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ABSTRACT
Argumentation is a promising approach used by autonomous
agents for reasoning about inconsistent knowledge, based on
the construction and the comparison of arguments. In this
paper, we apply this approach to the classi�cation problem,
whose purpose is to construct from a set of training exam-
ples a model (or hypothesis) that assigns a class to any new
example.
We propose a general formal argumentation-based model

that constructs arguments for/against each possible classi�-
cation of an example, evaluates them, and determines among
the con
icting arguments the acceptable ones. Finally, a
\valid" classi�cation of the example is suggested. Thus, not
only the class of the example is given, but also the reasons
behind that classi�cation are provided to the user as well in
a form that is easy to grasp.
We show that such an argumentation-based approach for

classi�cation o�ers other advantages, like for instance clas-
sifying examples even when the set of training examples is
inconsistent, and considering more general preference rela-
tions between hypotheses. Moreover, we show that in the
particular case of concept learning, the results of version
space theory are retrieved in an elegant way in our argu-
mentation framework.

Categories and Subject Descriptors
I.2.3 [Deduction and Theorem Proving]: Nonmono-
tonic reasoning and belief revision
; I.2.11 [Distributed Arti�cial Intelligence]: Intelligent
agents

General Terms
Human Factors, Theory
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1. INTRODUCTION
Argumentation has become an Arti�cial Intelligence key-

word for the last �fteen years, especially in sub-�elds such as
non monotonic reasoning, inconsistency-tolerant reasoning,
multiple-source information systems [1, 7, 9, 3]. Argumenta-
tion follows basically three steps: i) to construct arguments
and counter-arguments for a statement, ii) to select the \ac-
ceptable" ones and, �nally, iii) to determine whether the
statement can be accepted or not.
This paper claims that argumentation can also be used as an
alternative approach for the problem of classi�cation. Clas-
si�cation aims at building models that describe a concept
from a set of training examples. The models are intended
to be su�ciently general in order to be reused on new ex-
amples. When the concept to learn is binary, i.e. examples
of that concept can be either true or false, the problem is
called concept learning.
In our argumentation-based approach, the classi�cation

problem is reformulated as follows: given a set of examples
(the training ones, and/or additional examples) and a set
of hypotheses, what should be the class of a given exam-
ple? To answer this question, arguments are constructed in
favor of all the possible classi�cations of that example. A
classi�cation can come either from an hypothesis, or from
a training example. The obtained arguments may be con-

icting since it may be the case that the same example is
a�ected to di�erent classes. Finally, a \valid" classi�cation
of the example is suggested. Thus, not only the class of the
example is given, but also the reasons behind that classi�-
cation are provided to the user as well in a form that is easy
to grasp.
We show that such an argumentation-based approach for

classi�cation o�ers other advantages, like for instance clas-
sifying examples even when the set of training examples is
inconsistent, and considering more general preference rela-
tions between hypotheses. Moreover, we show that in the
particular case of concept learning, the results of the version
space theory developed by Mitchell in [4] are retrieved in an
elegant way in our argumentation framework. We show that
the acceptability semantics de�ned in [2] allow us to identify
and characterize the version space as well as its lower and
upper bounds. In sum, this paper proposes a formal the-
oretical framework for handling, analysing and explaining
the problem of classi�cation. The framework presents the
following features that make it original and 
exible:

1. it handles i) the case of a consistent set of training
examples; ii) the case of an inconsistent set of training
examples; and iii) the case of an empty set of training



examples;

2. it allows one to reason directly on the set of hypothe-
ses;

3. examples are classi�ed on the basis of the whole set
of hypotheses rather than only one hypothesis as it is
the case in standard classi�cation models. Indeed, in
the standard approach, a unique hypothesis is chosen,
and all the examples are classi�ed on the basis of that
hypothesis.

4. it presents several original and intuitive decision crite-
ria for choosing the class of an example.

The paper is organized as follows. We �rst present the clas-
si�cation problem, then we introduce the basic argumenta-
tion framework of Dung [2]. The third section introduces our
argumentation-based framework for classi�cation as well as
its properties.

