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Abstract. The approximation of point clouds in terms of parametric
representations is a fundamental task for geometric modeling and pro-
cessing applications to properly analyze the (re-)constructed model in
its full complexity. A necessary and key step in this process requires the
identification of a suitable data parameterization. If the data connec-
tivity is determined by a rectilinear grid, standard closed-form methods
are available for general multivariate configurations. Existing data-driven
parameterization methods instead are limited to the univariate case and
require pre/post-processing steps of the input data to handle point se-
quences without fixed length. In this paper we propose a dimension in-
dependent method based on convolutional neural networks to assign pa-
rameter values to gridded point clouds of arbitrary size, without the need
for additional data processing steps. We train the proposed networks by
considering polynomial least squares approximations and demonstrate,
both in the univariate and bivariate settings, that the accuracy of the
final model properly scales when uniform and adaptive spline refinement
is considered. A selection of numerical experiments on point clouds of dif-
ferent sizes highlights the performance of our parameterization scheme.
Noisy data sets which simulate measurement errors are also considered.

Keywords: deep learning, convolutional neural networks, parameteri-
zation, data fitting, THB-spline, tensor data

1 Introduction

Gridded data consists of (measurement) values obtained at regularly spaced
points that form a rectilinear grid. This kind of geometric data with a regular
structure arises in different scientific application settings, such as geographic
information systems, meteorology, and medical imaging, when, for example,
measurements at regular space or time intervals are acquired through differ-
ent types of technological instruments. The result is a set of ordered points that
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can represent curvilinear, surface, volumetric, or even higher dimension data.
Since the possibility of suitably extending the measurement information to re-
gions where no data is available is often required, efficient parameterization and
fitting schemes are usually needed.

A data fitting scheme addresses the construction of curves and surfaces which
properly approximate an arbitrary collection of geometric data, such as points
or derivative vectors. This type of approximation problem is very common in
different applications, where the generated points typically contain measure-
ment errors or computational noise. The re-constructed geometric model should
captures the shape of the data, while simultaneously avoiding artifacts and un-
wanted oscillations, which may easily arise when an (almost) exact match of
all the data points is constructed. In the polynomial spline setting, a variety
of different approximation schemes can be considered. For example, by focusing
on spline approximations of a given structured point cloud, a non-linear opti-
mization problem to minimize the fitting error could be performed with respect
to the spline coefficients (e.g., the B-spline control points), the parameters, and
the knot values. To avoid non-linear problems, the parameters and the knots
are usually computed in advance. These two pre-processing steps are usually
indicated as parameterization and knot placement problems, respectively.

In this paper we employ Convolutional Neural Networks (CNNs) for the
parameterization learning problem to assign parameter values at an arbitrary
number of points on a rectilinear grid for their subsequent use in multivariate
polynomial spline approximation schemes. Convolutional neural networks are
widely exploited in image processing, see e.g., [10], but they also thrive when
any kind of data involving spatial-correlated patterns, as for example audio files
[19] and geometric data processing [20], have to be processed. We train our model
using synthetic data generated by sampling random tensor-product polynomial
curves and surfaces by considering univariate and bivariate polynomial least
squares approximations. In our experiments we also add noise to the test data
to simulate measurement errors in the input of the proposed networks. Moreover,
we use the resulting parameterization to fit point clouds by non-uniform spline
constructions and show that the accuracy of the model properly scales under
adaptive mesh refinement. The choice of CNNs allows us to obtain a method that
is agnostic to the size of the input point cloud, and performs well with an input
of a different size from the one considered in the training phase. The experiments
highlight that our CNN model can also be effective when multivariate adaptive
spline fitting with truncated hierarchical B-splines (THB-splines) is considered,
see e.g., [6, 7, 2].

The structure of the paper is as follows. Section 2 presents a brief overview of
related works on the parameterization of gridded data. The polynomial spline ap-
proximation problem for data belonging to RN is briefly summarized in Section 3
together with the parameterization problem in RD. The proposed convolutional
parameterization learning model is presented in Section 4 in its general formu-
lation. Details about the hyperparameters selection and the training procedure
are provided in Section 5, with special focus on the curve and surface cases. A
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selection of numerical experiments is reported in Section 6. Finally, Section 7
contains few concluding remarks.

2 Related works

Over the last decades several approaches have been developed to handle the
parameterization of gridded data. Standard methods rely either on a uniform
distribution of parameter values over the parametric domain or on scaled con-
figurations of the physical points on the parametric space, as for example the
chord-length or centripetal parameterizations [13]. Alternatives to these standard
methods were presented in the literature, with special focus on the univariate
setting. In particular, variants of the scaled parameterizations were proposed
in [18, 3], whereas an example of an iterative procedure of different kind can
be found in [1]. In addition, the so–called universal parameterization method,
closely related to the uniform parameterization, was presented in [14] in the
context of univariate and bivariate spline interpolation.

