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Abstract

The completion of missing values is a prevalent problem in many domains of pattern
recognition and signal processing. Analyzing data with incompleteness may lead to
a loss of power and unreliable results, especially for large missing sub-sequence(s).
Therefore, the aim of this paper is to introduce a new approach for filling successive
missing values in low/un-correlated multivariate time series, that is to manage a high
level of uncertainty. In this way, we propose to use a novel fuzzy weighting-based
similarity measure. The proposed method consists of two main steps. Firstly, for each
incomplete signal, the data before a gap and the data after this gap are considered as
two separated reference time series with their respective query windowsQb andQa.
We then find themost similar sub-sequence (Qbs) to the sub-sequence before this gap
Qb and themost similar one (Qas) to the sub-sequence after the gapQa. To find these
similar windows, we build a new similarity measure based on fuzzy grades of basic
similarity measures and on fuzzy logic rules. Finally, we fill in the gap with average
values of the window following Qbs and the one preceding Qas. The experimental
results have demonstrated that the proposed approach outperforms the state-of-the-
art methods in case of multivariate time series having low/non-correlated data but
effective information on each signal.

KEYWORDS:
Fuzzy inference system, Uncorrelated multivariate time series, Incompleteness, Similarity measure,
Imputation.

1 INTRODUCTION

Nowadays huge time series can now be considered due to the availability of effective low-cost sensors, the wide deployment of
remote sensing systems, internet based measure networks,.... However, collected data are often incomplete for various reasons
such as sensor errors, transmission problems, incorrect measurements, bad weather conditions (outdoor sensors), for manual
maintenance, . . . . This is particularly the case for marine samples1 that we consider in this paper. For example, the MAREL-
Carnot database characterizes sea water in the eastern English Channel, in France2. The data contain nineteen time series that
are measured by sensors every 20 minutes as nitrate, fluorescence, phosphate, pH, . . . . The analysis of these data (it is important
to note the important size and shape of this dataset) allows sea biologists to reveal events such as algal blooms and thus better
understand phytoplankton processes3, sea pollution,.... But these data have a lot of missing values: 62.2% for phosphate, 59.9%
for nitrate, 27.22% for pH, . . . and the size of missing data varies from one-third hour to several months. Most proposed models
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for multivariate time series analysis often have difficulties to process incomplete datasets, despite their powerful techniques.
They usually require completed data. Then the question is: how can missing values be dealt with? Ignoring or deleting them is a
simple way to solve this drawback. But serious problems regularly arise when applying this solution, particularly for time series
data where the considered values depend on the previous ones. Furthermore, an analysis with systematic differences between
observed and unobserved data leads to biased and unreliable results4. Thus, it is important to propose a new technique to estimate
the missing values. The imputation technique is a conventional method to handle incompleteness problems5.
Considering imputation methods, one way to deal with incompleteness for multivariate time series usually take advantage

of the correlations between variables to predict lacking data6,7,8,9,10,11. This means that correlations permit to use the values of
available features to estimate the missing values of other features. However, considering multivariate datasets having low/non-
correlations (for instance theMAREL-Carnot dataset), the observed values of full variables cannot be used to complete attributes
containing missing values. One way to deal with missing data in this case is to use the observed values of the unique variable
with the missing data to compute the incomplete values.
Thus the proposed method has to manage the high level of uncertainty of this kind of signal using a new similarity measure.
Particularly, imperfect time series can be modelled using fuzzy sets. The fuzzy approach makes it possible to deal with incom-

plete, vague and imprecise circumstances12, which provide a high uncertainty environment to make decision. The successful use
of fuzzy-based similarity measure in pattern recognition13, in retrieval systems12 and in recommendation systems14 leads us to
study its ability to complete missing values in uncorrelated multivariate time series. Wang Wang201515 proposed to use infor-
mation granules and fuzzy clustering for time series long-term forecasting with success. But according to our knowledge, there
is no application devoted to complete large gap(s) in uncorrelated multivariate time series using a fuzzy-weighted similarity
measure.
Thus, this paper aims to propose a new approach, named FSMUMI, to fill large missing values in low/un-correlated multi-

variate time series by developing a new similarity measure based on fuzzy logic. However, estimating the distribution of missing
values and whole signals is very difficult, so our approach makes an assumption of effective patterns (or recurrent data) on each
signal.
The rest of this paper is organized as follows. In Section 2, related works to imputation methods and fuzzy similarity measure

are reviewed. Section 3 introduces our approach for completing large missing sub-sequences in low/un-correlated multivariate
time series. Next, Section 4 demonstrates our experimental protocol for the imputation task. Section 5 presents results and
discussion. Conclusions are drawn and future work is presented in the last section.

2 RELATED WORKS

This section presents - first, related work about multivariate imputation methods, followed by a review on the fuzzy similarity
measure and its applications.

2.1 Classical multivariate imputation methods
Up to now, numerous successful researches have been devoted to complete missing data in multivariate time series imputation
such as16,17,18,19,20,21,22,23,24,10,11. Imputation techniques can be categorized in different perspectives: model-based, or machine
learning-based and clustering-based imputation techniques.
In view of the model-based imputation, two main methods were proposed. The first method was introduced by Schafer16.

With the hypothesis that all variables follow amultivariate normal distribution, this approach is based on the multivariate normal
(MVN) model to determine completion values. And, the second method, namely MICE, was developed by van Buuren et al.17
and Raghunathan et al.18. This method uses chained equations to fill in incomplete data: for each variable with missing values,
MICE computes the imputation data by exploiting the relations between all other variables.
According to the concept of machine learning-based imputation, many studies focus on completion of missing data in

multivariate time series. Stekhoven and Bühlmann6 implemented missForest based on the Random Forest (RF) method for
multivariate imputation. P.Bonissone et al.25 proposed a fuzzy version of RF that they named fuzzy random forest FRF. At
the moment FRF is only devoted to classification and in our case FRF may be only interesting to separate correlated and un-
correlated variables in multivariate time series if necessary. In21, Shah et al. investigated a variant of MICE which fills in each
variable using the estimation generated from RF. The results showed that the combination of MICE and RF was more efficient
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than original methods for multivariate imputation. K-Nearest Neighbors (k-NN)-based imputation is also a popular method for
completing missing values such as22,23,26,27,28,11. This approach identifies the k most similar patterns in the space of available
features to impute missing data.
Besides these principal techniques, clustering-based imputation approaches are considered as power tools for completing

