Leila Amgoud
email: amgoud@irit.fr

Mathieu Serrurier
email: serrurier@irit.fr

Arguing and Explaining Classifications

Keywords: I.2.3 [Deduction and Theorem Proving]: Nonmonotonic reasoning and belief revision ; I.2.11 [Distributed Articial Intelligence]: Intelligent agents Human Factors, Theory Argumentation, Classication

Argumentation is a promising approach used by autonomous agents for reasoning about inconsistent knowledge, based on the construction and the comparison of arguments. In this paper, we apply this approach to the classication problem, whose purpose is to construct from a set of training examples a model (or hypothesis) that assigns a class to any new example.

We propose a general formal argumentation-based model that constructs arguments for/against each possible classication of an example, evaluates them, and determines among the conicting arguments the acceptable ones. Finally, a \valid" classication of the example is suggested. Thus, not only the class of the example is given, but also the reasons behind that classication are provided to the user as well in a form that is easy to grasp.

We show that such an argumentation-based approach for classication oers other advantages, like for instance classifying examples even when the set of training examples is inconsistent, and considering more general preference relations between hypotheses. Moreover, we show that in the particular case of concept learning, the results of version space theory are retrieved in an elegant way in our argumentation framework.

INTRODUCTION

Argumentation has become an Articial Intelligence keyword for the last fteen years, especially in sub-elds such as non monotonic reasoning, inconsistency-tolerant reasoning, multiple-source information systems [START_REF] Amgoud | Inferring from inconsistency in preference-based argumentation frameworks[END_REF][START_REF] Prakken | Argument-based extended logic programming with defeasible priorities[END_REF][START_REF] Simari | A mathematical treatment of defeasible reasoning and its implementation[END_REF][START_REF] Chesñevar | Integrating defeasible argumentation with fuzzy art neural networks for pattern classication[END_REF]. Argumentation follows basically three steps: i) to construct arguments and counter-arguments for a statement, ii) to select the \acceptable" ones and, nally, iii) to determine whether the statement can be accepted or not. This paper claims that argumentation can also be used as an alternative approach for the problem of classication. Classication aims at building models that describe a concept from a set of training examples. The models are intended to be suciently general in order to be reused on new examples. When the concept to learn is binary, i.e. examples of that concept can be either true or false, the problem is called concept learning.

In our argumentation-based approach, the classication problem is reformulated as follows: given a set of examples (the training ones, and/or additional examples) and a set of hypotheses, what should be the class of a given example? To answer this question, arguments are constructed in favor of all the possible classications of that example. A classication can come either from an hypothesis, or from a training example. The obtained arguments may be conicting since it may be the case that the same example is aected to dierent classes. Finally, a \valid" classication of the example is suggested. Thus, not only the class of the example is given, but also the reasons behind that classication are provided to the user as well in a form that is easy to grasp.

We show that such an argumentation-based approach for classication oers other advantages, like for instance classifying examples even when the set of training examples is inconsistent, and considering more general preference relations between hypotheses. Moreover, we show that in the particular case of concept learning, the results of the version space theory developed by Mitchell in [START_REF] Mitchell | Generalization as search[END_REF] are retrieved in an elegant way in our argumentation framework. We show that the acceptability semantics dened in [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] allow us to identify and characterize the version space as well as its lower and upper bounds. In sum, this paper proposes a formal theoretical framework for handling, analysing and explaining the problem of classication. The framework presents the following features that make it original and exible: 2. it allows one to reason directly on the set of hypotheses;

3. examples are classied on the basis of the whole set of hypotheses rather than only one hypothesis as it is the case in standard classication models. Indeed, in the standard approach, a unique hypothesis is chosen, and all the examples are classied on the basis of that hypothesis.

4. it presents several original and intuitive decision criteria for choosing the class of an example.

The paper is organized as follows. We rst present the classication problem, then we introduce the basic argumentation framework of Dung [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. The third section introduces our argumentation-based framework for classication as well as its properties. = c2. Otherwise, is said to be inconsistent. Regarding the hypothesis space r, it may be, for instance, decision trees, propositional sets of rules, neural nets, etc.