The potential of exploiting machine learning techniques for B-spline curve
approximation was originally outlined in [12] and [11] by considering support
vector machines and multilayer perceptrons, respectively. While the focus of [12]
was on identifying a suitable knot placement strategy, a scheme based on two
interdependent deep neural networks to compute both the knot and parameter
values was proposed in [11]. In particular, the neural network used to predict
the parameters consists of a standard multilayer perceptron which takes in input
a planar point sequence of fixed length equal to 100 and returns as output the
corresponding parametric values. Therefore, if the given number of data points
does not match 100, pre- and post-processing steps for super/sub-sampling the
input data need to be performed. To overcome the computational limitations of
this method, the authors in [17] proposed a method for univariate polynomial
curve approximation based on a residual neural network. In this case the network
takes in input a planar point sequence of length 2q + 1, where q ∈ N is the
polynomial degree. The residual building blocks of the proposed networks are
characterized by fully connected layers, which constrain the architecture to deal
with an input of fixed size. Consequently, also this approach requires multiple
network evaluations and a post-processing step to handle point sequences of
arbitrary size. It should also be noted that, to the best of our knowledge, data-
driven methods to address the parameterization problem of gridded data sets in
a multivariate setting were not previously proposed. To properly process input
datasets with varying dimension without requiring additional computations, we
here propose a deep convolutional approach.

3 The parameterization problem for data fitting schemes

Let P = {pI ∈ RN : I ∈ Γ} be a gridded point cloud, with a rectilinear grid
structure along D ≤ N directions, defined by the set of multi-indices Γ , so that
each item of the point cloud belongs to RN . Let d = 1, . . . , D be the index
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associated to the parametric direction and let md be the point sequence length
along each direction d. We define the multi-index set

Γ = {I = (i1, . . . , iD) : id = 1, . . . ,md, d = 1, . . . , D} , (1)

where each multi-index I uniquely identifies a point pI of the point cloud P .
Consequently, the point cloud can be rewritten as

P =
{
pI ∈ RN : I = (i1, . . . , iD) , id = 1, . . . ,md, d = 1, . . . , D

}
. (2)

We denote the cardinality of the point cloud as m :=
∏D

d=1 md. Fig. 1 shows
an example of a point cloud P , characterized by D = 2 parametric directions
and elements belonging to RN , with N = 3. The point sequences in the two
directions have lengthsm1 = m2 = 4. Each item of the point cloud pI is uniquely
determined by the multi-index I = (i1, i2), with i1 and i2 varying between 1 and
4.

The least squares spline fitting method addresses the construction of a spline
model on a certain parametric space Ω ⊆ RD, which minimizes the residual
approximation error. More precisely, by choosing the polynomial multi-degree
q ∈ ND and a domain tessellation T (Ω), the objective of the method consists in
finding a spline s : Ω → RN ,

s(x) =

n∑
j=1

cjϕj(x), x ∈ Ω, (3)

where ϕj : Ω → R for i = 1, . . . , n are D-variate splines, which minimizes the
residual

min
c1,...,cn

∑
I∈Γ

∥pI − s(xI)∥22 = min
c

∥P −Bc∥22 (4)

for certain choice of the parameters xI ∈ Ω, for I ∈ Γ , where P are the samples
of the given point cloud, B := ϕj (xI), for j = 1, . . . , n and I ∈ Γ , is the system

collocation matrix, c :=
(
c1, . . . cn

)T
is the matrix of unknowns containing the

coefficients of the reconstructed geometry. Note that in equation (4), pI ∈ RN ,
for I ∈ Γ , are the Cartesian coordinates of the physical points in RN , whereas
xI ∈ Ω for I ∈ Γ are their associated parametric values.

To construct the gridded data approximation, a parameterization of the point
cloud P is needed. This problem requires to identify a set of suitable parametric
values

X = {xI ∈ Ω : I = (i1, . . . , iD) , id = 1, . . . ,md, d = 1, . . . , D} , (5)

so that any point pI ∈ P is associated to the parameter xI ∈ X. Without loss of
generality, we set Ω = [0, 1]D. In the tensor-product polynomial spline setting,
once the univariate parameterization along each parametric direction is com-
puted, the multivariate parameterization can be simply obtained by averaging
across all the other parametric directions [16].
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Fig. 1: Example of a gridded point cloud with items in RN , with N = 3, and
D = 2 parametric directions. The feature extraction step derives the edge vectors
eij of the input grid.

The identification of a suitable parametrization method for the definition of
the set X of parameter values is a challenging open problem within the polyno-
mial spline fitting framework. In particular, it can naturally influence the quality
of the final approximation leading to sub-optimal approximation error results if
not carefully handled, see e.g., [4, 5] which address the case of curve interpola-
tion. Among other optimization approaches, in the next sections, we design a
parameterization scheme based on convolutional neural network to address this
point.