2. CLASSIFICATION PROBLEM
The aim of this section is to introduce the classi�cation

problem. Let X denote a feature space used for describ-
ing examples. Elements of X may then be pairs (attribute,
value), �rst order facts, etc. This set X is supposed to be
equipped with an equivalence relation�. Let C = fc1; : : : ; cng
be a concept space, or a set of possible distinct classes.

A classi�cation problem takes as input a hypothesis space
H, and a set S of m training examples.

S = f(xi; ci)i=1;:::;m s.t xi 2 X and ci 2 Cg

An important notion in classi�cation is that of consistency.
In fact, a set of examples is said to be consistent if it does not
contain two logically equivalent examples with two di�erent
classes. Formally:

Definition 1 (Consistency). Let T = f(xi; ci)i=1;:::;n
s.t xi 2 X and ci 2 Cg be a set of examples. T is con-
sistent i� @ (x1; c1), (x2; c2) 2 T such that x1 � x2 and c1
6= c2. Otherwise, T is said to be inconsistent.

Regarding the hypothesis space H, it may be, for instance,
decision trees, propositional sets of rules, neural nets, etc.
An hypothesis h is a mapping from X to C (i.e. h: X 7!
C). Before de�ning the output of the framework, let us �rst
introduce a key notion, that of soundness.

Definition 2 (Soundness). Let h 2 H. An hypothe-
sis h is sound with respect to a training example (x; c) 2 S
i� h(x) = c. If 8(xi; ci) 2 S, h is sound w.r.t (xi; ci), then
h is said to be sound with S.

The general task of classi�cation is to identify an h 2 H
that is sound with respect to the training examples. This
hypothesis will be next used for classifying new examples.
The most common approach for identifying this hypothe-
sis is to use a greedy exploration of the hypothesis space,
guided by a preference relation on hypothesis. This prefer-
ence relation may be encoded by a utility function or by a
syntactic or a semantic relation. Utility functions are gener-
ally based on the accuracy of the hypothesis (proportion of
well classi�ed examples) weighted by some complexity crite-
ria (number of rules, etc.). Utility functions encode usually

a total order. Syntactic relations may be for instance en-
tailment or subsumption in the logical case. In this case it
encodes a partial preorder on H.

Example 1 (Learning the concept sunny day). In
this example, the feature space is a pair (attribute, value).
Three attributes are considered: pressure, temperature, and
humidity. The concept to learn is supposed to be binary, thus
C = f0; 1g. Four training examples are given, and are sum-
marized in the Table below. For instance (pressure, low),
(temperature, medium), and (humidity, high) is a negative
example for the concept a sunny day, whereas the (pressure,
medium), (temperature, medium), and (humidity, low) is a
positive one.

pressure temperature humidity sunny

low medium high 0
medium medium low 1
low medium medium 0

medium high medium 1

Let us suppose that the hypothesis space H is the space of
constraints on the values of each attribute. Indeed, the con-
straints are conjunctions of accepted values of attributes.
The special constraint ; (resp. ?) means that no (resp. all)
values of attributes are accepted. If a vector of values of at-
tributes match all the constraints, then it is considered as a
positive example, otherwise it is a negative one. The hy-
potheses h;; ;; ;i and h?; ?; ?i are respectively the lower and
the upper bound of the hypothesis space H.

3. ABSTRACT ARGUMENTATION FRAME-
WORK

Argumentation is a reasoning model that follows the fol-
lowing steps:

1. Constructing arguments and counter-arguments.

2. De�ning the strengths of those arguments.

3. Evaluating the acceptability of the di�erent arguments.

4. Concluding or de�ning the justi�ed conclusions.

In [2], an argumentation system is de�ned as follows:

Definition 3 (Argumentation system). An argumen-
tation system (AS) is a pair hA, Ri. A is a set of arguments
and R � A � A is a defeat relation. We say that an ar-
gument A defeats an argument B i� (A;B) 2 R (or A R
B).

