage to identity and taper-
ing: Let W = {W(k)}Kk=1 be a finite set of possible tapering
matrices1 satisfying W(k) ∈W+ ∀k ∈ [[1,K]], with

W+
= {W ∈ Rp×pSym ∶ wii = 1, wij ≥ 0∀i, j ∈ [[1, p]]} (7)

and with Rp×pSym denoting the set of all symmetric p×p matrices
and [[1, p]] = {1, . . . , p}. We propose an estimator, referred
to as TABASCO (TApered or BAnded Shrinkage COvariance
matrix), defined as

Σ̂β,k = β(W(k) ◦ S) + (1 − β) tr(S)
p I, (8)

which benefits both from shrinkage (as the classic estima-
tor in (1)) and exploitation of structure via tapering. Note
that it also preserves the original scale of the SCM since
tr(W ◦ S) = tr(S) ∀W ∈ W+. Obviously, the success of
banding and/or tapering depends on one’s ability to choose the
parameters β and k correctly. In this scope, we derive a fully
automatic data-adaptive evaluation of the optimal parameters
that jointly minimize the mean squared error E[∥Σ̂β,k−Σ∥2

F]
under the general assumption that the data is sampled from an
unspecified elliptically symmetric (ES) distribution with finite
4th order moments. A main interest to consider the general
ES model is that it encompasses the standard Gaussian one
while still accounting for possibly heavy-tailed distributions.
Thus this assumption yields robustness to a large class of
possible underlying data distributions. Our empirical exper-
iments evidence that the proposed approach offers a near-to-
optimal regularization parameter selection which outperform
cross-validation schemes (especially at low sample support).

1 In this paper, we mostly focus on k implying a notion of bandwidth
(or model order), for which W can be constructed from (3) or (4) with k ∈
[[1, p]]. However, the proposed methodology applies to the general setting
where W corresponds to any finite collection of possibly envisioned templates.
Notably, we will also consider an application where k indexes a set of possible
{∆k}Kk=1 used for the template model in (5).

Since both the RSCM in (1) (if W = 11
⊤
∈ W) and the

tapered SCM (β = 1) appear as special cases of (8), TABASCO
performs never worse than these two estimators in terms of
MSE independently of the underlying structure of the true
covariance matrix.

The paper is structured as follows. In Section II expressions
for the oracle regularization parameters β and k that minimize
the MSE are derived in the general case of sampling from
an unspecified distribution with finite 4th-order moments. In
Section III a practical closed-form expression for the optimal
regularization parameters are derived when sampling from an
unspecified ES distribution, and an adaptive fully automatic
procedure for their computation is proposed. It is shown that
the optimal parameters depend on the sphericity of the tapered
covariance matrix W ◦ Σ, and we address the estimation of
this quantity in Section IV. Section V extends our results
for complex-valued observations. The special cases of known
location (µ = 0) is also briefly discussed in Appendix A.
Section VI provides simulation studies while in Section VII
the estimator is applied to STAP on a real dataset. Finally,
Section VIII concludes. The Appendix contains more technical
proofs.

II. ORACLE TABASCO PARAMETERS β AND k

Recall that the TABASCO estimator Σ̂β,k is defined by (8)
for a set W = {W(k)}Kk=1 of envisioned tapering matrices (cf.
footnote 1 for examples) and a regularization parameter β ∈
[0, 1]. In this section, we derive the expression of the oracle
parameters β and k that minimize the MSE in the general
case of sampling from an unspecified p-variate distribution
with finite 4th-order moments.

A. Oracle shrinkage parameter β for fixed k

First, let us introduce some notations and statistical param-
eters that are elemental in the proposed method. The scale is
defined as the mean of the eigenvalues, and denoted by

η =
tr(Σ)
p (9)

while the sphericity of Σ [16], [17] is defined as

γ ≡ γ(Σ) = p tr(Σ2)
tr(Σ)2

=
p∥Σ∥2

F

tr(Σ)2
, (10)

where ∥⋅∥F denotes the Frobenius matrix norm, i.e., ∥A∥2
F =

tr(A⊤A). The sphericity measures how close Σ is to a scaled
identity matrix: γ ∈ [1, p], where γ = 1 if and only if Σ ∝ I
and γ = p if and only if Σ has its rank equal to 1. For any
W ∈ W+ as in (7), the matrix W ◦Σ, is called the tapered
covariance matrix and we denote by

γW ≡ γ(W ◦Σ) = p∥W ◦Σ∥2
F

tr(Σ)2
, (11)

the sphericity parameter of the tapered covariance matrix. Note
that in (11) we utilised the fact that for any p × p matrix A
and any W ∈W+, it holds that tr(W ◦A) = tr(A). When
W = 11

⊤, we write γ11⊤ ≡ γ for brevity.
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We start by assuming that the index k is fixed. This allows
us to simply denote the fixed tapering matrix W ≡ W(k) and
TABASCO as Σ̂β ≡ Σ̂β,k. To find the oracle MMSE shrinkage
parameter β ∈ [0, 1] of Σ̂β , the aim is thus to solve

βo = arg min
β∈[0,1]

E[∥Σ̂β −Σ∥2
F]. (12)

Notice that the MSE of the tapered SCM is

MSE(W ◦ S) = E[∥W ◦ S −Σ∥2
F]

= E[∥W ◦ S∥2
F] + ∥Σ∥2

F − 2∥V ◦Σ∥2
F, (13)

where

V = (vij)p×p with vij =
√
wij for W ∈W+

. (14)

By normalized MSE (NMSE) we refer to the quantity
NMSE(W ◦ S) = MSE(W ◦ S)/∥Σ∥2

F. We are now ready
to state the main result of this section.

Theorem 1. Let {xi}ni=1 be an i.i.d. random sample from any
p-variate distribution with finite 4th order moments. For any
fixed W ∈W+, the oracle parameter βo in (12) is

βo =
∥V ◦Σ − ηI∥2

F

E[∥W ◦ S − η̂I∥2

F]
(15)

=
p(γV − 1)η2

E [∥W ◦ S∥2
F] − p−1E[tr(S)2]

(16)

=
(γV − 1)

γ ⋅NMSE(W ◦ S) + 2γV − γ − E[η̂2]/η2
(17)

where γV is defined via (11) and η̂ = tr(S)/p. Furthermore,
the value of the MSE at the optimum is

MSE(Σ̂βo) =
E[ tr(S)2] − tr(Σ)2

p

+ ∥Σ∥2
F − ∥V ◦Σ∥2

F + (1 − β0) ∥V ◦Σ − ηI∥2
F . (18)

Proof. The proof is postponed to Appendix B.

Notice that Theorem 1 also provides the MMSE shrinkage
parameter βo for the RSCM Sβ in (1) since Σ̂β = Sβ when
W = 11

⊤. For the RSCM the optimal parameter is

βo =
(γ − 1)

γ ⋅NMSE(S) + γ − E[η̂2]/η2
, (19)

where we used (17) and the facts that γ = γV and W◦S = S
for W = 11

⊤. The MMSE of the RSCM utilizing the optimal
shrinkage parameter in (19) is

MSE(Sβo) =
E[ tr(S)2] − tr(Σ)2

p + (1 − β0) ∥Σ − ηI∥2
F ,

where we used (18) and that V ◦Σ = Σ for V = 11
⊤.

B. Oracle index k

Notice that MSE(Σ̂β0
) in (18) implicitly depends on k

through W ≡ W(k) and V defined in (14). We further have
the relation

NMSE(Σ̂βo) = C −
∥V ◦Σ∥2

F

∥Σ∥2
F

+ (1 − β0)
∥V ◦Σ − ηI∥2

F

∥Σ∥2
F

= C −
γV

γ + (1 − β0)
γV − 1
γ

= C −
1
γ +

β0(1 − γV)
γ , (20)

where C is a constant that is not dependent on k. Equation
(20) then implies that minimizing the MSE with respect to k
is equivalent to set

ko = arg min
k
β0(k)(1 − γV(k)), (21)

where βo(k) is given by any of the expressions in (15)-(17)
and γV(k) is defined via (11). Note that we have made explicit
the dependence of β0 and γV on k in (21) for clarity of
exposition. We use a brute force strategy to determine k0, i.e.,
compute β0(k)(1−γV(k)) for all indices k, and choose k0 as
the index that resulted in minimum value of the objective.