4 The convolutional parameterization model

The data connectivity information on proximity and distance plays a funda-
mental role in geometric data processing. Within the data learning framework,
modeling the interactions between data relays on their weighted sums, computed
via neural networks. Convolutional operators have become a building block for
deep learning architectures to process data with a grid-like topology, for example
when reconstructing a free-form model starting from a set of gridded observations
pI ∈ RN , for I ∈ Γ . Architectures which involve convolutional operators within
their layers are addressed as convolutional neural networks (CNNs). Thanks to
the nature of convolutional operators, these networks are characterized by three
unique properties: sparse connectivity, parameter sharing, and shift equivari-
ant representations [8]. Sparse connectivity means that the networks have local
receptive fields, which collect information jointly from spatially neighbouring in-
puts. Parameter sharing is achieved by requiring the receptive field to assume
the same values on different instances of the input, and, consequently, the same
parameters are involved to compute each output unit. Finally, shift equivariant
representations follow by the definition of the convolutional operations and from
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Fig. 2: Examples of convolutional operators for D = 1 (a) and D = 2 (b).

the previous two properties. Fig. 2 illustrates the locality and parameter sharing
properties for the one (D = 1) and the two (D = 2) dimensional convolutional
operator. In both cases, the input is processed by a filter through a matrix con-
volution operator to generate the output feature map, usually given in input to
the successive convolutional operator. In particular, each output item is given
by the sum of the element wise product between different local values of the
input (green numbers in Fig. 2) and the corresponding values of the filter (red
numbers in Fig. 2).

The architecture we designed is a pure CNN, hence consisting only of convo-
lutional blocks. This choice has been made to take advantage of the locality of
convolutional operators in order to be able to support variable input sizes with-
out any additional effort and/or pre- or post-processing of the data. In particular,
since the convolutional neural network is characterized by local operators, the
particular size of the considered point clouds does not play a fundamental role,
whereas the filter dimension does. Consequently, even if a convolutional model is
trained on point cloud of fixed size, it can be easily generalized to point cloud of
different dimensions. In the following we detail the proposed architecture, while
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Fig. 3: The CNN architecture.

additional information on the data generation, the hyperparameters selection,
and the training process are provided in the next section.

4.1 Learning model architecture

The proposed architecture, presented in Fig. 3, is a sequential CNN which con-
sists of a feature extraction layer, B convolutional building blocks (characterized
by convolutional layers coupled with ReLU activation functions), a final block of
one convolutional layer, the softmax activation function, and a cumulative sum
layer connected to the output. We now give a detailed description of each compo-
nent of our architecture to illustrate how to obtain the output parameterization
result.
Input The learning model takes in input a point cloud P of gridded data,

organized in a tensor structure, as in (2).

Features The feature extraction layer produces a relational representation of
the point cloud that is translation invariant. It consists in the computation of
md−1 edges in RN between each pair of consecutive points along each direction
d = 1, . . . , D. Fig. 1 illustrates the feature extraction process for a structured
point cloud with N = 3 and D = 2. In particular, the edge associated to the
element p22 along the direction d = 1 is e122 := p32 − p22 (swown in red in
Fig. 1), whereas the edge associated to the element p32 along the direction d = 2
is e232 := p33 − p32 (shown in blue in Fig. 1). More precisely, for any D ≥ 1,
let I = (i1, . . . , iD) for id = 1, . . . ,md − 1, d = 1, . . . , D, and let I + d be the
multi-index I augmented by 1 along the d-th direction, for d = 1, . . . , D, namely
I + d := (i1, . . . , id + 1, . . . , iD). For all I = (i1, . . . , iD) with id = 1, . . . ,md − 1
and d = 1, . . . , D, we define the edges edI as edI := pI+d−pI . Note that edI ∈ RN .
By concatenating the edges eI =

(
e1I , . . . , e

D
I

)
, the extracted features are defined

as the collection of edges

E =
{
eI ∈ RN×D : I = (i1, . . . , iD), id = 1, . . . ,md − 1, d = 1, . . . , D

}
. (6)

The extracted features are then passed as input to the convolutional building
blocks.
D-conv The convolutional layers perform a D-convolution over the input. Each
block is characterized by discrete convolutional operators whose hyperparam-
eters along each direction d = 1, . . . , D are the number of input and output
channels cdin, c

d
out ∈ N \ {0}, the size of the convolving filter ksd ∈ 2N+ 1, the

amount of padding added to the boundaries of the input padd ∈ N, the stride
of the convolutional operator sd ∈ N \ {0}, and the spacing between the filter
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elements dild ∈ N. By denoting with ud ∈ Rcdin×Ld
in the input instance of any

convolutional layer along the direction d = 1, . . . , D and with yd ∈ Rcdout×Ld
out

its output, the relationship between the input (Ld
in) and the output (Ld

out) sizes
is

Ld
out =

Ld
in + 2 · padd − dild ·

(
ksd − 1

)
sd

+ 1

. (7)

In order to fully convert the input along any direction d = 1, . . . , D through
the filter of dimension ksd and obtain an output with the same sequence length,
namely Ld

in = Ld
out, we specify sd = 1 and dild = 0 and suitably pad the input

of each convolutional layer by adding
⌊
ksd/2

⌋
elements around the boundary of

each item along any direction d = 1, . . . , D. In particular, we repeat the first and

the last input element (reflect padding mode)
⌊
ksd/2

⌋
times at the beginning and

at the end of each input item, along each direction d = 1, . . . , D. Moreover, we set
the hyperparameter values of the architecture along each direction d = 1, . . . , D
as ksd = 2kd − 1, where kd is the spline order along direction d, cdin = m
(amount of point items) in the first convolutional layer and cdout = D in the last
convolutional layer. The input/output channels of the hidden layers are fixed
to 100. In particular, their values depends on the user choice, with the only
constrain that cdout = cdin for two consecutive layers.

