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Abstract—5G, the latest generation of cellular technology, is
designed to support the various use cases of multiple industries.
Railway transport is one of the most challenging usage scenarios
the 5G system encounters. The telecommunication network
service provided by 5G is crucial to guarantee the quality and
safety of train traffic. Therefore, estimating the availability and
reliability of such network service is necessary. This article sep-
arates spatially and temporally the 5G network into subsystems.
This article also provides methods and calculation expressions
for evaluating the availability and reliability of subsystems as
well as the overall network service.

Index Terms—5G, network service, service availability, relia-
bility, railway.

I. INTRODUCTION

With the fast worldwide development of railway systems,
especially high-speed railways, the demand for mobile services
has dramatically grown during the last decade. It is necessary
to provide stable and reliable railway services to the massive
passenger flow. The current railway-oriented telecommunica-
tion system, GSM-R, faces a decommission issue and can
no longer satisfy the demanding requirements of high-speed
transport service [1]. A new telecommunication network based
on 5G is designed to be the successor of the GSM-R [2].

The unavailability and unreliability of network service are
the main factors that seriously impact train service. Once the
connection is lost, the train cannot be tracked, and signal
transmission with the control center and information exchange
will be interrupted. As communication networks become more
complex, finding a practical way to estimate and improve
the network service availability and reliability for railway
communication service usage before replacing the current
telecommunication system with 5G is essential.

This paper introduces a method to spatially and temporally
regroup the 5G system into subsystems for high-mobility
communication services. The network service availability and
reliability are evaluated by combining series-parallel system
availability and reliability analysis of the subsystems.

The structure of this paper is organized as follows. The
telecommunication network for high-mobility users is intro-
duced in Section II. Section III presents the regrouping of the
network system and the method to assess network availability

and reliability. Section IV focuses on series-parallel subsystem
availability and reliability analysis. Numerical evaluation is
showcased in Section V. Finally, Section VI concludes the
paper with some remarks.

II. 5G NETWORK FOR RAILWAY COMMUNICATION

In a 5G network, an End-to-End (E2E) service connec-
tion is established through a Radio Access Network (RAN),
which connects devices to other parts of a network via radio
connections, and a Core Network (CN), which manages the
connection to the service platform or the internet. By intro-
ducing Network Function Virtualization (NFV) and Software
Defined Networking (SDN) technologies [3] into 5G, the
network is virtualized and can be flexibly deployed and easily
managed. After virtualization, RAN and CN are virtualized,
for example, as microservices in containers hosted on physical
infrastructure.

When a 5G network is applied to high-mobility scenarios,
some components may need multiple instances and be dis-
tributed along the railway track due to the radio coverage
distance constraints and service latency requirements. A user
will only connect to the RAN components covering it, as
shown in Fig. 1. Therefore, at a given position, the train only
establishes an E2E connection via the reachable local RAN
components. The local RAN is connected to an aggregated
CN. The CN components are often located in a data center far
from the RANs. Sometimes, a train is reachable by multiple
RAN components, like in Zone 2 in Fig. 1. This zone is also
called an overlapping area, covered by multiple radio antennas.
Sometimes, the train runs in the zone covered by only one
RAN radio antenna, as Zone 1 in Fig. 1.

The 5G network is supposed to provide various high-
availability and high-reliability railway communication ser-
vices, including voice and data communication. These ser-
vices are based on user plane E2E communication. This E2E
communication requires all user plane network components to
operate correctly. Inspired from [4], under the context of 5G
for high-mobility trains, the network service availability can be
defined as the probability that the E2E connection is available
at any instant. Reliability is often used to characterize if a



Fig. 1. Example of 5G network along a railway track.

system is appropriately working during a specific period of
time [5]. The 5G network we consider is a repairable system.
We use Mean Time To Failure (MTTF), the average time the
E2E connection lasts, and Mean Time To Repair (MTTR),
the average time to repair the E2E connection, to estimate
the network service reliability. When the time moment in
the availability definition t tends to infinity, the steady-state
availability equals MTTF/(MTTF + MTTR) [6].

III. SYSTEM DECOMPOSITION

Since not all network components are usable for the train
at a given position and time, it is possible to simplify the 5G
system by considering different subsystems when assessing
the network service availability and reliability.

