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Abstract. Dung’s argumentation system takes as input a set ofargumentsand a
binary relationencoding attacks among these arguments, and returns differentex-
tensionsof arguments. However, no indication is given on how to instantiate this
setting, i.e. how to build arguments from aknowledge baseand how to choose
an appropriate attack relation. This leads in some cases to undesirable results like
inconsistent extensions (i.e. the set of formulas forming an extension isinconsis-
tent). This is due to the gap between the abstract setting and the knowledge base
from which it is defined.
The purpose of this paper is twofold: First it proposes to fill in this gap by ex-
tending Dung’s system. The idea is to consider all the ingredients involved inan
argumentation problem. We start with an abstract monotonic logic which consists
of a set of formulas and a consequence operator. We show how to buildarguments
from a knowledge base using the consequence operator of the logic. Second, we
show that the choice of an attack relation is crucial for ensuring consistent results,
and should not be arbitrary. In particular, we argue that an attack relation should
be at least grounded on theminimal conflictscontained in the knowledge base.
Moreover, due to the binary character of this relation, some attack relations may
lead to unintended results. Namely, symmetric relations are not suitable when
ternary (or more) minimal conflicts are in the knowledge base. We propose then
the characteristics of attack relations that ensure sound results.

1 Introduction

Argumentation is a reasoning model based on the construction and evaluation of argu-
ments in order to increase or decrease the acceptability of agiven standpoint. It is used,
for instance, for handling inconsistency in knowledge bases (e.g. [2, 9]) and for decision
making (e.g. [1, 3]).
One of the most abstract argumentation systems in existing literature is Dung’s one.
It consists of a set of arguments and a binary relation encoding attacks among these
arguments. Since its original formulation, this system hasbecome very popular and dif-
ferent instantiations of it have been defined. Unfortunately, some of them such as the
one presented in [8] can lead to very unintuitive results. In[4], it has been shown that
this instantiation violates key postulates like the consistency of extensions. An exten-
sion satisfies consistency if the set of formulas used in arguments of that extension is
consistent. What is worth noticing is that this postulate refers to the internal structure



of an argument (i.e. its formulas) while the link between these formulas and the ac-
ceptability semantics is not clear. The link between the inconsistency of a base and the
attack relation is also not clear. In summary, there is a gap between the abstract setting
and the knowledge base from which it is built. Thus, basic choices like the definition of
an argument and of an attack relation are made in an ad hoc way.
The purpose of this paper is twofold: First it proposes to fillin this gap by extending
Dung’s system. The idea is to consider all the ingredients involved in an argumentation
problem ranging from the logical language to the output of the system. We start with an
abstract monotonic logicas defined in [10]. Tarski defines an abstract monotonic logic
as a set of formulas and a consequence operator that satisfiessome axiom. We show
how to build arguments from any subset of formulas using the consequence operator.
Second, we show that the choice of an attack relation is crucial for ensuring consistent
results and should not be arbitrary. In particular, an attack relation should be at least
grounded on the minimal conflicts contained in the knowledgebase. Moreover, due to
the binary character of the attack relation in Dung’s system, some attack relations may
lead to undesirable results. Namely, symmetric relations are not suitable when ternary
(or more) minimal conflicts are included in the base. We propose then the characteristics
of an attack relation that should be used for ensuring sound results.
Section 2 recalls Tarski’s axiomatization of a monotonic logic. Section 3 details our
extension of Dung’s system. Section 4 presents examples that show the importance of
choosing correctly an attack relation. Section 5 studies the properties of such a relation
while Section 6 gives recommendations on how to choose one.

2 Tarski’s abstract consequence operations

Alfred Tarski [10] defines anabstract logicas a pair(L ,CN) where members ofL
are calledwell-formed formulas, andCN is aconsequence operator. CN is any function
from 2L to 2L that satisfies the following axioms:

1. X ⊆ CN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) =

⋃
Y ⊆f X CN(Y ) (Finiteness)

4. CN({x}) = L for somex ∈ L (Absurdity)
5. CN(∅) 6= L (Coherence)

Notation: Y ⊆f X means thatY is a finite subset ofX.

