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ABSTRACT
This paper delves into the impacts of an ongoing global crisis on the resilience of 

supply chains. Furthermore, it proposes measures to address and mitigate the dis- 

ruptions caused by the prevailing uncertainties. For example, while the economy 

has started to recover after the pandemic and demand has increased, companies 

have not fully returned to their pre-pandemic levels. To enhance their supply chain 

resilience and effectively manage disruptions, one viable strategy is the implemen- 

tation of flexible/hybrid manufacturing systems. This research is motivated by the 

specific requirements of Vestel Electronics, a household appliances company, which 

seeks a flexible/hybrid manufacturing production setup involving dedicated machin- 

ery to meet regular demand and the utilization of flexible manufacturing systems to 

handle surges in demand. We employ a scenario-based approach to model demand 

uncertainty, enabling the company to make immediate and adaptive decisions that 

take advantage of the cost-effectiveness of standard production and the responsive- 

ness of flexible manufacturing systems. To solve the problem, we propose a heuristic 

algorithm based on column generation. The numerical results demonstrate that our 

optimization model provides solutions with an average optimality gap of less than 

6% while also reducing the average cost of standard production schemes without 

FMS by over 12%.

KEYWORDS
inventory control; production planning; scheduling; flexible manufacturing systems; 

stochastic optimization

1. Introduction

As transportation and communication technology improved in recent decades, coun- 

tries have grown increasingly interconnected, leading to more intense global compe- 

tition in the industry. This has resulted in a shift in market dynamics, where supply 

has grown at a faster pace than demand. Traditional manufacturing systems, which 

were built to produce only one specific product, were no longer able to keep up with 

these new and dynamic market conditions, which were characterized by frequent prod- 

uct launches, fluctuating demand, changing government regulations, and rapid tech- 

nological advancements. To address the challenges posed by these changing market 

conditions, flexible manufacturing systems (FMSs) were developed as a potential so-
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lution. These systems are typically made up of computer numerical control (CNC) 

machines, which have a built-in ability to produce a wide range of products, providing 

manufacturers with the flexibility they need to adapt to changing market demands 

(Yelles-Chaouche et al. 2021).
There are three significant categories of flexibility: component or basic flexibility, 

system flexibility, and aggregate flexibility (Sethi and Sethi 1990). These three cate- 

gories and their components are presented in Figure 1. Machine flexibility, as a com- 

ponent of basic flexibility, plays a crucial role in modern manufacturing processes. 

It refers to the ability of machines and equipment within a manufacturing system to 

adapt to different tasks and product variations without requiring significant changes or 

reconfiguration (Chandra and Tombak 1992). This flexibility empowers manufacturers 

to produce a wide range of products efficiently and cost-effectively, making it a fun- 

damental aspect of modern production systems. In this study, we consider two types 

of machines on the same production floor: typical manufacturing machines (TMMs) 

and FMSs. Both TMMs and FMSs can be used to produce a product, but they have 

different production costs and output capacities. However, TMMs are characterized by 

their relatively lower flexibility, as they are designed to adhere to a fixed production 

sequence established at the start of the planning horizon. They operate accordingly 

throughout the entire manufacturing process. On the other hand, FMSs consist of 

versatile machines that can be adjusted for different settings during each production 

period based on real-time feedback. These systems can be quickly reconfigured to ac- 

commodate changes in drum types or other requirements, allowing for efficient and 

agile production processes. This study is motivated by the current practices observed 

at a Vestel Electronics drum production facility. It explores various forms of adapt- 

ability but excludes routing, expansion, and market flexibility.

COMPONENT OR BASIC 
FLEXIBILITIES

SYSTEM 
FLEXIBILITIES

AGGREGATE
FLEXIBILITIES

Machine

Material Handling

Operation

Routing

Product

Volume

Process

Expansion

Production

Program

Market

Figure 1. Linkage between various flexibility taken from Sethi and Sethi (1990) and post-processed

[Alt-Text: ]The linkage between various flexibility is presented in this figure.

Different factors, such as pandemics, can contribute to fluctuations in demand, 

which affect various sectors, including healthcare, manufacturing, and tourism (Don- 

thu and Gustafsson 2020; He and Harris 2020; Wen et al. 2021). These uncertainties
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have led to significant changes in the behaviour of businesses, employees, and con- 

sumers (Seyfi et al. 2022). Some of these changes have had positive effects on specific 

industries and individuals, such as the growth of e-commerce and improved customer 

satisfaction (Mofokeng 2021), the rise of remote working opportunities (Vyas and Bu- 

takhieo 2021), the advancement of online education offered by universities and other 

institutions (Tang et al. 2023), and a reduction in global greenhouse gas emissions due 

to decreased petroleum usage and lower oil prices(Le Billon et al. 2021). On the other 

hand, some industries have faced negative consequences, with businesses struggling or 

facing closure due to demand fluctuations and supply chain disruptions (Ivanov 2021). 

