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Generalizing stable semantics by
preferences

Leila AMGOUD ! and Srdjan VESIG
a|nstitut de Recherche en Informatique de Toulouse

Abstract.

Different proposals have been made in the literature fonirggi Dung’s argu-
mentation framework by preferences between argumentsideaes to ignore an
attack if the attacked argument is stronger than its attagloeeptability semantics
are then applied on the remaining attacks. Unfortunatese proposals may re-
turn some unintended results, in particular, when the latiaation is asymmetric.

In this paper, we propose a new approach in which preferemeesaken into
account at the semantics level. In case preferences areaitattde or do not con-
flict with the attacks, the extensions of the new semantigscate with those of
the basic ones. Besides, in our approach, the extensioder(argiven semantics)
are the maximal elements ofdominance relatioron the powerset of the set of
arguments. Throughout the paper, we focus on stable sersawe provide a full
characterization of its dominance relations; and we refinéth preferences.

1. Introduction

Argumentation is a reasoning model based on the construatiol the evaluation of
arguments. An argument gives a reason to believe a statetogmarform an action, etc.
The most abstract argumentation framework in the liteeahas been proposed in
[8]. It consists of a set airgumentsand a binary relation that capturagtacksamong
them. Differentacceptability semantickave been proposed in the same paper. A se-
mantics amounts to define sets of acceptable argumentsj eatensionsin this frame-
work, arguments are assumed to have all the same strengtiileBein [5,7,11], it has
been argued that some arguments may be stronger than dthg2}. a first abstract
preference-based argumentation framework (PAF) has bepoged. It takes as input a
set of arguments, an attack relation, and a preferencéomrlag¢tween arguments which
is abstract and can thus be instantiated in different walgis groposal has been gener-
alized in [10] in order to reason even about preferencess,Témguments may support
preferences about arguments. The last extension has bepospd in [4]. It assumes
that each argument promotes a value, and a preference lmetweearguments comes
from the importance of the respective values that are predhby the two arguments.
Whatever the source of the preference relation is, the isléa ignore an attack if the
attacked argument is stronger than its attacker. Dung'sieéos are then applied on the
remaining attacks. Unfortunately, these proposals maymeiome unintended results, in
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particular, when the attack relation is not symmetric. Besj in [1], it has been shown
that the attack relation should not be symmetric becauserwibe the corresponding
argumentation framework violates the postulate on cosrsist [6].

Example 1 LetX = {z,—y,z — y} be a propositional knowledge base s:tis more
certainthan the two other formulas. The following arguméra= built from this base:

ay < {z}, x> az < {~y},y >
az:<{z—yhz—y> a:<{z,~yhzA-y>
as < {~y,x =y}, x> as:<{z,z—y}y>

The figure below depicts the attacks wrt “assumption atta¢a.

Finally, assume that arguments are compared usingrtbakest link principl&[5]. Ac-
cording to this relation, the argumeit; is strictly preferred to the others, which are
themselves equally preferred. The classical approach®&6t remove the attack from
as t0 a; and get{a1,aq, a3, a5} as a stable extension. Note that this extension, which
intends to support @oherent point of viewis conflicting since it contains both and

as and supports thus and —z.

In this paper, we propose a new approach for PAFs in whichepeates are taken
into account at the semantics level. The idea is that, idstéanodifying the inputs of
Dung’s framework, we extend the semantics with prefererioesase these preferences
are not available or do not conflict with the attacks, the msitens of the new semantics
coincide with those of the basic ones. Besides, in our aghraae extensions (under
a given semantics) are the maximal elements dbminance relatioron the powerset
of the set of arguments. A dominance relation encodes thasegptability semantics
in our case. Contrarily to existing semantics which pamitihe powerset of arguments
into two subsets: the extensions and the non-extensionapmioach provides more in-
formation since it compares all susbsets of arguments.hematovelty of our approach
is that it defines a semantics through a set of postulatespdstelates describe the de-
sirable properties of a dominance relation. In this paperfatus only on stable seman-
tics. We provide a full characterization of its dominandatiens; and we refine it with
preferences. A representation theorem is given; it dessribe extensions of the new
semantics, callegdref-stable

The paper is organized as follows: The next section recaltgy® framework. Then,
we propose our new approach for PAFs. Next, we charactdr&@ddaminance relations
that encode stable semantics. Then, we show how to refinke simantics with prefer-
ences. The last section is devoted to some concluding remaarkfuture work.

