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Abstract. Dung’s argumentation system takes as input a satgdimentsaand a
binary relationencoding attacks among these arguments, and returns diféxrent
tensionof arguments. However, no indication is given on how to instantiate this
setting, i.e. how to build arguments fromkaowledge basand how to choose

an appropriate attack relation. This leads in some cases to undesiraitie liks
inconsistent extensions (i.e. the set of formulas forming an extensioocdesis-
tent). This is due to the gap between the abstract setting and the knowlestge ba
from which it is defined.

The purpose of this paper is twofold: First it proposes to fill in this gap»y e
tending Dung’s system. The idea is to consider all the ingredients involvaa in
argumentation problem. We start with an abstract monotonic logic whicsistsn

of a set of formulas and a consequence operator. We show how tabgiichents
from a knowledge base using the consequence operator of the logan&ave
show that the choice of an attack relation is crucial for ensuring consistauits,

and should not be arbitrary. In particular, we argue that an attack meksttiould

be at least grounded on timeinimal conflictscontained in the knowledge base.
Moreover, due to the binary character of this relation, some attack redatiay
lead to unintended results. Namely, symmetric relations are not suitable whe
ternary (or more) minimal conflicts are in the knowledge base. We getien

the characteristics of attack relations that ensure sound results.

1 Introduction

Argumentation is a reasoning model based on the construatid evaluation of argu-

ments in order to increase or decrease the acceptabilitgioba standpoint. It is used,
for instance, for handling inconsistency in knowledge bdsea. [2, 9]) and for decision

making (e.g. [1, 3]).

One of the most abstract argumentation systems in exist@gture is Dung'’s one.

It consists of a set of arguments and a binary relation engoditacks among these
arguments. Since its original formulation, this systemlyexsome very popular and dif-
ferent instantiations of it have been defined. Unfortuyateme of them such as the
one presented in [8] can lead to very unintuitive resultg4]nit has been shown that
this instantiation violates key postulates like the caesisy of extensions. An exten-
sion satisfies consistency if the set of formulas used inragnis of that extension is
consistent. What is worth noticing is that this postulatereto the internal structure



of an argument (i.e. its formulas) while the link betweensthéormulas and the ac-
ceptability semantics is not clear. The link between theirsistency of a base and the
attack relation is also not clear. In summary, there is a gaywden the abstract setting
and the knowledge base from which it is built. Thus, basidad®like the definition of
an argument and of an attack relation are made in an ad hoc way.

The purpose of this paper is twofold: First it proposes taiffilthis gap by extending
Dung’s system. The idea is to consider all the ingrediensiVied in an argumentation
problem ranging from the logical language to the output efdiistem. We start with an
abstract monotonic logias defined in [10]. Tarski defines an abstract monotonic logic
as a set of formulas and a consequence operator that sasisfiessaxiom. We show
how to build arguments from any subset of formulas using tiesequence operator.
Second, we show that the choice of an attack relation is @rémi ensuring consistent
results and should not be arbitrary. In particular, an &ttatation should be at least
grounded on the minimal conflicts contained in the knowlelage. Moreover, due to
the binary character of the attack relation in Dung’s systemme attack relations may
lead to undesirable results. Namely, symmetric relatiosasat suitable when ternary
(or more) minimal conflicts are included in the base. We psejtben the characteristics
of an attack relation that should be used for ensuring soeswlts.

Section 2 recalls Tarski's axiomatization of a monotonigido Section 3 details our
extension of Dung’s system. Section 4 presents exampléshioa the importance of
choosing correctly an attack relation. Section 5 studieptioperties of such a relation
while Section 6 gives recommendations on how to choose one.

2 Tarski's abstract consequence operations

Alfred Tarski [10] defines ambstract logicas a pain.¢, CN) where members o
are calledvell-formed formulasandCN is aconsequence operatdiN is any function
from 2< to 2% that satisfies the following axioms:

1. X CCN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) = UYCfX CN(Y) (Finiteness)
4. CN({z}) = & for somex € .¥ (Absurdity)

5. CN(0) # &~ (Coherence)

Notation: Y C; X means that” is a finite subset ok .

Intuitively, CN(X) returns the set of formulas that are logical consequences at-
cording to the logic in question. It can easily be shown frowa above axioms th&N
is a closure operator, that SN enjoys properties such as:

Property 1. Let X, X', X" C Z.