III. DATA ADAPTIVE TABASCO UNDER ES DISTRIBUTIONS

The oracles parameters found in the previous section depend
on the true underlying data distribution and covariance matrix
through various unknown quantities. A practical implemen-
tation of TABASCO thus requires their adaptive evaluation.
Rather than resorting to a costly (and potentially inaccurate)
cross-validation scheme, we will consider the general case
where the data is sampled from an unspecified ES distribution
[18], [19] to refine the result of Theorem 1. In this setting, we
show that the oracle parameter β eventually depend on only
few scalar-valued statistics that can be accurately estimated.

A. ES distributions

Before stating the main results, we first recall some def-
initions and key results regarding ES distribution [18], [19].
The probability density function of an elliptically distributed
random vector, denoted by x ∼ Ep(µ,Σ, g), is given by

f(x) = Cp,g∣Σ∣−1/2
g((x − µ)⊤Σ

−1(x − µ)), (22)

where Σ denotes the positive definite symmetric covariance
matrix parameter, µ is the mean vector, g ∶ R≥0 → R>0 is the
density generator, which is a fixed function that is independent
of x,µ and Σ, and Cp,g is a normalizing constant ensuring that
f(x) integrates to 1. Note that here we define g such that “scat-
ter matrix” parameter Σ coincides with the covariance matrix.
This can always be assumed (under assumption of finite 2nd
order moments) without any loss of generality [18], [19].
For example, the multivariate normal (MVN) distribution,
denoted by Np(µ,Σ), is obtained when g(t) = exp(−t/2).
The flexibility regarding the density generator g allows for
modeling a large class of distributions, including heavy-tailed
ones such as the multivariate t-distribution (MVT) with ν > 2
degrees of freedom (d.o.f.), denoted by x ∼ tν(µ,Σ), where



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XXX, NO. X, 2021 4

ν > 2 needs to be assumed for finite 2nd-order moments and
ν > 4 for finite 4th-order moments. The density generator in
this case is g(t) = (1 + t/(ν − 2))−

ν+p
2 .

The elliptical kurtosis [20] parameter κ is defined as

κ =
E[r4]
p(p + 2) − 1 =

1

3
kurt(xi), (23)

where the expectation is over the distribution of the random
variable r = ∥Σ

−1/2(x−µ)∥ and kurt(xi) denotes the excess
kurtosis of any (e.g., ith) marginal variable of x, defined as

kurt(xi) =
E[(xi − µi)4]

(E[(xi − µi)2])2
− 3,

where µi = E[xi]. Furthermore, observe that E[r2] = p. The
elliptical kurtosis parameter vanishes (so κ = 0) when x has
a MVN distribution.

We also recall from [4, Lemma 2] that

E [∥S∥2
F] = (1 + τ1 + τ2) ∥Σ∥2

F + τ1 tr(Σ)2
, (24)

E [tr(S)2] = 2τ1∥Σ∥2
F + (1 + τ2) tr(Σ)2

, (25)

where the scalars

τ1 =
1

n − 1
+
κ
n and τ2 =

κ
n (26)

are dependent on the elliptical distribution (and hence on the
density generator g) only via its kurtosis parameter.

B. Oracle shrinkage parameter β under ES distributions

As in the previous derivations, we assume that the index k is
fixed and simply denote the fixed tapering matrix W ≡ W(k).
This section refines the result of Theorem 1 when assuming
that the data is sampled from an unspecified ES distribution.
We first remark that the optimal β in (16) involves the quantity
E [∥W ◦ S∥2

F], which can be specified thanks to derivation
of the following lemma.

Lemma 1. Let {xi}ni=1 be an i.i.d. random sample from
Ep(µ,Σ, g) with finite 4th order moments. Then for any
W ∈W+, it holds that

E [∥W ◦ S∥2
F] = (1+ τ1+ τ2)∥W◦Σ∥2

F+ τ1 tr((DΣW)2)

and

E [tr((DSW)2)] = 2τ1∥W ◦Σ∥2
F + (1 + τ2) tr((DΣW)2),

where DΣ = diag(Σ) and DS = diag(S). 2

Proof. The proof is postponed to Appendix C.

Note that if W = 11
⊤, then tr((DΣW)2) = tr(Σ)2 and

W ◦ S = S so the expectations in Lemma 1 coincide with
those of [4, Lemma 2] (i.e., (24) and (25)).

Using Lemma 1 we may now derive a simpler closed form
expression of the optimal shrinkage parameter βo given in

2We denote diag(A) ≡ diag(a11, . . . , app) when the operator is applied
to any matrix A = (aij)p×p. Conversely diag(a) denotes a diagonal matrix
with the entries of vector a on the main diagonal.

Theorem 1 that depends only on few summary (scalar-valued)
statistics. Let us denote

θW =
d
⊤
Σ(W ◦W)dΣ

p2
=

tr((DΣW)2)
p2

, (27)

where dΣ = (σ2
1 , . . . , σ

2
p)⊤ contains the variances of the

variables, i.e., the diagonal elements of Σ. Obviously, if
W = 11

⊤, then θW = η
2. The 2nd equality in (27) follows

from [21, Lemma 7.5.2].

Theorem 2. Let {xi}ni=1 be an i.i.d. random sample from an
ES distribution Ep(µ,Σ, g) with finite 4th order moments. For
any W ∈W+, the oracle parameter βo in (12) is

βo =
t

t + (n/(n − 1))(pθW/η2 + γW − 2γ/p) + κ ⋅A,
(28)

where t = n(γV − 1) and

A = pθW/η2
− 1 + 2γW − 2γ/p. (29)

Proof. Follows from Theorem 1 after substituting the values
of E[∥W ◦S∥2

F] given in Lemma 1 and of E[ tr(S)2] given
in (25) into the denominator of βo in (16) and simplifying the
expression.

C. Data adaptive TABASCO implementation

Following from Theorem 2, the proposed data-adaptive
implementation of TABASCO consists in applying the oracle
procedure of Section II by replacing each of the unknown
parameters {η, θW, κ, γ, γW, γV} in the optimal β0 from (28)
by carefully chosen estimates:
• For η and θW, we use the empirical estimates:

η̂ = tr(S)/p and θ̂W = tr((DSW)2)/p2 (30)

• The elliptical kurtosis κ can be estimated using an
estimator κ̂ detailed in [4, Sect. IV] as (bias-corrected)
average sample excess kurtosis of the marginal variables
scaled by 1/3. Also note that if the data is assumed to
follow the MVN distribution, we can set κ = 0, and the
last term κ ⋅A can be ignored in the denominator.

• The estimation of the three sphericity statistics: γ, γW,
and γV is more intricate. It will be addressed in detail in
Section IV, which will propose two estimation methods
(denoted Ell1 and Ell2) for these quantities. Also notice
that V = (√wij)p×p, so if W is a selection matrix (i.e.,
that has only 0-s or 1-s as its off-diagonal elements), as
for example in (3), then W = V so only γW needs to
be estimated.