2An argumentis a pair< H, h > whereH is its supportandh its conclusion H is a minimal subset af:
that is consistent and infers classically

3An argument attacksb iff the conclusion ofa is the contrary of a formula in the supportiof

4An argument is preferredto an argumen if the least certain formula in the support@fs more certain
than the least certain formula in the supporbof



2. Basic argumentation framework

In the seminal paper [8], argumentation framewortAF) is a pairF = (A, R) where

Ais a set ofargument@andR is anattack relationbetween argument®(C A x A). The
notation(a, b) € R or aRb means that the argumemntttacks the argument Different
acceptability semantider evaluating arguments have been proposed in the same pape
Each semantics amounts to define sets of acceptable argyroaledextensionsFor

the purpose of our paper, we only need to restablesemantics.

Definition 1 (Conflict-free, Stable semantics)Let F = (A, R) be an AF and3 C A.

e Bis conflict-freeiff # a, b € B's.t.aRb.
e Bis astable extensioiff it is conflict-free and attacks any argumentih\ 5.

Ext(F) denotes the set of stable extensiong of

Note that some argumentation frameworks may not have stabd@sions.

3. A new approach for PAFs

A preference-based argumentation framew@PAF) takes as input three elements: a
set. A of arguments, a binary relatioR capturing attacks between arguments, and a
(partial or total) preord&r> on the setd. This latter encodes differences in strengths of
arguments. The expression, b) € > ora > b means that the argumenfs at least as
strong a®. The symbot> denotes the strict relation associated withindeeda > b iff
a>bandnot) > a).

Definition 2 (PAF) A PAFis a tuple7 = (A, R, >), whereA is a set of argumentsy
is an attack relation o4, and> is a (partial or total) preorder onA.

The new approach amounts to defimew acceptability semantit¢kat take into ac-
count the preference relation between arguments. A secsastiefined by dominance
relation, denoted by-, on the powerseP(.A) of the set of arguments. We say also that
a dominance relatior encodes semantics. Faf, &' € P(A), writing (£,&’) € = (or
equivalentlye = £’) means that the sétis at least as good as the €&t The relation-
is the strict version of, thatis for€, £’ € P(A), & = £ iff £ = & andnot €’ = &).

Like the basic semantics of Dung, the new semantics computessions of argu-
ments. These latter are the maximal elements of the doménatation> that encodes
the semantics. The notion of maximality is defined as follows

Definition 3 (Maximal elements) Let€ € P(A) and> C P(A) x P(A). £ is maximal
wrt = iff VE' € P(A), € = £

As we will see in the next sections, not any relatiorcan be used for evaluating
arguments in a PAF. An appropriate relation should, foranse, ensure the conflict-
freeness of its maximal elements. Recall that this progserat the heart of all Dung’s
semantics, as it avoids inconsistent conclusions.

5A binary relation is greorderiff it is reflexiveandtransitive



Definition 4 (Extensions of a PAF)Let7 = (A4, R, >) be a PAF, an € P(A). The
set& is anextensiorof 7 under the dominance relation C P(A) x P(A) iff £is a
maximal element of.

LetExt, (7) denote the set of extensionsiofvrt >-.

Notation: Let7 = (A, R, >) be a PAFCF (T ) denotes the conflict-free (WR) sets of
arguments. At some places, we abuse notation and&$&) to denote the conflict-free
sets of arguments of a basic framewdfk= (A, R).