CLASSIFICATION PROBLEM

An hypothesis h is a mapping from to g (i.e. h: U 3 g). Before dening the output of the framework, let us rst introduce a key notion, that of soundness. Definition 2 (Soundness). Let h P r. An hypothesis h is sound with respect to a training example (x; c) P i h(x) = c. If V(xi; ci) P , h is sound w.r.t (xi; ci), then h is said to be sound with . The general task of classication is to identify an h P r that is sound with respect to the training examples. This hypothesis will be next used for classifying new examples. The most common approach for identifying this hypothesis is to use a greedy exploration of the hypothesis space, guided by a preference relation on hypothesis. This preference relation may be encoded by a utility function or by a syntactic or a semantic relation. Utility functions are generally based on the accuracy of the hypothesis (proportion of well classied examples) weighted by some complexity criteria (number of rules, etc.). Utility functions encode usually a total order. Syntactic relations may be for instance entailment or subsumption in the logical case. In this case it encodes a partial preorder on r.

Example 1 (Learning the concept sunny day). In this example, the feature space is a pair (attribute, value). Three attributes are considered: pressure, temperature, and humidity. The concept to learn is supposed to be binary, thus g = f0; 1g. Four Let us suppose that the hypothesis space r is the space of constraints on the values of each attribute. Indeed, the constraints are conjunctions of accepted values of attributes.

The special constraint Y (resp. ?) means that no (resp. all) values of attributes are accepted. If a vector of values of attributes match all the constraints, then it is considered as a positive example, otherwise it is a negative one. The hypotheses hY; Y; Yi and h?; ?; ?i are respectively the lower and the upper bound of the hypothesis space r.

ABSTRACT ARGUMENTATION FRAME-WORK

Argumentation is a reasoning model that follows the following steps:

1. Constructing arguments and counter-arguments.

2. Dening the strengths of those arguments.

3. Evaluating the acceptability of the dierent arguments.

4. Concluding or dening the justied conclusions.

In [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], an argumentation system is dened as follows: Definition 3 (Argumentation system). An argumentation system (AS) is a pair he, i. e is a set of arguments and e ¢ e is a defeat relation. We say that an argument A defeats an argument B i (A; B) P (or A B).

Note that to each argumentation system is associated an oriented graph whose nodes are the dierent arguments, and the edges represent the defeasibility relationship between them. Among all the conicting arguments, it is important to know which arguments to keep for inferring conclusions or for making decisions. In [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], dierent semantics for the notion of acceptability have been proposed. Let us recall them here. Definition 4 (Conflict-free, Defence). Let f e. f is conict-free i there exist no Ai, Aj P f such that Ai Aj . f defends an argument Ai i for each argument Aj P e, if Aj Ai, then there exists A k P f such that A k Aj .

Definition 5

(Acceptability semantics). Let f be a conict-free set of arguments, and let p: 2 A U 3 2 A be a function such that p(f) = fA j f defends Ag.

f is a complete extension i f = p(f). f is a grounded extension i it is the minimal (w.r.t.

set-inclusion) complete extension.

f is a preferred extension i it is a maximal (w.r.t.

set-inclusion) complete extension.

f is a stable extension i it is a preferred extension that defeats all arguments in enf. Let fi1, : : :, ing be the set of all possible extensions under a given semantics.

Note that there is only one grounded extension which may be empty. It contains all the arguments that are not defeated, and also the arguments which are defended directly or indirectly by non-defeated arguments. The last step of an argumentation process consists of determining, among all the conclusions of the dierent arguments, the \good" ones, called justied conclusions.

AN ARGUMENTATION FRAMEWORK FOR CLASSIFICATION

The aim of this section is to propose an instantiation of the general and abstract framework of Dung that allows the classication of examples. Throughout this section, we will consider a features space , a concept space g = fc1; : : : ; cng, a (maybe inconsistent) set of m > 0 training examples, a hypotheses space r that is equipped with an arbitrary preference relation #. Thus, # r ¢ r, and r is supposed to be a partial preorder.

In order to instantiate the abstract framework of Dung, one needs to dene the set e of arguments as well as the defeat relation between those arguments.