missing values thanks to their ability to detect similar patterns. The objective of these techniques is to separate the data into
several clusters when satisfying the following conditions: maximizing the intercluster similarity and minimizing intracluster
dissimilarity. Li et al.29 proposed the k-means clustering imputation technique that estimates missing values using the final
cluster information. The fuzzy c-means (FcM) clustering is a common extension of k-means. The squared-norm is applied to
measure the similarity between cluster centers and data points. Different applications based on FcM are investigated for the
imputation task as30,31,32,33,34,8,7,9. Wang et al.35 used FcM based on DTW to successfully predict time series in long-term
forecasting.
In general, most of the imputation algorithms for multivariate time series take advantage of dependencies between attributes

to predict missing values.

2.2 Methods based on fuzzy similarity measure
Indeed similarity-based approaches are a promising tool for time series analysis. However, many of these techniques rely on
parameter tuning, and they may have shortcomings due to dependencies between variables. The objective of this study is to fill
large missing values in uncorrelated multivariate time series. Thus, we have to deal with a high level of uncertainty. Mikalsen et
al.36 proposed to use GMM (Gaussian mixture models) and cluster kernel to deal with uncertainty. Their method needs ensemble
learning with numerous learning datasets that are not available in our case at the moment (marine data). So we have chosen to
model this global uncertainty using fuzzy sets (FS) introduced by Zadeh37. These techniques consider that measurements have
inherent vagueness rather than randomness.

Uncertainty is classically presented using three conceptually distinctive characteristics: fuzziness, randomness and incom-
pleteness. This classification is interesting for many applications, like sensor management (image processing, speech processing,
time series processing) and practical decision making. This paper focuses on (sensor) measurements treatment, but is also rele-
vant for other applications. This global uncertainty is commonly modeled using fuzzy sets (FS) introduced by Zadeh37. These
techniques consider that measurements have inherent vagueness rather than randomness.

Incompleteness often affects time series prediction (time series obtained from marine data such as salinity, temperature, ...).
So it seems natural to use fuzzy similarity between sub-sequences of time series to deal with these three kinds of uncertainties
(fuzziness, randomness and incompleteness). Fuzzy sets are now well-known and we only need to remind the basic definition
of "FS". Considering the universe X, a fuzzy set A ∈ X is characterized using a fuzzy membership function �A:

�A ∶ X → [0, 1], (1)

where �A(x) represents the membership of x to A and is associated to the uncertainty of x. In our case, we will consider
similarity values between the sub-sequences as defined in the following. One solution to deal with uncertainty brought by
multivariate time series is to use the concept of fuzzy time series38. In this framework, the variable observations are considered
as fuzzy numbers instead of real numbers. In our case the same modelling is used considering distance measures between
sub-sequences and then we compute the similarity between these fuzzy numbers to impute the missing data in observations.

Fuzzy similarity is a generalization of the classical concept of equivalence and defines the resemblance between two objects
(here sub-sequences of time series). Similarity measures of fuzzy values have been compared in39 and have been extended in40.
In39, Pappis and Karacapilidis presented three main kinds of similarity measures of fuzzy values, including:

• measures based on the operations of union and intersection,

• measures based on the maximum difference,

• measures based on the difference and the sum of membership grades.

In41,42, the authors used these definitions to propose a distance metric for a space of linguistic summaries based on fuzzy
protoforms. Almeida et al. extended this work to put forward linguistic summaries of categorical time series43. The introduced
similarity measure takes into account not only the linguistic meaning of the summaries, but also the numerical characteristic
attached to them. In the same way, Gupta et al.12 introduced this approach to create an hybrid similarity measure based on fuzzy
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logic. The approach is used to retrieve relevant documents. In the other research, Al-shamri and Al-Ashwal presented fuzzy
weightings of popular similarity measures for memory-based collaborative recommend systems14.
Concerning the similarity between two sub-sequences of time series, we can use the DTW cost as a similarity measure.

However, to deal with the high level of uncertainty of the processed signals, numerous similarity measures can be used to
compute similarity like the cosine similarity, Euclidean distance, Pearson correlation coefficient, and so on. Moreover, a fuzzy-
weighted combination of scores generated from different similarity measures could comparatively achieve better retrieval results
than the use of a single similarity measure12,14.
Based on the same concepts, we propose to use a fuzzy rules interpolation scheme between grades of membership of fuzzy

values. This method makes it possible to build a new hybrid similarity measure for finding similar values between sub-sequences
of time series.

3 PROPOSED APPROACH

The proposed imputation method is based on the retrieval and the similarity comparison of available sub-sequences. In order
to compare the sub-sequences, we create a new similarity measure applying a multiple fuzzy rules interpolation. This section
is divided into two parts. Firstly, we focus on the way to compute a new similarity measure between sub-sequences. Then,
we provide details of the proposed approach (namely Fuzzy Similarity Measure-based Uncorrelated Multivariate Imputation,
FSMUMI) to impute the successive missing values of low/un-correlated multivariate time series.

3.1 Fuzzy weighted similarity measure between sub-sequences
To introduce a new similarity measure using multiple fuzzy rules interpolation to solve the missing problem, we have to define
an information granule, as introduced by Pedrycz44. The principle of justifiable granularity of experimental data is based on
two conditions: (i) the numeric evidence accumulated within the bounds of numeric data has to be as high as possible and (ii)
at the same time, the information granule should be as specific as possible15.
To answer the first condition, we take into account 3 different distance measures between two sub-sequencesQ (Q = {qi, i =

1,⋯ , T }) and R (R = {ri, i = 1,⋯ , T }) including: Cosine distance, Euclidean distance (these two measures are widely used
in the literature) and Similarity distance (this one was presented in our previous study45). These three measures are defined as
follows:

• Cosine distance is computed by eq 2. This coefficient presents the cosine of the angle between Q and R

Cosine(Q,R) =
∑T
i=1 qi.ri

∑T
i=1(qi)2.