Intuitively, CN(X) returns the set of formulas that are logical consequences ofX ac-
cording to the logic in question. It can easily be shown from the above axioms thatCN

is a closure operator, that is,CN enjoys properties such as:

Property 1. Let X,X ′,X ′′ ⊆ L .

1. X ⊆ X ′ ⇒ CN(X) ⊆ CN(X ′). (Monotonicity)
2. CN(X) ∪ CN(X ′) ⊆ CN(X ∪ X ′).
3. CN(X) = CN(X ′) ⇒ CN(X ∪ X ′′) = CN(X ′ ∪ X ′′).



Almost all well-known monotonic logics (classical logic, intuitionistic logic, modal
logic, etc.) can be viewed as special cases of Tarski’s notion of an abstract logic.

Once(L ,CN) is fixed, we can define a notion ofconsistencyas follows:

Definition 1 (Consistency) Let X ⊆ L . X is consistentwrt (L ,CN) iff CN(X) 6=
L . It is inconsistentotherwise.

This says thatX is consistent iff its set of consequences is not the set of allformulas.
The coherence requirement forces∅ to always be consistent - this makes sense for any
reasonable logic as saying emptiness should intuitively beconsistent.

Property 2. Let X ⊆ L .

1. If X is consistent, thenCN(X) is consistent as well.
2. ∀X ′ ⊆ X, if X is consistent, thenX ′ is consistent.
3. ∀X ′ ⊆ X, if X ′ is inconsistent, thenX is inconsistent.

In what follows we introduce a concept that is useful for the rest of the paper.

Definition 2 (Adjunctive) (L ,CN) isadjunctiveiff for all x andy in L , if CN({x, y}) 6=
CN({x}) andCN({x, y}) 6= CN({y}) then there existsz ∈ L such thatCN({z}) =
CN({x, y}).

Intuitively, an adjunctive logic infers, from the union of two formulas{x, y}, some
formula(s) that can be inferred neither fromx alone nor fromy alone (except, of course,
wheny ensues fromx or vice-versa). In fact, all well-known logics are adjunctive. 1 A
logic which is not adjunctive could for instance fail to denyx ∨ y from the premises
{¬x,¬y}.
Throughout the paper, the following assumption is made:

Assumption 1 The logic(L ,CN) is adjunctive.

From now on, we will consider aknowledge baseΣ which is a subset of the logical
languageL (Σ ⊆ L ). With no loss of generality and for the sake of simplicity, the
knowledge baseΣ is assumed to be free of tautologies:

Assumption 2 For all x ∈ Σ, x /∈ CN(∅).

If Σ is inconsistent, then it containsminimal conflicts.

Definition 3 (Minimal conflict) LetΣ be a knowledge base, andC ⊆ Σ. The setC is
a minimal conflictiff:

– C is inconsistent
– ∀x ∈ C, C\{x} is consistent

LetCΣ denote the set of all minimal conflicts ofΣ.

1 A few very restrictedfragments of well-known logics fail to be adjunctive, e.g., the pure im-
plicational fragment of classical logic as it is negationless, disjunctionless, and, of course,
conjunctionless.



3 An extension of Dung’s abstract system

Argumentation is a reasoning paradigm that follows three main steps: i) constructing
argumentsand counterarguments ii) defining thestatusof each argument, and iii) con-
cluding or specifying thejustified conclusions. In what follows, we refine Dung’s sys-
tem by defining all the above items involved in argumentationwithout losing generality.
We start with an abstract logic(L ,CN) from which the notions of argument and attacks
between arguments are defined. More precisely, arguments are built from a knowledge
base, sayΣ, containing formulas of the languageL . An argumentgives a reason for
believing a statement or choosing an action, etc. Formally:

Definition 4 (Argument) Let Σ be a knowledge base. Anargumentis a pair (X,x)
such that:

1. X ⊆ Σ
2. X is consistent
3. x ∈ CN(X)
4. ∄X ′ ⊂ X such thatx ∈ CN(X ′)

Notations: Supp andConc denote respectively thesupportX and theconclusionx of
an argument(X,x). ForS ⊆ Σ, let Arg(S) denote the set of all arguments that can be
built from S by means of Definition 4.