In our particular application, one needs to argue about particular classications, thus arguments are constructed in favor of assigning particular classes from g to an example in . Indeed, an argument in favor of the pair (x; c) represents the reason for assigning the class c to the example x. Two reasons can be distinguished: eS T = Y.

Proof. The rst point follows from the above denition, and from the fact that an hypothesis h cannot be empty. The second point follows directly from the rst property, i.e. jj = jeSj, and the assumption that T = Y.

Let us illustrate the notion of argument through example 1.

Example 2. In example 1, there are exactly four arguments with an empty support, and they correspond to the training examples: e ; = fa1 = hY, (pressure, low) (temperature, medium) (humidity,high), 0i, a2 = hY, (pressure, medium) (temperature, medium) (humidity, low), 1i, a3 = hY, (pressure, low) (temperature, medium) (humidity, medium), 0i, a4 = hY, (pressure, medium) (temperature, high) (humidity, medium), 1ig. There are also arguments with a nonempty support such as: ha5 = h ? , medium high, ?i, (pressure, low) (temperature, high) (humidity, high), 1ig, a6 = hh medium high, ?, ?i, (pressure, low) (temperature, high) (humidity, high), 0i, a7 = hh medium, medium high, ?i, (pressure, low) (temperature, high) (humidity, high), 0i.

In [START_REF] Amgoud | Inferring from inconsistency in preference-based argumentation frameworks[END_REF][START_REF] Prakken | Argument-based extended logic programming with defeasible priorities[END_REF][START_REF] Simari | A mathematical treatment of defeasible reasoning and its implementation[END_REF], it has been argued that arguments may have dierent strengths depending on the quality of information used to construct them. In [START_REF] Simari | A mathematical treatment of defeasible reasoning and its implementation[END_REF], for instance, arguments built from specic information are stronger than arguments built from more general ones. In our particular application, it is clear that arguments with an empty support are stronger than arguments with a non-empty one. This reects the fact that classications given by training examples take precedence over ones given by hypotheses in r. It is also natural to consider that arguments using most preferred hypothesis are stronger than arguments with less preferred ones. Definition 7 (Comparing arguments). Let hh; x; ci, hh 0 ; x 0 ; c 0 i be two arguments of e. hh; x; ci is preferred to hh 0 ; x 0 ; c 0 i, denoted by hh; x; ci Pref hh 0 ; x 0 ; c 0 i, i: h = Y and h 0 T = Y, or h # h 0 .

Property 2. The relation Pref is a partial preorder.

Proof. This is due to the fact that the relation # is a partial preorder.

Now that the set of arguments is dened, it is possible to dene the defeasibility relation between arguments in e.

Here again, there are two ways in which an argument A can attack another argument B:

1. by rebutting its conclusion. This situation occurs when the two arguments have contradictory conclusions, i.e. the same example is classied in dierent ways.

2. by undercutting its support. (Rebutting). Let hh; x; ci, hh 0 ; x 0 ; c 0 i be two arguments of e. hh; x; ci rebuts hh 0 ; x 0 ; c 0 i i x x 0 , c T = c 0 . Example 3. In example 2, we have for instance : a5 rebuts a6, a5 rebuts a7, a6 rebuts a5, and a7 rebuts a5. Definition 9 (Undercutting). Let hh; x; ci, hh 0 ; x 0 ; c 0 i be two arguments of e. hh; x; ci undercuts hh 0 ; x 0 ; c 0 i i h = Y and h 0 (x) T = c. Example 4. In example 2, we have for instance : a1 undercuts a5, a2 undercuts a5, a3 undercuts a5, and a4 undercuts a5.

Note that the rebutting and undercutting relations are used in most argumentation systems that handle inconsistency in knowledge bases. Property 3. If is consistent, then @ A, B P eS such that A rebuts B, or A undercuts B.

Proof. Let A = hY; x; ui, B = hY; x 0 ; u 0 i P such that A rebuts B. According to Denition 8, x x 0 and u T = u 0 . This contradicts the fact that is consistent.