We set the length of the considered railway as S. Alongside
this rail line, N Base Stations BS = {bs1, bs2, ..., bsN} are
evenly distributed from the start x = 0 to the end x = S of
the line. Each base station bsn can effectively transmit radio
signals to end users in a zone with a radius rn. We divide this
rail line into M zones Z = {z1, z2, ...zM} such that in zones
zi, zj , ∀i, j ∈ {1, 2, ...,M}, for the corresponding effective
covering Base Station ensembles ci, cj ⊆ BS, we have ci ̸=
cj . If in zone zi, card(ci) = 1, it is called a single covering
zone. If card(ci) ≥ 2, then it is called overlapping zone.

Fig. 1 shows how zones reconstitute a telecommunication
network. The whole system comprises virtual and physical
components for RAN and CN. At the moment t, the train is
in the middle of the train line of zone z4 and is reachable
to the second and third Radio Base Stations. The covering
Base Stations are c4 = {bs2, bs3}. Each Base Station can
establish an E2E connection by a series-parallel network
function system, which is composed of two virtual applications
and one physical server (a simplified demonstrative example).
These two series-parallel systems are also in parallel and form
a subsystem for zone z4. When the train enters zone z5,
the only effective covering Base Station is c5 = {bs3}. The
subsystem for zone z5 consists of two virtual components and
one physical component. With M zones, the entire system can
be regrouped into M subsystems.

The availability of a train network service is the average
percentage of available time that the train can connect to the
Data Network via at least one subsystem. The reliability of a
train network service is the capacity to provide E2E connection

without failure, which is characterized by the Mean Time
Between Failures (MTBF) of the service in the present study.

The availability and reliability of one subsystem provide the
availability and reliability for the communication service of a
train running at this specific zone. Although some components
could belong to multiple subsystems by this regrouping, the
failures of these subsystems are assumed to be independent.
For the train use cases, these subsystems are temporally and
spatially independent. At a given moment t, the train is located
only at one position and connects to only one subsystem. The
train service’s available time can be computed as the sum
(superposition) of the available time of those subsystems it
passes.

Atrain =

∑M
i=0 Asubneti · Ti

Ttotal
× 100% (1)

Equation 1 calculates the service availability. Asubneti is the
availability of the i-th subsystem. Ti is the train passing time
at zone zi. The train network service availability shows the
percentage of time the train can use the E2E communication
during the trip.

The number of failures of the train service for a given
duration that the train stays in the subsystem can be deduced
from the reliability of the subsystem. Then, by assuming these
subsystems are independent, it is possible to extract the MTBF
for the overall train service.

MTBFtrain =
Ttotal∑M

i=0
Ti

MTTFi+MTTRi

(2)

In Equation 2, the sum of MTTFi and MTTRi is the MTBF
of the i-th subsystem. Ti is the train passing time at zone zi.
The passing time divided by MTBF at zone zi is the number
of failure occurrences when the train passes zone zi. The train
network service reliability indeed describes how often an E2E
service interruption may happen during the trip.

IV. SUBSYSTEM AVAILABILITY AND RELIABILITY

A first assumption to simplify the considered subsystems
model is that all components, whatever their nature, physical or
virtual, their failure processes follow the exponential law, and
so do their repair processes. Based on this assumption, we cre-
ate a state space model of the subsystem. The m-th subsystem
is an ensemble of mk components, Sm = {e1, e2, ..., emk

}.
There will be 2mk states in total, as each element can be
either working or failed.

An example of a subsystem with three elements (two
identical virtual component instances and one server) is the
subsystem in Zone 1. The two virtual functions are in parallel
to provide redundancy. If one virtual component fails, the other
keeps the subsystem’s virtual part alive. The server and the
virtual functions are in series. The whole subsystem fails if
the only server or the parallel virtual part fails.

In this subsystem, each component is either in the state
“Working” or “Failed”. TABLE I gives the entire eight subsys-
tem states. The reliability of a repairable series-parallel system
can not directly be solved using tools like the Reliability Bloc



Diagram. The state space models are preferred. We build a
Markov chain [7] with this list of possible states. The possible
transition paths are shown in the figure of Continuous-Time
Markov Chains (CTMC) in Fig. 2. λ and µ represent the
element failure and repair rate respectively. With the help
of the transition rate matrix of the CTMC, the stationary
distribution of the CTMC, π can be obtained. We can then
deduce the subsystem’s availability.