Using these plug-in values yields an estimate β̂o(k) for each
template in the set W = {W(k)}Kk=1. Similarly, the index k is
estimated based on (21) by replacing the unknown β0(k) and
γV(k) by their estimates and solving

k̂o = arg min
k

β̂0(k)(1 − γ̂V(k)), (31)

which allows then to compute a fully data-adaptive TABASCO
estimator Σ̂β̂0,k̂0

as in (8). The pseudocode of the proposed
estimation algorithm is summarized in Algorithm 1.
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Algorithm 1: TABASCO

Input : Data {xi}ni=1, templates set {W(k)}Kk=1

1 Compute SCM S in (2).
2 Compute η̂ from (30)
3 Compute κ̂ from [4, Sect. IV]
4 Compute γ̂ (options in Section IV)

5 for k ∈ [[1,K]] do
6 Set W = W(k) and V = V(k) = (

√
wij(k))p×p

7 Compute θ̂W from (30)
8 Compute γ̂W(k) and γ̂V(k) (options in Section IV)
9 Compute β̂o(k) from (28) using plug-in estimates

10 Select optimal k0 as in (31) with {β̂o(k), γ̂V(k)}Kk=1

11 Set W = W(k̂o) and β̂ = β̂o(k)
Output : Σ̂ = β̂ ⋅ (W ◦ S) + (1 − β̂)η̂I

IV. ESTIMATORS OF SPHERICITY

In this section, we detail two new alternative estimators of
the sphericity of the tapered covariance matrix W◦Σ in order
to compute the parameters {γ, γW, γV} in TABASCO. These
estimators are nontrivial extensions of the (non-tapered) Ell1-
and Ell2-sphericity estimators in [4]. Notation ”Ell” simply
refers to the fact that both estimators assume that the data is
drawn from an unspecified elliptically symmetric distribution.

A. Ell1-estimator of sphericity
The Ell1-estimator is based on the spatial sign covariance

matrix (SSCM) [22], [23], which has been popular for con-
structing robust estimates of sphericity [24], [25]. The robust
properties of SSCM comes from the fact that it is distribution-
free under elliptical models and has the highest possible break-
down point [26], [27]. The Ell1-estimator was theoretically
studied in [28] and we propose here its generalization to the
sphericity of the tapered covariance matrix W ◦Σ.

First, define the shape matrix (or normalized covariance
matrix) as Λ = p Σ

tr(Σ) and note that tr(Λ) = p. The sphericity
measures γ and γW for any W ∈W+ can then be expressed
simply in terms of Λ via the formulas:

γ =
∥Λ∥2

F

p and γW =
∥W ◦Λ∥2

F

p .

The (scaled) SSCM is defined by

Λ̂ =
p
n

n

∑
i=1

(xi − µ̂)(xi − µ̂)⊤

∥xi − µ̂∥2
, (32)

where µ̂ = arg minµ ∑n
i=1 ∥xi − µ∥ is the sample spatial

median [29]. The sample mean could also be used, but [30]
concludes that the use of spatial median as the location
estimator for SSCM is clearly preferable. When µ is known
(and without loss of generality assuming µ = 0), the SSCM
is defined as Λ̂ =

p

n
∑n
i=1

xix
⊤
i

∥xi∥2 .
Recently, it was shown in [28] that the following estimate

of sphericity based on the SSCM (when µ is known),

γ̂ =
n

n − 1
(∥Λ̂∥2

F

p −
p
n) , (33)

is asymptotically (as p → ∞) unbiased when sampling from
elliptical distributions under the following assumption
(A) The sequence of covariance matrix structures being con-

sidered with increasing p satisfies γ = o(p) as p→∞.
In other words, E[γ̂] → γ as p → ∞ when (A) holds. We
note that Assumption (A) is sufficiently general and holds for
many covariance matrix models as shown in [28, Prop. 3].
The following Theorem presents a modification of the Ell1-
estimator [4] for the sphericity of W ◦ Σ with equivalent
asymptotic guarantees.

Theorem 3. Let {xi}ni=1 be an i.i.d. random sample from an
ES distribution Ep(µ,Σ, g) with known µ = 0. Then, for any
W ∈W+ and under Assumption (A), the following statistic

γ̂W =
n

n − 1

⎛
⎜
⎝
∥W ◦ Λ̂∥2

F

p −
tr ((DΛ̂W)2)

np

⎞
⎟
⎠
, (34)

where DΛ̂ = diag(Λ̂), is asymptotically, as p→∞, unbiased
estimator of γW = γ(W ◦Σ) in (11), i.e., E[γ̂W]→ γW as
p→∞, for any fixed n.

Proof. Proof is postponed to the Appendix D.

Also observe that when W = 11
⊤, then γ̂W reduces to γ̂ in

(33).
When the mean is unknown and estimated by spatial median

µ̂, then the results in [24] derived in the case of W = 11
⊤

show that when p = O(n2), the estimator of sphericity γ̂ needs
to be corrected for bias. Thus the reader should bear in mind
that γ̂ (and γ̂W ) may have a non-negligible bias when µ is
estimated by µ̂ and p is orders of magnitude larger than n.

B. Ell2-estimator of sphericity

The Ell2-estimator of sphericity was proposed in [4] and
we derive here its adaptation to the sphericity of the tapered
covariance matrix W ◦Σ.

The derivation starts by noticing that the obvious plug-in
estimate ∥W ◦ S∥2

F /p for the parameter

ϑW =
∥W ◦Σ∥2

F

p (35)

is biased by resorting to for E[∥W ◦ S∥2
F] in Lemma 1. As

a remedy, the following theorem derives a proper unbiased
estimator of ϑW which extends [4, Theorem 4] (provided that
the elliptical kurtosis parameter κ is known).

Theorem 4. Let {xi}ni=1 be an i.i.d. random sample from a p-
variate elliptical distribution Ep(µ,Σ, g) with finite 4th order
moments. Then, an unbiased estimator of ϑW = ∥W◦Σ∥2

F/p
for any finite n and p and any W ∈W+ is

ϑ̂W = bn
⎛
⎜
⎝
∥W ◦ S∥2

F

p − an
tr ((DSW)2)

p

⎞
⎟
⎠
,

where

an =
1

n + κ ( n

n − 1
+ κ) (36)

bn =
(κ + n)(n − 1)2

(n − 2)(3κ(n − 1) + n(n + 1)) . (37)
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Proof. Note that an in (36) can be written as an = τ1/(1+τ2),
where definitions of τ1 and τ2 are given by (26) while bn in
(37) can be expressed as bn = (τ1+τ2−2τ1an)−1. Then using
Lemma 1, we notice that

b
−1
n pE[ϑ̂W] = (τ1 − an(1 + τ2)) tr((DΣW)2)
+ (1 + τ1 + τ2 − 2τ1an) ∥W ◦Σ∥2

F = b
−1
n ∥W ◦Σ∥2

F

The expressions (36) and (37) are obtained when replacing
the values of τ1 and τ2 given in (26) into an ≡ an(τ1, τ2) and
bn ≡ bn(τ1, τ2) and simplifying the obtained expressions.

Then note that the sphericity of the tapered covariance matrix
can also be written as

γW = ϑW/η2
,

where ϑW and η are defined in (35) and (10) respectively.
Using this expression, we consider the estimate where ϑ̂W is
computed from Theorem 4, and η̂2 is obtained from (30). This
yields the estimator

γ̂W = pb̂n
⎛
⎜
⎝
∥W ◦ S∥2

F

tr(S)2
− ân

tr ((DSW)2)
tr(S)2

⎞
⎟
⎠
, (38)

where ân ≡ an(κ̂) and b̂n ≡ bn(κ̂) are obtained by replacing
the unknown κ in (36) and (37) by its estimate κ̂ [4, Sect. IV].
We refer to (38) as Ell2-estimator of sphericity γW. Also note
that, if n is reasonably large, then b̂n ≈ 1 and n/(n+ κ̂) ≈ 1,
its expression can be simplified to

γ̂W ≈
p∥W ◦ S∥2

F

tr(S)2
− (1 + κ̂) pn

tr((DSW)2)
tr(S)2

.

In the non-tapered case (W = 11
⊤), the estimator in (38)

reduces to the Ell2-estimator of sphericity in [4].

C. Remarks

Although Ell2-estimator of sphericity does not require
knowledge of the underlying elliptically symmetric distri-
bution of the data, it is not a robust estimator. Thus we
overall favour Ell1-estimator due to robustness of SSCM, and
recommend usage of Ell2-estimator when dealing with data
that is not heavy-tailed, i.e., which can be approximated by
a Gaussian distribution. The non-robustness of Ell2-estimator
is due to its usage of 4th-order moments. Namely, tr(S2) =
∑p
i=1 ∑p

j=1 s
2
ij where sij = (S)ij = 1

n
∑n
`=1 x`ix`j − x̄ix̄j ,

can be written as a sum of mixed 4th-order sample moments.
By central limit theorem, any 4th-order sample moment has a
limiting normal distribution if the moments of x exists up to
8th order. Without this condition, the estimator tr(S2)/p can
be highly-variable.