The two above conict relations are brought together in a unique relation, called \Defeat". Definition 10 (Defeat). Let A = hh; x; ci, B = hh 0 ; x 0 ; c 0 i be two arguments of e. A defeats B i:

1. A rebuts (resp. undercuts) B, and 2. (A Pref B), or (not(A Pref B) and not(B Pref A))

Example 5. With the argument dened in ex. 2 we have for instance : a1 defeats a5, a2 defeats a5, a3 defeats a5, a4 defeats a5, a5 defeats a6, a5 defeats a7 and a6 defeats a5.

From the above denition, it is easy to check that an argument with an empty-support cannot be defeated by an argument with a non-empty support. Property 4. V A P eS, @ B P eneS s.t B defeats A. Proof. Let A P eS and B P eneS such that B defeats A. This means that B rebuts A (because according to Denition 9, an argument with a non-empty support cannot undercut an argument with an empty one. Moreover, according to Denition 10, we have either B Pref A, or (not(B Pref A) and not(A Pref B)). This is impossible because according to Denition 7, arguments in eS are always preferred to arguments with a non-empty support.

The argumentation system for classication is then the following: Definition 11 (Argumentation system). An argumentation system for classication (ASC) is a pair he; def eati, where e is the set of arguments (see Denition 6) and defeat is the relation dened in Denition 10.

Let us now identify the acceptable arguments of the above ASC. It is clear that the arguments that are not defeated at all will be acceptable. Let denote that set of undefeated arguments.

Proposition 1. If is consistent, then eS . Proof. Let A P eS. Let us assume that WB P e such that B defeats A. According to Property 4, B = P eneS. Thus, B P eS. Moreover, B defeats A means that B rebuts A. This means then that A classies a training example in u, and B classies an equivalent example in u 0 T = u. This contradicts the fact that the set is consistent.

As said in Section 3, one of the acceptability semantics is the so-called `grounded extension'. Such an extension is unique and maybe empty. However, we show that when the set of training examples is consistent, this grounded extension is not empty. Proposition 2 (Grounded extension). If is consistent, then the argumentation system he; def eati has a non empty grounded extension i.

Proof. This is due to the fact that eS T = Y and eS . Note that the system he; def eati is not always nite. By nite we mean that each argument is defeated by a nite number of arguments. This is due to the fact that r and are not always nite. Proposition 3. If r and are nite, then the system he; def eati is nite. When an argumentation system is nite, its characteristic function p is continuous. Consequently, the least xed point of this function can be dened by an iterative application of p to the empty set. Proposition 4. If the argumentation system he; def eati is nite, then the grounded extension i is:

i = [p i0 (Y) = [[i1 p i ()]:
Let us now analyze the other acceptability semantics, namely preferred and stable ones. In general, the ASC has at least one preferred extension that may be empty. However, as for the case of grounded extension, we can show that in the particular case of a consistent set of training examples, the ASC has at least one non-empty preferred extension.

Proposition 5. If is consistent, then the ASC he; def eati has n ! 1 non-empty preferred extensions.

Proof. In [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], it has been shown that the grounded extension is included in very preferred extension. Since the grounded extension is not empty (according to Proposition 2, then there exists at least one non-empty preferred extension).

In general, the preferred extensions of an argumentation system are not stable. However, we can show that when the set g contains only two possible classes, this means that the concept to learn is binary, these extensions coincide. This result is due to the fact that the oriented graph associated to the above ASC has no odd length circuits in this case. However, it may contain circuits of even length. Proposition 6. If g = fc1; c2g with c1 T = c2, then:

The graph associated with the system he; def eati has no odd length circuits.

The preferred extensions and stable extensions of the system he; def eati coincide. Part 2: This is a consequence of the fact that there is no odd circuits in the system. Moreover, in this case the intersection of all the preferred (stable) extensions coincides with the grounded extension. Proposition 7. Let he; def eati be an ASC. Let i be its grounded extension, and i1; : : : ; in its preferred (stable) extensions. If g = fc1; c2g with c1 T = c2, then i = T i=1;:::;n ii.

The last step of an argumentation process consists of dening the status of the conclusions, in our case, the classi-

cation of examples.
In what follows we present two decision criteria: The rst one, called universal vote, consists of accepting those classications that are in any extension. However, it is clear that this kind of voting may not classify all the examples. Thus, we propose a second criterion, called majority vote, that allows to associate a class with each example. The conclusions here are the ones that are supported by a majority of arguments that appear in the dierent extensions. Formally:

Definition 12. Let he; def eati be a ASC, and i1; : : : ; in its extensions under a given semantics. Let x P and c P g. Universal vote: x is universally classied in c i Vii, W <h; x; c> P ii. U V denotes the set of all (x; c), such that x is universally classied in c.