Assumptions:Let 7 = (A, R, >) be a PAF. Throughout the paper, we assume that:

1. The set4 is finite.
2. 7 does not contain self-attacking arguments.

In the remainder of the paper, we will propose a new accdfitakemantics, called
Pref-stable This semantics generalizes stable semantics with prefessbetween argu-
ments. In case preferences are not available or are notaorgliwith the attacks, the
extensions of the two semantics coincide.

4. Stable semantics as a dominance relation

In the previous section, we have shown that our new semaaréodefined as dominance
relations on the power set of the set of arguments. The newrstira should recover the
basic semantics of Dung in some cases. Before showing howt¢ade stable semantics
with preferences, it is important to encode this semantidbé new setting, i.e. to de-
fine it as a dominance relation on the power set of the set afnaegts. The following
theorem characterizes the dominance relations that erstabike semantics.

Theorem 1 Let F = (A, R) be an AF and= C P(A) x P(A). ThenVE € P(A),
(€ € Ext(F) & & is maximal wrt=-) iff:

1. VE € P(A),if € ¢ CF(F) then3E’ € P(A) s.t.—(€ = &)

2.if & € CF(F)andVd' ¢ &, Ja € € s.t.aRad’, thenVE’ € P(A) it holds that
Exr¢

3.if £ € CF(F)and3d’ € A\ € st.fa € € andaRa’, then3E' € P(A) s.t.
(€= &.

In other words, a relatiorr encodes stable semantics if and only if it verifies the three
conditions given in this theorem.

It is worth mentioning that there are several relatienthat encode stable seman-
tics. All these relations return the same maximal elemerds the same extensions).
However, they compare in different ways the remaining sessguments. An example
of a relation that encodes stable semantics is the following

Relation 1.Let F = (A, R) be an AF and, &’ € P(A). & = &' iff

e £ cCF(F)and& ¢ CF(F), or
o £.& eCF(F)andva € &'\ E,Ja e £\ E s.t.aRa'.

Let us illustrate this relation on the following simple exalm



Example 2 Consider the ARF = (A, R) whereA = {a, b} andR = {(a,b), (b,a)}. It
is clear that:{a}, {b} =1 {} =1 {a, b}. The two set§a} and{b} are equally preferred.
The maximal elements bf; (its stable extensions) afei} and{b}.

Note that Dung’s approach returns only two classes of salisfearguments: the
extensions and the non-extensions. In Example 2, the tveo{aétand {0} are stable
extensions while it does not say anything about the §etd} and{}. Our approach
compares even the non-extensions. Indeed, according tthe set{} is preferred to
{a,b}. The fact of comparing non-extensions makes it possibleate lmore than one
relation for stable semantics.

5. Pref-stable semantics

This section defines a new semantics, caflesf-stable that extends the stable one by
preferences. Recall that there are two basic requiremetitme stable semantics: i)

conflict-freeness, and ii) external attack. The first propensures that the extensions
of a framework are conflict-free, while the second ensurasahy argument outside an
extension is attacked by an argument of the extension. Tieegérements are consid-

ered in the definition of the extensions themselves. In opr@axh, the requirements of
pref-stable semantics are givenmstulateghat a dominance relation should satisfy.

Like stable semantics, the new semantics requires thatxteasions of a PAF are
conflict-free wrt the attack relation. This is importantc@nan extension represents a
coherent point of view. In our approach, since all subsetsgdiments are compared, we
assume that a conflict-free set of arguments is preferreaytaanflicting one.

Postulate 1Let7 = (A, R,>) and&, &’ C A. Then,

£ ECF(T) £ ¢CF(T)e
=&

It is easy to show that if a relation satisfies this postuldien its maximal elements
are conflict-free.

Property 1 Let7 = (A, R, >) be a PAF and= C P(A) x P(A) satisfies Postulate 1.
Forall £ € Ext(7), it holds that€ € CF(T).

The following requirement ensures that a dominance relasaentirely based on
the distinct elements of any two subsets of arguments.