Ell1-estimator is highly robust and performs well for
heavier-tailed data. Yet, the assumption γ = o(p) needed by
Ell1-estimator means that γ ≪ p when dimension is large.
Implicitly, this often means that the eigenvalues of Σ tend to
be similar as p grows. In [28, Theorem 2] it was shown that
the bias of the SSCM Λ̂ is of the order of the sphericity,
γ = tr(Λ2)/p, and becomes negligible when γ = o(p).

Thus for distinctively non-spherical covariance matrices, Ell1-
estimator has a visible bias, but the bias vanishes for large
p (since the estimator is asymptotically unbiased as shown
in Theorem 3 when γ = o(p)). Thus Ell2-estimator can be
favoured when the data is approximately Gaussian, e.g., when
the estimated kurtosis is smaller than 1. For example, for MVT
distribution with ν = 10, kurt(xi) = 1.0.

Finally, we mention that in practice, we also always use the
thresholding

γ̂ = min(p,max(1, γ̂)) (39)

for any option in order to guarantee that the final estimator
remain in the valid interval, 1 ≤ γ ≤ p.

V. EXTENSION TO THE COMPLEX-VALUED CASE

A. Complex elliptically symmetric (CES) distribution

First we recall some definitions and notations specific to
complex-valued case. By ∥x∥2

= x
H
x we denote the usual

Euclidean norm in complex vector spaces, while ∥B∥F =√
tr(BHB) denotes the Frobenius norm of a matrix B ∈

Cm×n, where (⋅)H = [(⋅)∗]⊤ denotes the conjugate transpose
(or Hermitian transpose). For any x ∈ C, the notation ∣ ⋅ ∣
refers to modulus, so ∣x∣2 = xx∗

We now assume that the data {xi}ni=1 is a random sample
from a circular complex elliptically symmetric (CES) distri-
bution, denoted x ∼ CEp(µ,Σ, g) (cf. [19] for a detailed
review). Similarly to the real-valued case, the probability
density function of a CES distributed random vector x ∈ Cp

is given by

f(x) = Cp,g∣Σ∣−1
g((x − µ)HΣ

−1(x − µ)),

where Σ denotes the positive definite Hermitian covariance
matrix, µ = E[x] is the mean vector, g ∶ R≥0 → R>0 is the
density generator, and Cp,g is a normalizing constant. Again,
we also normalize g so that Σ = E[(x − µ)(x − µ)H]. The
definitions of the scale and sphericity parameters in (10) and
(11) remain unchanged. The elliptical kurtosis is however re-
defined as

κ =
E[r4]
p(p + 1) − 1 =

1

2
kurt(xi).

where the expectation is over r = ∥Σ
−1/2(x − µ)∥ and

kurt(xi) denotes the excess kurtosis of any (e.g., ith) marginal
variable of x, defined by

kurt(xi) =
E[∣xi − µi∣4]

σ4
i

− 2,

where µi = E[xi] and σ2
i = E[∣xi−µi∣2] denote the mean and

variance of xi. The theoretical lower bound of the kurtosis in
the complex-valued case is κLB

= −1/(p+1) [19]. Again κ =
0 if x has a circular complex multivariate normal distribution
(x ∼ CNp(µ,Σ)).
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B. Oracle β and k under CES distributions
The SCM (2) of complex-valued observations is defined by

S =
1

n − 1

n

∑
i=1

(xi − x̄)(xi − x̄)H (40)

and the complex-valued counterpart TABASCO Σ̂β is still
defined as in (8). Extending the previous results to this
estimator will require some minor adaptations.

We start by noticing that Theorem 1 still holds for
complex-valued observations. Then, the next result provides
the complex-valued extension of Lemma 1.

Lemma 2. Let {xi}ni=1 be an i.i.d. random sample from
CEp(µ,Σ, g) with finite 4th order moments. Then for any
W ∈W+, and for the SCM as in (40), it holds that

E [∥W ◦ S∥2
F] = (1 + τ2)∥W ◦Σ∥2

F + τ1 tr((DΣW)2)
and

E [tr((DSW)2)] = 2τ1∥W ◦Σ∥2
F + (1 + τ2) tr((DΣW)2),

where DΣ = diag(Σ), DS = diag(S) and τ1 and τ2 are
defined in (26).

Proof. The proof is postponed to Appendix E.

This result allows us to derive the complex-valued counterpart
of Theorem 2 for the optimal shrinkage parameter βo.

Theorem 5. Let {xi}ni=1 be an i.i.d. random sample from
a complex elliptical distribution CEp(µ,Σ, g) with finite 4th
order moments. Then the oracle parameter βo in (12) is

βo =
t

t + (n/(n − 1))(pθW/η2 − 2γ/p) + κ ⋅A,

where t = n(γV − 1), and

A = pθW/η2
− 1 + γW − 2γ/p.

Form this result, the optimal index k can be obtained as in
subsection II-B.

C. Data adaptive adaptations for the complex-valued case
In the complex-valued case, the TABASCO procedure of

Algorithm 1 is kept identical. However, the expression of
βo is changed in accordance with Theorem 5. The plug in
estimates for the side parameters {η, θW, κ, γ, γW, γV} are
then as follows:
• For η and θW, we keep the empirical estimates as in (30).
• An estimate of elliptical kurtosis κ is calculated as in

[31] as average sample excess kurtosis of the marginal
variables scaled by 1/2.

• The three sphericity statistics γ, γW, and γV can still
be estimated with the Ell1 and Ell2 estimators detailed
in Section IV. The Ell1 estimator is identical, except
that the definition of the SSCM in (32) now involves
the Hermitian transpose. The Ell2 estimator is defined as
earlier, with changes only in expression of an and bn.
Indeed, Theorem 4 holds with an as in (36) and bn given
by

bn =
n(n − 1)2(κ + n)

2κn(n2 − 4n + 3) − κ2(n − 1)2 + n2(n2 − 2n − 1) .

20 40 60
0

0.5

1

∣i − j∣

(Σ
) ij

% = 0.1

% = 0.3

% = 0.6

% = 0.9

20 40 60
0

0.5

1

∣i − j∣

α = 0.1

α = 0.3

Fig. 1. (Σ)ij as a function of ∣i − j∣. Left: Model 1 in (41) with
various correlation parameters %. Right: Model 2 in (41) with various decay
parameters α and ρ = 0.6. The dimension is p = 100.

VI. SIMULATION STUDIES

We generate samples from (real-valued) ES distributions
with a scatter matrix Σ having a diagonally dominant structure
(model 1 and model 2 detailed below). The mean µ is
generated randomly as Np(10 ⋅ 1, I) and kept fixed for all
trials, and the number of Monte-Carlo trials is 5000.

The estimators included in the study are: i) The Ledoit-Wolf
estimator (LWE) [2] defined by (1) where β is an estimate
of an (oracle) MMSE parameter βo. ii) The shrinkage to
tapering oracle approximate (STOA) estimator [14] defined by
(6) where β is an estimate of the oracle parameter computed
using an iterative procedure. The bandwidth k is selected using
a cross-validation scheme with 60%-to-40% split for training
and testing. iii) The shrinkage to tapering (ST-)estimators in
[15] defined by (6) where both β and k are estimates of the
oracle MMSE parameters. The estimator ST-gaus assumes
Gaussian data, while ST-nong assumes non-Gaussian data.
iv) TABASCO (computed via Algorithm 1) using the Ell1-
estimator of sphericity.