TABLE I
STATES OF THE SUBSYSTEM CONTAINING TWO VIRTUAL COMPONENTS

AND ONE SERVER

Chain Component state System
State Virtual 1 Virtual 2 Server state

1 (1,1,1) Working Working Working Working
2 (0,1,1) Failed Working Working Working
3 (1,0,1) Working Failed Working Working
4 (1,1,0) Working Working Failed Failed
5 (0,0,1) Failed Failed Working Failed
6 (1,0,0) Working Failed Failed Failed
7 (0,1,0) Failed Working Failed Failed
8 (0,0,0) Failed Failed Failed Failed

The set of chain states CS ∈ {1, 2, 3, 4, 5, 6, 7, 8} cor-
responds to the combination of component states in the
subsystem. Simulation results show that the subsystem stays
short at a transient state and moves fast to a steady state.
A detailed example will be given in Section V-A. Supposing
p(i, t), i ∈ {1, 2, 3, 4, 5, 6, 7, 8} represents the probability of
the subsystem being at state i at time t. In steady-state SS,
the probability of the subsystem at states {1, 2, 3} is p(SS =
“Working”) = limt→+∞ p({1, 2, 3}, t). This distribution gives
us a rapid answer to compute subsystem availability, which is
equivalent to the sum of the first three items of π.
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Fig. 2. Subsystem represented by a Continuous-Time Markov Chain.

The stationary distribution of the subsystem states π =
{p1∞, p2∞, ..., p8∞} can be directly computed from the tran-
sition matrix of the CTMC. The availability of the series-
parallel subsystem by adding the stationary distribution of all
“Working” states is:

Asubnet =
∑

i=1,2,3

pi∞ (3)

However, it could be more complicated when computing
the subsystem’s reliability. Instead of looking at all changes
of states, we consider two Discrete-Time Markov processes:
the failure process and the repair process.

For the failure process, we consider the transitions inside
“Working” states and from “Working” states to “Failure”
states. This process starts from the subsystem’s recovery and
ends with the state changed to CS ∈ {4, 5, 6, 7}, represented
by recurrent states, as shown in Fig. 3. The transition proba-
bility of this Discrete-Time Markov Chain is deduced from the
CTMC. It shows how the subsystem definitively changes from
one state to another. Each transition corresponds to a state-
changing event. For example, the state-changing probability
from state 1 to state 2 in Fig. 3 is the probability of moving to
state 2 after the first state-changing event from state 1. We use
variables τ1, τ2, τ3 to represent the failure time of component
1, 2 and 3. The state-changing probability from state 1 to state
2 is Prob{min(τ1, τ2, τ3) = τ1} = λ1

λ1+λ2+λ3 .
We describe this Markov Chain of failure process by a

stochastic transition matrix PF . The initial state is the state of
the very moment that the subsystem is repaired to “Working”
state. The chain has a final state as the failure process always
ends with the connection becoming unavailable. That is the
state of the very moment that the subsystem for the first time
goes into “Failure” state. Since state 8 is not a direct “Fail-
ure” state and is only reachable from another “Failure” state
CS ∈ {4, 5, 6, 7}, state 8 is not enaged during this process.
As a result, we define the process initial state distribution π0

F

and final state distribution π∞
F . We get the following relations:

π0
F = [p0F1, p

0
F2, p

0
F3, p

0
F4, p

0
F5, p

0
F6, p

0
F7, p

0
F8] (4)

π∞
F = [p∞F1, p

∞
F2, p

∞
F3, p

0
F4, p

∞
F5, p

∞
F6, p

∞
F7, p

∞
F8] (5)

lim
k→+∞

π0
F × PF

k = π∞
F (6)

where:∑8
i=1 p

0
Fi = 1, and p0Fi = 0 for i ∈ {4, 5, 6, 7, 8}∑8

i=1 p
∞
Fi = 1, and p∞Fi = 0 for i ∈ {1, 2, 3, 8}

For the repair process, we consider the opposite. All start
from “Failure” states CS ∈ {4, 5, 6, 7}. This process ends by
reaching the states CS ∈ {1, 2, 3}, represented by recurrent
states, as shown in Fig. 4. The transition probability is also
deduced from the CTMC of the subsystem.