ReLU Activation functions are non linear transformations which have been
introduced in order to obtain nonlinear learning models [8]. The rectified linear
unit (ReLU) is a function which is applied element-wise to the output of all
except the last convolutional hidden layer. It is defined as ρ(t) := max {0, t} and
it is used for practical applications among most feedforward neural networks due
both to its simple piecewise linear structure and its high performance [21].

Softmax As a final activation function we apply the softmax function along each
direction d = 1, . . . , D to generate parameter intervals that form a partition
of unity along each direction d. In particular, the output of the softmax are
the elements ∆d

I ∈ [0, 1] associated to each edge edI computed in the feature
extraction layer, for I = (i1, . . . , iD) with id = 1, . . . ,md − 1, d = 1, . . . , D.

CumSum In conclusion, the parametric values are recovered by applying the
cumulative sum operation along each direction d = 1, . . . , D. More precisely, we
define the parametric values as

xd
(1,i2,...,iD) = 0, xd

I+d = xd
I +∆d

I ,

where I+d is the multi-index I augmented by 1 along the d-th direction, for d =
1, . . . , D. Thanks to the application of the softmax activation function, for each
d = 1, . . . , D it is also ensured that the remaining boundary points are mapped
to the boundary of the parameter domain, namely xd

(i1,i2,...,iD−1,mD) = 1.

Output The output of the learning model consists of the parametric values X

as defined in (5), associated to the input point cloud P .
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4.2 Loss function

Once the parameterization as in (5) is computed with the convolutional param-
eterization model, we estimate the control points of the approximating geome-
try by solving the polynomial least squares minimization problem in Bernstein-
Bézier form. The reconstructed model s : [0, 1]D → RN is then used to defined
the loss function of our unsupervised learning model.

In particular, let L : Rm×N × [0, 1]m×D → R be the mean squared error
(MSE) between the data P and the corresponding values of the polynomial

approximation model P̂ =
{
p̂I ∈ RN : I ∈ Γ

}
, so that s(xI) = p̂I for each

multi-index I. Therefore, the loss function is the residual

L (P ,X) :=
1

m

∑
I∈Γ

∥pI − p̂I∥22

of the least squared fitting problem corresponding to the parameters X in out-
put from the network. Note that our method falls into the unsupervised learning
class, since the real parametric values are not considered to guide the optimiza-
tion problem and the label role is played by the input points.

5 Curve and surfaces parameterization learning

In this section, we provide the information concerning the training of our models.
The method we propose can be implemented for any spatial dimension N ≥
1 and parametric dimension D ≤ N , thanks to the general definition of the
convolutional operator. Note that we just set up and train a different model for
any distinct pair of values N and D, independently of the considered point cloud.
In particular, we focus on two cases: the parameterization of point sequences,
when N = 2 or N = 3 and D = 1, and the parameterization of spatial gridded
data, when N = 3 and D = 2, to subsequently compute polynomial and spline
approximations in terms of univariate curves and bivariate surfaces, respectively.

5.1 Data generation

Deep learning has its roots in data-driven artificial intelligence and the con-
sidered datasets naturally play a fundamental role for the performance of the
model. In view of the lack of public datasets for the problem at hand, the points
used in the training phase have been randomly generated.

We generated multiple synthetic data by sampling different kinds of para-
metric objects, either curves (D = 1, N = 2, 3) or surfaces (D = 2, N = 3). The
proposed algorithm for data generation is the following.

1. Generate a random parametric object s : [0, 1]D → RN .
2. Sample ud = {uid}

md

id=1 parameters according to the random uniform distri-
bution Uniform(0, 1), for d = 1, . . . , D.
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3. Normalize the parametric values uid in [0, 1], so that u1 = 0, umd
= 1, i.e.

uid =
uid −minj=1,...,md

uj

maxj=1,...,md
uj −minj=1,...,md

uj
.

4. Define a tensor-product mesh of samples U :=
⊗D

d=1 ud, so that

U =
{
uI ∈ [0, 1]D : uI , I = (i1, . . . , iD) , id = 1, . . . ,md, d = 1, . . . , D

}
.

5. Evaluate the curve on the parametric values U , so that pI = s(uI) and
collect them in P .

6. Normalize P in [0, 1]
N
.

Note that the geometry s : [0, 1]D → RN can belong to any dimension and
since the input processed by the convolutional layers are the edges computed in
(6), our parameterization method is affine invariant.