Majority vote:

x is majoritarily classied in c i jf< h; x; c > jWii; < h; x; c >P iigj ! jf< h; x; c 0 > jc 0 T = c; Wii; < h; x; c 0 >P iigj. M V denotes the set of all (x; c), such that x is majoritarily classied in c.

The universally classied examples are those that are supported by arguments in all the extensions. From a classication point of view, these correspond to examples classied by the most preferred hypotheses. It is easy to check that the set of universally classied examples is included in the set of majoritarily classied ones.

Property 5. Let he; def eati be a ASC, and i1; : : : ; in its extensions under a given semantics :

U V M V
We can show that the above argumentation framework delivers \safe" results, since its sets of conclusions U V , M V are consistent. Formally: Proposition 8. Let he; def eati be a ASC, and U V , M V its sets of conclusions. The sets U V and M V are consistent.

RETRIEVING VERSION SPACE THEORY

As said before, concept learning is a particular case of classication, where the concept to learn is binary. In [START_REF] Mitchell | Generalization as search[END_REF], Mitchell has proposed the famous general and abstract framework, called version space learning, for concept learning. That framework takes as input a consistent set of training examples on the concept to learn. g contains only two classes, denoted respectively by 0 and 1. Thus, g = f0; 1g. The set r is supposed to be equipped with a \particular" partial preorder # that reects the idea that some hypothesis are more general than others in the sense that they classify positively more examples. This preorder denes a lattice on the hypothesis space. Formally:

Definition 13 (Generality order on hypothesis).

Let h1, h2 P r. h1 is more general than h2, denoted by h1 # h2, i fx P jh1(x) = 1g fx P jh2(x) = 1g.

The framework identies the version space, which is the set of all the hypothesis of r that are sound with . The idea is that a \good" hypothesis should at least classify the training examples correctly.

Definition 14 (Version space).

= fh P rj h is sound with g Version space learning aims at identifying the upper and the lower bounds of this version space . The upper bound will contain the most general hypothesis, i.e the ones that classify more examples, whereas the lower bound will contain the most specic ones, i.e the hypothesis that classify less examples.

Definition 15

(General hypotheses). The set of general hypothesis is G = fh P r j h is sound with and @ h 0 P r with h 0 sound with , and h 0 # hg.

Definition 16

(Specific hypotheses). The set of specic hypothesis is S = fh P r j h is sound with and @ h 0 P r with h 0 sound with , and h # h 0 g.

From the above denition, we have the following simple property characterizing the elements of . Property 6. [START_REF] Mitchell | Generalization as search[END_REF] = fh P rjWh1 P S; Wh2 P G; h2 # h # h1g

In [START_REF] Mitchell | Generalization as search[END_REF], an algorithm that computes the version space by identifying its upper and lower bounds S and G has been proposed.

The above framework has some limits. First, nding the version space is not sucient for classifying examples out of the training set. This is due to possible conicts between hypothesis. Second, it has been shown that the complexity of the algorithm that identies S and G is very high. In order to palliate that limit, learning algorithms try in general to reach only one hypothesis in the version space by using heuristical exploration of r (from general to specic exploration, for instance FOIL [START_REF] Quinlan | Learning logical denitions from relations[END_REF], or from specic to general exploration, for instance PROGOL [START_REF] Muggleton | Inverse entailment and Progol[END_REF]). That hypothesis is then used for classifying new objects. Moreover, it is obvious that this framework does not support inconsistent set of examples: Property 7. [START_REF] Mitchell | Generalization as search[END_REF] If the set is inconsistent, then the version space = Y.

A consequence of the above result is that no concept can be learned. This problem may appear in the case of noisy training data set. Let us now show how the above ASC can retrieve the results of the version space learning, namely the version space and its lower and upper bounds. Before doing that, we start rst by introducing some useful notations. Let Hyp be a function that returns for a given set of arguments, their non empty supports. In other words, this function returns all the hypothesis used to build arguments: Definition 17. Let T e.