Shortages of raw materials have caused input prices to rise, impacting the supply side 

(Priya, Cuce, and Sudhakar 2021). Additionally, lockdowns and restrictions have led 

to job losses and furloughs for many individuals (Kaushik and Guleria 2020).
Lockdowns have had a massive impact on Vestel Electronics, a leading global elec- 

tronics and appliances manufacturer established in 1984 in Manisa, Turkey. Vestel is 

recognized as part of the Zorlu Group since 1994 for its innovative products, includ- 

ing 352 washing machine models with 55 unique drum designs, all components made 

in-house. Due to the pandemic, the company was forced to suspend production from 

March 30 to April 5, 2020. Afterward, Vestel’s plants operated at reduced capacity 

due to containment measures, as reported on the İstanbul public disclosure platform. 

The pandemic disrupted Vestel’s extensive supply chains to East Asia. The outbreak 

in China caused immediate supply chain disruptions, leading to global demand fluctu- 

ations for Vestel products. The pandemic affected all supply chain aspects, including 

transportation (Mogaji 2020), storage (Priya, Cuce, and Sudhakar 2021), and currency 

exchange rates Li et al. (2022). Vestel has been adapting to the ”new normal” by em- 

ploying strategies to counter supply chain disruptions, with multisourcing being a key 

approach.
Compared to relying solely on single suppliers, multisourcing in conjunction with 

hybrid and flexible manufacturing systems can significantly bolster supply chain re- 

silience by mitigating risks and diversifying sourcing options (Sodhi, Tang, and Willen- 

son 2023). Hybrid and flexible manufacturing systems offer a way to increase supply 

chain resilience and handle disruptions, compared to alternative solutions such as 

higher labor costs in local production or increased inventory holding costs. Manufac- 

turing practices are evolving to meet the growing demand for personalized products 

in mass production, so companies must design flexible manufacturing systems to pro- 

duce a range of goods within a specific category while maintaining high quality and 

low cost. Vestel also uses outsourcing to fulfill customer demand and avoid lost sales in 

a competitive market. This paper focuses on the drum production of washing machines 

at Vestel using a hybrid manufacturing system that combines traditional mass man- 

ufacturing and flexible manufacturing systems. FMS installations, which are wholly 

owned and operated by Vestel, serving as an essential component of their manufactur- 

ing capabilities, offer significant advantages in manufacturing due to their versatility 

in handling sudden changes.
This paper contributes to the existing literature in three key ways. Firstly, it sug- 

gests strategies to enhance supply chain resilience under uncertainty, emphasizing the 

importance of hybrid manufacturing systems in making adjustable decisions according 

to the revealed portion of demand. Secondly, it introduces a scenario-based modeling 

approach applicable in practice for adaptive decision-making in response to demand 

uncertainty and proposes a novel column generation-based heuristic solution approach 

that can tackle realistically sized real-world instances. Lastly, the numerical results 

demonstrate the effectiveness of the proposed model and the heuristic approach, with
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solutions showing an average optimality gap of less than 6% and a reduction in the 

average cost of standard production schemes without FMS by over 12%. This con- 

tribution provides a practical tool for companies like Vestel Electronics to optimize 

manufacturing operations and reduce costs.
The remainder of the paper is organized as follows. Section 2 provides a literature 

review of flexible manufacturing systems. The mathematical model for the proposed 

problem is presented in Section 3, followed by a description of the solution approaches 

in Section 4. In Section 5, we present numerical experiments. Finally, the conclusion 

and the managerial implications of the study are presented in Section 6.

2. Literature Review

The initial works on FMSs date back to the 1970s (Hutchinson 1977). Later, Carrier 

et al. (1984) provide the formal introduction of FMS. Main research topics investigated 

by the researchers since then are (i) general analytical models to exploit the potential 

of FMSs (Buzacott and Yao 1986), (ii) scheduling models and rules to be used in FMSs
(Gupta, Gupta, and Bector 1989; Sawik 1999; Sabuncuoglu 1998; Sawik 2011), and 

(iii) layout models to better manage the product flow in FMSs (Moslemipour, Lee, 

and Rilling 2012; Kouvelis, Chiang, and Kiran 1992; Kimemia and Gershwin 1985).
Charles H. Fine (1990) analyze the tradeoff between cost and flexibility when de- 

termining the manufacturing capacity in an FMS. They formulate the problem as a 

two-stage stochastic program. They first, make the investment decision under demand 

uncertainty, and then the production decisions are made after the demand is realized, 

given the investment decisions made in the first stage. Schweitzer and Seidmann (1991) 

use a mean value analysis queueing network model to determine the minimum cost 

processing rates for a given the FMS throughput target, the work-in-process level, part 

routes, transporter delays and the variable capacity cost function for each machine. 