1. X C X' = CN(X) C CN(X"). (Monotonicity)
2. CN(X)UCN(X") C CN(X U X).
3. CN(X) =CN(X") = CN(X U X") =CN(X" U X").



Almost all well-known monotonic logics (classical logiatiitionistic logic, modal
logic, etc.) can be viewed as special cases of Tarski's nati@n abstract logic.
Once(.Z,CN) is fixed, we can define a notion obnsistencys follows:

Definition 1 (Consistency)Let X C . X is consistentwrt (£, CN) iff CN(X) #
Z. Itisinconsistenbtherwise.

This says thafX is consistent iff its set of consequences is not the set dbathulas.
The coherence requirement forde® always be consistent - this makes sense for any
reasonable logic as saying emptiness should intuitivelydmsistent.

Property 2. Let X C .Z.

1. If X is consistent, the@N(X) is consistent as well.
2. VX' C X, if X is consistent, theX’ is consistent.
3. VX' C X, if X' isinconsistent, theiX is inconsistent.

In what follows we introduce a concept that is useful for thst of the paper.

Definition 2 (Adjunctive) (£, CN) isadjunctiveiffforall z andy in £, if CN({z, y}) #
CN({z}) andCN({z,y}) # CN({y}) then there exists € .Z such thatCN({z}) =

CN({z,y}).

Intuitively, an adjunctive logic infers, from the union a¥d formulas{z, y}, some
formula(s) that can be inferred neither franalone nor fromy alone (except, of course,
wheny ensues frome or vice-versa). In fact, all well-known logics are adjunetit A
logic which is not adjunctive could for instance fail to deny y from the premises
{—z, ~y}.

Throughout the paper, the following assumption is made:

Assumption 1 The logic(.¢, CN) is adjunctive.

From now on, we will consider knowledge bas#&’ which is a subset of the logical
language? (X C .£). With no loss of generality and for the sake of simplicityet
knowledge base’ is assumed to be free of tautologies:

Assumption 2 Forall z € X, z ¢ CN(0).

If X is inconsistent, then it contaimsinimal conflicts

Definition 3 (Minimal conflict) LetX be a knowledge base, addC X'. The set is
a minimal conflictiff:

— Cisinconsistent
— Vz € C, C\{z} is consistent

Let%s; denote the set of all minimal conflicts bf

L A few very restrictedragments of well-known logics fail to be adjunctive, e.g., the pure im-
plicational fragment of classical logic as it is negationless, disjunctionies$ of course,
conjunctionless.



3 An extension of Dung’s abstract system

Argumentation is a reasoning paradigm that follows threerateps: i) constructing
argumentsand counterarguments ii) defining thatusof each argument, and iii) con-
cluding or specifying thgustified conclusiondn what follows, we refine Dung’s sys-
tem by defining all the above items involved in argumentatvithout losing generality.
We start with an abstract logicZ, CN) from which the notions of argument and attacks
between arguments are defined. More precisely, argumentsidt from a knowledge
base, say’, containing formulas of the languagg€. An argumentgives a reason for
believing a statement or choosing an action, etc. Formally:

Definition 4 (Argument) Let X be a knowledge base. Aargumentis a pair (X, x)
such that:

1. XCx

2. X is consistent

3. z € CN(X)

4. 31X’ c X such thatr € CN(X")

Notations: Supp andConc denote respectively theupport X and theconclusionz of
an argumentX, z). ForS C X, let Arg(S) denote the set of all arguments that can be
built from & by means of Definition 4.

Due to Assumption 2o ¢ CN(0) for all x € X), it can also be shown that each
consistent formula irt’ gives birth to an argument:

Property 3. For allz € X' s.t. the se{z} is consistent, there existse Arg(X) where
Supp(a) = {x}.

SinceCN is monotonic, constructing arguments is a monotonic pockdditional
knowledge never makes the set of arguments to shrink butgivig rise to extra argu-
ments that may interact with the existing arguments.

Property 4. Arg(X) C Arg(X") wheneverX C X' C .Z.

We show next that any proper subset of a minimal conflict isstigport of at least
one argument. It is a result of utmost importance as regarcisding the attack relation
between arguments.

Proposition 1 Let (., CN) be adjunctive. For all non-empty proper sub3ebf some
minimal conflictC' € €, there exists € Arg(X) s.t.Supp(a) = X.

Proposition 1 is indeed fundamental because it says thittdreents from’ con-
tradict others then it is always possible to define an argamdnibiting the conflict.