We describe this Markov Chain by a transition matrix PR.
The initial state is the state of the very moment that the
subsystem failed to “Failure” state. The final state is the state
of the very moment that the subsystem, for the first time, goes
into “Working” states. Since state 8 is only reachable from
another “Failure” state CS ∈ {4, 5, 6, 7}, the initial “Failure”
state can not be 8. As a result, we define the process initial
state π0

R and final state π∞
R .

We get the following relations:

π0
R = [p0R1, p

0
R2, p

0
R3, p

0
R4, p

0
R5, p

0
R6, p

0
R7, p

0
R8] (7)

π∞
R = [p∞R1, p

∞
R2, p

∞
R3, p

0
R4, p

∞
R5, p

∞
R6, p

∞
R7, p

∞
R8] (8)

lim
k→+∞

π0
R × P k

R = π∞
R (9)



where:∑8
i=1 p

0
Ri = 1, and p0Ri = 0 for i ∈ {1, 2, 3, 8}∑8

i=1 p
∞
Ri = 1, and p∞Ri = 0 for i ∈ {4, 5, 6, 7, 8}

When the subsystem is in steady state, we have:

π∞
F = π0

R (10)

π∞
R = π0

F (11)

By solving Equations 4 - 11, we obtain the initial and state
distribution of “Working” and “Failure” states.

Each transition step corresponds to a sojourn time in the
Discrete-Time Markov Chain in the CTMC. We define the
state sojourn time T s

i as the mean time between the subsystem
entering state i and leaving the state i in the CTMC. We
also define the mean state failure time TF

i as the mean time
between the subsystem entering “Working” state i and the
first time entering a “Failure” state. It is the sum of a set of
transition steps in the Discrete-Time Markov Chain for the
failure process. The MTTF we intend to compute is the mean
state failure time of all “Working” states.

MTTF =
∑

i∈{1,2,3}

p0Fi∑
j∈{1,2,3} p

0
Fj

· TF
i (12)

Note that for this case,
∑

j∈{1,2,3} p
0
Fj = 1.

The Markov Chain of the failure process in Fig. 3 gives the
following relations:

TF
1 = T s

1 +
λ1

λ1 + λ2 + λ3
· TF

2 +
λ2

λ1 + λ2 + λ3
· TF

3 (13)

TF
2 = T s

2 +
µ1

µ1 + λ2 + λ3
· TF

1 (14)

TF
3 = T s

3 +
µ2

λ1 + µ2 + λ3
· TF

1 (15)

For Equation 13, the average failure time TF
1 includes the

time spent in different steps. In the first step, the subsystem
leaves state 1 and spends time T s

1 , the CTMC sojourn time
in state 1. According to the state transition probabilities, from
state 1, the subsystem may change to state 2, 3, or 4. In the
next step, the process ends if the subsystem directly fails to
state 4. Otherwise, it will spend time TF

2 and TF
3 accordingly

for the rest of the failure process. The average failure time of
state 2 and 3 can be represented similarly in Equations 14, 15.
Finally, the MTTF is obtained by solving Equations 12 - 15.

The MTTR is the total transition time of a subsystem
being repaired during failure. We define the mean state repair
time TR

i as the average time between the subsystem entering
a specific “Failure” state i and the first time entering a
“Working” state. Therefore, the MTTR is the mean sojourn
time at all “Failure” states.

MTTR =
∑

i∈{4,5,6,7,8}

p0Ri∑
j∈{4,5,6,7,8} p

0
Rj

· TR
i (16)

Note that for this case,
∑

j∈{4,5,6,7,8} p
0
Rj = 1 and p0R8 = 0.