Wang, Wang, and Zhang (2011) provides a recent review of studies on flexible opera- 

tions mainly focusing on models with independent and dependent capacity allocation 

decisions over multiple periods.
Yang and Peters (1998) analyze FMS layout problems under unequal machine sizes 

and fixed loading/unloading points. Different from the quadratic assignment problem- 

based enumeration approach commonly used in the literature, the authors develop a 

construction-type heuristic algorithm to determine the best layout. Hottenrott, Schif- 

fer, and Grunow (2022) analyze the implementation of FMS in the automotive indus- 

try and determine the best layout by solving a chance-constrained formulation of the 

problem using a tailored branch-and-price algorithm. Pourvaziri et al. (2022) propose 

a robust layout approach that considers the changes in the product demand and mix 

by changing the product routes instead of rearranging the layout. They decompose the 

problem into two subproblems. In the first one, they determine a robust layout, and 

in the second one, they decide on the routes of the products. The first subproblem is 

solved by combining the design of experiments and a hybrid genetic-tabu search algo- 

rithm. The routes of the products in each period are determined by a branch-and-cut 

algorithm.
Lee, Shin, and Dong-HoLee (2020) analyze operations scheduling problem for an 

advanced FMS where multi-fixturing pallets are used to load multiple parts simulta- 

neously. Their objective is to minimize makespan and total tardiness. They decompose 

the problem into four subproblems: palletizing, pallet input sequencing, pallet rout- 

ing, and pallet process sequencing, and solve each subproblem using the variants of
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well-known scheduling heuristics. Zhang et al. (2020) consider a flexible job shop en- 

vironment with assembling operations and determine the production schedule under 

multiple objectives. A distributed ant colony system is proposed to find Pareto op- 

timal solutions for the objectives of minimizing makespan, total tardiness, and total 

workload. Candan and Yazgan (2015) develop a genetic algorithm to minimize the 

makespan in a flexible job shop scheduling problem. They used a Taguchi orthog- 

onal array method to determine the parameters of the proposed genetic algorithm. 

Moslehi and Mahnam (2011) analyze a multi-objective flexible job shop scheduling 

with different release times and under multiple objectives. They hybridize particle 

swarm optimization and local search to address the problem. Pitts Jr and Ventura 

(2009) study the scheduling of production jobs within a type of FMS called a flexible 

manufacturing cell. They propose a two-stage tabu search algorithm to minimize the 

manufacturing makespan for medium-to-large-scale problems. The algorithm combines 

two heuristics in the first stage and a tabu search metaheuristic in the second stage to 

provide improved manufacturing makespan solutions with significant savings in com- 

putational time. Several studies on FMS assume that demand is uncertain and develop 

models to address demand uncertainty. However, unlike our study, these studies as- 

sume a single-period problem and determine the configuration of each line/machine 

only once. Some recent studies on FMS with demand uncertainty are summarized in 

Table 1.
Yadav and Jayswal (2018) provide a recent review of modelling FMS and highlight 

the importance of a flexible system, in case of changing demand, that is capable of 

(i) producing different part types, (ii) performing satisfactorily in case of a schedule 

change, (iii) recovering from a breakdown and (iv) adding new part designs into the 

production line. In a common production environment, a single floor is used to satisfy 

the demands of multiple products from multiple companies. This floor contains two 

different types of machines: TMM and a limited number of FMSs. Depending on the 

type of machine, it is possible to produce a product using either a TMM or an FMS, 

and their production costs and capacities vary. Under stationary demand patterns, 

this two-mode setup is as efficient as traditional mass manufacturing, although the 

cost per unit of production may be lower. However, under highly volatile demand 

patterns, the cost per unit of production may be higher, but the output can be flexible. 

The key takeaways of this study can be outlined in three aspects. Firstly, it is novel 

in the field of flexible manufacturing systems as it presents a novel optimization- 

under-uncertainty framework. The proposed stochastic production planning problem 

is the first to incorporate both flexible and traditional manufacturing systems and 

offers robust solutions to address demand uncertainty. Secondly, the authors propose 

a column generation-based heuristic method that can solve large-scale problems in a 

case study of Vestel’s drum production, whereas a commercial solver could not. The 

linear programming relaxation of the mixed-integer programming models provides an 

efficient lower-bound mechanism for evaluating the proposed algorithm. On average, 

the proposed column generation-based approach has an optimality gap of 5.2% when 

both FMS and TMM are implemented for realistically sized instances. Finally, the 

study successfully develops cost-effective schedules that minimize (on average) 12.6% 

of production costs compared to standard methods without flexible manufacturing 

systems, despite the challenges posed by uncertain demand.
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3. Problem Definition

This section provides the mathematical formulation of the stochastic production plan- 

ning (SPP) problem. The formulation explains the goal, assumptions, and mathemati- 

cal optimization model of the problem. In the context of SPP, Vestel aims to satisfy the 

demand for multiple washing machine drums (J = 1, . . . ,Γ) over a specific planning 

horizon T . A scenario tree approach is adopted for modelling to capture the uncer- 

tainty in demand. A scenario tree is a graphical representation of different possible 

scenarios that may unfold over the planning horizon. Each scenario corresponds to 

a specific sequence of demand realizations, reflecting the uncertainty in the demand. 