Hyp(T) = fh j W hh, x, ui P T and h T = Yg Now we will show that the argumentation-based model for concept learning computes in an elegant way the version space . Proposition 9. Let he; def eati be a ASC. Let i be its grounded extension, and i1; : : : ; in its preferred (stable) extensions. If the set is consistent then: Hyp(i) = Hyp(i1) = : : : = Hyp(in) = where is the version space.

Proof. Let ii be an extension under a given semantics. Hyp(ii) : Let h P Hyp(ii), then W hh; x; ui P ii.

Let us assume that W(xi; ui) P such that h(xi) T = ui. This means hY; xi; uii undercuts hh; x; ui (according to Denition 9). Consequently, hY; xi; uii defeats hh; x; ui. However, according to Property 1, hY; xi; uii P eS, thus hY; xi; uii P ii. Contradiction because ii is an extension, thus by denition it is conict-free.

Hyp(ii): Let h P , and let us assume that h = P Hyp(ii). Since h P , then V(xi; ui) P , h(xi) = ui (1) Let (x; u) P , thus h(x) = u and consequently hh; x; ui P e. Moreover, since h = P Hyp(i), then hh; x; ui = P E. Thus, W hh 0 ; x 0 ; u 0 i that defeats hh; x; ui.

Case 1: h 0 = Y. This means that hY; x 0 ; u 0 i undercuts hh; x; ui and h(x 0) T = u 0 Contradiction with (1).

Case 2: h 0 T = Y. This means that hh 0 ; x 0 ; u 0 i rebuts hh; x; ui. Consequently, x x 0 and u T = u 0 . However, since h P , then h is sound with . Thus, hY; x; ui defeats hh 0 ; x 0 ; u 0 i, then hY; x; ui defeats hh; x; ui. Since hY; x; ui P , then hh; x; ui P p(g) and consequently, hh; x; ui P ii. Contradiction.

The above result is of great importance. It shows that to get the version space, one only needs to compute the grounded extension.

We can also show that if a given argument is in an extension ii, then any argument based on an hypothesis from the version space that supports the same conclusion is in that extension. Formally:

Proposition 10. Let he; def eati be a ASC, and i1; : : : ; in its extensions under a given semantics. If < h; x; u >P ii, then Vh 0 P s.t. h 0 T = h if h 0 (x) = u then < h 0 ; x; u >P ii.

Using the grounded extension, one can characterize the upper and the lower bounds of the version space. The upper bound corresponds to the most preferred arguments (w.r.t Pref) of the grounded extension, whereas the lower bound corresponds to the less preferred ones.

Proposition 11. Let he; def eati be a ASC, and i its grounded extension. G = fh j W <h; x; u> P i s.t V <h 0 ; x 0 ; u 0 > P i, not (<h 0 ; x 0 ; u 0 > Pref <h; x; u>)g. S = fh j W <h; x; u> P i s.t V <h 0 ; x 0 ; u 0 > P i, not (<h; x; u> Pref <h 0 ; x 0 ; u 0 >)g.

Proof.

G = fh j W <h; x; u> P i s.t V <h 0 ; x 0 ; u 0 > P i, not (<h 0 ; x 0 ; u 0 > Pref <h; x; u>)g.

Let h P G, thus h P , and Vh 0 P , h # h 0 . Since h P , thus, h P Hyp(i), with i an extension. Then, Whh; x; ui P i. Since h # h 0 for any h 0 P , then h # h 0 for any h 0 P Hyp(i). Thus, hh; x; ui Pref hh 0 ; x 0 ; u 0 i, V hh 0 ; x 0 ; u 0 i P i. Let hh; x; ui P i such that V hh 0 ; x 0 ; u 0 i P i, and not(hh 0 ; x 0 ; u 0 iPrefhh; x; ui). Thus, h P Hyp(i), and V h 0 P Hyp(i), not(h 0 # h), thus h P G. S = fh j W <h; x; u> P i s.t V <h 0 ; x 0 ; u 0 > P i, not (<h; x; u> Pref <h 0 ; x 0 ; u 0 >)g. Let h P S, thus @h 0 P such that h # h 0 . Since h P S, then h P and consequently, h P Hyp(i). This means that Whh; x; ui P i. Let us assume that Whh 0 ; x 0 ; u 0 i P i such that hh; x; ui P ref hh 0 ; x 0 ; u 0 i, thus h # h 0 . Contradiction with the fact that h P S. Let hh; x; ui P i such that V hh 0 ; x 0 ; u 0 i P i, and not(hh; x; uiP ref hh 0 ; x 0 ; u 0 i), thus not(h # h 0). Since h P , and Vh 0 P , not(h # h 0), then h P S.