Postulate 2Let7 = (A4, R, >) bea PAF and,&’ € CF(T). Then,

e-g E\E' = E\E
& = ENE £x &

The two following postulates show how preferences betwegnmaents are taken
into account in a semantics that generalize stable sersadtscalready explained, the
basic idea is that if an argumedmtattacks another argumethtandbd > «, then the set

X Y
zZ

6The notation means that ifX andY hold, thenZ holds as well.



{b} is privileged. Thus{b} should be strictly preferred téa}. However, if the two
arguments are equally preferred or incomparable or everb, then the sefa} should
be strictly preferred tgb}.

The next postulate describes when a set should not be prdfieranother. The idea
is that: if an argument of a sét cannot be compared with arguments in anothe€set
(since it is neither attacked nor less preferred to any asgiof the other set), then the
set€ cannot be less preferred £.

Postulate 3Let7 = (A, R,>) be aPAF, and, &’ € CF(T)s.t.ENE = . Then,

3z’ € &) (Vz € &) ~(zRz'A=(z'>x)) A ~(z>z')
—(€=¢&)

The last postulate describes when a set is preferred to ematien preferences
between arguments are taken into account. The idea is tftatahy argument of a set,
there is at least one argument in another set which ‘wins ¢imdlict’ with it, then the
latter should be preferred to the former. There are two sitoa in which an argument
wins a conflict against’: eitherz attacksz’ andz’ does not defend itself since it is not
stronger tham: wrt >, orz’ attackse butz is strictly preferred ta’.

Postulate 4Let7 = (A, R,>) beaPAFanc, &’ € CF(T)st.ENE = 0. Then,

(Vz' € £)3z € &) s.t. (xRx'A =(z'>x)) or (z'Rx A x>z')
ExE

Now that the four postulates are introduced, we are readgfinelthe pref-stable
semantics.

Definition 5 (Pref-stable semantics)Let 7 = (A, R, >) be a PAF. A relation- C
P(A) x P(A) encodes pref-stable semantics+fsatisfies Postulates 1, 2, 3 and 4.

Throughout the paper, a relation that encodes pref-stamhastics will be called
pref-stable relationand its maximal elements are callgef-stable extensions

It can be checked that a pref-stable relation strictly psegeconflict-free set to all
its strict subsets.

Property 2 Let7 = (A, R,>) be a given PARE, £’ € CF(T). If = is a pref-stable
relation, thent’ = £ wheneve€ C £’.

Like stable semantics, there are several relations thatdengref-stable semantics.
However, the differences between them are not significadtyae can show that they all
return the same pref-stable extensions.

Theorem 2 Let7 = (A, R,>) be a PAF. If=, =" C P(A) x P(A) are pref-stable
relations, therExt, (7)) = Exty/ (7).

Finally, we can show that a pref-stable semantics genesaditable semantics. This
means that when preferences are not available or do not@owith attacks in a given
PAF, then pref-stable relations are a subset of those emgatible semantics (i.e. they
satisfy the three conditions of Theorem 1.



Theorem 3 Let7 = (A, R,>) be a PAF andF = (A, R) its basic version. If- is a
pref-stable relation andla, b € A such thatzRb andb > a, then:

e Ext(F)=Ext-(7)
e >~ satisfies the three conditions of Theorem 1

Let us now consider an example of a pref-stable relations Tdlation extends-;
which encodes stable semantics.

Relation 2 (Relation 1 extended)Let 7 = (A, R,>) be a PAF and,&’ € P(A).
& =5 &' iff at least one of the following conditions holds:

e EcCF(T)and&l ¢ CF(T)
e £, eCF(T)and(Va' € E'\E)(Fa € E\E')s.t.(aRa' Nd' # a)V (a>d).

Property 3 > is a pref-stable relation.
Let us illustrate this relation on the following simple exalm

Example 3Let A = {a,b}, R = {(a,b)} andb > a. It can be checked that the set
{b} is the only maximal element of relatier,. Figure 1 shows the preferences among
elements oP (A) wrt .