The scenario tree comprises nodes, which are essential decision points where different 

actions can be taken based on the evolving demand. In our context, the term “node” 

refers to a decision point representing a particular system state within the planning 

horizon. Each node in the scenario tree corresponds to a specific time period and re- 

flects the available information up to that point. At each node, a decision regarding 

production planning can be made based on the demand realization up to that period.
The decision variables are categorized into two types: here-and-now decisions and 

wait-and-see decisions. Here-and-now decisions are made at the beginning of the plan- 

ning horizon using TMMs. Wait-and-see decisions, on the other hand, offer more flex- 

ibility and are fulfilled using FMSs, based on the actual demand observed during the 

planning horizon. Both TMMs and FMSs are assumed to possess the capability to 

produce all types of products, with setup times between productions being dependent 

on the production sequence. The parameters aj and a′j represent the production ca- 

pacities of TMMs and FMSs, respectively, for product j. Additionally, dej represents 

the demand for product j at node e within the scenario tree. Variable costs that are 

incurred in addition to fixed costs are also considered in this model. In the case of 

TMMs, the fixed production cost for product j during period t is represented by Atj

and the variable production cost is represented by vtj . Both variable and fixed costs 

are incurred in FMSs and are indicated by A′
tj and v′tj , respectively. Inventory holding 

costs are also present, represented by hj , which represents the cost of keeping a unit 

of product j in inventory per period. The production capacity of each period is rep- 

resented by Cj , while the inventory capacity is limited by S, which is the maximum 

amount of space that can be used for storage after each period. Finally, the outsourcing 

cost of product j in each period is indicated by βj .
The sets, parameters, and decision variables used in the mathematical optimization 

model and throughout the study are presented below.

Sets:

J : set of products ({1, 2, . . . ,Γ}) – indexed by j
K: set of TMMs ({1, 2, . . . , M}) – indexed by k
K ′: set of FMSs ({1, 2, . . . , M ′}) – indexed by k′

K̄: set of machines ( K̄ = K ∪K ′) – indexed by k̄
T : set of time periods in the planning horizon ({1, 2, ..., L}) – indexed by t
E: set of demand scenario or node indexes ({1, 2, ..., S}) – indexed by e
Nt: set of nodes in period t ∈ T
N̄(e, l): set of children nodes of e in the next l periods ∪ {e}

Parameters:

aj : units of product j that each TMM produces
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a′j : units of product j that each FMS produces

sj j′ : setup time between product j and j′ on TMM
s′j j′ : setup time between product j and j′ on FMS
dej : demand for product j in node e
vtj : variable cost of production of product j in period t by a TMM
v′tj : variable cost of production of product j in period t by an FMS
Atj : fixed cost of production of product j in period t by a TMM
A′

tj : fixed cost of production of product j in period t by an FMS
hj : unit holding cost of product j
βj : unit outsourcing cost of product j
C: production capacity of TMM during the planning horizon
C ′: production capacity of FMS during the planning horizon
S: inventory capacity per period
R: a relatively large constant
pd(e, 1): immediate predecessor of node e
pd(e): nodes in the path from the source node to e
pr(e): probability of scenarios in path pd(e) being realized
t(e): period of node e

Decision Variables:

yk tj :
{

1, if there is a production of TMM for product j on machine k in period t
0, otherwise

xk′ej :
{

1, 1 if there is a production of FMS for product j on machine k′ in node e
0, otherwise

Iej : inventory of product j at the end of node e

Bej : amount of product j outsourced at the end of node e

A sample scenario tree is presented in Figure 2 using SPP notations. The figure displays 

the demand tree structure, where node e6 follows node e2 = pd(e6, 1). The set of child 

nodes of e1 in the next period is represented by N̄(e1, 1) and N̄(e1, 2). In the scenario 

tree, nodes e ∈ N represent demand outcomes at t(e) with a probability of pr(e) and 

every path from the root node to a leaf node e ∈ N is referred to as a scenario. For 

example, pd(e14) = {0, e2, e6, e14}, with NT denoting the set of nodes in the last period 

of the planning horizon.
The SPP problem can be formulated as a mixed-integer programming (MIP) model 

that integrates both the considerations of TMMs and FMSs. Within this MIP model, 

production decisions can be classified into two categories: 1) Here-and-now decisions 

(y): These decisions pertain to TMMs and are made at the start of the planning 

horizon. Once determined, they remain fixed and cannot be adjusted based on the 

scenarios that unfold. Notably, TMM production plans are established at the begin- 

ning of the planning horizon due to the necessity of special initial setups required 

for different production types. These setups must be addressed before the facilities 

commence operations. 2) Wait-and-see decisions (x): These decisions relate to FMSs 

and offer greater adaptability. Unlike TMMs, FMSs do not require dedicated initial 

setups and are more flexible in accommodating various modes of manufacturing. Con- 

sequently, they can be adjusted in response to different scenarios that are realized over 

time. It must be noted that in the mathematical optimization models presented in this
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Figure 2. Structure of the scenarios of the problem

study, an ellipsis indicates that the expression continues onto the next line.
The MIP model incorporating the aforementioned here-and-now and wait-and-see 

decisions is presented as follows:

MIP:

min
∑
e∈NL

pr(e)
∑

e′∈pd(e)

( ∑
j

∑
k′

v′t(e′)ja
′
jxk′e′j + · · · 

· · ·
∑
j

∑
k′

A′
t(e′)jxk′e′j +

∑
j

(
hjIe′j + βjBe′j

))
+ · · · (1)

· · ·
∑
t

∑
j

∑
k

(
vtjajyk tj +Atjyk tj

)
s.t. (R− 1)xk′ej +

∑
j′

∑
e′∈N̄(e,s′

j j′−1)

xk′e′j′ ≤ R ∀e, j , k′ (2) 