∑T
i=1(ri)2

(2)

• Euclidean distance is calculated by eq 3

ED∗(Q,R) =

√

√

√

√

T
∑

i=1
(qi − ri)2 (3)

To satisfy the input condition of fuzzy logic rules, we normalize this distance to [0, 1] by this function ED = 1∕(1 +
ED∗(q, r)).

• Similarity measure is defined by the function 4. This measure indicates the similarity percentage between Q and R

Sim(Q,R) = 1
T

T
∑

i=1

1
1 + |qi−ri|

max(Q)−min(Q)

(4)

To answer the second condition, we use these 3 distancemeasures (or attributes) to generate 4 fuzzy similarities (see figure 2 ),
then applied to a fuzzy inference system (see figure 1 ) using the cylindrical extension of the 3 attributes which provides 3
coefficients to calculate a new similarity measure. The universe of discourse of each distance measure is normalized to the value
1.
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FIGURE 1 Computing scheme of the new similarity measure
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FIGURE 2 Membership function of fuzzy similarity values

And finally, the new similarity measure is determined by eq 5:

FBSM = w1 ∗ Cosine(Q,R) +w2 ∗ ED(Q,R) +w3 ∗ Sim(Q,R) (5)

where w1, w2, w3 are the weights of the Cosine, ED and Sim measures respectively. Thus uncertainty modelled using FS is
kept during the similarity computation and makes it possible to deal with a high level of uncertainty as shown in the sequel.
The coefficients wi are generated from the fuzzy interpolation system (figure 1 ). We use FuzzyR R-package46 to develop this
system. All input and output variables are expressed by 4 linguistic terms as low, medium, medium-high and high. A trapezoidal
membership function is handled in this case tomatch input and output spaces to a degree ofmembership (figure 2 ). Themultiple
rules interpolation is applied to create the fuzzy rules base. So, 64 fuzzy rules are introduced. Each fuzzy rule is presented in
the following form:
Rule R: IF (Cosine is lv1) and (ED is lv2) and (Sim is lv3) THEN (w1 is lw1) and (w2 is lw2) and (w3 is lw3)
in which lvi, lwi ∈ {low, medium, medium-high, high}, and i = 1, 2, 3.

3.2 FSMUBI Approach
Let us consider some notations about multivariate time series and the concept of large gap. A multivariate time series is repre-
sented as a matrix XN×M withM collected signals of size N . x(t, i) is the value of the i-th signal at time t. xt = {x(t, i), i =
1,⋯ ,M} is the feature vector at the t-th observation of all variables. X is called an incomplete time series when it contains
missing values. We define the term gap of T -size at position t as a portion of X where at least one signal of X between t and
t + T − 1 containing consecutive missing values (∃i|∀t ∈ [t, t + T − 1], x(t, i) = NA).
Here, we deal with large missing values in low/un-correlated multivariate time series. For isolated missing values (T = 1)

or small T -gap, conventional techniques can be applied such as the mean or the median of available values47,48. A T -gap is
large when the duration T is longer than known change process. For instance, in phytoplankton study, T is equal to one hour
to characterize Langmuir cells and one day for algal bloom processes49. For small time series (N < 10, 000) without prior
knowledge of an application and its change process, we set a large gap when T ≥ 5%N .
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FIGURE 3 Scheme of the completion process: 1- Building queries, 2-Comparing sliding windows, 3-Selecting the most similar
windows, 4- Completing gap.

The mechanism of FSMUMI approach is demonstrated in figure 3 . It includes the stage of building queries, the stage of
finding similar windows and the stage of completing gap. This method concentrates to fill missing values in low/un-correlated
multivariate time series. For this type of data, we can not take advantage of the relations between features to estimate missing
values. So we must base our approach on observed values on each signal to complete missing data on itself. This means that
we can complete missing data on each variable, one by one. And each incomplete signal will be processed as two separated
time series: one time series before the considered gap and one time series after this gap. The proposed model is described in
Algorithm 1 and is mainly divided into two phases:

• The first phase
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Algorithm 1 FSMUMI algorithm
Input: X = {x1, x2,… , xM}: incomplete uncorrelated multivariate time series

N : size of time seres
t: index of a gap (position of the first missing of the gap)
T : size of the gap
step_tℎresℎold: increment for finding a threshold
step_sim_win: increment for finding a similar window

Output: Y - completed (imputed) time series
1: for each incomplete signal xj ∈ X do
2: for each gap at t index in xj do
3: Divide xj into two separated time series Da, Db: Da = xj[t + T ∶ N], Db = xj[1 ∶ t − 1]
4: Completing all lines containing missing parameter on Da,Db by a max trapezoid function
5: Construct queries Qa, Qb-temporal windows after and before the gap Qa = Da[1 ∶ T ], Qb = Db[t − T + 1 ∶ t − 1]
6: for Db data do
7: Step a: Find the threshold in the Db database
8: i← 1; FSM ← NULL
9: while i ≤ lengtℎ(Db) do
10: k ← i + T − 1
11: Create a reference window: R(i) = Db[i ∶ k]
12: Calculate a fuzzy-based similarity measure between Qb and R(i): fbsm
13: Save the fbsm to FMS
14: i← i + step_tℎresℎold
15: end while
16: return tℎresℎold = max{FBMS}
17: Step b: Find similar windows in the Db database
18: i← 1; Lopb← NULL
19: while i ≤ lengtℎ(Db) do
20: k ← i + T − 1
21: Create a reference window: R(i) = Db[i ∶ k]
22: Calculate a fuzzy-based similarity measure between Qb and R(i): fbsm
23: if fbsm ≥ tℎresℎold then
24: Save position of R(i) to Lopb
25: end if
26: i← i + step_sim_win
27: end while
28: return position ofQbs - the most similar window toQb having the maximum fuzzy similarity measure in the Lopb list.
29: end for
30: for Da data do
31: Perform Step a and Step b for Da data
32: return position of Qas - the most similar window to Qa
33: end for
34: Replace the missing values at the position t by average vector of the window after Qbs and the one previous Qas
35: end for
36: end for
37: return Y - imputed time series