Note that to each argumentation system is associated an
oriented graph whose nodes are the di�erent arguments, and
the edges represent the defeasibility relationship between
them. Among all the con
icting arguments, it is important
to know which arguments to keep for inferring conclusions
or for making decisions. In [2], di�erent semantics for the
notion of acceptability have been proposed. Let us recall
them here.

Definition 4 (Conflict-free, Defence). Let B � A.

� B is con
ict-free i� there exist no Ai, Aj 2 B such
that Ai R Aj.



� B defends an argument Ai i� for each argument Aj 2
A, if Aj R Ai, then there exists Ak 2 B such that Ak
R Aj.

Definition 5 (Acceptability semantics). Let B be
a con
ict-free set of arguments, and let F : 2A 7! 2A be a
function such that F(B) = fA j B defends Ag.

� B is a complete extension i� B = F(B).

� B is a grounded extension i� it is the minimal (w.r.t.
set-inclusion) complete extension.

� B is a preferred extension i� it is a maximal (w.r.t.
set-inclusion) complete extension.

� B is a stable extension i� it is a preferred extension
that defeats all arguments in AnB.

Let fE1, : : :, Eng be the set of all possible extensions under
a given semantics.

Note that there is only one grounded extension which may
be empty. It contains all the arguments that are not de-
feated, and also the arguments which are defended directly
or indirectly by non-defeated arguments.
The last step of an argumentation process consists of deter-
mining, among all the conclusions of the di�erent arguments,
the \good" ones, called justi�ed conclusions.

4. AN ARGUMENTATION FRAMEWORK
FOR CLASSIFICATION

The aim of this section is to propose an instantiation of the
general and abstract framework of Dung that allows the clas-
si�cation of examples. Throughout this section, we will con-
sider a features space X , a concept space C = fc1; : : : ; cng,
a (maybe inconsistent) set S of m > 0 training examples, a
hypotheses space H that is equipped with an arbitrary pref-
erence relation �. Thus, � � H � H, and H is supposed to
be a partial preorder.
In order to instantiate the abstract framework of Dung,

one needs to de�ne the set A of arguments as well as the
defeat relation between those arguments.
In our particular application, one needs to argue about

particular classi�cations, thus arguments are constructed in
favor of assigning particular classes from C to an example in
X . Indeed, an argument in favor of the pair (x; c) represents
the reason for assigning the class c to the example x. Two
reasons can be distinguished:

1. (x; c) is a training example in S,

2. there exists a hypothesis h 2 H that classi�es x in c.

Definition 6 (Argument). An argument is a triplet
A = hh; x; ci such that:

1. h 2 H, x 2 X , c 2 C

2. If h 6= ;, then c = h(x)

3. If h = ;, then (x; c) 2 S

h is called the support of the argument, and (x; c) its con-
clusion. Let Example(A) = x, and Class(A) = c.
Let A be the set of arguments built from (H;X ; C).

Note that from the above de�nition, for any training exam-
ple (xi; ci) 2 S, 9h;; xi; cii 2 A. Let AS = fh;; x; ci 2 Ag
(i.e. the set of arguments coming from the training exam-
ples). Since the set S of training examples is not empty,
then AS is not empty as well.

Property 1. Let S be a set of training examples.

� jSj = jAS j1.

� AS 6= ;.

Proof. The �rst point follows from the above de�nition,
and from the fact that an hypothesis h cannot be empty.
The second point follows directly from the �rst property,
i.e. jSj = jAS j, and the assumption that S 6= ;.

Let us illustrate the notion of argument through example 1.

Example 2. In example 1, there are exactly four argu-
ments with an empty support, and they correspond to the
training examples: A; = fa1 = h;, (pressure, low) ^ (tem-
perature, medium) ^ (humidity,high), 0i,
a2 = h;, (pressure, medium) ^ (temperature, medium) ^
(humidity, low), 1i,
a3 = h;, (pressure, low) ^ (temperature, medium) ^ (hu-
midity, medium), 0i,
a4 = h;, (pressure, medium) ^ (temperature, high) ^ (hu-
midity, medium), 1ig. There are also arguments with a non-
empty support such as:
ha5 = h ? , medium _ high, ?i, (pressure, low) ^ (tempera-
ture, high) ^ (humidity, high), 1ig,
a6 = hh medium_ high, ?, ?i, (pressure, low) ^ (tempera-
ture, high) ^ (humidity, high), 0i,
a7 = hh medium, medium_ high, ?i, (pressure, low) ^ (tem-
perature, high) ^ (humidity, high), 0i.