(R− 1)yk tj +
∑
j′

t+sj j′−1∑
t′=t

yk t′j′ ≤ R ∀j , k , t (3)
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∑
j

∑
k

∑
t

ajyk tj ≤ C (4)

∑
j

∑
e

∑
k′

a′jxk′ej ≤ C ′ (5)

∑
e∈Nt

∑
j

Iej ≤ S ∀t (6)

∑
e∈Nt

Bej ≤ µj ∀j , t (7)

Bpd(e,1)j −Bej + Iej − Ipd(e,1)j + dej = · · · 

· · ·
∑
k

ajyk t(e)j +
∑
k′

a′jxk′ej ∀e, j (8)

xk′ej ∈ {0, 1} ; yk tj ∈ {0, 1} ∀e, j , k , k′, t (9)

Iej , Bej ≥ 0 ∀e, j (10)

In MIP, the objective function (1) minimizes the total expected cost, which encom- 

passes production, holding, and outsourcing costs. Constraints (2) and (3) regulate the 

setup times between the production of FMSs and TMMs, respectively. The total pro- 

duction of TMMs and FMSs during the planning horizon is limited and constraints (4) 

and (5) enforce this restriction. Constraints (6) ensure inventory constraints for each 

period. The amount of product j that can be outsourced in period t is limited by µj , 

which is upheld by constraints (7). Constraints (8) are inventory balance constraints, 

while constraints (9) and (10) specify the domains of the variables.

4. Column Generation Approach

Solving the MIP model for large instances is computationally intensive. To address 

this challenge, this section proposes a heuristic algorithm based on column genera- 

tion, which implements Dantzig-Wolfe decomposition to decompose the mathematical 

model (MIP) into the master problem and two subproblems. The algorithm starts by 

solving the linear programming (LP) relaxation of the reduced master problem (RMP) 

with a feasible set of initial solutions. This set includes decisions for both TMMs and 

FMSs. Dual variables for RMP are obtained, and subproblems are solved to identify 

profitable columns added to RMP. This process continues until all decision variables 

in RMP are integers or a time limit is reached. Unlike the branch and price approach, 

which branches on decision variables, the proposed method solves the master prob- 

lem with integer decision variables using all generated columns. The proposed column 

generation-based heuristic follows a specific sequence of steps in each iteration. Ini- 

tially, a column (λ) associated with a wait-and-see production schedule of an FMS (x) 

is introduced to RMP. Then, another column (θ) associated with a here-and-now pro- 

duction schedule of a TMM (y) is added to the RMP-WS. This process continues until 

the objective function values for subproblems PP-x and PP-y become non-negative, 

indicating the generation of useful columns for the RMP or reaching the time limit. 

Finally, the master problem with binary and integer decision variables is solved. The 

steps of the column generation-based heuristic algorithm are presented in Figure 3.
This algorithm differs from conventional branch-and-price algorithms as it solves the
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Yes

[Alt-Text: ]The steps of the column generation-based heuristic are presented in this 

figure.

Figure 3. Steps of column generation-based heuristic algorithm

RMP using integer decision variables instead of branching on them, reducing compu- 

tational time. Hence, it is referred to as a heuristic algorithm. For further information 

on the column generation algorithm, refer to Lübbecke and Desrosiers (2005), De- 

saulniers, Desrosiers, and Solomon (2005), and Lübbecke (2010). The total production 

cost of TMM schedule m is denoted by c̃m, while ĉm′ represents the total production 

cost of FMS schedule m′. The mathematical optimization of RMP is given as the 

following.
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RMP: 

min
∑
e∈NL

pr(e)

  

∑
e′∈pd(e)

∑
j

hjIe′j + βjBe′j

 + · · · 

· · ·
∑
m′

ĉm′xm′ +
∑
m

c̃mym (11) 

s.t.
∑
e∈Nt

∑
j

Iej ≤ S ∀t (12)

∑
e∈Nt

Bej ≤ µj ∀j , t (13)

Bpd(e,1)j −Bej + Iej − Ipd(e,1)j + dej = · · · 

· · ·
∑
m′

λm′

ej xm′ +
∑
m

θm 

t(e)jym ∀e, j (14)∑
j

∑
m

∑
t

θm 

t(e)jym ≤ C (15)

∑
j

∑
m′

∑
e

λm′

ej xm′ ≤ C ′ (16)

∑
m

ym ≤ M (17)∑
m′

xm′ ≤ M ′ (18)

ym ≥ 0, xm′ ≥ 0 ∀m, m′ (19)

Iej , Bej ≥ 0 ∀e, j (20)

The RMP model minimizes the total expected cost for the TMM and FMS produc- 

tion schedules, holding inventory, and outsourcing costs through its objective function 

(11). The capacities for inventory and outsourcing are ensured by constraints (12) and 

(13), while inventory balance is maintained through constraints (14). Constraints (15) 

and (16) enforce the production capacities for TMMs and FMS, respectively. The total 

number of production schedules for TMMs and FMSs must be within the available 

resources and it is ensured by constraints (17) and (18). The dual variables obtained 

from (12) to (18) are represented by δt, γtj , ηej , ι, and ζ.
The subproblems for FMS and TMM production schedules are PP-x and PP-y, 

respectively. The PP-x subproblem is as follows:

PP-x: 

min
∑
e

pr(e)
∑
j

(
zej

(
a′jv

′
t(e)j +A′

t(e)j

))
−
∑
e

∑
j

a′jzejηej −
∑
t

δt −ι (21) 

s.t. (R− 1)zej +
∑
j′

∑
e′∈N̄(e,s′

j j′−1)

ze′j′ ≤ R ∀e, j (22)

zej ∈ {0, 1} ∀e, j . (23)

12



In PP-x, the objective function (21) minimizes the cost of an FMS production sched- 

ule. Constraints (22) ensure compliance with setup times between consecutive FMS 

productions. After solving PP-x, values are calculated for λm′

ej by λm′

ej = a′jzj e and for 

ĉm′ by ĉm′ =
∑
e
pr(e)

∑
j
zej(a

′
jv

′
t(e)j +A′

t(e)j).

Next, the formulation for the PP-y subproblem is as follows:

PP-y:

min
∑
t

∑
j

qj t

(
ajvtj +Atj −

∑
e∈Nt

ajηej

)
−
∑
t

δt − ι (24) 

s.t. (R− 1)qj t +
∑
j′

t+sj j′−1∑
t′=t

qj′t′ ≤ R ∀j , t (25)

qj t ∈ {0, 1} ∀j , t. (26) 

In the subproblem PP-y, the goal is to find the most cost-efficient production schedule 

for a TMM. The constraints (25) ensure the set-up times between consecutive TMM 

productions. Upon solving PP-y and finding the optimal values of qj t, the values of
θm 

tj and c̃m are calculated as θm 

tj = ajqtj and c̃m =
∑
j

∑
t
qtj(ajvtj +At).

5. Numerical Results

In this section, we evaluate the proposed column generation-based heuristic algorithm 

in a real-life setting. Vestel designates 20 TMMs and 6 FMSs for the production of 

different types of drums for washing machines in its production line. A schedule is 

established for a period of two weeks, and data is gathered over a period of 12 months 

(24 fortnights) with a separate instance created for 14 days (L = 14). The collected 

data includes 50 different drum types to be produced on one of the TMMs or FMSs, 

with the demand for the drums in each period potentially reaching a value of up to 

2000 units.
We take into consideration three different demand nodes, namely low, nominal, and 

high, at each period, resulting in a total of 314 leaf nodes in the last period. The 

nominal demand of each product for the first period is set equal to the data gathered 

from Vestel. A constant value (denoted by ρ) calculates the low and high demand values 

in each period. Specifically, the low demand is calculated as (1−ρ)×nominal demand 

and the high demand is calculated as (1 + ρ) × nominal demand. In this study, we 

consider ρ = 0.2. In the context of this study, it is important to note that the amount 

of time required to transition between the drums (setup times) in Vestel varies for 

TMMs and FMSs due to the machine specifications. Specifically, the setup time for 

TMMs ranges between 5 and 10 minutes, while for FMSs, it ranges between 1 and 

5 minutes, depending on the current and next product. Additionally, the inventory 

capacity of Vestel for each period (S) is 50,000 units. While a TMM can produce 

up to 70,000 units during the planning horizon, each FMS can produce up to 100,000 

units. It is also worth mentioning that Vestel does not currently impose an upper limit 

on the number of drums that can be outsourced. However, the mathematical model 

provided in this study is capable of accommodating the upper limit for it. Furthermore, 

the number of products that each TMM can produce on a daily basis ranges between
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100 and 150, while an FMS can produce between 120 and 300 units per day. In terms 

of production capacity per period, an FMS is capable of producing between 150 and 

300 units of each type of drum, while a TMM can produce between 50 and 100 units 

of each type of drum. The unit variable production cost of a TMM, depending on 

the machine specifications, is between 10 and 15 units for each product type, and the 

production cost of an FMS is between 2 and 8. However, while the fixed cost of a TMM 

is between 50 and 60, the fixed cost of an FMS is between 100 and 150. Moreover, the 

holding cost of each drum type is a value between 0.8 and 1.4, and the outsourcing 

cost of each product type is between 4 and 12 depending on the size of the products. 

Currently, Vestel uses a scheduling module integrated with their enterprise resource 

planning (ERP) system. This module receives orders from the ERP software, presents 

a visual representation of the orders, and allows the user to manually assign items to 

machines, taking setup times and other factors into account. The user’s expertise plays 

a significant role in determining the final schedules, making them dependent on the 

user. In considering the manufacturing process, we examine two distinct cases: Case 

I, where only TMMs are utilized, with all 26 machines being of the TMM type, and 

Case II, where a combination of 20 TMMs and 6 FMSs is employed as in the actual 

system.
In Table 2, the optimality gaps of the solutions for Case II and the improvement 

obtained by comparing it with Case I for real-life instances are presented. Although 

there are solutions implemented in practice, instead of using them as a benchmark, we 

chose to use a lower bound for evaluating the performance of the proposed approaches. 

The optimality gap is determined by using the optimal objective function value of 

the linear programming (LP) relaxation of MIP using equation (27). Therefore, the 

numbers provided are safe approximations of the actual optimality gap. 