For each incomplete signal and each T -gap, two referenced databases are extracted from the original time series and two
query windows are built to retrieve similar windows. We noted Qb is the sub-sequence before the gap and Qa is the
respective sub-sequence after the gap. These query windows have the same size T as the gap. The data before the gap
(noted Db) and the data after this gap (denoted Da) are considered as two separated time series.
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Then for theDb database, we build sliding reference windows (notedR) of size T . From theseRwindows, we retrieve the
most similar window (Qbs) to theQb query using the new similaritymeasure fbsm as previously defined in subsection 3.1.
Details are in the following:

We first find the threshold, which allows to consider two windows to be similar. For each increment step_tℎresℎold, we
compute a fbsm similarity measure between a sliding windowR and the queryQb. The tℎresℎold is the maximum value
obtained from the all fbsm calculated ( Step a: in Algorithm 1). The second task is to find the most similar window to
the query Qb. For each increment similar window step_sim_win, a fbsm of a R sliding reference and the query Qb is
estimated. We then compare this fbsm to the tℎresℎold to determine if this R reference is similar to the query Qb. We
finally choose the most similar windowQbswith the maximum fbsm of all the similar windows ( Step b: in Algorithm 1).

The same process is performed to find the most similar window Qas in Da data.

In the proposed approach, the dynamics and the shape of data before and after a gap are a key-point of our method. This
means we take into account both queries Qa (after the gap) and Qb (before the gap). This makes it possible to find out
windows that have the most similar dynamics and shape to the queries.

• The second phase

When results from both referenced time series are available, we fill in the gap by averaging values of the window preceding
Qas and the one following Qbs. The average values are used in our approach because model averaging makes the final
results more stable and unbiased50.

4 EXPERIMENT PROTOCOL

The experiments are performed on three multivariate time series with the same experiment process and the same gaps, described
in detail below.

4.1 Datasets description
For the assessment of the proposed approach and the comparison of its performance to several published algorithms, we use
3 multivariate time series, one from UCI Machine Learning repository, one simulated dataset (this allows us to handle the
correlations between variables and percentage of missing values) and finally a real time series hourly sampled by IFREMER
(France) in the eastern English Channel.

• Synthetic dataset51: The data are synthetic time series, including 10 features, 100,000 sampled points. All data points
are in the range -0.5 to +0.5. The data appear highly periodic, but never exactly repeat. They have structure at different
resolutions. Each of the 10 features is generated by independent invocations of the function:

y =
7
∑

i=3

1
2i
sin(2�(22+i + rand(2i))t); 0 ≤ t ≤ 1 (6)

where rand(x) produces a random integer between 0 and x.

These data are very large so we choose only a subset of 3 signals for performing experiments.

• Simulated dataset: In the second experiment, a simulated dataset including 3 signals is produced as follows: for the first
variable, we use 5 sine functions that have different frequencies and amplitudes F = {f1, f2, f3, f4, f5}. Next, 3 various
noise levels are added to data F , S = {F , F + noise1, F + noise2, F + noise3}. We then repeat S 4 times (this dataset
has 32,000 sampled points). In this study, we treat with missing data in low/un-correlated multivariate time series. So
to satisfy this condition, the two remaining signals are generated based on the first signal with the correlations between
these signals are low (≤ 0.1%). We apply the Corgen function of ecodist R-package52 to create the second and the third
variables.

• MAREL-Carnot dataset2: The third experiment is conducted on MAREL-Carnot dataset. This dataset consists of nine-
teen series such as phosphate, salinity, turbidity, water temperature, fluorescence, water level,... that characterize sea water.
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These signals were collected from the 1st January 2005 to the 9tℎ February 2009 at a 20 minute frequency. Here they
were hourly sampled, so they have 35,334 time samples. But the data include many missing values, the size of missing
data varying on each signal. To assess the performance of the proposed method and compare it with other approaches,
we choose a subgroup including fluorescence, water level, and water temperature (the water level and the fluorescence
signals are completed data, while water temperature contains isolated missing values and many gaps). We selected these
signals because their correlations are low.
After completing missing values, completion data will be compared with the actual values in the completed series to eval-
uate the ability of different imputation methods. Therefore, it is necessary to fill missing values in the water temperature.
To ensure the fairness of all algorithms, filling in the water temperature series is performed by using the na.interp method
(53).

4.2 Multivariate imputation approaches
In the present study, we perform a comparison of the proposed algorithm with 7 other approaches (comprising Amelia II, FcM,
MI, MICE, missForest, na.approx, and DTWUMI) for the imputation of multivariate time series. We use R language to execute
all these algorithms.

1. Amelia II (Amelia II R-package)54: The algorithm uses the familiar expectation-maximization algorithm on multiple
bootstrapped samples of the original incomplete data to draw values of the complete data parameters. The algorithm then
draws imputed values from each set of bootstrapped parameters, replacing the missing values with the drawn values.

2. FcM-Fuzzy c-means based imputation: This approach involves 2 steps. The first step is to group the whole data into k
clusters using fuzzy-c means technique. A cluster membership for each sample and a cluster center are generated for each
feature. The second step is to fill in the incomplete data by using the membership degree and the center centroids29. We
base on the principles of29 and use the c-means function55 to develop this approach.

3. MI - Multiple Imputation (MI R-package)56: This method uses predictive mean matching to estimate missing values of
continuous variables. For each missing value, its imputation value is randomly selected from a set of observed values that
are the closest predicted mean to the variable with the missing value.

4. MICE - Multivariate Imputation via Chained Equations (MICE R-package)57: For each incomplete variable under
the assumption of MAR (missing at random), the algorithm performs a completion by full conditional specification of
predictive models. The same process is implemented with other variables having missing data.

5. missForest (missForest R-package)6: This algorithm uses random forest method to complete missing values. For each
variable containing missing data, missForest builds a random forest model on the available data. To estimate missing data
this model is applied in the variable. Repeating the procedure until meets a stopping condition.

6. Linear interpolation - na.approx (zoo R-package)58: This method is based on a interpolation function to predict each
missing point.

7. DTWUMI 59: For each gap, this approach finds the most similar window to the sub-sequence after (resp. before) the gap
based on the combination of shape-features extraction and Dynamic Time Warping algorithms. Then, the previous (resp.
following) window of the most similar one in the incomplete signal is used to complete the gap.