Figure 1. =2 C P(A) x P(A)

() '®

&{b}7
{a,l by

Let us now reconsider the example presented in the intramuct

Example 1 (Cont): It can be checked that every pref-stable relation returastbxtwo
pref-extensions{as, as, a4} (Whose base i§x, —y}) and{a1, as, as} (Whose base is
{z,z — y}). Thus, the bases corresponding to both extensions arestents

5.1. General and specific pref-stable relations

As already said, there are several relations that encodesiaigle semantics. The aim of
this section is to define the upper and lower bounds of théatmes.

The following relation, denoted by ,, is the most general pref-stable relation. It
returnsé =, &’ if and only if it can be proved from the four postulates tGatnust be
preferred tac’.



Definition 6 (General pref-stable relation) Let7 = (A, R, >) be a PAF andt, &’ €
P(A). E =, & iff:

e £E€CF(T)and¢& ¢ CF(T), or
e £, &8 eCF(T)and(Va' € E'\E)(Ja € E\E') s.t.(aRa'Na’ # a)V(a'Rara >
a).

Property 4 =, is a pref-stable relation.

The next relation, denoted by, is the most specific pref-stable relation. It returns
& =, & if and only if from the four postulates it cannot be proved thef = £7).

Definition 7 (Specific pref-stable relation)Let 7 = (A, R, >) be a PAF andf, &’ €
P(A). € =, Eiff:

o &' ¢CF(T),or
e £, &8 eCF(T)and(Va' € E'\E)(Fa e E\E') st.(aRa' Ad' # a)V (a > d).

Property 5 >, is a pref-stable relation.

Let us illustrate the differences between the three relatie,, >, and>, on the
following example.

Example 4 Let A = {a,b,c},R = {(a,b)} anda > c. For example, it holds that
{a} =2 {c},{a} =5 {c} and—({a} =, {c}). Thatis, for relations-, and >, the strict
preference betweei and c is enough to prefefa} to {c}. For relation >-,, sincec is
not attacked by, there is no preference between the detsand{c}. The fact that: is
stronger is not important, because there is no conflict betwbose arguments.

Another difference is that for the relation, all conflicting sets are equally pre-
ferred. For example{a, b, c} =5 {a,b} and{a,b} = {a,b,c}. Besides, relations
and>, encode the idea that a contradictory point of view cannotdeeated as a stand-
point. Thus, it is not even possible to compare two conttadycsets of arguments. For
example-({a, b, c} =2 {a,b}).

The next result shows that any pref-stable relation is “leetw the general and the
specific relations.

Theorem4 Let7T = (A,R,>) be a PAF andt, &’ € P(A). Let = be a pref-stable
relation.

o If €=, & thenE - &'
o If &> & thenf =, &'.

A simple consequence of the previous result is thaf, i, £’ and& =, &, then
& = &' for any pref-stable relation.

5.2. Corresponding Semantics

This section characterizes pref-stable extensions witheferring to pref-stable rela-
tions. Indeed, the next theorem proves that it is not necgssaompare all sets of ar-
guments in order to know whether a given subset of argumgatpief-stable extension
of a PAF.



Theorem5Let7T = (A, R,>) be a PAF and- a pref-stable relationf € Extx(7)
iff:

e £€CF(T),and

o (Vo' € A\E) (Fae€ &) st.(aRa’' Nd' #a)V (dRaNha>d).

This result is of great importance since it shows how to camplirectly the pref-
stable extensions of a PAF without bothering about prdfisteelations. This is particu-
larly the case when we do not want to compare all the elemérg.4).

Another way to compute the pref-stable extensions of a PA&-‘isvert” the direc-
tion of attacks when they are not in accordance with the peefees between arguments.
We apply then stable semantics on the basic framework tloditésned. More precisely,
we start with a PAFI = (A, R,>). We compute an AFF = (A, R’) whereR' is
defined as follows:

If (a,b) € R andb # a then(a,b) € R’
{ If (a,b) € Randb > a then(b,a) € R’/
then we apply stable semantics on the new framewgrkR'). This result is proved in
the following theorem.