Optimality Gap = 

OFV− LB

LB
× 100% (27) 

where OFV stands for the objective function value obtained by the CG-based heuristic 

algorithm and LB is that of the LP relaxation. Table 2 presents the optimality gap 

and OFV value improvement yielded by the flexible system that utilizes 20 TMMs and 

6 FMSs (Case II) for a system solely based on 26 TMMs (Case I). Rows one, four, and 

seven present the fortnight IDs of the instances gathered from Vestel, where “Ins.” 

denotes the “instance”, “Gap” denotes the “optimality gap”, and “Imp.” denotes the 

“improvement” obtained in Case II comparing with Case I. To calculate the objective 

function of the model for Case I, we set the number of FMSs equal to zero and solve the 

same model. By doing so, there will be no need for solving PP-x as a subproblem any- 

more; therefore, only PP-y is utilized in the column generation-based algorithm.The 

proposed column generation-based algorithm is implemented using Python, utilizing 

Gurobi 9.5 as the optimization solver. All experimentation is conducted on a system 

equipped with an Intel Xeon CPU operating at 2.4 GHz and 32 GB of RAM.
The results presented in Table 2 demonstrate the effectiveness of incorporating 

FMSs in conjunction TMMs to improve overall performance. Using FMSs in Vestel’s 

production processes has shown significant potential for enhancing production effi- 

ciency. The average improvement of 12.63% across all instances indicates a consistently 

positive impact on the performance of the proposed algorithm. This improvement 

highlights the importance of adopting flexible manufacturing approaches and hence 

integrating FMSs with TMMs to address real-world manufacturing complexities faced 

by Vestel effectively.
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[Alt-Text: ]Optimality gaps and the improvements obtained in Case II with respect to 

Case I are presented in this table.
Table 2. Optimality gaps and improvements obtained in Case II

Ins. 1 2 3 4 5 6 7 8
Gap 3.00% 3.70% 4.30% 5.39% 3.21% 4.41% 4.34% 6.57% 

Imp. 12.89% 15.01% 16.23% 14.02% 15.93% 18.73% 16.84% 14.03%
Ins. 9 10 11 12 13 14 15 16
Gap 4.92% 3.60% 3.38% 2.04% 1.88% 8.87% 7.65% 5.55% 

Imp. 18.09% 15.95% 13.23% 8.27% 5.35% 7.68% 8.65% 11.30%
Ins. 17 18 19 20 21 22 23 24
Gap 4.92% 6.63% 9.86% 11.06% 4.19% 3.36% 7.96% 5.19% 

Imp. 10.73% 10.44% 9.61% 12.32% 11.12% 13.23% 12.40% 11.10%

The summary of the results in Table 2 is presented in Table 3. The average opti- 

mality gap is recorded as 5.25%; the worst-case optimality gap observed in this study 

is 11.06%. This means that significant optimality performance is achieved even in the 

instance with the most challenging characteristics. Moreover, on the other end of the 

spectrum, the best-case optimality gap is as impressive as 1.88%. Next, the improve- 

ment made by Case II over I across different instances, i.e., ranging from 5.35% to 

18.73%, is on average, 12.64%. Therefore, incorporating FMSs with TMMs demon- 

strates the ability of the algorithm to deliver notable enhancements in production cost 

consistently.

[Alt-Text: ]The summary of the results are presented in this table.
Table 3. Summary of optimality gaps and improvements obtained by Case II

Measure Average Worst Best
Gap 5.25% 11.06% 1.88% 

Improvement 12.63% 5.35% 18.73%

In order to scrutinize the characteristics of instances with the highest improvement 

(HI), average improvement (AI), and lowest improvement (LI), the cost components 

of Cases I and II are presented in Table 4.

[Alt-Text: ]Cost components of three important instances are presented in this table 

comparing the results in Case I and Case II.
Table 4. Cost components of important instances in Case I and Case II

Ins. 

Case I Case II
TMM Inv. Out. TMM FMS Inv, Out.

HI (6) 62.55% 6.23% 31.22% 45.02% 35.35% 8.42% 11.21% 

AI (23) 76.38% 5.11% 18.51% 49.19% 33.48% 7.11% 10.22% 

LI (13) 85.54% 7.23% 7.23% 51.44% 36.93% 8.41% 3.22%

In this table, the first column represents the instances, and columns 2 through 4 

represent the production costs of TMMs, inventory and outsourcing costs in Case I, 

respectively. Columns 5 through 8 represent the same cost components for Case II. In
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Case I, instances exhibit a consistent trend where the production cost for TMMs is 

significant, accounting for the largest proportion of total costs. The absence of FMSs 

in this scenario leads to relatively high outsourcing costs, indicating the reliance on 

external services for specific manufacturing processes. Inventory costs are also notable, 

contributing to the overall expenses. The cost distribution for instances LI, AI, and HI 

demonstrates variations based on their individual improvement levels. However, the 

absence of FMSs remains a common factor affecting cost dynamics in Case I.
In contrast, Case II showcases a significant transformation in cost allocation by 

incorporating FMSs. LI, AI, and AI all experience a substantial decrease in the pro- 

duction cost for TMMs, as FMSs assume a more prominent role in the manufacturing 

process. The production cost of flexible systems becomes a substantial component, 

indicating the efficient utilization of this advanced manufacturing system. Notably, 

the outsourcing reduces remarkably in Case II, owing to the cost-effectiveness and 

resource optimization achieved through FMS implementation. This indicates a shift 

towards in-house production, reducing the reliance on costly external services. The 

decrease in outsourcing costs observed in Case II highlights the cost-saving potential 

of adopting FMS in manufacturing operations. The flexibility and automation offered 

by FMSs enable companies to handle a broader range of tasks internally, leading to 

enhanced cost management and efficiency gains. Consequently, companies can redi- 

rect resources more effectively, reduce lead times, and gain a competitive edge in the 

market.