A. Model 1

In Model 1, Σ possesses an auto-regressive AR(1) structure:

(Σ)ij = η%∣i−j∣, (41)

where ∣%∣ ∈ [0, 1). When % ↓ 0, then Σ is close to an identity
matrix scaled by η, and when % ↑ 1, Σ tends to a singular
matrix of rank 1. As illustrated in Figure 1, banding matrices
allow for a good approximation, so all tapering-type estimators
are computed with W(k) as (3) in this subsection. The optimal
bandwidth k̂o is chosen by consider the set of tapering matrices
W = {W(k) ∶ k ∈ [[1, 30]] ∪ [[p − 30, p]]} (this restriction
is made to lower the computational cost, but identical results
were obtained with k ∈ [[1, p]]).

Figure 2 provides a validation of the theoretical results:
it displays the theoretical normalized MSE (NMSE) curves,
L(β) = E[∥Σ̂β − Σ∥2

F]/∥Σ∥2
F as a function of shrinkage

parameter β for TABASCO estimators using a fixed bandwidths
k ∈ [[1, 5]] and k = p (i.e., W = 11

⊤). In this setup,
the data is generated from MVN distribution Np(µ,Σ) with
p = 100 and n = 50 (similar results were obtained for other
ES distributions and dimension setups). The black bullet (•)
displays the theoretical minimum NMSE in (18) attained for
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Fig. 2. Solid line display NMSE of TABASCO estimator using fixed W(k) as
in (3) when samples are drawn from a MVN distribution, Σ as in Model 1 in
(41) with % = 0.2 (top left), % = 0.4 (top right), % = 0.6 (bottom left), % = 0.8
(bottom right); n = 50, p = 100. The horizontal dashed line correspond to
the empirical NMSE obtained by TABASCO of Algorithm 1.

βo ≡ βo(k) for each bandwidth k. The empirical average
NMSE for TABASCO using estimated β̂0 for each fixed k is
displayed using red triangle (▲), where the location on β axis
correspond to empirical average β̂0. As can be noted from
Figure 2, TABASCO estimates the oracle shrinkage parameter
βo very accurately since the black bullets and red triangles are
mostly overlapping for each bandwidth. The dashed horizontal
line shows the average NMSE obtained by TABASCO when
also using an estimated optimal bandwidth k̂0. One can
notice that the optimal bandwidth selection using (31) is also
accurate. For example, in the case of % = 0.4, the optimal
bandwidth is k = 3 and TABASCO estimator attains an average
NMSE that is very close to the theoretical minimum NMSE.

Figure 3 displays the NMSE as a function of bandwidth k.
As can be noted, the empirical average NMSE of TABASCO
using fixed bandwidth displayed using triangle (e.g., ▲) coin-
cides very accurately with the theoretical NMSE. The NMSE
of TABASCO with estimated bandwidth is shown using colored
star (e.g., ☆) wherein the location on k-axis correspond to
empirical average k̂0. As can be noted, the optimal bandwidth
ko is also very accurately estimated since k̂o ≈ ko for each %.

Figure 4 compares the performance of TABASCO with the
state of the art in various setups. The upper panel displays
the NMSE curves as a function of the sample size n for four
choices of correlation parameter % when the data follows a
MVN distribution. The lower panel displays the same results
when the data follows a MVT distribution with ν = 5,
which is heavy-tailed with marginal kurtosis kurt(xi) = 6
and elliptical kurtosis κ = kurt(xi)/3 = 2. In the Gaussian

2 4 6 8 10 12
0.040

0.060

0.080

0.100

0.120

% = 0.2

% = 0.4

% = 0.6 % = 0.8

bandwidth, k

N
M

SE

Fig. 3. Oracle NMSE of TABASCO estimator with fixed bandwidth k (◯)
when Σ has an AR(1) structure and % ∈ {0.2, 0.4, 0.6, 0.8}. The average
NMSE of estimated TABASCO using fixed k and estimated k over 5000 MC
trials is superimposed to the curves using symbols ▲ and ☆, respectively.
Samples are drawn from a MVN distribution, n = 50 and p = 100. Banding
matrices W(k) as in (3) are used.

case, all banding-type estimators outperform LWE thanks to
the exploitation of the diagonally dominant structure of the co-
variance matrix. In the heavy-tailed case, this is no longer true
for STOA and ST-gaus, while ST-nong and TABASCO remain
robust. In all scenarios, TABASCO offers the lowest NMSE,
and especially improves the performance when n≪ p.

Figure 5 displays the obtained (average) estimated shrinkage
parameter β̂o of TABASCO and LWE as a function of n. The
average shrinkage parameter of TABASCO is generally much
larger than that of LWE. This means that it assign overall more
weight on the banded SCM W ◦S compared to LWE, which
uses W(p) = 11

⊤. This behavior is expected since banding
the SCM should naturally improve the MSE when the true
covariance matrix has a diagonally dominant structure.

Figure 6 presents a comparison similar to Figure 4 when
the variables are permuted at random for each Monte Carlo
trial, thus destroying the diagonally dominant structure of the
AR(1) covariance matrix3. The hypothesis is that any banding
estimator with optimal bandwidth selection should be able
to select the bandwidth k = p accordingly. Note that LWE
is invariant to variable permutations, and hence its results
stays the same for both of these scenarios. In this setup,
TABASCO performs better that LWE for n ≪ p and equally
well as LWE for n large enough. This result implies that
bandwidth selection of TABASCO is consistent: it chooses
k = p since the true covariance matrix does not have a
diagonally dominant structure. The improvement brought at
low sample support can be explained by the fact that an ES
distribution is assumed by TABASCO, which allows for a better
estimation of the oracle parameter (LWE only assumes finite
4th order moments). This example confirms that TABASCO
always benefits from banding and bandwidth selection: it
offers significantly improved NMSE compared to RSCM when
banding structure is present in the covariance matrix, while it
does not perform worse when such structure does not exist,
thanks to its robust and efficient bandwidth selection.

3Prominent algorithms for recovering hidden ordering-structure in the
variables are the Best Permutation Analysis (BPA) [32] or Isoband [33]. The
perspective of their joint use with TABASCO is left for further studies.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XXX, NO. X, 2021 9

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

n

% = 0.2

LWE
STOA
ST-gaus
ST-nong
TABASCO

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

n

% = 0.4

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

n

% = 0.6

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

n

% = 0.8

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

n
20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

n
20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

n
20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

n

Fig. 4. Average NMSE curves when samples are from a MVN distribution (upper panel) and t-distribution with ν = 5 d.o.f. (lower panel), Σ has an AR(1)
structure with % ∈ {0.2, 0.4, 0.6, 0.8} from left to right. Dimension is p = 100 and banding matrices are used in STOA, ST-gaus, ST-nong and TABASCO.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

n

β

LWE, % = 0.2 % = 0.4 % = 0.6 % = 0.8

TABASCO, % = 0.2 % = 0.4 % = 0.6 % = 0.8

Fig. 5. Average estimated shrinkage parameter β for LWE and TABASCO
when samples are from a MVN distribution, Σ has an AR(1) structure (% ∈
{0.2, 0.4, 0.6, 0.8}) and p = 100. Banding matrices are used in TABASCO.

B. Model 2

In Model 2 [7], Σ is defined by

(Σ)ij = {1 , i = j

ρ∣i − j∣−(α+1)
, i ≠ j,

(42)

where α is a decay parameter and ρ is a correlation parameter.
As in the study of [7], we set ρ = 0.6, and Figure 1 illustrates
the effect of decay parameter α in the case of p = 100.

20 40 60 80 100

0.1

0.2

0.3

0.4

n

LWE
STOA
ST-gaus
ST-nong
Tabasco

20 40 60 80 100
0.2

0.3

0.4

0.5

n

20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

n
20 40 60 80 100

0.4

0.6

0.8

1

1.2

n

Fig. 6. Average NMSE curves when samples are from a MVN distribution
(top row) and MVT distribution (bottom row) with ν = 5 d.o.f., Σ has a
permuted AR(1) structure with % = 0.2 (left panel) and % = 0.4 (right panel),
and dimension is p = 100.