4.3 Imputation performance measurements
In order to estimate the quantitative performance of imputation approaches, six usual criteria in the literature are used as follows:

1. Similarity: evaluates the similar percent between the estimated values (y) and the respective real values (x). This index is
defined by:

Sim(y, x) = 1
T

T
∑

i=1

1
1 + |yi−xi|

max(x)−min(x)

(7)

Where T is the number of missing values. The similarity tends to 1 when the two curves are identical and tends to 0 when
the amplitudes are strongly different.



10 PHAN ET AL

2. R2 score: is determined as the square of correlation coefficient between two variables y and x. This indicator makes it
possible to assess the quality of an imputation model. A method presents better performance when its score is higher
(R2 ∈ [0, 1])

3. RMSE (Root Mean Square Error): is computed as the average squared difference between y and x. This is an appreciate
coefficient to measure global ability of a completion method. In general, a lower RMSE highlights a better imputation
performance.

RMSE(y, x) =

√

√

√

√
1
T

T
∑

i=1
(yi − xi)2 (8)

4. FSD (Fraction of Standard Deviation): is defined as eq. 9

FSD(y, x) = 2 ∗
|SD(y) − SD(x)|
SD(y) + SD(x)

(9)

This fraction points out whether a method is acceptable or not. Applying to the imputation task, when FSD value
approaches 0, an imputation method is impeccable.

5. FB - Fractional Bias: determines the rate of predicted values y are overestimated or underestimated relative to observed
values x. This indicator is given by eq. 10. An imputation model is considered ideal as its FB equals to 0.

FB(y, x) = 2 ∗ |

mean(y) − mean(x)
mean(y) + mean(x)

| (10)

6. FA2: defines the percentage of outlier between two variables y and x. It is described by eq. 11:

FA2(y, x) =
lengtℎ(0.5 ≤ y

x
≤ 2)

lengtℎ(x)
(11)

When FA2 value is close to 1, a model is considered perfect.

4.4 Experimental process
Indeed, evaluating the ability of imputation methods can not be done because the actual values are lacking. So we must pro-
duce artificial missing data on completed time series in order to compare the performance of imputation approaches. We use a
technique based on three steps to assess the results detailed in the following:

• The first step: Generate simulated missing values by removing data values from full time series.

• The second step: Apply the imputation methods to fill in missing data.

• The third step: Evaluate the ability of proposed approach and compare with state-of-the-art methods using different
performance indices above-mentioned.

In this paper, we perform experiments with seven missing data levels on three large datasets. On each signal, we create
simulated gaps with different rates ranging from 1%, 2%, 3%, 4%, 5%, 7.5% and 10% of the data in the complete signal (here the
biggest gap of MAREL-Carnot data is 3,533 missing values corresponding to 5 months of hourly sampled). For every missing
ratio, the approaches are run 5 times by randomly choosing the positions of missing in the data. We then perform 35 iterations
for each dataset.

5 RESULTS AND DISCUSSION

This section provides experiment results obtained from the proposed approach and compares its ability with the seven published
approaches. Results are discussed in three parts, i.e quantitative performance, visual performance and execution times.
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5.1 Quantitative performance comparison
Tables 1 , 2 , 3 illustrate the average ability of various imputation methods for synthetic, simulated and MAREL-Carnot time
series using 6measurements as previously defined. For each missing level, the best results are highlighted in bold. These results
demonstrate the improved performance of FSMUMI to complete missing data in low/uncorrelated multivariate time series.

Synthetic dataset: Table 1 presents a comparison of 8 imputation methods on synthetic dataset that contains 7 missing
data levels (1-10%). The results clearly show that when a gap size is greater than 2%, the proposed method yields the highest
similarity, R2, FA2 and the lowest RMSE, FB. With this dataset, na.approx gives the best performance at the smallest missing
data level for all indices and is ranked second for other ratios of missing values (2-5%) for similarity and FA2, RMSE (2-4%),
and R2 (the 1st rank at 2% missing rate, the 2nd at 3%, 5%). The results can explain that the synthetic data are generated by a
function (eq. 6). na.approx method which applies the interpolation function to estimate missing values. So it is easy to find a
function to generate values that are approximate real values when missing data rates are small. But this work is more difficult
when the missing sample size rises, that is why the ability of na.approx decreases as missing data levels increase, especially at
7.5% and 10% rates. Although this dataset never exactly repeats itself and our approach is proposed under the assumption of
recurrent data but the FSMUMI approach proves its performance for the imputation task even if the missing size increases.
Among the considered methods, the FcM-based approach is less accurate at lower missing rates but it provides better results

at larger missing ratios as regards the accuracy indices.

TABLE 1 Average imputation performance indices of various imputation algorithms on synthetic dataset (100,000 collected
points)

Gap
size Method Accuracy indices Shape indices

1-Sim 1-R2 RMSE FSD FB 1-FA2

1%

FSMUMI 0.136 0.261 0.051 0.358 3.253 0.364
Amelia 0.275 0.999 0.143 0.409 2.252 0.773
FcM 0.231 0.722 0.096 1.889 2.208 0.996
MI 0.275 0.999 0.142 0.421 2.091 0.773
MICE 0.258 0.944 0.13 0.406 2.452 0.72
missForest 0.248 0.915 0.122 0.389 3.976 0.744
na.approx 0.052 0.066 0.019 0.054 0.29 0.074
DTWUMI 0.257 0.713 0.88 0.725 0.405 0.69

2%

FSMUMI 0.1 0.295 0.046 0.155 0.395 0.337
Amelia 0.259 0.998 0.147 0.275 2.005 0.803
FcM 0.208 0.686 0.104 1.863 2.289 0.987
MI 0.259 0.998 0.147 0.268 2.11 0.81
MICE 0.244 0.968 0.14 0.255 7.616 0.759
missForest 0.239 0.968 0.133 0.279 3.156 0.792
na.approx 0.104 0.278 0.047 0.224 0.398 0.347
DTWUMI 0.237 0.775 0.867 0.509 8.449 0.646