In [1, 7, 9], it has been argued that arguments may have
di�erent strengths depending on the quality of information
used to construct them. In [9], for instance, arguments built
from speci�c information are stronger than arguments built
from more general ones. In our particular application, it
is clear that arguments with an empty support are stronger
than arguments with a non-empty one. This re
ects the fact
that classi�cations given by training examples take prece-
dence over ones given by hypotheses in H. It is also natural
to consider that arguments using most preferred hypothesis
are stronger than arguments with less preferred ones.

Definition 7 (Comparing arguments). Let hh; x; ci,
hh0; x0; c0i be two arguments of A. hh; x; ci is preferred to
hh0; x0; c0i, denoted by hh; x; ci Pref hh0; x0; c0i, i�:

� h = ; and h0 6= ;, or

� h � h0.

Property 2. The relation Pref is a partial preorder.

Proof. This is due to the fact that the relation � is a
partial preorder.

Now that the set of arguments is de�ned, it is possible to
de�ne the defeasibility relation R between arguments in A.
Here again, there are two ways in which an argument A can
attack another argument B:
1jj denotes the cardinal of a given set



1. by rebutting its conclusion. This situation occurs when
the two arguments have contradictory conclusions, i.e.
the same example is classi�ed in di�erent ways.

2. by undercutting its support. This occurs when the sup-
port of B classi�es in a di�erent way the example of
the conclusion of A. However, this relation is only re-
stricted to training examples. Indeed, only arguments
built from training examples are allowed to undercut
other arguments. The idea behind this is that training
examples are the only, in some sense, certain informa-
tion one has, and thus cannot be defeated by hypoth-
esis. However, hypothesis have controversial status.

Definition 8 (Rebutting). Let hh; x; ci, hh0; x0; c0i be
two arguments of A. hh; x; ci rebuts hh0; x0; c0i i� x � x0,
c 6= c0.

Example 3. In example 2, we have for instance :
a5 rebuts a6, a5 rebuts a7, a6 rebuts a5, and a7 rebuts a5.

Definition 9 (Undercutting). Let hh; x; ci, hh0; x0; c0i
be two arguments of A. hh; x; ci undercuts hh0; x0; c0i i� h =
; and h0(x) 6= c.

Example 4. In example 2, we have for instance :
a1 undercuts a5, a2 undercuts a5, a3 undercuts a5, and a4
undercuts a5.

Note that the rebutting and undercutting relations are used
in most argumentation systems that handle inconsistency in
knowledge bases.

Property 3. If S is consistent, then @ A, B 2 AS such
that A rebuts B, or A undercuts B.

Proof. Let A = h;; x; ui, B = h;; x0; u0i 2 S such that
A rebuts B. According to De�nition 8, x � x0 and u 6= u0.
This contradicts the fact that S is consistent.

The two above con
ict relations are brought together in a
unique relation, called \Defeat".

Definition 10 (Defeat). Let A = hh; x; ci, B = hh0; x0; c0i
be two arguments of A. A defeats B i�:

1. A rebuts (resp. undercuts) B, and

2. (A Pref B), or (not(A Pref B) and not(B Pref A))

Example 5. With the argument de�ned in ex. 2 we have
for instance : a1 defeats a5, a2 defeats a5, a3 defeats a5, a4
defeats a5, a5 defeats a6, a5 defeats a7 and a6 defeats a5.

From the above de�nition, it is easy to check that an ar-
gument with an empty-support cannot be defeated by an
argument with a non-empty support.

Property 4. 8 A 2 AS , @ B 2 AnAS s.t B defeats A.