We refine Dung’s abstract framework as follows.

Definition 5 (Argumentation system) Given a knowledge basg, an argumentation
system(AS) overX is a pair (Arg(X), R) such thatArg(X) is a set of arguments
defined from¥ andR C Arg(X) x Arg(XY) is anattackrelation.



The attack relation captures the different disagreeméatisnhay exist between argu-
ments. [6] is silent on how to proceed in order to obtain aorableRR in practice. It
happens, as pointed out by [4], that it is in fact an erromprstep. We will see in the
next section how can things go wrong in this respect, andharstibsequent section, to
what extent our definitions help to circumvent the problewr. the time being, let us
focus on what roléR plays in Dung’s approach.

Among all the arguments, it is important to know which arguaiseo rely on for
inferring conclusions from a bage. In [6], different acceptability semantics have been
proposed. The basic idea behind these semantics is theviiofofor a rational agent,
an argument is acceptable if he can defend this argumenmstgai attacks on it. All
the arguments acceptable for a rational agent will be gathiera so-calle@xtension
An extension must satisfy a consistency requirement and dedisnd all its elements.

Definition 6 (Conflict-free, Defence) Let (Arg(X), R) be an AS, and C Arg(X).

— Bis conflict-freeiff #la,b € B such that(a, b) € R.
— B defendsan argument iff Vb € Arg(X), if (b,a) € R, then3c € B such that
(c,b) € R.

The fundamental semantics in [6] is the one that featuressailoie extensions. The
other semantics (i.e., preferred, stable, complete andngled) are based on it. We
only include the definition for the admissible semantics.

Definition 7 (Admissible semantics)Let B be a conflict-free set of argumentsis an
admissibleextension iff3 defends all its elements.

Since the notion of the acceptability is defined, we can naavatterize the possible
conclusions that can be drawn framaccording to an argumentation system oer
The idea is to conclude if x is the conclusion of at least an argument which belongs
to every extension of the system.

Definition 8 (Output of the system) Let(Arg(X), R) be an AS over a knowledge base
Y. Let&,. .., &, be the extensions ¢krg(X), R) under a given semantiésFor = €
Z, xisaconclusiorof X iff 3a € Arg(X) such thaConc(a) = zanda € &1N---NE,.
We writeOutput (X') to denote the set of all conclusionsSf

In [4], it has been argued that the extensions of an argurientsystem should ensure
consistent results. This means that the base built fromupests of arguments of each
extension should be consistent.

Definition 9 (Consistency of extensions) et (Arg(X'), R) be an AS. An extensidh
(under a given semanticsgtisfies consistendff | J,,. . Supp(a) is consistent.

It can be shown that if all the extensions of an argumentaysitem enjoy consistency,
then the output of the system is consistent as well.

Proposition 2 Let (Arg(X), R) be an AS over a knowledge base Leté&;, ..., &,
be the extensions @¢hrg(X), R) under a given semantics. Yi€;—1_._,,, &; satisfies
consistency, thebutput (X)) is consistent.

2 One can use any semantics: complete, stable, preferred, or gtbuddeever, admissible
semantics is not recommended since the empty set is admissible. Tianguntent can belong
to all the extensions.



4 Some problematic cases

In the previous section we have provided a clear definitioarolirgument and how
it is built from a knowledge bas&'. However, there still is no indication on hoR is
defined and how itis related 8. Moreover, in [4] it has been shown that there are some
instantiations of Dung’s system that violate extensionsistency. Does this mean that
the notion of being conflict-free is not sufficient to ensuoagistency? It is sufficient
provided that the attack relation is defined in an appropnedy. In this section, we
present some problematic examples that shed light on themalimequirements for
defining an attack relation. Throughout the section, we idengropositional logic.

Let us start with an attack relation that is not related tonsistency in¥.

Example 1 (Independence from minimal conflict) Let X' = {z, -2}. S0,%x = {X}.
TakeArg(X) = {a1,a2} wherea; = ({z},2) andaz = ({-z}, ~x). Assume that
R = (. This means thak does not depend at all on minimal conflictsih In this
case,(Arg(X), R) has an admissible extension that violates consistenc/{itii, az }.

Requirement 1 An attack relation should “capture” at least the minimal dbots of
the knowledge base at hand.

Let us now consider an attack relation that captures all timenmal conflicts of X'
We start with asymmetricrelation, due to [7], calledebut An argumentz rebutsan
argumenb iff Conc(a) = —Conc(b) (or vice-versa).