3%

FSMUMI 0.113 0.341 0.056 0.219 0.852 0.322
Amelia 0.218 0.911 0.127 0.133 6.128 0.76
FcM 0.214 0.601 0.1 1.832 1.759 0.989
MI 0.253 0.993 0.141 0.236 2.295 0.775
MICE 0.21 0.873 0.118 0.208 5.118 0.703
missForest 0.188 0.796 0.102 0.215 1.846 0.627
na.approx 0.148 0.43 0.072 0.372 2.382 0.577
DTWUMI 0.231 0.799 0.874 0.332 27.952 0.69

4%

FSMUMI 0.06 0.146 0.037 0.099 0.738 0.299
Amelia 0.208 1 0.14 0.213 2.171 0.807
FcM 0.155 0.759 0.095 1.85 2.09 0.986
MI 0.208 0.999 0.14 0.196 2.302 0.807
MICE 0.209 0.987 0.138 0.22 3.748 0.801
missForest 0.196 0.968 0.127 0.216 3.94 0.827
na.approx 0.145 0.721 0.092 0.252 5.251 0.689
DTWUMI 0.148 0.586 0.918 0.185 12.688 0.719

5%

FSMUMI 0.055 0.132 0.032 0.058 0.098 0.201
Amelia 0.214 0.997 0.15 0.147 2.238 0.79
FcM 0.179 0.715 0.108 1.818 2.194 0.993
MI 0.231 0.996 0.167 0.206 3.094 0.808
MICE 0.221 0.968 0.152 0.222 2.3 0.79
missForest 0.212 0.944 0.143 0.315 4.547 0.819
na.approx 0.16 0.8 0.118 0.352 18.217 0.622
DTWUMI 0.186 0.885 0.88 0.213 0.723 0.694
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7.5%

FSMUMI 0.049 0.071 0.027 0.069 0.505 0.184
Amelia 0.197 0.998 0.147 0.045 1.305 0.792
FcM 0.158 0.809 0.104 1.813 1.866 0.991
MI 0.2 0.992 0.15 0.038 1.645 0.797
MICE 0.205 0.988 0.15 0.057 10.744 0.799
missForest 0.188 0.97 0.136 0.284 4.396 0.812
na.approx 0.192 0.971 0.142 0.669 2.163 0.712
DTWUMI 0.133 0.653 0.908 0.064 1.113 0.571

10%

FSMUMI 0.061 0.181 0.043 0.114 0.511 0.26
Amelia 0.202 0.999 0.147 0.034 4.062 0.788
FcM 0.164 0.872 0.104 1.837 2.201 0.992
MI 0.21 0.997 0.155 0.12 2.954 0.785
MICE 0.209 0.996 0.15 0.055 3.994 0.779
missForest 0.194 0.97 0.135 0.308 3.024 0.811
na.approx 0.183 0.997 0.129 0.372 1.455 0.719
DTWUMI 0.155 0.782 0.893 0.026 1.182 0.626

Simulated dataset: Table 2 illustrates the evaluation results of various imputation algorithms on the simulated dataset. The
best values for each missing level are highlighted in bold. Our proposed method outperforms other methods for the imputation
task on accuracy indices: the highest similarity, R2 and the lowest RMSE at every missing ratio. However, when considering
other indices such as FA2, FSD and FB, FSMUMI no longer shows its performance. It gains only at a 4% rate for the FB index
and at 10% ratio for FA2. In contrast to FSMUMI, DTWUMI provides the best results for FSD indicator at all missing levels
and FA2 at the first 5 missing ratios (from 1% to 5%).
Different from the synthetic dataset, on the simulated dataset, the FcM-based method is always ranked the third at all missing

rates for similarity and RMSE indicators. Following FcM is missForest algorithm for the both indices.
Although, in the second experiment, data are built by various functions but they are quite complex so that na.approx does not

provide good results.

TABLE 2 Average imputation performance indices of various imputation algorithms on simulated dataset (32,000 collected
points)

Gap
size Method Accuracy indices Shape indices

1-Sim 1-R2 RMSE FSD FB 1-FA2

1%

FSMUMI 0.083 0.515 1.033 0.159 2.51 0.574
Amelia 0.157 1 2.206 0.232 3.619 0.794
FcM 0.118 0.998 1.483 1.98 2.015 0.998
MI 0.16 0.999 2.241 0.2 0.915 0.799
MICE 0.159 0.998 2.201 0.214 1.449 0.801
missForest 0.127 0.998 1.608 0.836 12.034 0.861
na.approx 0.146 0.992 1.901 0.393 18.997 0.777
DTWUMI 0.09 0.552 1.156 0.007 6.022 0.562

2%

FSMUMI 0.068 0.487 1.166 0.194 1.971 0.611
Amelia 0.12 0.998 2.312 0.107 2.191 0.794
FcM 0.093 0.999 1.672 1.985 1.96 0.998
MI 0.12 1 2.307 0.123 3.949 0.789
MICE 0.119 0.999 2.282 0.114 8.881 0.789
missForest 0.096 1 1.769 0.941 2.777 0.858
na.approx 0.118 1 2.261 0.721 2.059 0.786
DTWUMI 0.074 0.523 1.545 0.008 3.686 0.583

3%

FSMUMI 0.068 0.453 1.053 0.076 10.649 0.582
Amelia 0.13 0.999 2.212 0.062 3.779 0.794
FcM 0.098 0.999 1.526 1.984 2.22 0.997
MI 0.13 0.999 2.197 0.078 9.374 0.795
MICE 0.129 1 2.19 0.067 1.938 0.792
missForest 0.102 0.999 1.626 0.855 2.407 0.851
na.approx 0.116 0.997 1.938 0.518 1.974 0.818
DTWUMI 0.073 0.526 1.189 0.01 8.725 0.567

4%

FSMUMI 0.064 0.412 1.067 0.061 1.374 0.568
Amelia 0.122 1 2.305 0.032 2.446 0.764
FcM 0.096 1 1.607 1.982 2.325 0.997
MI 0.125 1 2.261 0.043 2.391 0.792
MICE 0.124 0.999 2.233 0.045 42.495 0.791
missForest 0.101 1 1.726 0.876 2.901 0.854
na.approx 0.109 1 1.99 0.475 1.94 0.811
DTWUMI 0.066 0.465 1.172 0.004 2.079 0.547
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5%