Figure 7 presents a comparison similar to Figure 4 where
we also included the minimax risk tapering (MnMx-Taper)
estimator W(k∗)◦S, where k∗ = ⌊n1/(2(α+1))⌋ is the optimal
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Fig. 7. Average NMSE curves when samples are from a MVN distribution
(upper panel) and MVT distribution with ν = 5 d.o.f. (lower panel), Σ follows
model 2 with α = 0.1 (left panel) and α = 0.3 (right panel), p = 250.

(oracle) bandwidth [7, Section 6]. The dimension is p = 250. It
should be noted that MnMx-Taper has advantage over the other
estimators since it uses the true decay parameter α, which is
unknown in practice. TABASCO also uses tapering matrices
W(k) as in (4), but ST-gaus and ST-nong are restricted to
tapering matrices whose off-diagonal elements are 0-s or 1-s.
Hence, these are still computed with banding matrices W(k)
as in (3). In either case, the optimal bandwidth k̂o is chosen
by consider the set of tapering matrices W = {W(k) ∶ k ∈
[[1, 30]] ∪ [[p − 30, p]]}. As can be noted, TABASCO again
outperforms other estimators for all values of n and α and
for both sampling distributions. In the MVN case (top panel),
TABASCO outperforms MnMx-Taper with a clear margin when
n is very small. This can be attributed to its ability to optimally
shrink the tapered SCM towards a scaled identity matrix when
n/p < 1. However for n ≥ p, TABASCO and MnMx-Taper
estimator have similar performance, especially when α = 0.3.

In the MVT case (lower panel of Figure 7), the performance
differences are more clear. TABASCO outperforms MnMx-
taper by a large margin. ST-gaus estimator completely fails due
to the impulsive nature of the underlying sampling distribu-
tions. The results also illustrate that the performance of tapered
SCM estimator is dependent on the underlying sampling
distribution more heavily than TABASCO. This is illustrated
further in Figure 8 where we compare the true theoretical
NMSE curves of tapered SCM W◦S and TABASCO estimator
Σ̂β0

as a function of bandwidth k in the case where n = 100
and when sampling from a MVN distribution (left panel) and
MVT distribution (right panel) with ν = 5 d.o.f. following
model 2 with α = 0.1. Figure 8 shows two important points.
First, the performance differences between the tapered SCM
and TABASCO are larger when the distribution is heavier tailed,
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Fig. 8. The true (theoretical) NMSE curves as a function of bandwidth k for
the tapered SCM W ◦ S and TABASCO Σ̂β when sampling from a MVN
distribution (left panel) and MVT distribution (right panel) with ν = 5 d.o.f.,
Σ follows model 2 with α = 0.1, n = 100 and p = 250.

which was already evident in Figure 7. Second, TABASCO with
optimal bandwidth selection is able to estimate the optimal
bandwidth rather accurately since the average (empirical)
NMSE value seen in Figure 7 at n = 100 is close to the
minimum true (theoretical) NMSE value.

VII. APPLICATION TO SPACE-TIME ADAPTIVE PROCESSING

Space time adaptive processing (STAP) is a technique
used in airborne phased array radar to detect moving target
embedded in an interference background such as jamming or
strong clutter [34]. The radar receiver consists in an array of Q
antenna elements processing P pulses in a coherent processing
interval. Within the tested sample x0 ∈ Cp with p = P ⋅ Q,
the received signal is composed of i) possible unknown targets
responses; ii) unknown interferences (ground clutter) plus
thermal noise. A detection problem for a given steering vector
p is classically formalized as a binary hypothesis test: under
H0, x0 only contains the interference plus noise, or under H1,
x0 additionally contains a scaled observation of p, i.e.:

{ H0 ∶ x0 = n0 ; xi = ni, ∀ i ∈ [[1, n]]
H1 ∶ x0 = αp + n0 ; xi = ni, ∀ i ∈ [[1, n]]

where xi ∈ Cp, i = 1, . . . , n is a secondary data set, assumed
to contain i.i.d. and target-free realizations of the interference
plus noise. Usually, this disturbance ni is modeled as centered
complex Gaussian (or elliptically) distributed with covariance
matrix Σ. In this context, efficient adaptive detection statistics
can be built from the expression of the adaptive coherence
estimator (ACE) detector [35]:

Λ̂(Σ̂) = ∣pH
Σ̂
−1

x0∣2

∣pHΣ̂−1p∣∣xH
0 Σ̂−1x0∣

H1

≷
H0

δΣ̂, (43)

where Σ̂ is a plug-in estimate of Σ computed from {xi}ni=1.
More specifically in STAP, the target p follows the steering
vector model of [34], which is function of the target angle
of arrival (AoA) θ and velocity v. The statistic (43) can thus
be computed for a dictionary of steering vectors covering a
2D-grid on θ and v, yielding an adaptive detection map.

Using the SCM as estimate in (43) yields a generalized like-
lihood ratio test (GLRT) [36]. However, plug-in detectors can
benefit from refined estimation processes in order to improve
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robustness, or to deal with limited sample support issues. For
example shrinkage to identity (also referred to as diagonal
loading or robust beamforming [37]) is a common procedure
to improve several properties of the detector’s output. In the
context of interference cancellation, tapering templates have
been considered as a spectrum notch-widening technique [11],
or to deal with modulation effects [8].

This section presents an experimental validation of
TABASCO to illustrate the interest of both approach on real
data. The STAP data is provided by the French agency
DGA/MI: the clutter is real but the targets were synthetically
added in the dataset conception. The number of sensors is
Q = 4 and the number of coherent pulses is P = 64, the
size of the data is then p = QP = 256. The center frequency
and the bandwidth are respectively equal to f0 = 10GHz and
the bandwidth B = 5MHz. The radar celerity is V = 100m/s.
The inter-element spacing is d = 0.3m and the pulse repetition
frequency is fr = 1kHz. The clutter to noise ratio is evaluated
around 20dB. We consider two different scenarios: one where
the tested cell is under H1 with a single target at (θ = 0,
v = 4m/s), and one where the tested cell is under H1 with
10 targets at various speed/angle. The signal to clutter ratio
of each target was estimated to be around −5dB. In both
scenarios, n = 397 (all available) target-free secondary data
are used to estimate the interference covariance matrix.

The tapering matrix is constructed as proposed in [11]4, i.e.,

W(k) = Tf ⊗Tθ

[Tf]ij = (1 + sinc((i − j)k/π))/2 ∈ RP×P

[Tθ]ij = (1 + sinc((i − j)k/π))/2 ∈ RQ×Q
(44)

Note that index k is here a “null-spectrum width” parameter
in R+ and not a bandwidth parameter in [[1, p]] as in (3) or
(4). We also point out that the banding-type tapering matrices
(even involving a Kronecker-product structure) were tested
but appeared not well suited to the data, nor beneficial to
the detection process. Thus they will not be discussed in the
following.

Figure 9 presents the detection map of Λ̂(Σ̂) constructed
with: i) the SCM; ii) the tapered SCM W(k)◦S using band-
width k = 0.05 (selected manually to obtain the best visual
results); iii) TABASCO with the proposed adaptive selection
of β for k = 0 (equivalent to RSCM, yielding β = 0.9324);
iv) TABASCO with the proposed adaptive estimation of β and
k allowing k ∈ [10

−3
, 10

−1] (TABASCO, yielding k = 0.0143
and β = 0.9929). ST-type estimators presented results visually
identical to the tapered-SCM so they are omitted. This result
can be explained because the oracle shrinkage coefficient from
ST tends, in practice, to push the estimate towards the tapered
matrix only: for example, the oracle coefficient (1−β) in [14]
is always greater than 0.9 and is most likely close to 1.

4The tapering in [11] actually uses [Tf ]ij = sinc((i − j)k/π) and
[Tθ]ij = sinc((i − j)k/π), which performs a sliding window average on
the estimated signal spectrum. The one considered here performs a linear
combination of the original spectrum with such average. This modification
was made so that the tapering matrix always conforms to the theoretical
requirements wii = 1 and wij ≥ 0, but did not significantly impacted the
output of the tested detectors.