Example 2 (Binary minimal conflict) The two arguments; = ({z},z) and as =
({—z}, ~z) rebut each other. So, the syst¢mrg(X), Rebut) has two admissible ex-
tensions{a; } and{as}. They each satisfy consistency.

Unfortunately, the fact that an attack relation capturesrtiinimal conflicts of a
knowledge base does not always ensure consistency of thiesgos. Let us consider
a knowledge base displaying a ternary minimal conflict.

Example 3 (Ternary conflict) Let ¥ = {z,y,2 — -y}. LetArg(X) consist of the
following arguments:

{z},2) @

—a;=(

- a2=({y}v)

- a3 = E?L —%ﬂy},i‘ — ;y) @
_ag‘:g{y:wif}:% @@
—ag=

{z,y}x Ay) @ @

Let R be such as depicted in figure above. The{sgt a2, a3} is an admissible exten-
sion of (Arg(X'), R). HoweverSupp(a1) U Supp(az) U Supp(as) is inconsistent.

This example shows that a conflict-free set of arguments midgdnsistency. This
is due to the fact thaR is binary, in compliance with Dung’s definitions imposingth
attack relation to be binary. Thus, the ternary conflict le&twa,, a> andas is not
captured.



Requirement 2 If a knowledge base has ternary (or more) minimal conflitts attack
relation should be asymmetric.

Indeed, [5] shows that an argumentation system which usesstymmetricassumption
attackdefined in [7] yields consistent extensions. An argumeunndercuts iff 3n’ €
Supp(b) such thaConc(a) = -k’ (or ' = —Conc(a)).

Example 4 (Ternary conflict cont.) The attack relatioriR, in the sense of undercut,
between arguments af-g(X") from Example 3 is now such as depicted in the figure
below:

F—)

There are three maximal (wrt setinclusion) admissiblemsitns:{a1, as, ag}, {a2, as, as},
and{a, as, as }. All three extensions satisfy consistency.

5 Properties of attack relations

In this section, we discuss primitive properties that mayekpected from an attack
relation. The first of these is about the origin/f As argued in the previous section, an
attack relation should capture at least the minimal cosfhcising from the knowledge
baseX under consideration.

Definition 10 (Capturing conflicts) LetC' € €. A pair (a,b) in R capturesC' if C
C Supp(a) U Supp(b).

Alas, that an attack relation captures all the minimal cot#lis not sufficient to
ensure consistency of extensions.

Example 5 LetArg(X) = {a,b,c}, € = {C} andR = {(a,b)}. If C C Supp(a) U
Supp(b) andC' C Supp(a) U Supp(c), thenR captures (not “faithfully”, though) the
minimal conflictC' but the admissible extensidn, ¢} violates consistency.

Definition 11 (Conflict-sensitive) An attack relationR is conflict-sensitiveff for all
a andb in Arg(X) such that there exists a minimal confli€t C Supp(a) U Supp(b)
then either(a,b) € R or (b,a) € R.

Being conflict-sensitive means this: Xf provides evidence (according €iN) that
the supports of andb conflict with each other, then this conflict showsRr(i.e., either
(a,b) € R holds or(b,a) € R holds). In other words, being conflict-sensitive ensures
that, when passing fror to (Arg(X'), R), no conflict is “forgotten” inR.



Example 6 The attack relatioriR of Example 5 is not conflict-sensitive since neither
(a,c) nor (c,a) isinR.

In case the knowledge base does not contain an inconsistemilf, if R is conflict-
sensitive therR captures all minimal conflicts.

Proposition 3 Let %y, s.t.VC € %y, |C| > 1. If R is sensitive, thefR captures all
minimal conflicts of¢’s,.

That an attack relation is conflict-sensitive and captutietha minimal conflicts
need not mean that it is strictly based on minimal conflicesxiNs an illustration:

Example 7 Considerarg(X) = {a, b, c}, €x = {C} andR = {(a,b), (a,c)}. Assume
C C Supp(a)USupp(b). Then,R is conflict-sensitive and captures the minimal conflicts
in €x. ButR contains an attackia, ¢), which is unrelated t&’s;.

Definition 12 (Conflict-dependent) An attack relationR is conflict-dependeriff for
all a andb in Arg(X), (a,b) € R implies that there exists a minimal conflict C

Supp(a) U Supp(b).