Theorem 6 Let7 = (A, R,>) be a PAF and- be a pref-stable relation. LeR’ =
{(a;b) | (aRbAD ¥ a)V (bRaAa>b)}. ItholdsthatExt.-(7) = Ext((A, R')).

Let us illustrate this result through a simple example.

Example 5 Let us consider the PAF represented in Figure 2. It can be latgt¢hat
any pref-stable relation will return exactly one pref-seatextension:Ext,-(7) =
{{b,d, e}}. The argumentation framework that is obtained after innerarrows is de-

Figure 2. PAFT = (A, R, >) (Example 5)

<

(o) @é@
D < ©

picted in Figure 3. It is easy to see that the only stable esttemof this framework is the
set{b,d,e}.

Figure 3. Framework(A, R')




6. Conclusion

Several proposals have been made in the literature on havieigrate preferences in an
argumentation system. In this paper, we have shown thag¢ {xaposals may return un-
desirable results when the attack relation is asymmetrich¥ye then proposed a novel
approach to compute the extensions of a PAF. The idea is toedeéiw acceptability
semantics that take into account both attacks and prefesdretween arguments.

In our approach, a semantics is defined by a dominance nelatiche powerset of
the set of arguments. The extensions of a PAF are the maxiemakats of this relation.
This approach offers great advantages. First, it showslgldeae impact of preferences
on the result of a PAF. Second, it allows to compare all thmel#s of the powerset of
arguments. Thus, it offers more information.

In this paper, we have mainly focused on generalizing Dusgysantics [8], in par-
ticular stable one. We have defined a new semantics, cakdestable, that recovers sta-
ble semantics in case preferences between arguments areailable or do not conflict
with the attacks. We have proposed a full characterizatiquref-stable semantics both
in terms of dominance relations that encode it and also irckadsive way.

To the best of our knowledge, the only related work is thappeed in [3]. In that
paper, three “particular” relations that extend respetyistable, preferred and grounded
semantics are provided. As shown in our paper, those ralatime unfortunately not
unique. We have provided a full picture on the way of extegditable semantics into
pref-stable using postulates.
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Appendix

Proof of Property 1 Let us assume that € Exty (7). Thus,£ > 0. Sincef) € CF(T), then from Postulate
1,€ € CF(T).

Proof of Property 2 From Postulate 2, it follows that = £’ iff 0 > £’ \ £. From Postulate 37(0 = £\ £).
Consequently~(€ = £’). Postulate 4 implies tha’ \ £ > 0. From Postulate Z’ > £. This fact, together
with (€ > £’), leads to conclusiof’ > £.

Proof of Property 3 To show that-» is a pref-stable relation, we show that it satisfies all jagts. Postulate
1is satisfied since from the first item of the definition>of, any conflict-free set is preferred to any conflicting
set. Postulate 2 is satisfied since from the second item afahee definition, when comparing two sétand
&', common elements are not taken into account. The secondticonaf the definition of=2 is exactly the
negation of the condition of Postulate 3. Since Postulatapliés the second item of this definition, then it is
verified.

Proof of Property 4 Postulates 1 and 2 are verified for the same reasons asfdPostulate 3 implies that the
second item of Definition 6 is not satisfied. Postulate 4 vatty verified.

Proof of Property 5 We see from the first item of Definition 7 that all (conflictdérand non conflict-free) sets
are better than non conflict-free sets. A non conflict-free lsmvever, cannot be better than conflict-free set.
Thus, Postulate 1 is satisfied. Postulates 2, 3 and 4 areedgefiii same reasons as in the case of relatign

Proof of Theorem 1 =- Assume tha{(VE C A) we havef € Ext(F) < £ is a maximal element of).
We will prove that the three above conditions are satisfied.

1. Assume that C A and€& ¢ CF(F). So,& is not a stable extension ¢4, R). From what we
supposedf is not a maximal element of . In other words3&’ C A s.t.—(€ = &').