Proof. Let A 2 AS and B 2 AnAS such that B defeats
A. This means that B rebuts A (because according to De�-
nition 9, an argument with a non-empty support cannot un-
dercut an argument with an empty one. Moreover, accord-
ing to De�nition 10, we have either B Pref A, or (not(B Pref
A) and not(A Pref B)). This is impossible because accord-
ing to De�nition 7, arguments in AS are always preferred to
arguments with a non-empty support.

The argumentation system for classi�cation is then the fol-
lowing:

Definition 11 (Argumentation system). An argu-
mentation system for classi�cation (ASC) is a pair hA; defeati,
where A is the set of arguments (see De�nition 6) and defeat
is the relation de�ned in De�nition 10.

Let us now identify the acceptable arguments of the above
ASC. It is clear that the arguments that are not defeated at
all will be acceptable. Let U denote that set of undefeated
arguments.

Proposition 1. If S is consistent, then AS � U .

Proof. Let A 2 AS . Let us assume that 9B 2 A such
that B defeats A. According to Property 4, B =2 AnAS .
Thus, B 2 AS . Moreover, B defeats A means that B rebuts
A. This means then that A classi�es a training example in
u, and B classi�es an equivalent example in u0 6= u. This
contradicts the fact that the set S is consistent.

As said in Section 3, one of the acceptability semantics is the
so-called `grounded extension'. Such an extension is unique
and maybe empty. However, we show that when the set S
of training examples is consistent, this grounded extension
is not empty.

Proposition 2 (Grounded extension). If S is con-
sistent, then the argumentation system hA; defeati has a
non empty grounded extension E.

Proof. This is due to the fact that AS 6= ; and AS �
U .

Note that the system hA; defeati is not always �nite. By
�nite we mean that each argument is defeated by a �nite
number of arguments. This is due to the fact that H and X
are not always �nite.

Proposition 3. If H and X are �nite, then the system
hA; defeati is �nite.

When an argumentation system is �nite, its characteristic
function F is continuous. Consequently, the least �xed point
of this function can be de�ned by an iterative application of
F to the empty set.

Proposition 4. If the argumentation system hA; defeati
is �nite, then the grounded extension E is:

E =
[

F i�0(;) = U [ [
[
i�1

F i(U)]:

Let us now analyze the other acceptability semantics, namely
preferred and stable ones. In general, the ASC has at least
one preferred extension that may be empty. However, as
for the case of grounded extension, we can show that in the
particular case of a consistent set of training examples, the
ASC has at least one non-empty preferred extension.

Proposition 5. If S is consistent, then the ASC hA; defeati
has n � 1 non-empty preferred extensions.

Proof. In [2], it has been shown that the grounded ex-
tension is included in very preferred extension. Since the
grounded extension is not empty (according to Proposition
2, then there exists at least one non-empty preferred exten-
sion).



In general, the preferred extensions of an argumentation sys-
tem are not stable. However, we can show that when the
set C contains only two possible classes, this means that the
concept to learn is binary, these extensions coincide. This
result is due to the fact that the oriented graph associated
to the above ASC has no odd length circuits in this case.
However, it may contain circuits of even length.

Proposition 6. If C = fc1; c2g with c1 6= c2, then:

� The graph associated with the system hA; defeati has
no odd length circuits.

� The preferred extensions and stable extensions of the
system hA; defeati coincide.

Proof Sketch. Part 1: LetA;B;C be three arguments
such that A defeats B, B defeats C, and C defeats A.

Case 1: Let us suppose that A 2 AS .
According to Property 3, B 2 AnAS . According to
Property 4, C should be in AnAS . Contradiction be-
cause according to Property 4, C cannot defeat A,
which is in AS .

Case 2: Let us suppose that A;B;C 2 AnAS . This means
that A rebuts B, B rebuts C, and C rebuts A (ac-
cording to De�nition 9). Consequently, Example(A) �
Example(B)� Example(C), and Value(A) 6= Value(B),
Value(B) 6= Value(C). Due to the fact that U = f0; 1g,
we have Value(A) = Value(C). This contradicts the
assumption that C rebuts A.