Due to Assumption 2 (x 6∈ CN(∅) for all x ∈ Σ), it can also be shown that each
consistent formula inΣ gives birth to an argument:

Property 3. For allx ∈ Σ s.t. the set{x} is consistent, there existsa ∈ Arg(Σ) where
Supp(a) = {x}.

SinceCN is monotonic, constructing arguments is a monotonic process: Additional
knowledge never makes the set of arguments to shrink but onlygives rise to extra argu-
ments that may interact with the existing arguments.

Property 4. Arg(Σ) ⊆ Arg(Σ′) wheneverΣ ⊆ Σ′ ⊆ L .

We show next that any proper subset of a minimal conflict is thesupport of at least
one argument. It is a result of utmost importance as regards encoding the attack relation
between arguments.

Proposition 1 Let (L ,CN) be adjunctive. For all non-empty proper subsetX of some
minimal conflictC ∈ CΣ , there existsa ∈ Arg(Σ) s.t.Supp(a) = X.

Proposition 1 is indeed fundamental because it says that if statements fromΣ con-
tradict others then it is always possible to define an argument exhibiting the conflict.

We refine Dung’s abstract framework as follows.

Definition 5 (Argumentation system) Given a knowledge baseΣ, an argumentation
system(AS) overΣ is a pair (Arg(Σ),R) such thatArg(Σ) is a set of arguments
defined fromΣ andR ⊆ Arg(Σ) × Arg(Σ) is anattackrelation.



The attack relation captures the different disagreements that may exist between argu-
ments. [6] is silent on how to proceed in order to obtain a reasonableR in practice. It
happens, as pointed out by [4], that it is in fact an error-prone step. We will see in the
next section how can things go wrong in this respect, and, in the subsequent section, to
what extent our definitions help to circumvent the problem. For the time being, let us
focus on what roleR plays in Dung’s approach.

Among all the arguments, it is important to know which arguments to rely on for
inferring conclusions from a baseΣ. In [6], different acceptability semantics have been
proposed. The basic idea behind these semantics is the following: for a rational agent,
an argument is acceptable if he can defend this argument against all attacks on it. All
the arguments acceptable for a rational agent will be gathered in a so-calledextension.
An extension must satisfy a consistency requirement and must defend all its elements.

Definition 6 (Conflict-free, Defence)Let (Arg(Σ),R) be an AS, andB ⊆ Arg(Σ).

– B is conflict-freeiff ∄a, b ∈ B such that(a, b) ∈ R.
– B defendsan argumenta iff ∀b ∈ Arg(Σ), if (b, a) ∈ R, then∃c ∈ B such that

(c, b) ∈ R.

The fundamental semantics in [6] is the one that features admissible extensions. The
other semantics (i.e., preferred, stable, complete and grounded) are based on it. We
only include the definition for the admissible semantics.

Definition 7 (Admissible semantics)LetB be a conflict-free set of arguments.B is an
admissibleextension iffB defends all its elements.

Since the notion of the acceptability is defined, we can now characterize the possible
conclusions that can be drawn fromΣ according to an argumentation system overΣ.
The idea is to concludex if x is the conclusion of at least an argument which belongs
to every extension of the system.

Definition 8 (Output of the system) Let(Arg(Σ),R) be an AS over a knowledge base
Σ. LetE1, . . . , En be the extensions of(Arg(Σ),R) under a given semantics.2 For x ∈
L , x is aconclusionofΣ iff ∃a ∈ Arg(Σ) such thatConc(a) = x anda ∈ E1∩· · ·∩En.
We writeOutput(Σ) to denote the set of all conclusions ofΣ.

In [4], it has been argued that the extensions of an argumentation system should ensure
consistent results. This means that the base built from the supports of arguments of each
extension should be consistent.

Definition 9 (Consistency of extensions)Let (Arg(Σ), R) be an AS. An extensionE
(under a given semantics)satisfies consistencyiff

⋃
a∈E Supp(a) is consistent.