2. Assume that € CF(F) and thatva’ ¢ £, Ja € £ s.t.(a,a’) € R. Thus,£ is a Dung’s stable
extension of( A, R). From what we supposed, it must be tifais a maximal element of. Conse-
quently,(VE’ C A)E = &',

3. Assume that € CF(F) and3a’ € A\ £ sit.Fa € £ and(a,a’) € R. Itis obvious thai€ is
not a Dung’s stable extension @#, R). From (€ € Ext(F) < £ is a maximal element of) we
conclude that is not a maximal element of. Thus,(3&’ C A)—~(€ = £7).

< Let > satisfy the three conditions.

e Let & be a stable extension @f4, R) and let€’ C A. From the second conditiod, > £’. Thus,&
must be a maximal element wkt.

e If £ is not a stable extension ¢f4, R) but€ € CF(F), from the third condition we have thétis
not a maximal element wit.

e If £ is not a stable extension ¢f4, R) and€ ¢ CF(F) then, from the first conditions is not a
maximal element wrt-.

Proof of Theorem 2 = Let £ € Ext, (7). We will prove that€ € Ext.,(7). From Postulate 1,
£ € CF(T). Let&’ C A. If £ is not conflict-free then, from Postulated,>’ £’. Else, from Postulate 2,
EXEMENE = EN\E LetEg = E\E andEy = £\ €. &1 andé&; are disjunct conflict-free sets. If
condition of Postulate 4 is satisfied f6r and&2, then&; =’ €. Let us study the case when this condition is
not satisfied. Condition of Postulate 3 is not satisfied sfiee Ext (7). Thus, it must be that3z’ € &)
st.(Bz € &1)((z,2") € RA(2,z) ¢>)V ((2',2) € RA (x,2') €>) and(3x € & )(z,2’) €>. Let
X = {z € &|(z,2") €>}. X is conflict-free. From Postulate 3(&;1 \ X = {z’}). Postulate 2 implies that
G\ XUXUENE)) = {z'}Uu(XU(ENE))), ie.(€ = {z'} U (X U(ENE’))). Contradiction
with £ € Ext, (7). Thus, condition of Postulate 4 is satisfied farand&z, and&; =’ €. Consequently,
& =" &'. This means thaf € Exty /(7).

< In the first part of proof, we showed that for all pref-statgtations>1 , >», it holds that if€ € Exty, (T)
then& € Exty, (7). Contraposition of this rule gives & ¢ Exty, (7) thenf ¢ Exty, (7). Since this was
proved for arbitrary relations which satisfy all postutatere conclude: i€ ¢ Exty (7) thenf ¢ Exty/ (7).



Proof of Theorem 3

e Let T be a preference-based argumentation syster(#atb € A)(a,b) € R A (b, a) €>.
= Let& € Ext(F). We prove that € Ext, (7). LetE’ € P(A). If & ¢ CF(T) then, from
Postulate 1£ > £’. Let&’ € CF(T). Since€ € Ext(F)then(Vz' € E'\E)(Tx € E\E')(z,2’) €
R. We suppose@a, b € A)(a,b) € RA (b,a) €>. Thus, from Postulate &\ &' = £\ €. Now,
Postulate 2 implie€ > £’. Since&’ was arbitrary, theg € Ext (7).
< Let £ € Ext, (7). We will show that€ € Ext, (F). From Postulate 1& € CF(T). Let
z’/ ¢ £.Sincef € Exty (7) then it must be€ > {z’}. From Postulate 33z € &)(z,z’) €
RV (z,z') €e>. If 3z € &)(z,2') € R, the proof is over. Let us suppose the contrary. Then
(Bx € &)(x,2') € R.Let X = {x € E|x > «'}. From Postulate 3:(£ \ X > {«'}). This fact
and Postulate 2 imply:(€ > (X U {z’})). Contradiction with€ € Ext, (7). Thus,E € Ext(F).

e Inthe first part of the proof, we have shown that for every FRFE= (A, R, >) s.t.(Fa, b € A)aRbA
b > a and for every pref-relatioir, it holds that maximal elements wit are exactly stable extensions
of argumentation framewor® = (A, R). Informally speaking,~ generalizes stable semantics.
Formally, from the fact that for ang C A is holds that(€ is a maximal element wrt iff £ €
Ext(F)), Theorem 1 implies that three items of that theorem must biedby >.