FSMUMI 0.063 0.404 1.062 0.062 4.508 0.577
Amelia 0.122 1 2.273 0.028 4.109 0.798
FcM 0.092 1 1.619 1.984 2.192 0.998
MI 0.123 1 2.287 0.024 5.582 0.797
MICE 0.121 1 2.267 0.044 2.326 0.792
missForest 0.097 0.999 1.731 0.923 2.473 0.859
na.approx 0.114 1 1.988 0.567 2.247 0.809
DTWUMI 0.063 0.454 1.166 0.003 1.594 0.545

7.5%

FSMUMI 0.06 0.408 1.063 0.049 4.843 0.566
Amelia 0.117 1 2.232 0.034 3.306 0.792
FcM 0.09 1 1.605 1.981 3.562 0.998
MI 0.119 0.999 2.259 0.025 1.946 0.793
MICE 0.118 1 2.238 0.032 9.359 0.794
missForest 0.094 0.999 1.695 0.907 1.259 0.858
na.approx 0.108 1 1.958 0.461 3.089 0.816
DTWUMI 0.065 0.477 1.19 0.004 3.851 0.566

10%

FSMUMI 0.061 0.4226 1.086 0.051 5.558 0.572
Amelia 0.117 1 2.269 0.021 3.074 0.793
FcM 0.089 1 1.607 1.981 2.683 0.997
MI 0.118 0.9996 2.233 0.02 2.05 0.793
MICE 0.118 0.9998 2.254 0.018 3.424 0.793
missForest 0.094 0.9999 1.702 0.909 1.87 0.857
na.approx 0.11 1 1.958 0.541 2.006 0.798
DTWUMI 0.067 0.5371 1.293 0.012 3.093 0.577

MAREL Carnot dataset: Once again, as reported in table 3 , our algorithm demonstrates its capability for the imputation
task. FSMUMImethod generates the best results as regarding accuracy indices for almostmissing ratios (excluding at 2%missing
level on all indices, and at 5% missing rate on R2 score). But when considering shape indicators, FSMUMI only provides the
highest FA2 values at several missing levels (3%, 5%-10%). In particular, our method illustrates the ability to fill in incomplete
data with large missing rates (7.5% and 10%): the highest similarity, R2, FA2 and the lowest RMSE, FSD (excluding at 7.5%),
and FB. These gaps correspond to 110.4 and 147.2 days sampled at hourly frequency.
In contrast to the two datasets above, on the MAREL-Carnot data, na.approx indicates quite good results: the permanent

second or third rank for the accuracy indices (the 1st order at 5% missing rate on R2 score), the lowest FSD (from 3% to 5%
missing rates) and FB at some other levels of missing data. But when looking at the shape of imputation values generated from
this method, it absolutely gives the worst results (figure 6 ).
Other approaches (including FcM-based imputation, MI, MICE, Amelia, missForest) exploit the relations between attributes

to estimate missing values. However, three considered datasets have low correlations between variables (roundly 0.2 for
MAREL-Carnot data, ≤ 0.1 for simulated and synthetic datasets). So these methods do not demonstrate their performance for
completing missing values in low/un-correlated multivariate time series. Otherwise, our algorithm shows its ability and stability
when applying to the imputation task for this kind of data.
DTWUMI approach was proposed to fill large missing values in low/un-correlated multivariate time series. However, this

method is not as powerful as the FSMUMImethod. DTWUMI only produces the best results at 2%missing level on theMAREL-
Carnot dataset, and is always at the second or the third rank at all the remaining missing rates on the MAREL-Carnot and
the simulated datasets. That is because the DTWUMI method only finds the most similar window to a query either before a
gap or after this gap, and it uses only one similarity measure, the DTW cost, to retrieve the most similar window. In addition,
another reason may be that DTWUMI has directly used data from the window following or preceding the most similar window
to completing the gap.

TABLE 3 Average imputation performance indices of various imputation algorithms on MAREL-Carnot dataset (35,334
collected points)

Gap
size Method Accuracy indices Shape indices

1-Sim 1-R2 RMSE FSD FB 1-FA2

1%

FSMUMI 0.051 0.156 1.532 0.044 0.081 0.191
Amelia 0.187 0.544 5.132 0.378 0.354 0.482
FcM 0.156 0.342 4.037 0.4 0.347 0.338
MI 0.192 0.561 5.282 0.396 0.365 0.497
MICE 0.166 0.608 5.596 0.423 0.35 0.436
missForest 0.165 0.472 4.422 0.385 0.355 0.381



14 PHAN ET AL

na.approx 0.061 0.171 1.748 0.067 0.06 0.161
DTWUMI 0.084 0.181 2.466 0.214 0.149 0.198

2%

FSMUMI 0.045 0.037 1.446 0.053 0.083 0.182
Amelia 0.146 0.369 4.743 0.211 0.222 0.429
FcM 0.116 0.06 3.418 0.415 0.237 0.231
MI 0.146 0.364 4.72 0.218 0.228 0.435
MICE 0.129 0.369 4.711 0.197 0.21 0.413
missForest 0.116 0.155 3.575 0.33 0.193 0.258
na.approx 0.06 0.07 2.012 0.045 0.094 0.214
DTWUMI 0.042 0.018 1.095 0.029 0.066 0.154

3%

FSMUMI 0.053 0.11 1.294 0.134 0.08 0.166
Amelia 0.176 0.503 4.694 0.426 0.224 0.478
FcM 0.139 0.251 3.35 0.441 0.237 0.314
MI 0.17 0.531 4.474 0.354 0.221 0.476
MICE 0.157 0.552 4.905 0.34 0.184 0.429
missForest 0.139 0.345 3.556 0.422 0.184 0.346
na.approx 0.068 0.224 1.79 0.062 0.056 0.169
DTWUMI 0.096 0.216 2.587 0.329 0.136 0.223