The type of the parametric object in step 1 naturally characterizes the gen-
erated point cloud. In particular, for N = 2, 3 and D = 1 we considered ran-
dom polynomial curves of fixed degree q in Bernstein-Bézier form, where ϕj for
j = 1, . . . , q in (3) are defined in terms of Bernstein polynomials and cj ∈ RN

for j = 1, . . . , q are the corresponding control points sampled from the stan-
dard normal distribution N (0,1). For N = 3 and D = 2, we generate an initial
polynomial tensor-product surface with control points cj = [c1j , c

2
j , c

3
j ]

T , where

[c1j , c
2
j ]

T are chosen as the tensor product Greville abscissae for degree q and

c3j are sampled randomly accordingly to the uniform distribution in [0, 1]. The
resulting surface is then also randomly rotated.

5.2 Hyperparameters selection and training process

Training our neural network consists in using our synthetic data to minimize
the loss function, so that the model weights tend to be optimal for both seen
and unseen input point clouds. In order to optimize the performance of the
network, we set up an extensive grid search on optimizers, learning rates, filter
sizes, and number of convolutional building block when applying the learning
parameterization model in the context of planar polynomial curves, namely for
N = 2 and D = 1. In particular, we tested three optimizers (Adam, SGD,
RMSprop) with learning rates γ = 1e − i, i = 1, . . . , 6. The filter size is set to
be twice the polynomial degree plus one, as in [17], and the number of building
blocks is B = 4. In addition, we randomly select the point sequence length of
each training batch in range m ∈ [2d+1, 100]. We obtained the best results using
RMSprop as optimizer, learning rate equals to 1e − 5, and momentum 0.9. We
then used these hyperparameter configurations also to train the model designed
for higher dimensions, in particular for N = 3 and D = 2 to address the surface
fitting problem. In this case we increase B to 5 and we fix the point cloud size to
m = 100. Note that we train a different model for any value of N and D without
a fixed number of steps. By following the so-called early stopping criteria, the
training phase continues until the validation loss stagnates, a strategy commonly
used to avoid overfitting.
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6 Numerical results

In this section we present a selection of experiments to analyze the performance
of the introduced learning parameterization model and its generalization capa-
bilities with respect to a variety of structured data and different spline approxi-
mation schemes. The quality of the parameterization model is defined in terms
of the final geometric approximant accuracy, reported in terms of mean squared
error (MSE).

We show the effectiveness of our method starting from simple planar polyno-
mial curve approximations (for N = 2 and D = 1) to arrive at complex adaptive
spline surface approximation with THB-splines (for N = 3 and D = 2). In par-
ticular, Section 6.1 presents a comparison with state-of-the-art neural networks
for polynomial curve approximation in the case of polynomial data. Trigono-
metric and noisy data approximation is addressed in Section 6.2, in the context
of adaptive spline curve approximation. The performance of the proposed CNN
model on benchmark datasets for spline curve approximation is then illustrated
in Section 6.3. By moving to the surface case, Section 6.4 shows the results on
polynomial data, together with the model robustness to noise. Subsequently, in
Section 6.5, we provide numerically evidence of the generalization capabilities
of the proposed parameterization model with respect to datasets significantly
different (in nature and size) from the synthetic data used during the training
phase. Finally, in Section 6.6 and Section 6.7 we investigate the performance of
the learning parameterization model for tensor-product B-spline and THB-spline
fitting schemes, respectively.

6.1 Polynomial curve approximation

In this experiment we exploit the convolutional parameterization model on uni-
variate polynomial data for different degrees q and variable point sequence
lengths m. For each degree q = 2, . . . , 5, and length m = 20, 50, 80, we gen-
erate 100 polynomial point sequences P =

{
pi ∈ R2 : i = 1, . . . ,m

}
as detailed

in Section 5.1. Subsequently, we compute X = {xi ∈ [0, 1] : i = 1, . . . ,m} with
the proposed CNN approach and with standard parameterization schemes of the
form

xi+1 = xi +
∆pi

∆p
for i = 1, . . . ,m− 1,

with

x1 = 0, ∆pi := ||pi+1 − pi||α, ∆p =

m−1∑
j=1

∆pi.

In particualr, the common uniform, chord-length, and centripetal parameteriza-
tions can be recovered by setting α = 0, 1, 1/2 respectively. We then compare the
averaged MSE error obtained building the Bézier fitting model at the parametric
values given by the best standard technique (STD), the results presented in [16,
Table 2] (RES), and the ones obtained with our convolutional model (CNN).
The outcome of this analysis is reported in Table 1. The CNN outperforms STD
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Table 1: MSE error for Bézier approximation of degree q = 2, 3, 4, 5 on polyno-
mial data for different input lengths m = 20, 50, 80 in Section 6.1.

m = 20 m = 50 m = 80

STD RES CNN STD RES CNN STD RES CNN

q = 2 2.97e−3 5.3e−4 3.21e−5 1.79e−3 7.3e−4 2.23e−5 1.46e−3 7.9e−4 4.13e−5
q = 3 2.20e−3 6.7e−4 1.31e−4 1.43e−3 8.7e−4 8.80e−5 1.41e−3 8.5e−4 1.09e−4
q = 4 1.66e−3 3.3e−4 7.24e−5 1.06e−3 4.3e−4 5.30e−5 9.48e−4 4.1e−4 6.13e−5
q = 5 1.35e−3 4.8e−4 3.71e−5 7.65e−4 5.8e−4 2.50e−5 5.09e−4 5.6e−4 3.55e−5

methods and the RES model in terms of mean squared error. In particular, the
MSE obtained with CNN is reduced up to one and two orders of magnitude
as regards RES and STD, respectively. The advantage of our convolutional pa-
rameterization learning model lies not only in the better performance shown in
Table 1, but also in the novelty of its self-contained nature. For each input point
sequence of any length, our convolutional learning method directly computes the
corresponding point parameterization, without any additional computation. The
approach proposed in [17] instead requires requires multiple network evaluations
and a post processing step to handle arbitrary sequence lengths.