Proof of Theorem 4

e Let& =, &' Thismeanstha € CF(T).If &' ¢ CF(T), then from Postulate £, = £’. We study
the case whe&’ € CF(T). From Postulate 2, we hae= £’ iff £\ £ = £\ €. From Definition
6 and Postulate & \ &' = £\ £. Thus,E = &’.

o If £,&" ¢ CF(T) then, Definition 7 implies »s £'. CaseE ¢ CF(T), &' € CF(T) is not
possible because of Postulate 1&lfe CF(T),E’ ¢ CF(T), then from Definition 7€ =, £’.
In the non-trivial case, whefi,£’ € CF(T), from Postulate 2£ \ &' = &’ \ €. Suppose that
—(E\E =5 £\ E). Now, Definition 7 implies(32’ € &'\ £)(Fz € £\ &) s.t. ((z,2') €>
YV ((z,z") € RA (2',z) ¢>). From this fact and Postulate 3, it holds thei€ \ &’ = &\ €).
Contradiction.

Proof of Theorem 5 Since both relationg- and >, verify Postulates 1, 2, 3 and 4, then from Theorem 2,
Exty (7) = Exty (7). This means that it is sufficient to prove ttate Exty (7)) iff the two conditions

of theorem are satisfied.

= Let& € Exty (7). Sincef is a pref-extension, according to Property¢le CF (7). Leta’ € A\ E.

We supposed thdffla € A) s.t.(a, a) € R, so it must be thafz’} is conflict-free. Sinc& € Exty (T), it
holds that€ =4 {z'}. Since€ and{z'} are conflict-free, Definition 6 impliez € &) s.t.(((z,z’) € R A
(z,2) ¢>)V ((2’,z) € RA (z,2') €>)).

< Let& be conflict-free setand I€¥z’ € A\E) (z € &) s.t.(((w,2') € RA (2, 2) ¢>)V ((2’,z) € R

A (z,z') €>)). Letus prove thaf € Ext, (7).

e Since& € CF(T) then for every non conflict-free sét it holds thate >, £’.

e Let&’ C Abe an arbitrary conflict-free set of arguments£1fC £, the second condition of theorem
is trivially satisfied. Else, let’ € £’ \ £. From what we supposed, we have tfiat: € £ \ £’) s.t.
((z,z") € RA (2',2) ¢>) or ((z',2) € R A (z,2) €>). Thus,E =4 E’.

From those two items, we have thatc Exty (7).

Proof of Theorem 6 Since both relationg- and >, verify Postulates 1, 2, 3 and 4, then from Theorem 2,
Exty (7) = Exty (7). This means that it is sufficient to prove tiate Exty (7)) iff £ € Ext((A, R')).
Note also thaf € CF(T) iff £ is conflict-free in(.A, R’). Thus, we will simply use the notatiaf € CF to
refer to both of those cases since they coincide.

= Let& € Exty (7). From Theorem 5 € CF and(Va' € A\ &) (Fz € &) s.t.(((w,2') € R A
(z',2) ¢>)V ((2',z) € R A (z,2") €>)). This means thatvz’ € A\ &) (Fz € €) s.t.(z,2’) € R, In
other words¢ € Ext((A, R')).

< Let€ € Ext((A, R))). Trivially, £ € CF. LetE’ C A If &' ¢ CF,thenE = &' Else, let€’ € CF.
Since€ € Ext((A,R')), then(Vz’ € A\ E)(3x € &)(x,2’) € R'. This is equivalent tgvVz’ € A\ £)
Bz € &) st.((z,2') € RA(2',2) ¢>)V ((&',2) € R A (z,2') €>)). Trivially, (V' € &\ &)
Fz € £\ &) st (((z,2') € RA (2,z2) ¢>)V ((2’,2) € R A (z,2') €>)). That means that
e EXtE(T).