Being conflict-dependent means thig:shows no attack from to b unlessX’ pro-
vides evidence (according oN) that the supports af andb conflict with each other.
That is, being conflict-dependent ensures that, when gagsim X to (Arg(X), R),
no conflict is “invented” inR.

Example 8 R in Example 7 is not conflict-dependent since the attack) does not
depend on the minimal confli€t.

Clearly, an attack relation that is conflict-sensitive neetlbe conflict-dependent. Con-
versely, in Example 5R illustrates the fact that an attack relation that is conflict
dependent is not necessarily conflict-sensitive. Note dmaattack relation which is
conflict-dependent exhibits no self-attack:

Proposition 4 Let (Arg(X), R) be s. t.R is conflict-dependent. For all € Arg(X),
(a,a) € R.

When the attack relation is conflict-dependent, if a set otigwgnts is such that its
corresponding base (set-theoretic union of supports)risistent then it is a conflict-
free set:

Proposition 5 Let (Arg(X),R) be s. t.R is conflict-dependentvyB C Arg(X), if
U,c Supp(a) is consistent3 is conflict-free.

WhenR is both conflict-sensitive and conflict-dependédthen essentially makes
no difference between arguments that have equivalent stgppo

Proposition 6 Let(Arg(X), R) such thatR is conflict-sensitive and conflict-dependent.
For all @ andb in Arg(X), if CN(Supp(a)) = CN(Supp(b)), then for allc € Arg(X)
(a,c) € R or (¢c,a) e R iff (b,c) € R or (¢,b) € R.



Definitions 10-12 characterize the “origin” of the attaclat®n R by relating it to
the minimal conflicts of the knowledge ba&e It is then natural that the attack relation
conforms with the minimal conflicts. In what follows, we pees$ rules abouR that
relate to the minimal conflicts.

Definition 13 (Homogeneous relation)Let a and b in Arg(X') such thatSupp(a) C
Supp(b). For all ¢ € Arg(X),

R1: (a,c) € R = (b,c) € R.
R2: (c,a) € R= (c,b) € R.

R is homogeneous it satisfies bothz1 and R2.

The above two rules capture exactly the idea of Property Zhvbays that if a set of
formulas is inconsistent, then all its supersets are irister® as well. This property
is captured by two rules since an attack relation is not resecég symmetric whereas
inconsistency is not oriented. We show that, when the atileition is symmetric, if it
satisfies one of the above two rules, then it also satisfiestties.

Property 5. Let R be symmetric. IfR satisfies ruleR1 (resp.R2) then it satisfiesk2
(resp.R1).

Finally, according to the definition of a minimal conflict any partition ofC' into
two subsetsX; and Xs, it holds thatX; and X, are consistent. Since Proposition 1
ensures thak'; and X, are the supports of arguments, then it is natural to conttidér
those arguments are conflicting.

Definition 14 (Conflict-exhaustive) Let (Arg(X), R) be an AS over a knowledge base
X,

— R is strongly conflict-exhaustivéf for all C' € %x s.t.|C] > 1, for all non-
empty proper subseX of C, there existz and b in Arg(X) s.t. Supp(a) = X,
Supp(b) = C'\ X, (a,b) € Rand(b,a) € R.

— R is conflict-exhaustivéff for all C' € % s.t.|C| > 1, for all non-empty proper
subsetX of C, there existt andb in Arg(X) s.t.Supp(a) = X, Supp(b) = C\ X
and either(a,b) € R or (b,a) € R.

— R is weakly conflict-exhaustivéf VC € ¢x s.t.|C| > 1, forall z € C, there exist
aandbin Arg(X) s.t.Supp(a) = {x}, Supp(b) = C \ {z} and(b,a) € R.

The following property highlights the links between thefeiént notions presented in
this section.
Property 6. Let R C Arg(X) x Arg(X).

1. R is strongly conflict-exhaustive, theR is weakly conflict-exhaustive an® is
conflict-exhaustive.

2. If R is homogeneous and conflict-exhaustive, tfReis conflict-sensitive.

3. If R is conflict-sensitive, then it is conflict-exhaustive.

Finally, one can characterize symmetric relations usiegatiove properties.

Proposition 7 If R is conflict-dependent, homogeneous, and strongly coeftic&ustive,
thenR is symmetric.



6 Choosing an attack relation

This section studies the appropriate attack relation of rgnraentation system. By
appropriate relation, we mean a relation that ensures sttégéension consistency. We
will study two cases: the case where all the minimal conflilts are contained in a
base are binary, and the case of a base containing ternargrerrminimal conflicts.