It can be shown that if all the extensions of an argumentationsystem enjoy consistency,
then the output of the system is consistent as well.

Proposition 2 Let (Arg(Σ),R) be an AS over a knowledge baseΣ. Let E1, . . . , En

be the extensions of(Arg(Σ),R) under a given semantics. If∀Ei=1,...,n, Ei satisfies
consistency, thenOutput(Σ) is consistent.

2 One can use any semantics: complete, stable, preferred, or grounded. However, admissible
semantics is not recommended since the empty set is admissible. Thus, noargument can belong
to all the extensions.



4 Some problematic cases

In the previous section we have provided a clear definition ofan argument and how
it is built from a knowledge baseΣ. However, there still is no indication on howR is
defined and how it is related toΣ. Moreover, in [4] it has been shown that there are some
instantiations of Dung’s system that violate extension consistency. Does this mean that
the notion of being conflict-free is not sufficient to ensure consistency? It is sufficient
provided that the attack relation is defined in an appropriate way. In this section, we
present some problematic examples that shed light on the minimal requirements for
defining an attack relation. Throughout the section, we consider propositional logic.

Let us start with an attack relation that is not related to inconsistency inΣ.

Example 1 (Independence from minimal conflict) LetΣ = {x,¬x}. So,CΣ = {Σ}.
TakeArg(Σ) = {a1, a2} wherea1 = ({x}, x) and a2 = ({¬x},¬x). Assume that
R = ∅. This means thatR does not depend at all on minimal conflicts inΣ. In this
case,(Arg(Σ),R) has an admissible extension that violates consistency, it is{a1, a2}.

Requirement 1 An attack relation should “capture” at least the minimal conflicts of
the knowledge base at hand.

Let us now consider an attack relation that captures all the minimal conflicts ofΣ.
We start with asymmetricrelation, due to [7], calledrebut. An argumenta rebutsan
argumentb iff Conc(a) ≡ ¬Conc(b) (or vice-versa).

Example 2 (Binary minimal conflict) The two argumentsa1 = ({x}, x) and a2 =
({¬x},¬x) rebut each other. So, the system(Arg(Σ), Rebut) has two admissible ex-
tensions{a1} and{a2}. They each satisfy consistency.

Unfortunately, the fact that an attack relation captures the minimal conflicts of a
knowledge base does not always ensure consistency of the extensions. Let us consider
a knowledge base displaying a ternary minimal conflict.

Example 3 (Ternary conflict) Let Σ = {x, y, x → ¬y}. Let Arg(Σ) consist of the
following arguments:

– a1 = ({x}, x)
– a2 = ({y}, y)
– a3 = ({x → ¬y}, x → ¬y)
– a4 = ({x, x → ¬y},¬y)
– a5 = ({y, x → ¬y},¬x)
– a6 = ({x, y}, x ∧ y)

a2

a4

a5 a6

a1 a3

LetR be such as depicted in figure above. The set{a1, a2, a3} is an admissible exten-
sion of(Arg(Σ),R). However,Supp(a1) ∪ Supp(a2) ∪ Supp(a3) is inconsistent.

This example shows that a conflict-free set of arguments may fail consistency. This
is due to the fact thatR is binary, in compliance with Dung’s definitions imposing the
attack relation to be binary. Thus, the ternary conflict betweena1, a2 anda3 is not
captured.



Requirement 2 If a knowledge base has ternary (or more) minimal conflicts, the attack
relation should be asymmetric.

Indeed, [5] shows that an argumentation system which uses the asymmetric,assumption
attackdefined in [7] yields consistent extensions. An argumenta undercutsb iff ∃h′ ∈
Supp(b) such thatConc(a) ≡ ¬h′ (or h′ ≡ ¬Conc(a)).

Example 4 (Ternary conflict cont.) The attack relationR, in the sense of undercut,
between arguments ofArg(Σ) from Example 3 is now such as depicted in the figure
below:

a2

a4

a5 a6

a1 a3

There are three maximal (wrt set inclusion) admissible extensions:{a1, a2, a6}, {a2, a3, a5},
and{a1, a3, a4}. All three extensions satisfy consistency.