The Markov Chain of the repair process in Fig. 4 gives the
following relations:

TR
4 = T s

4 +
λ1

λ1 + λ2 + µ3
· TR

7 +
λ2

λ1 + λ2 + µ3
· TR

6 (17)

TR
5 = T s

5 +
λ3

µ1 + µ2 + λ3
· TR

8 (18)

TR
6 = T s

6 +
µ2

λ1 + µ2 + µ3
· TR

4 +
λ1

λ1 + µ2 + µ3
· TR

8 (19)

TR
7 = T s

7 +
µ1

µ1 + λ2 + µ3
· TR

4 +
λ2

µ1 + λ2 + µ3
· TR

8 (20)

TR
8 = T s

8 +
µ1

µ1 + µ2 + µ3
· TR

6 +
µ2

µ1 + µ2 + µ3
· TR

7

+
µ3

µ1 + µ2 + µ3
· TR

5

(21)

For Equation 17, the average repair time TR
4 includes the time

spent in different steps. In the first step, the subsystem leaves
state 4 and spends time T s

4 , the CTMC sojourn time in state
4. According to the state transition probabilities, from state
4, the subsystem may change to state 1, 6, or 7. In the next
step, the process ends if the subsystem is directly repaired to
state 1. Otherwise, it will spend time TF

6 and TF
7 accordingly

for the rest of the failure process. The average failure time of
states 5, 6, 7, and 8 can be represented similarly. Finally, the
MTTR is obtained by solving Equations 16 - 21.
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Fig. 3. Failure process represented by a Discrete-Time Markov Chain.

Although only a three-element system is demonstrated, the
proposed method can also be applied to any series-parallel
system. However, the state space will increase exponentially
with the number of considered components.

V. NUMERICAL EVALUATION

A. Example of a three-element subsystem

Now we consider a system with two virtual components,
#1 and #2, and one physical component, #3. The virtual
components are the applications that are often threatened by
operational failures. The physical component often refers to
a physical server where the applications are hosted, which is
less likely to fail. Repairing a virtual component takes only
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Fig. 4. Repair process represented by a Discrete-Time Markov Chain.

a few seconds by restarting the application. However, when a
physical server fails, it must be repaired manually. TABLE II
shows the failure and repair rates.

TABLE II
FAILURE AND REPAIR RATES OF COMPONENTS

Failure process
Component Symbol Rate [hour−1] MTTF
1 - virtual λ1 0.005 200 hours
2 - virtual λ2 0.005 200 hours

3 - physical λ3 0.0002 5000 hours
Repair process

Component Symbol Rate [hour−1] MTTR
1 - virtual µ1 360 10 seconds
2 - virtual µ2 360 10 seconds

3 - physical µ3 1 1 hour

After building the CTMC model and the transition rate
matrix, we calculate the transient availability of such system
as shown in Fig. 5. Initially, the brand new subsystem has
100% availability. After a few hours, it gradually drops to
the stationary availability around 99.98%. The steady state
of this CTMC also gives us a similar result as shown in
TABLE III. The availability of the subsystem is Asubsystem =
p1∞ + p2∞ + p3∞ = 99.9800%. This shows that, at a stationary
state, 99.9800% of the time, this subsystem is available to
provide application service to the end user.

TABLE III
STATIONARY STATE DISTRIBUTION OF THE SUBSYSTEM

State Probability State Probability
1 9.99772e−1 5 1.92857e−10
2 1.38857e−5 6 2.77715e−9
3 1.38857e−5 7 2.77715e−9
4 1.99954e−4 8 3.85715e−14

As for reliability, two Discrete-Time Markov Chains are
built for failure and repair processes. The subsystem reparation
processes are assumed to be parallel, i.e., each component can
fail or be repaired independently. Equations 4 - 11 give the
initial and final states of failure and repair processes as shown
in Table IV.

TABLE IV
INITIAL AND FINAL STATE DISTRIBUTION

Failure process Repair process
p0F1 9.99278e−1 p∞R1 9.99278e−1

p0F2 3.60850e−4 p∞R2 3.60850e−4

p0F3 3.60850e−4 p∞R3 3.60850e−4

p∞F4 9.99278e−1 p0R4 9.99278e−1

p∞F5 6.93943e−4 p0R5 6.93943e−4

p∞F6 1.38789e−5 p0R6 1.38789e−5

p∞F7 1.38789e−5 p0R7 1.38789e−5

Fig. 5. Transient availability of the subsystem.

Using Equations 12 - 21, we obtain the MTTF and MTTR of
the subsystem. MTTF of the subsystem is 4996.53 hours, and
MTTR is 0.999307 hours. The physical server failure primarily
dominates the subsystem failure time, and the repair time is
also dominated by physical server repair because, unlike the
virtual components, the physical component is not designed
with redundancy in the subsystem. That shows that a possible
way to improve the subsystem availability is to reduce physical
component failure and repair time.