6.1 Case of binary minimal conflicts

Throughout this section, we will consider a knowledge hasghose minimal conflicts
are allbinary. This means that any minimal conflict contains exactly tworfolas.
Thus, there is no inconsistent formula in the base.

The following result is of great importance since it prowdeclass of attack relations
that ensure extension consistency.

Proposition 8 Let (Arg(X), R) be an AS over s.t. all minimal conflicts of are
binary. If R is conflict-sensitive, then for af C Arg(X), thatB is conflict-free implies
that|J, .5 Supp(a) is consistent.

The above result is not surprising. As shown in the previaeian, in order for a

conflict-free set of arguments to ensure consistency, taelatelation should capture
the minimal conflicts. However, it is not necessary to be eéorflependent. This latter
is however important to show that any set of arguments thédfigs consistency is
conflict-free (see Proposition 5).

Corollary 1. Let (Arg(X),R) be an AS overr s.t. all minimal conflicts of are
binary. If R is conflict-sensitive, thefirg(X), R) satisfies extension consistency.

From this corollary and Property 6, the following resultdisl

Corollary 2. Let (Arg(X),R) be an AS over s.t. all minimal conflicts of are
binary. If R is homogeneous and conflict-exhaustive ther(Y'), R) satisfies consis-
tency extension.

Another direct consequence of Proposition 5, and Propos#iis the following:

Corollary 3. Let (Arg(X),R) be an AS overX s.t. all minimal conflicts of are
binary. LetR be conflict-sensitive and conflict-dependent. For&lC Arg(X), B is
conflict-free iffl J . s Supp(a) is consistent.

It is worth noticing that symmetric relations can be usedhia binary case. This
means that it is possible to have an attack relation thattls $ensitive and symmetric.
Indeed, according to Proposition 7, wh&nis conflict-dependent, homogeneous, and
strongly conflict-exhaustive, theR is symmetric. From Property 6 it is clear that when
R is strongly exhaustive, then it is also conflict-exhaustiMaus,R is sensitive.



6.2 Case of general minimal conflicts

In the previous section, we have shown that when all the nah@onflicts of a knowl-
edge base are binary, then a symmetric relation can be udezhanres extension con-
sistency. Unfortunately, this is not the case when ternargnore minimal conflicts
are present in a base. The following result shows that synumetations lead to the
violation of consistency.

Proposition 9 Let X = {z4,...,z,} wheren > 2 and¢x = {X}. Letas,...,a, €
Arg(X) s.t.Supp(a;) = {z;}. If R is conflict-dependent and symmetric, then=
{ai1,...,a,} is an admissible extension @frg(X), R).

A direct consequence of the above result is the following:

Corollary 4. LetX = {z1,...,z,} Wheren > 2 and%x = {X}. If R is conflict-
dependent and symmetric, then the (ASy(X'), R) over X' violates extension consis-
tency.

The previous result can be generalized as follows:

Corollary 5. Let%y s.t.3C € €5 and|C| > 2. If R is conflict-dependent and sym-
metric, then the ABArg(X'), R) over X violates extension consistency.

Let us now present a class of attack relations that ensuststency. The following
result states that when the relatiBrsatisfies bottz2 and R4 and is weakly exhaustive,
then the corresponding argumentation system satisfiesgateconsistency.

Proposition 10 If R satisfies R2, R4 and is weakly exhaustive, tften(X), R) sat-
isfies extension consistency.

Note that there may exist other classes of asymmetric atilakons that ensure
extensions consistency.

7 Conclusion

The paper extended Dung’s argumentation framework by gakito account the logic
from which arguments are built. The new framework is gengirade it is grounded on
an abstract monotonic logic. Thus, a wide variety of logias be used even those that
are not yet considered in argumentation like temporal lagimdal logic. The extension
has two main advantages: First, it enforces the frameworkake safe conclusions.
Second, it relates the different notions of Dung’s systeke, the attack relation and
conflict-free, to the knowledge base that is under study. Jdgger also presented a
formal methodology for defining arguments from a knowledgedy and for choosing
an appropriate attack relation.

There are a number of ways to extend this work. One futuretiineis to complete
the study of attack relations that ensure consistency. laradirection that we want
to pursue is to consider the case of non-adjunctive logiesaR that all the results
presented in this paper hold in the case of an adjunctive.logi
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