CONCLUSION

Recently, some researchers have tried to use argumentation techniques in machine learning [START_REF] Zabkar | Argument based machine learning in a medical domain[END_REF][START_REF] Mozina | Argument based rule learning[END_REF]. The basic idea behind their work is to improve existing algorithms in learning by providing arguments. However, they don't exploit the whole power of argumentation theory. This paper has proposed, to the best of our knowledge, the rst framework for classication that is completely argumentation-based, and that uses Dung's semantics.

This framework considers the classication problem as a process that follows four main steps: it rst constructs arguments in favor of classications of examples from a set of training examples, and a set of hypothesis. Conicts between arguments may appear when two arguments classify the same example in dierent classes. Once the arguments identied, it is possible to compare them on the basis of their strengths. The idea is that arguments coming from the set of training examples are stronger than arguments built from the set of hypothesis. Similarly, arguments based on most preferred hypothesis are stronger than arguments built from less preferred hypothesis. We have shown that acceptability semantics of the ASC retrieves and even characterizes the version space and its upper and lower bounds. Thus, the argumentation-based approach gives another interpretation of the version space as well as its two bounds in terms of arguments. We have also shown that when the set of training examples is inconsistent, it is still possible to classify examples. Indeed, in this particular case, the version space is empty as it is the case in the version space learning framework. A last and not least feature of our framework consists of dening the class of each example on the basis of all the hypothesis and not only one, and also to suggest four intuitive decision criteria for that purpose. A rst extension of this framework would be to explore the proof theories in argumentation that test directly whether a given argument is in the grounded extension without computing this last. This means that one may know the class of an example without exploring the whole hypothesis space.

1 .

 1 it handles i) the case of a consistent set of training examples; ii) the case of an inconsistent set of training examples; and iii) the case of an empty set of training examples;

 (according to Denition 9). Consequently, Example(A) Example(B) Example(C), and Value(A) T = Value(B), Value(B) T = Value(C). Due to the fact that = f0; 1g, we have Value(A) = Value(C). This contradicts the assumption that C rebuts A.

 1. (x; c) is a training example in , 2. there exists a hypothesis h P r that classies x in c. that from the above denition, for any training example (xi; ci) P , WhY; xi; cii P e. Let eS = fhY; x; ci P eg (i.e. the set of arguments coming from the training examples). Since the set of training examples is not empty, then eS is not empty as well. Property 1. Let be a set of training examples. jj = jeSj 1 .

	Definition 6 A = hh; x; ci such that: (Argument). An argument is a triplet
	1. h P r, x P , c P g
	2. If h T = Y, then c = h(x)
	3. If

h = Y, then (x; c) P h is called the support of the argument, and (x; c) its conclusion. Let Example(A) = x, and Class(A) = c. Let e be the set of arguments built from (r; ; g). Note

 This occurs when the support of B classies in a dierent way the example of the conclusion of A. However, this relation is only restricted to training examples. Indeed, only arguments built from training examples are allowed to undercut other arguments. The idea behind this is that training examples are the only, in some sense, certain information one has, and thus cannot be defeated by hypothesis. However, hypothesis have controversial status.

	Definition 8

 Proof Sketch.Part 1: Let A; B; C be three arguments such that A defeats B, B defeats C , and C defeats A. Case 1: Let us suppose that A P eS. According to Property 3, B P eneS. According to Property 4, C should be in eneS. Contradiction because according to Property 4, C cannot defeat A, which is in eS. Case 2: Let us suppose that A; B; C P eneS. This means that A rebuts B, B rebuts C , and C rebuts A