Part 2: This is a consequence of the fact that there is no
odd circuits in the system.

Moreover, in this case the intersection of all the preferred
(stable) extensions coincides with the grounded extension.

Proposition 7. Let hA; defeati be an ASC. Let E be its
grounded extension, and E1; : : : ; En its preferred (stable) ex-
tensions. If C = fc1; c2g with c1 6= c2, then E =

T
i=1;:::;n Ei.

The last step of an argumentation process consists of de�n-
ing the status of the conclusions, in our case, the classi�-
cation of examples. In what follows we present two deci-
sion criteria: The �rst one, called universal vote, consists
of accepting those classi�cations that are in any extension.
However, it is clear that this kind of voting may not clas-
sify all the examples. Thus, we propose a second criterion,
called majority vote, that allows to associate a class with
each example. The conclusions here are the ones that are
supported by a majority of arguments that appear in the
di�erent extensions. Formally:

Definition 12. Let hA; defeati be a ASC, and E1; : : : ; En
its extensions under a given semantics. Let x 2 X and c 2 C.

Universal vote: x is universally classi�ed in c i� 8Ei, 9
<h; x; c> 2 Ei. UV denotes the set of all (x; c), such
that x is universally classi�ed in c.

Majority vote: x is majoritarily classi�ed in c i� jf< h; x; c >
j9Ei; < h; x; c >2 Eigj � jf< h; x; c0 > jc0 6= c;9Ei; <
h; x; c0 >2 Eigj. MV denotes the set of all (x; c), such
that x is majoritarily classi�ed in c.

The universally classi�ed examples are those that are sup-
ported by arguments in all the extensions. From a classi�-
cation point of view, these correspond to examples classi�ed
by the most preferred hypotheses. It is easy to check that
the set of universally classi�ed examples is included in the
set of majoritarily classi�ed ones.

Property 5. Let hA; defeati be a ASC, and E1; : : : ; En
its extensions under a given semantics :

UV �MV

We can show that the above argumentation framework de-
livers \safe" results, since its sets of conclusions UV , MV
are consistent. Formally:

Proposition 8. Let hA; defeati be a ASC, and UV ,MV
its sets of conclusions. The sets UV and MV are consistent.

5. RETRIEVING VERSION SPACE THEORY
As said before, concept learning is a particular case of

classi�cation, where the concept to learn is binary. In [4],
Mitchell has proposed the famous general and abstract frame-
work, called version space learning, for concept learning.
That framework takes as input a consistent set of train-
ing examples on the concept to learn. C contains only two
classes, denoted respectively by 0 and 1. Thus, C = f0; 1g.
The set H is supposed to be equipped with a \particular"
partial preorder � that re
ects the idea that some hypothesis
are more general than others in the sense that they classify
positively more examples. This preorder de�nes a lattice on
the hypothesis space. Formally:

Definition 13 (Generality order on hypothesis).
Let h1, h2 2 H. h1 is more general than h2, denoted by h1
� h2, i� fx 2 Xjh1(x) = 1g � fx 2 Xjh2(x) = 1g.

The framework identi�es the version space, which is the
set V of all the hypothesis of H that are sound with S. The
idea is that a \good" hypothesis should at least classify the
training examples correctly.

Definition 14 (Version space).

V = fh 2 Hj h is sound with Sg

Version space learning aims at identifying the upper and the
lower bounds of this version space V. The upper bound will
contain the most general hypothesis, i.e the ones that clas-
sify more examples, whereas the lower bound will contain
the most speci�c ones, i.e the hypothesis that classify less
examples.

Definition 15 (General hypotheses). The set of gen-
eral hypothesis is VG = fh 2 H j h is sound with S and @
h0 2 H with h0 sound with S, and h0 � hg.

Definition 16 (Specific hypotheses). The set of spe-
ci�c hypothesis is VS = fh 2 H j h is sound with S and @
h0 2 H with h0 sound with S, and h � h0g.