6.2 Generalization to spline curve approximation for datasets of
different nature

In this example we investigate the generalization capabilities of our convolutional
parameterization model to different datasets and adaptive B-spline curve fitting
of various degrees (q = 2, 3, 4, 5), as well as its robustness to noise. By considering
the algorithms presented in Section 5.1, we generate two distinct datasets of size
100 by sampling trigonometric and polynomial curves. The trigonometric curves
are defined as c(t) = a0 +

∑r
j=1 aj cos(jt) + i

∑r
j=1 bj sin(jt), for a fixed degree

r, where a0 ∈ C and aj , bj ∈ R are values sampled from the standard normal
distribution N (0, 1), for j = 1, . . . , r. In the polynomial case, we added a factor
of 1e−2 random Gaussian noise to the data points.

We test the CNN parameterization by considering adaptive B-spline least
squares approximation obtained by performing dyadic refinement of the knot
intervals which exhibit the highest error values. The resulting MSE is shown in
in Table 2 and Table 3 for trigonometric data of degree r = 5 and noisy polyno-
mial data, respectively, for different input sequence lengths (m = 20, 50, 80) and
adaptive B-spline approximations with a final number of 5 interior knots. The
CNN parameterization model always obtains better results than the best stan-
dard methods (STD). In particular, in the case of trigonometric data (Table 2),
it gains up to two order accuracy. For the results on noisy polynomial data (Ta-
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Table 2: MSE error for adaptive B-spline approximation with 5 interior knots
of degree q = 2, 3, 4, 5 on trigonometric data for different input lengths m =
20, 50, 80 in Section 6.2.

m = 20 m = 50 m = 80
STD CNN STD CNN STD CNN

q = 2 3.01e−4 1.56e−5 2.17e−4 6.08e−6 1.71e−4 5.82e−6
q = 3 1.35e−4 1.63e−5 1.10e−4 1.05e−5 3.16e−5 7.84e−6
q = 4 1.74e−4 5.53e−6 2.48e−5 3.66e−6 3.14e−5 4.74e−6
q = 5 3.09e−5 2.54e−6 1.17e−5 1.88e−6 4.03e−5 1.92e−6

Table 3: MSE error for adaptive B-spline approximation with 5 interior knots of
degree q = 2, 3, 4, 5 on polynomial data with random gaussian noise for different
input lengths m = 20, 50, 80 in Section 6.2.

m = 20 m = 50 m = 80

STD CNN STD CNN STD CNN

q = 2 1.27e−4 7.69e−5 1.32e−4 9.46e−5 1.54e−4 1.02e−4
q = 3 9.54e−5 3.36e−5 1.21e−4 6.33e−5 1.12e−4 7.24e−5
q = 4 7.37e−5 2.68e−5 1.66e−4 8.89e−5 8.41e−5 4.04e−5
q = 5 9.02e−5 2.72e−5 1.68e−4 7.64e−5 1.04e−4 6.11e−5

ble 3), the CNN model accuracy is improved up to one order of magnitude when
compared to STD.

To better understand the generalization capabilities of the network when an
increasing number of knots is considered, we present a final test with fixed input
length equals to m = 20. We then perform a dyadic adaptive B-spline curve
fitting with a varying number of interior knots, starting from the polynomial
case of 0 internal knots up to 10 internal knots. The results in terms of MSE for
the centripetal (CEN), chordlenght (CHL), uniform (UNI) and CNN parameter-
izations for q = 3, 4, 5 are shown in Fig. 4 (top) for trigonometric data of degree
r = 5 and in Fig. 4 (bottom) for noisy polynomial data. We may observe that
in Fig. 4 (top) for q = 3, 5 the MSE error gap between CNN and STD is main-
tained or even increased with respect to the number of interior knots inserted.
In Fig. 4 (top) for q = 4 and in Fig. 4 (bottom) for all the degrees, the MSE
error gap between CNN and STD tends to reduce with the number of interior
knots inserted, but the CNN parameterization model always achieves the best
results.

6.3 Spline curve approximation of benchmark datasets

In this experiment, we test our parameterization model on point sequences sam-
pled by the benchmark presented in [15]. By considering B-spline approximation
of degree 4 with at most 15 adaptive interior knots, Fig. 5 presents the results
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Fig. 4: MSE error for adaptive B-spline approximations with increasing number
of knots tested on m = 20 trigonometric (top) and noisy (bottom) data for
degree q = 3 (left), q = 4 (center) and q = 5 (right) in Section 6.2.