4%

FSMUMI 0.059 0.058 1.466 0.094 0.101 0.183
Amelia 0.171 0.44 4.389 0.287 0.2 0.456
FcM 0.126 0.152 2.779 0.285 0.203 0.727
MI 0.166 0.41 4.234 0.277 0.204 0.444
MICE 0.15 0.379 4.15 0.268 0.19 0.411
missForest 0.129 0.234 3.134 0.23 0.187 0.303
na.approx 0.077 0.13 2.006 0.068 0.135 0.268
DTWUMI 0.07 0.105 1.77 0.15 0.12 0.138

5%

FSMUMI 0.051 0.22 2.025 0.227 0.152 0.167
Amelia 0.151 0.551 4.924 0.303 0.189 0.461
FcM 0.113 0.337 3.606 0.301 0.199 0.254
MI 0.143 0.567 4.612 0.249 0.123 0.448
MICE 0.131 0.523 4.75 0.274 0.188 0.419
missForest 0.104 0.371 3.443 0.229 0.147 0.274
na.approx 0.065 0.213 2.071 0.175 0.038 0.233
DTWUMI 0.067 0.275 2.363 0.22 0.157 0.242

7.5%

FSMUMI 0.043 0.056 1.52 0.075 0.039 0.189
Amelia 0.14 0.42 4.546 0.191 0.197 0.437
FcM 0.104 0.123 3.12 0.328 0.198 0.23
MI 0.142 0.427 4.624 0.222 0.222 0.443
MICE 0.126 0.38 4.375 0.206 0.208 0.437
missForest 0.112 0.202 3.587 0.329 0.228 0.288
na.approx 0.073 0.081 2.043 0.092 0.107 0.243
DTWUMI 0.06 0.102 1.999 0.071 0.074 0.215

10%

FSMUMI 0.053 0.098 1.642 0.083 0.055 0.191
Amelia 0.14 0.3 4.294 0.24 0.142 0.442
FcM 0.1 0.098 3.68 0.136 0.101 0.303
MI 0.14 0.112 4.294 0.24 0.142 0.442
MICE 0.12 0.42 4.066 0.152 0.077 0.383
missForest 0.097 0.461 3.049 0.104 0.117 0.255
na.approx 0.071 0.529 1.873 0.098 0.094 0.253
DTWUMI 0.081 0.381 3.293 0.119 0.124 0.224

5.2 Visual performance comparison
In this paper, we also compare the visualization performance of completion values yielded by various algorithms. Figure 4 and
figure 5 illustrate the form of imputed values generated from different approaches on the synthetic series at two missing ratios
1% and 5%.
At a 1% missing rate, the shape of imputation values produced by na.approx method is closer to the one of true values than

the form of completion values given by our approach. However, at a 5% level of missing data, this method no longer shows the
performance (figure 5 ). In this case, the proposed method proves its relevance for the imputation task. The shape of FSMUMI’s
imputation data is almost similar to the form of true values (figure 5 ).
Looking at figure 6 , FSMUMI one more time proves its capability for uncorrelated multivariate time series imputation:

completion values yielded by FSMUMI are virtually identical to the real data on the MAREL-Carnot dataset. When comparing
DTWUMI with FSMUMI, it is clear that FSMUMI gives improved results (figure 4 , 5 and 6 ).
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FIGURE 4 Visual comparison of completion data of different imputation approaches with real data on the 1st signal of synthetic
series with the gap size of 1000

5.3 Computation time
Besides, we perform a comparison of the computational time of each method on the synthetic series (in second - s). Table 4
indicates that na.approx method requires the shortest running time and DTWUMI approach takes the longest computing time.
The proposed method, FSMUMI, demands more execution time as missing rates increase. However, considering the quantitative
and visual performance of FSMUMI for the imputation task (table 1 , figue 5 and figue 6 ), the required time of the proposed
approach is fully acceptable.

TABLE 4 Computational time of different methods on the synthetic series in second (s)

Method Gaps size
1% 2% 3% 4% 5% 7.5% 10%

FSMUMI 353.9 427.5 701.9 1037.8 1423.6 2525.5 3556.8
Amelia 3.2 3.4 5.2 3.2 3.2 3.2 3.2
FcM 40.9 39.8 40.0 41.1 41.2 46.7 45.6
MI 844.1 714.0 739.1 723.3 724.5 719.7 726.5
MICE 7021.1 9187.7 21909.6 13041.9 14833.9 19417.7 23812.6
missForest 26833.8 24143.8 22969.9 32056.6 36485.8 42424.1 28521.1
na.approx 0.11 0.089 0.167 0.09 0.088 0.088 0.094
DTWUMI 5002.67 15714.8 37645.82 64669.71 86435.38 180887.78 273879



16 PHAN ET AL

0 1000 2000 3000 4000 5000

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Time index

V
al

ue
s

●

● ●
● ● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

True values
FSMUMI

na.approx
missForest

DTWUMI

FIGURE 5 Visual comparison of completion data of different imputation approaches with real data on the 1st signal of synthetic
series with the gap size of 5000

6 CONCLUSION

This paper proposes a novel approach for uncorrelated multivariate time series imputation using a fuzzy logic-based similar-
ity measure, namely FSMUMI. This method makes it possible to manage uncertainty with the comprehensibility of linguistic
variables. FSMUMI has been tested on different datasets and compared with published algorithms (Amelia II, FcM, MI, MICE,
missForest, na.approx, and DTWUMI) on accuracy and shape criteria. The visual ability of these approaches is also investigated.
The experimental results definitely highlight that the proposed approach yielded improved performance in accuracy over previ-
ous methods in the case of multivariate time series having large gaps and low or non-correlation between variables. However,
the proposed algorithm is necessary to make an assumption of recurrent data and sufficiently large dataset.
In future work, we plan to (i) combine FSMUMI method with other algorithms such as Random Forest or Deep learning in

order to efficiently fill incomplete values in any type of multivariate time series; (ii) investigate this approach applied to short-
term/long-term forecasts in multivariate time series. We could also investigate complex fuzzy sets (60) instead of ordinary FS
that have given good results using an adaptive scheme in the case of the bi-variate time series with small dataset.
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FIGURE 6 Visual comparison of completion data of different imputation approaches with real data on the 2nd signal ofMAREL
Carnot dataset with the gap size of 353
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