B. From subsystem to the whole system

The considered railway is 100 km long. A train runs at a
constant speed, 200 km per hour. We assume the trains are
well-timed and always pass the zone at a fixed time. The
information of each zone is given in TABLE V.

It is imagined that along the railway line, all Radio Base
Stations with their connected components in Fig. 1 have the
same structure. Each of them forms a sub-network as the one
in Section V-A. In Zone 1, 3, 5, and 7, the subsystem is the
same as in Section V-A. While in Zone 2, 4, and 6, the sub-
systems are in the form of two sub-networks of Section V-A
working in parallel. The reliability and availability of these
subsystems are computed following the proposed method.

The average available network service time and average
number of network service failures when a train passes each



TABLE V
SUBSYSTEM CHARACTERISTICS OF EACH ZONE

Zone Expected passing time [min] Availability MTBF
1 3.6 99.980004% 4997.5 hours
2 6.6 99.999996% 1426.5 years
3 2.4 99.980004% 4997.5 hours
4 4.5 99.999996% 1426.5 years
5 3.3 99.980004% 4997.5 hours
6 6.0 99.999996% 1426.5 years
7 3.6 99.980004% 4997.5 hours

of the seven zones are given in TABLE VI. By summing up
the result in the subsystems, the total mean network service
available time of the 100 km route is 29.99742 minutes out of a
30-minute ride. The network service availability is 99.9914%.
The total mean number of generated failures is 4.30441e−5.
In other words, there will be one failure about every 11616
running hours, which is one failure every 16 months if the
train keeps running on this railroad section 24 hours per day.

TABLE VI
MEAN SERVICE AVAILABLE TIME AND MEAN SERVICE FAILURES

Zone Available time [min] Failures
1 3.5992801 1.20059e−5
2 6.5999997 8.80260e−9
3 2.3995201 8.00395e−6
4 4.4999998 6.00177e−9
5 3.2993401 1.10054e−5
6 5.9999998 8.00236e−9
7 3.5992801 1.20059e−5

According to the target requirements from [8], for some
rail communication services, for example, the train coupling,
the targeted communication service availability is 99.9999%.
The network we considered is not yet satisfying, and some
potential improvements can be made. The first improvement is
adding parallel virtual components to each unitary subsystem
connected to the Base Station. Instead of 2 virtual components,
the unitary subsystem has been upgraded to 3. The second
improvement could be adding a redundant parallel physical
server to the unitary subsystem. The service availability and
reliability comparison is showcased in Fig. 6. Adding parallel
virtual components has less impact on availability and relia-
bility since the virtual element is already redundant. Adding
a redundant physical component can vastly improve both
availability and reliability. On average, the train can connect
to network service for over 10 thousand months without
interruption. The availability improved to more than seven
nines, largely above the requirement.

VI. CONCLUSION

This paper discussed the method of evaluating the avail-
ability and reliability of 5G network communication services
applied to high-mobility users. The 5G for the railway is
larger and more complex than ordinary 5G networks. We
proposed decomposing the 5G communication network into
spatially and temporally independent subsystems to simplify

Fig. 6. Service availability and reliability comparison.

the availability and reliability assessment. We use a series-
parallel model to estimate the availability and reliability of
the subsystems. The overall railway communication service
availability and reliability are obtained by combining the
evaluation results from subsystems. A numerical example
showed that this method could assess a railway communication
service’s availability and reliability using the network structure
and components’ properties.

It should be noted that the example we used in the paper
is for demonstration. The actual 5G network contains lots of
network functions. Even after the regrouping, its subsystems
can be more complex than the three-element system. All
system states and transitions should be carefully studied for
the correct availability and reliability evaluation. Although
numerical simulation can be more practical than building
Markov Chains, the simulation will take an extremely long
time to get accurate results when there are rare events. Besides,
using our proposed method, it is easier to change several
parameters to compare the network service performance once
the Markov Chain is built.

For the next step, the collaboration with railway companies
is expected in order to refine and validate the model by con-
sidering railway geographical coordinates and train schedules,
adding more value to this work.
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