First we can notice that the SCM provides an unreliable
detection maps in both scenarios, which is due to insufficient
sample support in this configuration (n < 2p). As observed
in [11] on another dataset, the covariance matrix tapering can
widen the clutter notch, i.e., properly cancel the response of
the detector on the anti-diagonal of the detection map. This
permits to clearly distinguish several targets when compared
to the detection map of the SCM. However, this improvement
is at the cost of canceling the response of slower targets
in the second scenario. This was to be expected since slow
targets are hard to distinguish from the ground response in
practice. Within the considered framework, hard cancellation
of the ground clutter generally implies to also cancel these
targets, which implies a trade-off when selecting the null-
spectrum width of the tapering matrix. The shrinkage to
identity of RSCM also greatly improves the detection process,
as it allows us to detect all the 10 targets in the second
scenario. However, it still presents some high false alarms on
the clutter ridge. Finally, TABASCO appears as an interesting
trade-off by combining the two effects, and illustrates that the
proposed NMSE-driven method still allows for a reasonable
regularization parameters (both β and k) selection in this
detection application. More precisely, TABASCO yields the
best detection map in the first scenario (no null-spectrum
pattern and no false alarms around the clutter ridge). In the
second scenario, slower targets are still canceled but TABASCO
allows for recovering some targets that were initially canceled
by a “tapering only” approach.

VIII. CONCLUSIONS AND PERSPECTIVES

We proposed TABASCO: a new covariance matrix estimator
that jointly benefits from shrinkage to a scaled identity matrix
and tapering of the SCM. By assuming the samples to be
generated from an unspecified ES distribution, we also derived
an efficient and robust estimation method for the oracle
regularization parameters that minimize the MSE. Simulations
studies illustrated that TABASCO outperforms existing regular-
ized and tapered estimators in numerous setups. Interestingly,
if W = 11

⊤ belongs to the set of tapering matrices W
considered, the estimator can avoid applying tapering if this
option does not provide reduction to the MSE. Thus TABASCO
performs similarly to the regularized SCM proposed in [4]
in this case, while significantly outperforming it when the
tapering templates are valid. We also proposed two new
novel estimators that measure the sphericity of the tapered
covariance matrix.

APPENDIX

A. Known location µ

In some applications, the mean vector µ = E[x] is known
and assumed to be µ = 0 without loss of generality. This is
the case in STAP application for example. In this case, the
covariance matrix Σ = E[xx

⊤] is estimated by the SCM,
defined by

S =
1
n

n

∑
i=1

xix
⊤
i . (45)
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Fig. 9. Output of various STAP detectors for the first (top) and second
(bottom) scenarios

which is also unbiased estimator of Σ, i.e., E[S] = Σ.
The known location case implies only small changes in our
estimation procedure since Theorem 1 holds for both known
and unknown location cases.

When the location is known, the expectation E[∥S∥2
F] and

E [tr(S)2] are of the form (24) and (25) with τ1 and τ2 given
by

τ1 =
1 + κ
n and τ2 =

κ
n. (46)

This result follows as a special case of [31, Lemma 1]
for a Gaussian weight function. Similarly Lemma 1 holds
when using τ1 and τ2 in (46). The change to the optimal
β0 parameter is also minimal: one may ignore the term
(n/(n−1)) that appears as the multiplier of the 2nd last term

pθW/η2+γW−2γ/p in the denominator of β0 in Theorem 2.
Theorem 4 also holds with

an =
1 + κ
n + κ and bn =

n(n + κ)
(n − 1)(n + 2 + 3κ) .

B. Proof of Theorem 1

Write L(β) = MSE(Σ̂β) = E[∥Σ̂β − Σ∥2
F]. Then note

that

L(β) = E [ÂÂÂÂÂβ(W ◦ S) + (1 − β)p−1
tr(S)I −Σ

ÂÂÂÂÂ
2

F
]

= E [ÂÂÂÂÂβ(W ◦ S −Σ) + (1 − β)(p−1
tr(S)I −Σ)ÂÂÂÂÂ

2

F
]

= β
2
a1 + (1 − β)2

a2 + 2β(1 − β)a3 (47)

where the constants ai-s are defined by

a1 = MSE(W ◦ S),
a2 = E [ÂÂÂÂÂp

−1
tr(S)I −Σ

ÂÂÂÂÂ
2

F
] ,

a3 = E[ tr((W ◦ S −Σ)(p−1
tr(S)I −Σ))].

Then define

ã3 = p
−1E [tr (W ◦ S −Σ) tr(S)]

= p
−1E[ tr(S)2] − η2

p (48)

where we used that E[S] = Σ, tr(W ◦ S) = tr(S) and
E[tr(S)] = tr(E[S]) = ηp with η = tr(Σ)/p denoting the
scale. We may write a3 in the form

a3 = ã3 + E[ tr((W ◦ S −Σ)Σ)]
= ã3 + ∥Σ∥2

F − ∥V ◦Σ∥2
F (49)

by using E[S] = Σ and E[tr((W◦S)Σ)] = tr((W◦Σ)Σ) =
tr((V ◦Σ)2) while a2 can be expressed as

a2 = ã3 + ∥Σ∥2
F − pη

2
. (50)

Note that L(β) is a convex quadratic function in β with a
unique minimum given by

βo =
a2 − a3

(a1 − a3) + (a2 − a3)
. (51)

Using (49) and (50), the numerator is

a2 − a3 = ∥V ◦Σ∥2
F − pη

2 (52)

= ∥V ◦Σ − ηI∥2
F = p(γV − 1)η2

,

where we used that tr(V◦Σ) = tr(Σ). Using the expression
for a1 = MSE(W ◦ S) given in (13) together with equations
(49) and (48), the first term in the denominator of βo is

a1−a3 = E [∥W ◦ S∥2
F]−∥V◦Σ∥2

F−p
−1E[ tr(S)2]+η2

p.

Summing this with term a2 − a3 from (52) shows that the
denominator of βo is E[∥W ◦ S∥2

F]− p−1E[tr(S)2]. These
results thus yield expression given in (15) and (16) for βo.
The final expression (17) for βo can be deduced from (16) by
using (13) and then simplifying the expression.

The expression for MSE of Σ̂βo follows by substituting
βo into expression for L(β) in (47) and using the relation,
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(1 − βo)(a2 − a3) = βo(a1 − a3), which follows from (51).
This gives

L(βo) = a2 − βo(a2 − a3) = a3 + (1 − βo)(a2 − a3).

This gives the stated MSE expression since a2 − a3 =

∥V ◦Σ − ηI∥2
F and using (49) together with (48) for a3.

C. Proof of Lemma 1

Before proceeding with the proof we introduce some def-
initions and results that are used in the sequel. First, we let
Kp denote the p2×p2 commutation matrix defined as a block
matrix whose ijth block is equal to a p×p matrix that has a 1
at element ji and zeros elsewhere, i.e., Kp = ∑i,j eie

⊤
j ⊗

eje
⊤
i . It also has the following important properties [38]:

Kpvec(A) = vec(A⊤) and Kp(A ⊗ B)Kp = (B ⊗A) for
any p×p matrices A and B, where vec(A) vectorizes matrix
A by stacking the columns of the matrix on top of each other.
We then have the following identities.

Lemma 3. The following holds:

a) ∥A ◦ B∥2
F = tr (vec(A)vec(A)⊤ ◦ vec(B)vec(B)⊤)

for all A,B ∈ Rm×n.
b) ∥A◦B∥2

F = tr (vec(A)vec(A)⊤ ◦Kp(B⊗B)) ∀A ∈

Rm×m and ∀B ∈ Rm×mSym .
c) d

⊤
B(A ◦ A)dB = tr (vec(A)vec(A)⊤ ◦ (B⊗B))
∀A,B ∈ Rm×m.

d) tr ((DBA)2) = d
⊤
B(A ◦A)dB for all A ∈ Rm×mSym and

B ∈ Rm×m.