From the above de�nition, we have the following simple
property characterizing the elements of V.

Property 6. [4]

V = fh 2 Hj9h1 2 VS ;9h2 2 VG; h2 � h � h1g



In [4], an algorithm that computes the version space V by
identifying its upper and lower bounds VS and VG has been
proposed.
The above framework has some limits. First, �nding the

version space is not su�cient for classifying examples out of
the training set. This is due to possible con
icts between
hypothesis. Second, it has been shown that the complexity
of the algorithm that identi�es VS and VG is very high. In
order to palliate that limit, learning algorithms try in gen-
eral to reach only one hypothesis in the version space by
using heuristical exploration of H (from general to speci�c
exploration, for instance FOIL [8], or from speci�c to general
exploration, for instance PROGOL [6]). That hypothesis is
then used for classifying new objects. Moreover, it is obvi-
ous that this framework does not support inconsistent set of
examples:

Property 7. [4] If the set S is inconsistent, then the
version space V = ;.

A consequence of the above result is that no concept can
be learned. This problem may appear in the case of noisy
training data set.
Let us now show how the above ASC can retrieve the results
of the version space learning, namely the version space and
its lower and upper bounds. Before doing that, we start �rst
by introducing some useful notations.
Let Hyp be a function that returns for a given set of ar-
guments, their non empty supports. In other words, this
function returns all the hypothesis used to build arguments:

Definition 17. Let T � A.

Hyp(T ) = fh j 9 hh, x, ui 2 T and h 6= ;g

Now we will show that the argumentation-based model for
concept learning computes in an elegant way the version
space V.

Proposition 9. Let hA; defeati be a ASC. Let E be its
grounded extension, and E1; : : : ; En its preferred (stable) ex-
tensions. If the set S is consistent then:

Hyp(E) = Hyp(E1) = : : : = Hyp(En) = V

where V is the version space.

Proof. Let Ei be an extension under a given semantics.

Hyp(Ei) � V: Let h 2 Hyp(Ei), then 9 hh; x; ui 2 Ei.

Let us assume that 9(xi; ui) 2 S such that h(xi) 6=
ui. This means h;; xi; uii undercuts hh; x; ui (accord-
ing to De�nition 9). Consequently, h;; xi; uii defeats
hh; x; ui. However, according to Property 1, h;; xi; uii
2 AS , thus h;; xi; uii 2 Ei. Contradiction because Ei
is an extension, thus by de�nition it is con
ict-free.

V � Hyp(Ei): Let h 2 V, and let us assume that h =2 Hyp(Ei).
Since h 2 V, then 8(xi; ui) 2 S, h(xi) = ui (1)
Let (x; u) 2 S, thus h(x) = u and consequently hh; x; ui 2
A. Moreover, since h =2 Hyp(E), then hh; x; ui =2 E.
Thus, 9 hh0; x0; u0i that defeats hh; x; ui.

� Case 1: h0 = ;. This means that h;; x0; u0i under-
cuts hh; x; ui and h(x0) 6= u0 Contradiction with
(1).

� Case 2: h0 6= ;. This means that hh0; x0; u0i rebuts
hh; x; ui. Consequently, x � x0 and u 6= u0. How-
ever, since h 2 V, then h is sound with S. Thus,
h;; x; ui defeats hh0; x0; u0i, then h;; x; ui defeats
hh; x; ui. Since h;; x; ui 2 S, then hh; x; ui 2 F(C)
and consequently, hh; x; ui 2 Ei. Contradiction.

The above result is of great importance. It shows that to get
the version space, one only needs to compute the grounded
extension.
We can also show that if a given argument is in an exten-
sion Ei, then any argument based on an hypothesis from the
version space that supports the same conclusion is in that
extension. Formally:

Proposition 10. Let hA; defeati be a ASC, and E1; : : : ; En
its extensions under a given semantics. If < h; x; u >2 Ei,
then 8h0 2 V s.t. h0 6= h if h0(x) = u then < h0; x; u >2 Ei.