6. Managerial Insights and Conclusion

This paper presents a problem that aims to minimize the total (expected) operational 

manufacturing, holding, and outsourcing costs by utilizing flexible manufacturing sys- 

tems (FMS). The numerical experiments have shown that utilizing an optimization 

method for the manufacturing scheduling problem and considering uncertain demand 

and flexible manufacturing systems can efficiently manage production planning for 

Vestel Electronics, a well-known household appliances company in Türkiye.
In the remainder of this section, we discuss how Vestel and other companies that 

use FMSs can benefit from the presented research in four different aspects.
The utilization of FMSs is extremely valuable and can revolutionize how manufac- 

turing is managed. However, despite the advantages of using FMSs, it also increases the 

number of potential manufacturing patterns, which can make the already challenging 

task of managing demand uncertainty even more difficult. To address this, optimiza- 

tion methods for viable FMSs can provide significant advantages for companies like 

Vestel in managing this challenge more effectively. Needless to say, we do not interfere 

in the machinery purchase decision, but in order for the company to decide on what 

rate they can substitute the machines, considering the cost-saving achieved according 

to the analysis, we suggest the conducted necessary economic analysis. Furthermore, 

solving an optimization problem becomes increasingly important in managing goods 

as efficiency and profitability are at stake. In other words, implementing optimiza- 

tion techniques in manufacturing management offers a unique opportunity to balance 

supply with demand in an uncertain environment and, more importantly, maximize 

the efficiency of this high-cost operation. The proposed optimization method aims to 

tackle these issues that all manufacturers may face within practical time frames while 

producing near-optimal solutions, yielding optimality gaps of less than 10% in the 

presented case study.
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In a scenario where demand is volatile and fluctuates frequently, the ability to cus- 

tomize supply is crucial, highlighting the importance of using FMSs. This is supported 

by the numerical results presented in this study, which showed that using FMSs sig- 

nificantly reduced overall costs, with an average improvement of between 12% and 

18%. This indicates that it would be beneficial for Vestel to put in significant effort 

to implement flexible manufacturing systems to improve service quality. Although the 

experiments in this study were limited in the number of flexible machines used, even 

more significant improvements would be possible if more FMSs were implemented. 

This should be a key goal for manufacturers.
Production plans made by FMSs can adapt to different demand realizations, unlike 

TMMs, which are predetermined and independent of the realized demand. However, in 

practice, the actual demand will rarely match one of the scenarios in the tree. To ensure 

the validity of FMS decisions in such cases, we propose two approaches for production 

scheduling. These methods guarantee the feasibility of a production schedule obtained 

from the FMS. The first approach is to choose the production schedule of the nearest 

larger demand node in the decision tree for the realized demand of the associated 

period. The second approach, referred to as folding horizon, reoptimizes the production 

schedules of FMS after the demand of each period is realized. The advantage of the 

first approach is its speed, while the second approach may yield better solutions but 

takes longer to compute. It is noteworthy that the second may not be practical when 

adaptive decisions must be made immediately after the demand has occurred due to 

increased CPU time requirements.
While this study has provided valuable insights into the benefits of utilizing FMSs in 

managing demand uncertainty for Vestel Electronics, there are certain limitations that 

should be acknowledged. Firstly, the research focused solely on the specific context 

of Vestel Electronics, and the generalizability of the findings to other industries or 

companies with different operational characteristics may require further investigation. 

Secondly, the study assumed that all parameters, such as machine substitution rates 

and operational costs, remained constant throughout the planning horizon. In reality, 

these parameters might change over time, and incorporating such dynamic aspects 

could enhance the model’s accuracy. Additionally, the optimization model considered 

only the manufacturing and outsourcing costs, but other factors like environmental 

impacts or social aspects could be integrated for a more comprehensive analysis. In 

future research, we aim to develop robust mathematical optimization models that 

incorporate supply and demand uncertainty elements within a unified framework.
While the practical implications for Vestel Electronics and similar companies are 

evident, the academic community stands to benefit from the novel methodologies and 

optimization techniques introduced. This work not only bridges the gap between flexi- 

ble manufacturing systems and demand uncertainty but also offers a fresh perspective 

on how traditional and modern manufacturing paradigms can coexist and complement 

each other. The mathematical models and solution approaches delineated in this study 

can serve as a foundation for future research in this domain, encouraging scholars to 

delve deeper into the intricacies of manufacturing under uncertainty. Furthermore, the 

case study of Vestel Electronics provides a real-world context, making this research a 

valuable reference for both academia and industry.
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