5 Properties of attack relations

In this section, we discuss primitive properties that may beexpected from an attack
relation. The first of these is about the origin ofR. As argued in the previous section, an
attack relation should capture at least the minimal conflicts arising from the knowledge
baseΣ under consideration.

Definition 10 (Capturing conflicts) Let C ∈ CΣ . A pair (a, b) in R capturesC if C
⊆ Supp(a) ∪ Supp(b).

Alas, that an attack relation captures all the minimal conflicts is not sufficient to
ensure consistency of extensions.

Example 5 Let Arg(Σ) = {a, b, c}, CΣ = {C} andR = {(a, b)}. If C ⊆ Supp(a) ∪
Supp(b) andC ⊆ Supp(a) ∪ Supp(c), thenR captures (not “faithfully”, though) the
minimal conflictC but the admissible extension{a, c} violates consistency.

Definition 11 (Conflict-sensitive) An attack relationR is conflict-sensitiveiff for all
a and b in Arg(Σ) such that there exists a minimal conflictC ⊆ Supp(a) ∪ Supp(b)
then either(a, b) ∈ R or (b, a) ∈ R.

Being conflict-sensitive means this: IfΣ provides evidence (according toCN) that
the supports ofa andb conflict with each other, then this conflict shows inR (i.e., either
(a, b) ∈ R holds or(b, a) ∈ R holds). In other words, being conflict-sensitive ensures
that, when passing fromΣ to (Arg(Σ),R), no conflict is “forgotten” inR.



Example 6 The attack relationR of Example 5 is not conflict-sensitive since neither
(a, c) nor (c, a) is inR.

In case the knowledge base does not contain an inconsistent formula, ifR is conflict-
sensitive thenR captures all minimal conflicts.

Proposition 3 Let CΣ s.t.∀C ∈ CΣ , |C| > 1. If R is sensitive, thenR captures all
minimal conflicts ofCΣ .

That an attack relation is conflict-sensitive and captures all the minimal conflicts
need not mean that it is strictly based on minimal conflicts. Next is an illustration:

Example 7 ConsiderArg(Σ) = {a, b, c}, CΣ = {C} andR = {(a, b), (a, c)}. Assume
C ⊆ Supp(a)∪Supp(b). Then,R is conflict-sensitive and captures the minimal conflicts
in CΣ . ButR contains an attack,(a, c), which is unrelated toCΣ .

Definition 12 (Conflict-dependent) An attack relationR is conflict-dependentiff for
all a and b in Arg(Σ), (a, b) ∈ R implies that there exists a minimal conflictC ⊆
Supp(a) ∪ Supp(b).

Being conflict-dependent means this:R shows no attack froma to b unlessΣ pro-
vides evidence (according toCN) that the supports ofa andb conflict with each other.
That is, being conflict-dependent ensures that, when passing from Σ to (Arg(Σ),R),
no conflict is “invented” inR.

Example 8 R in Example 7 is not conflict-dependent since the attack(a, c) does not
depend on the minimal conflictC.

Clearly, an attack relation that is conflict-sensitive neednot be conflict-dependent. Con-
versely, in Example 5,R illustrates the fact that an attack relation that is conflict-
dependent is not necessarily conflict-sensitive. Note thatan attack relation which is
conflict-dependent exhibits no self-attack:

Proposition 4 Let (Arg(Σ),R) be s. t.R is conflict-dependent. For alla ∈ Arg(Σ),
(a, a) 6∈ R.

When the attack relation is conflict-dependent, if a set of arguments is such that its
corresponding base (set-theoretic union of supports) is consistent then it is a conflict-
free set:

Proposition 5 Let (Arg(Σ),R) be s. t.R is conflict-dependent.∀B ⊆ Arg(Σ), if⋃
a∈B Supp(a) is consistent,B is conflict-free.