Proof. Let A = (aij) and B = (bij). a) First note that

∥A ◦B∥2
F = tr (vec(A ◦B)vec(A ◦B)⊤)
= tr (vec(A)vec(A)⊤ ◦ vec(B)vec(B)⊤) .

b) It is a simple matter to verify that for all B ∈ Rm×mSym it
holds that diag(vec(B)vec(B)⊤) = diag(Kp(B⊗B)). Thus

tr (vec(A)vec(A)⊤ ◦Kp(B⊗B))
= tr (vec(A)vec(A)⊤ ◦ vec(B)vec(B)⊤)

which gives the stated result due to a)-part. c) It is a simple
task to verify that the trace of the Hadamard product of
vec(A)vec(A)⊤ with B ⊗ B equals ∑i,j biia

2
ijbjj which

is equivalent with d
⊤
B(A ◦ A)dB. d) Follows from [21,

Lemma 7.5.2].

Write w = vec(W). Using Lemma 3a) we first notice that

E [∥W ◦ S∥2
F] = tr (ww

⊤
◦ E[vec(S)vec(S)⊤]) . (53)

We then recall that the (variance-)covariance matrix of S when
sampling from an elliptical population Ep(µ,Σ, g) is given by
[4, Theorem 2]:

cov(vec(S)) = E[vec(S)vec(S)⊤] − vec(Σ)vec(Σ)⊤ (54)

= τ1(I +Kp)(Σ⊗Σ) + τ2vec(Σ)vec(Σ)⊤, (55)

where τ1 and τ2 are constants defined in (26). Equations (54)
and (55) then imply that

E[vec(S)vec(S)⊤] = cov(vec(S)) + vec(Σ)vec(Σ)⊤

= τ1(I +Kp)(Σ⊗Σ) + (1 + τ2)vec(Σ)vec(Σ)⊤. (56)

Inserting (56) into (53) yields

E [∥W ◦ S∥2
F] = (1 + τ1 + τ2)∥W ◦Σ∥2

F + τ1 tr ((DΣW)2).
simply by invoking identities in Lemma 3. This proves the
first identity.

Next we note that

E[ tr((DSW)2)] =
p

∑
i,j=1

E[siisjj]w2
ij . (57)

Equation (56) implies that

E[siisjj] = 2τ1σ
2
ij + (1 + τ2)σ2

i σ
2
j . (58)

Thus inserting (58) into (57) yields

E[ tr((DSW)2)] = 2τ1

p

∑
i,j=1

w
2
ijσ

2
ij + (1 + τ2)

p

∑
i,j=1

w
2
ijσ

2
i σ

2
j

= 2τ1∥W ◦Σ∥2
F + (1 + τ2) tr((DΣW)2)

which proves the latter claim.

D. Proof of Theorem 3
Let us express the SSCM as

Λ̂ =
1
n

n

∑
i=1

viv
⊤
i , where vi =

√
p

xi
∥xi∥

.

Hence

∥W ◦ Λ̂∥2
F

p =
1

pn2
tr ((W ◦ v1v

⊤
1 +⋯+W ◦ vnv

⊤
n )

2)

=

n

∑
i=1

∥W ◦ viv
⊤
i ∥2

F

pn2
+

n

∑
i≠j

tr ((W ◦ viv
⊤
i )(W ◦ vjv

⊤
j ))

pn2
.

Then since vi-s are i.i.d., and E[Λ̂] = E[viv⊤i ] for all i, the
expectation of the 2nd term is

∑
i≠j

E[ tr((W ◦ viv
⊤
i )(W ◦ vjv

⊤
j ))]

pn2
=
n − 1
n

∥W ◦Λsgn∥2
F

p ,

where Λsgn = E[Λ̂]. The expectation of the 1st terms is

∑
i

E[∥W ◦ viv
⊤
i ∥2

F]
pn2

=
E[∥W ◦ vv

⊤∥2
F]

pn

=

E[d⊤(W ◦W)d]
pn

where d = (v2
1 , . . . , v

2
p)⊤ contains the diagonal elements of

vv
⊤, where v =d vi and =d reads “has the same distribution

as”. Furthermore, write D = diag(vv
⊤). Thus we have that

n

n − 1
⋅
E[∥W ◦ Λ̂∥2

F]
p

=
∥W ◦Λsgn∥2

F

p +
E[d⊤(W ◦W)d]

p(n − 1) . (59)
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Next note that DΛ̂ = diag(Λ̂) can be written as

DΛ̂ =
1
n(D1 + . . . +Dn),

where Di = diag(viv⊤i ). Furthermore, let di =

(v2
i1, . . . , v

2
ip)⊤ denote a random vector containing the diago-

nal elements of viv
⊤
i . Then we get

tr ((DΛ̂W)2) = 1

n2
tr ((D1W + . . . +DnW)

2

)

=
1

n2

n

∑
i=1

tr ((DiW)
2

) + 1

n2
∑
i≠j

tr ((DiW)DjW)

=
1

n2

n

∑
i=1

di(W ◦W)di +
1

n2
∑
i≠j

tr ((DiW)DjW).

Thus
1

p(n − 1)E[ tr ((DΛ̂W)2)]

=
E[d(W ◦W)d]

pn(n − 1) +
1
pn tr ((E[D]W)2)

=
E[d(W ◦W)d]

pn(n − 1) +
1
pnE[d]

⊤(W ◦W)E[d]. (60)

Using (59) and (60) we then obtain that

E[γ̂W] =
∥W ◦Λsgn∥2

F

p +
1
nε, (61)

where

ε =
1
p(E[d(W ◦W)d] − E[d]⊤(W ◦W)E[d])

=
1
p(

p

∑
i=1

var(v2
i ) +

p

∑
i≠j

wij cov(vivj))→ 0 as p→∞.

(62)

Next note that Λsgn = E[Λ̂] = Λ+ o(∥Λ∥F) when (A) holds
by [28, Theorem 2]. This fact together with (61) and (62)
imply that

E[γ̂W]→ ∥W ◦Λ∥2
F

p = γW

as p → ∞ under assumption (A). Thus we have proven the
claim.

E. Proof of Lemma 2: complex case

In our proof we will use the following identities.

Lemma 4. The following holds:

a) ∥A◦B∥2
F = tr (vec(A)vec(A)H ◦ vec(B)vec(B)H) for

all A,B ∈ Cm×n.
b) d

⊤
B(A ◦ A)dB = tr (vec(A)vec(A)⊤ ◦ (B∗ ⊗B))
∀A ∈ Cm×m and B ∈ Cm×mSym .

c) tr ((DBA)2) = d
⊤
B(A ◦A)dB for all A ∈ Rm×mSym and

B ∈ Cm×m.

Proof. a,b) proofs of the identities are as proofs of
Lemma 3a),b). c) follows directly from [21, Lemma 7.5.2].

Write w = vec(W). Using Lemma 4a) we first notice that

E [∥W ◦ S∥2
F] = tr (ww

⊤
◦ E[vec(S)vec(S)H]) . (63)

We then recall that the (variance-)covariance matrix of S when
sampling from a complex elliptically symmetric distribution
CEp(µ,Σ, g) is [39, Theorem 3]:

cov(vec(S)) = E[vec(S)vec(S)H] − vec(Σ)vec(Σ)H (64)

= τ1(Σ∗
⊗Σ) + τ2vec(Σ)vec(Σ)H, (65)

where τ1 and τ2 are constants defined in (26). Equations (64)
and (65) then imply that

E[vec(S)vec(S)H] = cov(vec(S)) + vec(Σ)vec(Σ)H

= τ1(Σ∗
⊗Σ) + (1 + τ2)vec(Σ)vec(Σ)H. (66)

Inserting (66) into (63) yields

E [∥W ◦ S∥2
F] = (1 + τ2)∥W ◦Σ∥2

F + τ1 tr ((DΣW)2).
simply by invoking identities in Lemma 4. This proves the
first identity. The proof of latter part E[ tr((DSW)2)] is as
earlier in the real-valued case in Appendix C.
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