Fig. 5: B-spline approximation of degree q = 4 with 15 interior knots for 20 (left),
50 (center), and 80 points (right) in Section 6.3.

Fig. 6: B-spline approximation of 65 points with q = 5 and 4 (left), 7 (center),
10 (right) interior knots in Section 6.3.

obtained employing the standard (UNI, CHL, CEN) and the CNN parameter-
izations on an increasing number of input points, namely m = 20, 50, 80. An
analogous comparison on a sequence of m = 65 points, approximated with de-
gree q = 5 B-spline and adaptive knot vectors with a varying number (4, 7, and
10) of interior knots is shown in Fig. 6.
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Table 4: MSE error for polynomial least squares approximation of polynomial
(left) and noisy (right) data of bidegree (q, q), for q = 2, 3, 4, 5 in Section 6.4.

exact noisy
STD CNN STD CNN

q = 2 1.20e−3 5.21e−4 1.26e−3 5.94e−4
q = 3 6.07e−4 2.25e−4 6.45e−4 2.57e−4
q = 4 3.91e−4 1.46e−4 4.62e−4 1.94e−4
q = 5 2.19e−4 8.97e−5 2.75e−4 1.35e−4

6.4 Polynomial surface approximation

In this experiment we illustrate the performance of the proposed parameteri-
zation model on both exact and noisy data sampled from polynomial patches
in the bivariate case. In particular, we collect structured point clouds by sam-
pling Bézier surfaces of bi-degree (q, q). More precisely, for each q = 2, 3, 4, 5,
we generate 100 point clouds consisting of m = 144 gridded points following the
algorithm described in Section 5.1. In addition we also create a noisy version
of this datasets by perturbing each point cloud with Gaussian noise of factor
ϵ = 5e−3. The results of the parametric polynomial fitting of bidegree (q, q) of
the aforementioned generated point clouds are reported in Table 4 in terms of
MSE for the best standard parameterization technique (STD) and the proposed
convolutional model (CNN). The error values give numerically evidence of the
generalization capabilities of the trained model with respect to datasets which
are somehow similar but at the same time independent from the ones used in the
training phase. In particular, the proposed model avoids potential over-fitting
problems, it is robust to noise, and it always increases the accuracy of the poly-
nomial approximation more than 50% over STD parameterization techniques in
all the considered configurations.

6.5 Generalization to point clouds sampled from geometric models

In this experiment, we analyse the generalization capabilities of the parameteri-
zation learning model for data which are different both in dimension and nature
from the one used in the training phase. More precisely, we sample point clouds
of dimension either m = 1089 or m = 3025 from 3 different B-spline geome-
tries of bidegree (q, q), representing a car, a ship hull, and a wind turbine. The
corresponding point clouds are illustrated in Fig. 7 for the case of 1089 (top)
and 3025 (bottom) samples. Moreover, for this experiment we have also stored
the true parametric values using during the sampling phase and we will refer to
them as the ground truth (GT) in the comparisons. Once the data have been
parametrized with the convolutional method (CNN), we performed polynomial
approximation of bi-degree (q, q) and compare the MSE and MAX obtained
with GT and CNN parameterizations. Note that the GT parameters come from
a specific B-spline geometry, therefore if used for different spline models they
not necessarily lead to zero error at the evaluation sites.
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Fig. 7: Point clouds obtained from a car (left), a ship hull (center), and a wind
turbine (right) model of 1089 (top) and 3025 (bottom) items.

The results are reported in Table 5. They numerically show the generalization
capabilities of the proposed model with respect to the size of the input point
clouds and to the nature of the data. For the car geometry, in all the considered
configurations, the MSE error of the final reconstructed polynomial geometry is
smaller in the case of the CNN parameterization, with a gain in accuracy up
to more than 50% of for q = 3. When the ship hull geometry is considered,
the best performances are achieved if the CNN parameterization is applied in
combination with lower polynomial bidegrees, namely q = 2, 3, where for q = 2
the final reconstructed geometry of the bigger point cloud gains more than 60%
of accuracy. As concerns the final wind turbine geometry, the best advantage is
registered on the point cloud of size m = 1089 among all the different bidegrees,
when the MSE is improved up to more than 60% for bidegree (3, 3). The same
bidegree (3, 3) leads also to the best error results for the bigger wind turbine
point cloud.

6.6 Generalization to tensor product B-splines approximation

In this example we show the generalization capabilities of the convolutional
parameterization for tensor product B-spline models. In particular, we consider
the point clouds obtained from the car shell geometry introduced in Section 6.5
for which we perform a tensor product B-spline approximation for bidegree (3, 3)
and 3 levels of uniform refinement, both considering the given parameterization
(GT) and the convolutional parameterization (CNN).
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Table 5: MSE for polynomial least squares surface approximation with different
bidegrees (q, q) of the car shell, the ship hull, and the wind turbine point clouds
of size m = 1089 and m = 3025 in Section 6.5.