WhenR is both conflict-sensitive and conflict-dependent,R then essentially makes
no difference between arguments that have equivalent supports:

Proposition 6 Let(Arg(Σ),R) such thatR is conflict-sensitive and conflict-dependent.
For all a andb in Arg(Σ), if CN(Supp(a)) = CN(Supp(b)), then for allc ∈ Arg(Σ)
(a, c) ∈ R or (c, a) ∈ R iff (b, c) ∈ R or (c, b) ∈ R.



Definitions 10-12 characterize the “origin” of the attack relationR by relating it to
the minimal conflicts of the knowledge baseΣ. It is then natural that the attack relation
conforms with the minimal conflicts. In what follows, we present rules aboutR that
relate to the minimal conflicts.

Definition 13 (Homogeneous relation)Let a and b in Arg(Σ) such thatSupp(a) ⊆
Supp(b). For all c ∈ Arg(Σ),

R1: (a, c) ∈ R ⇒ (b, c) ∈ R.
R2: (c, a) ∈ R ⇒ (c, b) ∈ R.

R is homogeneousif it satisfies bothR1 andR2.

The above two rules capture exactly the idea of Property 2 which says that if a set of
formulas is inconsistent, then all its supersets are inconsistent as well. This property
is captured by two rules since an attack relation is not necessarily symmetric whereas
inconsistency is not oriented. We show that, when the attackrelation is symmetric, if it
satisfies one of the above two rules, then it also satisfies theother.

Property 5. Let R be symmetric. IfR satisfies ruleR1 (resp.R2) then it satisfiesR2
(resp.R1).

Finally, according to the definition of a minimal conflictC, any partition ofC into
two subsetsX1 andX2, it holds thatX1 andX2 are consistent. Since Proposition 1
ensures thatX1 andX2 are the supports of arguments, then it is natural to considerthat
those arguments are conflicting.

Definition 14 (Conflict-exhaustive) Let(Arg(Σ),R) be an AS over a knowledge base
Σ.

– R is strongly conflict-exhaustiveiff for all C ∈ CΣ s.t. |C| > 1, for all non-
empty proper subsetX of C, there exista and b in Arg(Σ) s.t. Supp(a) = X,
Supp(b) = C \ X, (a, b) ∈ R and(b, a) ∈ R.

– R is conflict-exhaustiveiff for all C ∈ CΣ s.t. |C| > 1, for all non-empty proper
subsetX of C, there exista andb in Arg(Σ) s.t.Supp(a) = X, Supp(b) = C \ X
and either(a, b) ∈ R or (b, a) ∈ R.

– R is weakly conflict-exhaustiveiff ∀C ∈ CΣ s.t.|C| > 1, for all x ∈ C, there exist
a andb in Arg(Σ) s.t.Supp(a) = {x}, Supp(b) = C \ {x} and(b, a) ∈ R.

The following property highlights the links between the different notions presented in
this section.

Property 6. LetR ⊆ Arg(Σ) × Arg(Σ).

1. R is strongly conflict-exhaustive, thenR is weakly conflict-exhaustive andR is
conflict-exhaustive.

2. If R is homogeneous and conflict-exhaustive, thenR is conflict-sensitive.
3. If R is conflict-sensitive, then it is conflict-exhaustive.

Finally, one can characterize symmetric relations using the above properties.

Proposition 7 If R is conflict-dependent, homogeneous, and strongly conflict-exhaustive,
thenR is symmetric.



6 Choosing an attack relation

This section studies the appropriate attack relation of an argumentation system. By
appropriate relation, we mean a relation that ensures at least extension consistency. We
will study two cases: the case where all the minimal conflictsthat are contained in a
base are binary, and the case of a base containing ternary or more minimal conflicts.

6.1 Case of binary minimal conflicts

Throughout this section, we will consider a knowledge baseΣ whose minimal conflicts
are all binary. This means that any minimal conflict contains exactly two formulas.
Thus, there is no inconsistent formula in the base.

The following result is of great importance since it provides a class of attack relations
that ensure extension consistency.

Proposition 8 Let (Arg(Σ),R) be an AS overΣ s.t. all minimal conflicts ofΣ are
binary. IfR is conflict-sensitive, then for allB ⊆ Arg(Σ), thatB is conflict-free implies
that

⋃
a∈B Supp(a) is consistent.