Using the grounded extension, one can characterize the up-
per and the lower bounds of the version space. The upper
bound corresponds to the most preferred arguments (w.r.t
Pref) of the grounded extension, whereas the lower bound
corresponds to the less preferred ones.

Proposition 11. Let hA; defeati be a ASC, and E its
grounded extension.

� VG = fh j 9 <h; x; u> 2 E s.t 8 <h0; x0; u0> 2 E, not
(<h0; x0; u0> Pref <h; x; u>)g.

� VS = fh j 9 <h; x; u> 2 E s.t 8 <h0; x0; u0> 2 E, not
(<h; x; u> Pref <h0; x0; u0>)g.

Proof.

VG = fh j 9 <h; x; u> 2 E s.t 8 <h0; x0; u0> 2 E , not
(<h0; x0; u0> Pref <h; x; u>)g.

� Let h 2 VG, thus h 2 V, and 8h0 2 V, h �
h0. Since h 2 V, thus, h 2 Hyp(E), with E an
extension. Then, 9hh; x; ui 2 E . Since h � h0

for any h0 2 V, then h � h0 for any h0 2 Hyp(E).
Thus, hh; x; ui Pref hh0; x0; u0i, 8 hh0; x0; u0i 2 E .

� Let hh; x; ui 2 E such that 8 hh0; x0; u0i 2 E , and
not(hh0; x0; u0iPrefhh; x; ui). Thus, h 2 Hyp(E),
and 8 h0 2 Hyp(E), not(h0 � h), thus h 2 VG.

VS = fh j 9 <h; x; u> 2 E s.t 8 <h0; x0; u0> 2 E , not
(<h; x; u> Pref <h0; x0; u0>)g.

� Let h 2 VS , thus @h0 2 V such that h � h0.
Since h 2 VS , then h 2 V and consequently, h 2
Hyp(E). This means that 9hh; x; ui 2 E . Let us
assume that 9hh0; x0; u0i 2 E such that hh; x; ui
Pref hh0; x0; u0i, thus h � h0. Contradiction with
the fact that h 2 VS .

� Let hh; x; ui 2 E such that 8 hh0; x0; u0i 2 E , and
not(hh; x; uiPrefhh0; x0; u0i), thus not(h � h0).
Since h 2 V, and 8h0 2 V, not(h � h0), then
h 2 VS .



6. CONCLUSION
Recently, some researchers have tried to use argumenta-

tion techniques in machine learning [10, 5]. The basic idea
behind their work is to improve existing algorithms in learn-
ing by providing arguments. However, they don't exploit the
whole power of argumentation theory. This paper has pro-
posed, to the best of our knowledge, the �rst framework for
classi�cation that is completely argumentation-based, and
that uses Dung's semantics.
This framework considers the classi�cation problem as a

process that follows four main steps: it �rst constructs ar-
guments in favor of classi�cations of examples from a set
of training examples, and a set of hypothesis. Con
icts be-
tween arguments may appear when two arguments classify
the same example in di�erent classes. Once the arguments
identi�ed, it is possible to compare them on the basis of their
strengths. The idea is that arguments coming from the set
of training examples are stronger than arguments built from
the set of hypothesis. Similarly, arguments based on most
preferred hypothesis are stronger than arguments built from
less preferred hypothesis. We have shown that acceptability
semantics of the ASC retrieves and even characterizes the
version space and its upper and lower bounds. Thus, the
argumentation-based approach gives another interpretation
of the version space as well as its two bounds in terms of
arguments. We have also shown that when the set of train-
ing examples is inconsistent, it is still possible to classify
examples. Indeed, in this particular case, the version space
is empty as it is the case in the version space learning frame-
work. A last and not least feature of our framework consists
of de�ning the class of each example on the basis of all the
hypothesis and not only one, and also to suggest four intu-
itive decision criteria for that purpose.
A �rst extension of this framework would be to explore the
proof theories in argumentation that test directly whether a
given argument is in the grounded extension without com-
puting this last. This means that one may know the class of
an example without exploring the whole hypothesis space.
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