car ship hull wind turbine
GT CNN GT CNN GT CNN

m = 1089
q = 2 1.38e−3 8.28e−4 2.53e−4 1.11e−4 1.95e−3 1.30e−3
q = 3 4.58e−4 1.94e−4 7.28e−5 6.01e−5 1.18e−4 3.94e−5
q = 4 1.19e−4 7.63e−5 2.78e−5 1.88e−5 4.21e−5 3.54e−5
q = 5 7.82e−5 6.73e−5 5.89e−6 1.19e−5 2.67e−5 1.38e−5

m = 3025
q = 2 1.32e−3 8.10e−4 2.34e−4 8.44e−5 1.90e−3 1.55e−4
q = 3 4.42e−4 2.03e−4 6.76e−5 4.95e−5 1.14e−4 7.63e−5
q = 4 1.14e−4 5.54e−5 2.62e−5 2.05e−5 4.14e−5 5.55e−5
q = 5 7.47e−5 5.13e−5 5.67e−5 1.17e−4 2.62e−5 2.14e−5

Concerning the point cloud of dimension 1089, the MSE error registered us-
ing GT parameterization is 8.18e−6. If the CNN parameterization is considered,
the MSE is more than halved and reduces to 3.54e−6. Analogous results are
achieved when considering the point clouds of dimension 3025 for which the GT
parameterization leads to MSE of 8.21e−6, whereas by using the CNN param-
eterization the accuracy improves more than 40% obtaining an MSE equals to
4.31e−6.

The scaled error distributions of the final approximation plotted on the para-
metric and physical domain, for both GT and CNN parameterizations, are illus-
trated in Fig. 8 for the point cloud of size 3025. More precisely, plots (a) and (b)
in Fig. 8 are the error distributions for the GT parameterization, whereas the
corresponding results for the CNN parameterization are shown in plots (c) and
(d) of the same figure.

6.7 Hierarchical spline approximation of a ship-hull

In this experiment we exploit the performance of the convolutional parameteri-
zation model when hierarchical B-spline fitting with THB-splines is considered.
In this case the final approximation is obtained with the adaptive THB-spline
fitting scheme presented in [9], enriched by a step of parameter correction at
each adaptive iteration. In particular, given a point cloud and a suitable param-
eterization, the considered adaptive fitting scheme designs a hierarchical spline
model of the form (3), where the basis function are bivariate truncated hierarchi-
cal B-splines (THB-splines). The final THB-spline geometric model is obtained
by the iterative alternation of two steps: the computation of the control points
and an adaptive refinement of the spline space. At each iteration of the adaptive
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(a) (b) (c) (d)

Fig. 8: Point-wise error on the parametric (a-c) and geometric (b-d) domain of the
tensor product B-spline approximation of bi-degree (3, 3) for the car shell point
cloud of size 3025 using the given GT (a-b) and the CNN (c-d) parameterizations
in Section 6.6.

loop, hence for a fixed spline space, the coefficients are computed by solving a
penalized least squares problem. As concerns the refinement criteria, we let the
refinement be guided by the point-wise approximation error, namely the element
domain which registers a point wise error above a certain input tolerance are
dyadically refined. The alternation of these two steps, together with the param-
eter correction, is performed until the point-wise errors are all within the input
tolerance or a maximum number of iterations is reached. The hierarchical mesh
and the THB-spline approximation obtained for the ship hull point cloud of di-
mension 3025 are shown on the top line of Fig. 9. In particular, the final geometry
has 1349 degrees of freedom and an accuracy characterized by a MSE equals to
2.02e−11. Note that the degrees of freedom are properly distributed along the
parametric domain Ω, by following the sharp feature and high curvature regions
of the geometry, as shown in Fig. 9.

7 Closure

We presented a general parameterization learning method for polynomial and
spline approximation of gridded data point by exploiting CNN architectures. In
particular, the learning model takes in input a structured point cloud and gives
in output suitable parameters to be used for the geometric modeling of the input
data via spline constructions. Our network is characterized by a feature extrac-
tion layer, which yields to translation invariance of the proposed method. This
layer is then followed by a sequence of CNN layers which encode and propagate
proximity information to successive layers. Finally, the parametric values for the
input point cloud can be recovered by applying the softmax activation function
and a cumulative sum layer. For the numerical experiments, we applied the pro-
posed method by considering its univariate and bivariate configuration. The im-
plemented schemes compares favorably with respect to standard techniques and
alternative deep parameterization methods. The results also confirm the flexibil-
ity of the convolutional approach, naturally able to approximate gridded point
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Fig. 9: Hierarchical mesh (left) and geometric spline model (right) of the ship
hull point cloud of dimension 3025 via the adaptive scheme with THB-splines in
Section 6.7.

clouds of variable size. In particular, we highlighted the generalization capabili-
ties of our model for spline approximation on unseen datasets of different kind,
including more general (noisy) data configurations and available datasets. We
numerically demonstrate that the accuracy of the spline approximation based
on the CNN parameterization properly scales with respect to (non-)uniform
spline configurations, while still comparing favorably with respect to standard
choices. Finally, we also show that the proposed method can be suitably com-
bined with THB-spline approximation for geometric modeling applications. The
potential of exploiting the convolutional spline learning model both for optimal
knot placement and mesh refinement, as well as for control points estimation,
are interesting directions for future research.
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