The above result is not surprising. As shown in the previous section, in order for a
conflict-free set of arguments to ensure consistency, the attack relation should capture
the minimal conflicts. However, it is not necessary to be conflict-dependent. This latter
is however important to show that any set of arguments that satisfies consistency is
conflict-free (see Proposition 5).

Corollary 1. Let (Arg(Σ),R) be an AS overΣ s.t. all minimal conflicts ofΣ are
binary. IfR is conflict-sensitive, then(Arg(Σ),R) satisfies extension consistency.

From this corollary and Property 6, the following result holds.

Corollary 2. Let (Arg(Σ),R) be an AS overΣ s.t. all minimal conflicts ofΣ are
binary. IfR is homogeneous and conflict-exhaustive then(Arg(Σ),R) satisfies consis-
tency extension.

Another direct consequence of Proposition 5, and Proposition 8 is the following:

Corollary 3. Let (Arg(Σ),R) be an AS overΣ s.t. all minimal conflicts ofΣ are
binary. LetR be conflict-sensitive and conflict-dependent. For allB ⊆ Arg(Σ), B is
conflict-free iff

⋃
a∈B Supp(a) is consistent.

It is worth noticing that symmetric relations can be used in the binary case. This
means that it is possible to have an attack relation that is both sensitive and symmetric.
Indeed, according to Proposition 7, whenR is conflict-dependent, homogeneous, and
strongly conflict-exhaustive, thenR is symmetric. From Property 6 it is clear that when
R is strongly exhaustive, then it is also conflict-exhaustive. Thus,R is sensitive.



6.2 Case of general minimal conflicts

In the previous section, we have shown that when all the minimal conflicts of a knowl-
edge base are binary, then a symmetric relation can be used and ensures extension con-
sistency. Unfortunately, this is not the case when ternary or more minimal conflicts
are present in a base. The following result shows that symmetric relations lead to the
violation of consistency.

Proposition 9 Let Σ = {x1, . . . , xn} wheren > 2 andCΣ = {Σ}. Leta1, . . . , an ∈
Arg(Σ) s.t. Supp(ai) = {xi}. If R is conflict-dependent and symmetric, thenE =
{a1, . . . , an} is an admissible extension of(Arg(Σ),R).

A direct consequence of the above result is the following:

Corollary 4. Let Σ = {x1, . . . , xn} wheren > 2 and CΣ = {Σ}. If R is conflict-
dependent and symmetric, then the AS(Arg(Σ),R) overΣ violates extension consis-
tency.

The previous result can be generalized as follows:

Corollary 5. Let CΣ s.t.∃C ∈ CΣ and |C| > 2. If R is conflict-dependent and sym-
metric, then the AS(Arg(Σ),R) overΣ violates extension consistency.

Let us now present a class of attack relations that ensure consistency. The following
result states that when the relationR satisfies bothR2 andR4 and is weakly exhaustive,
then the corresponding argumentation system satisfies extension consistency.

Proposition 10 If R satisfies R2, R4 and is weakly exhaustive, then(Arg(Σ),R) sat-
isfies extension consistency.

Note that there may exist other classes of asymmetric attackrelations that ensure
extensions consistency.

7 Conclusion

The paper extended Dung’s argumentation framework by taking into account the logic
from which arguments are built. The new framework is generalsince it is grounded on
an abstract monotonic logic. Thus, a wide variety of logics can be used even those that
are not yet considered in argumentation like temporal logic, modal logic. The extension
has two main advantages: First, it enforces the framework tomake safe conclusions.
Second, it relates the different notions of Dung’s system, like the attack relation and
conflict-free, to the knowledge base that is under study. Thepaper also presented a
formal methodology for defining arguments from a knowledge base, and for choosing
an appropriate attack relation.

There are a number of ways to extend this work. One future direction is to complete
the study of attack relations that ensure consistency. Another direction that we want
to pursue is to consider the case of non-adjunctive logics. Recall that all the results
presented in this paper hold in the case of an adjunctive logic.
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