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Hodge conjecture for projective hypersurfaces

Johann Bouali

December 31, 2023

Abstract

We show that a Hodge class of a complex smooth projective hypersurface is an analytic logarithmic
De Rham class. On the other hand we show that for a complex smooth projective variety an analytic
logarithmic De Rham class of type (d,d) is the class of a codimension d algebraic cycle. We deduce
the Hodge conjecture for smooth projective hypersurfaces.
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1 Introduction

1.1 Complex analytic De Rham logarithmic classes

In [2], we introduced, for X an algebraic variety over a field, the notion of logarithmic De Rham cohomol-
ogy classes. For X a complex algebraic variety, we also introduce in this work the notion of logarithmic
analytic De Rham cohomology classes. In proposition 4 (section 4) we give an analytic analogue of [2]
theorem 2 (ii), that is if X is a smooth complex projective variety,

e a logarithmic analytic De Rham cohomology class of type (d,d) is the class of a codimension d
algebraic cycle.

o we have HIOLxan (H] ;1 (X", Qan ) = 0 for j,1 € Z such that 21 > j.

usu

Where OL xan : lean,log[_l] — Q%an is the injection of the sub-presheaf of logarithmic analytic {-forms
in the analytic de Rham complex and usu denote the usual complex topology. The proof of proposition 4
is motivic and similar to the proof of [2] theorem 2 : a logarithmic analytic class of bidegree (p, q), p, ¢ # 0,
p > q, q # dy is acyclic for the Zariski topology on each open subset U C X such that there exists an etale



map e: U — A(‘é” such that e : U — e(U) is finite etale and AfiCU\e(U) C Afé” is a divisor (proposition
2), this allows us to proceed by a finite induction using the crucial fact that the purity isomorphism for
De Rham cohomology preserve logarithmic analytic classes since the purity isomorphism is motivic (c.f.
[3], see proposition 1).

1.2 Hodge conjecture for smooth projective hypersurfaces

Let X = V(f) C ]P’g be a smooth projective hypersurface. Denote j : U := Pg\X — I%V the open
complementary subset. Let (Q22y ®o_y F*77j.Op)*" be the filtered De Rham complex of U. The cone
of 1y :

1y QéfN_’fn (log X)?=0[—p] — (Qpn ®o,x F*7P5.0p)™"

is locally acyclic for the complex topology, more precisely is acyclic on open balls (see e.g.[6]). As a
consequence, we show in proposition 3, using an open cover ]P’g = U™, B; by open balls ¢; : B; ~ D(0, 1)V
such that ¢;(B; N X) = 0x D(0,1)¥~1, that a Hodge class o € FN"PHN (U Q) is logarithmic, that is

o € HNOLUan (Hgsu(Uan, Qg‘;‘p,]og))'

We get that, if N =2p+ 1 and A € FPH?* (X" Q) is a Hodge class,

A = Resx pn(a) + m[H] € H*OL xan (H?

usu

(X, QB o)

where Resxpy : HY (U, C) = H?P(X",C) is the residu map, using the fact that since the residu
map is motivic (see definition 1), it preserves the logaritmic De Rham classes. Proposition 4 (ii) then
implies that A = [Z], Z € ZP(X), is the class of an algebraic cycle.

To our knowledge, Hodge’s conjecture for hypersurfaces was known for only a few cases : hyperplanes,
quadrics and Fermat’s hypersurfaces of degree < 21 (Shioda). Our new contribution which allowed us
to tackle the general case of hypersurfaces is the introduction of the notion of analytical logarithmic de
Rham classes on the one hand and the motivic purity isomorphism on the other hand.

I am grateful to Professor F. Mokrane for his help and support during the preparation of this work.

2 Preliminaries and Notations

2.1 Notations

Denote by Top the category of topological spaces and RTop the category of ringed spaces.

Denote by Cat the category of small categories and RCat the category of ringed topos.

For § € Cat and X € S, we denote S/ X € Cat the category whose objects are Y/X := (Y, f) with
Y eSand f:Y — X is a morphism in S, and whose morphisms Hom((Y”’, f), (Y, f)) consists of
¢g:Y" =Y in S such that fog=f'.

For (S,0g) € RCat a ringed topos, we denote by

— PSh(S) the category of presheaves of Og modules on S and PSho, (S) the category of presheaves
of Og modules on 8, whose objects are PSho (S)° := {(M,m), M € PSh(S),m : M @ Og — M},
together with the forgetful functor o : PSh(S) — PSho,(S),

— C(S) = C(PSh(S)) and Cop,(S) = C(PShp.(S)) the big abelian category of complexes of
presheaves of Og modules on S,

= Cog2)fi(S) := C(2)7a(PShos(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered
complexes of presheaves of Og modules on S such that the filtration is biregular and PSho (2)7i(S) :=
(PShos (S), F, W).



Let (S, Og) € RCat a ringed topos with topology 7. For F' € Co(S), we denote by k : FF — E,(F)
the canonical flasque resolution in Co4(S) (see [1]). In particular for X € S, H*(X, E.(F)) =
H* (X, F).

For f : 8’ — S a morphism with S,8’ € RCat, endowed with topology 7 and 7’ respectively, we
denote for F' € Cp4(S) and each j € Z,

— f = HIT(S, koad(f*, £.)(F)) : Hi(S, F) — HI(S', f*F),
— f*i= HIT(S, ko ad(f*med, £,)(F)) : HI(S, F) — HI(S', fmolF),

the canonical maps.

Form: A — B, A,B € C(A), A an additive category, we denote ¢(A) : Cone(m : A — B) — A[l]
and ¢(B) : B — Cone(m : A — B) the canonical maps.

For X € Top and Z C X a closed subset, denoting j : X\Z < X the open complementary, we will
consider
F\Z/ZX = COHe(ad(j!,j*)(Zx) Zj!j*ZX — Zx) € C(X)

and denote for short vy := Y (Zx) := ¢(Zx) : Zx — I'},Zx the canonical map in C(X).

Denote by Sch C RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). We denote by PSch C Sch the full subcategory of proper schemes. For a field k, we
consider Sch /k := Sch / Speck the category of schemes over Spec k. The objects are X := (X, ax)
with X € Sch and ax : X — Speck a morphism and the morphisms are the morphisms of schemes
f: X" — X such that foax =ax. We then denote by

— Var(k) = Sch’* /k  Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

— PVar(k) c QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) C SmVar(k) C Var(k), PSmVar(k) := PVar(k) N SmVar(k), the full subcategories
consisting of smooth varieties and smooth projective varieties respectively.

Denote by AnSp(C) C RTop the subcategory of analytic spaces over C, and by AnSm(C) C AnSp(C)
the full subcategory of smooth analytic spaces (i.e. complex analytic manifold).

For X € Top and X = U, X; an open cover, we denote X, € Fun(A, Top) the associated simplicial
space, with for J C I, jrj: X1 :=MNier X; — Xy := N;csX; the open embedding.

For X € AnSm(C) and X = U;e;X; an open cover, we denote X, € Fun(A, AnSm(C)) the associ-
ated simplicial complex manifold, with for J C I, jr; : X1 := Nijer X; — X := NiegX; the open
embedding.

Let (X,0x) € RTop. We consider its De Rham complex Q% := DR(X)(Ox).

— Let X € Sch. Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z its
De Rham cohomology H% (X)) := HY (X, Q%).

— Let X € Var(k). Considering its De Rham complex Q% := Q%) = DR(X/k)(Ox), we have
for j € Z its De Rham cohomology HY, ,(X) := H’(X,Q%). The differentials of Q% := Q% /i
are by definition k-linear, thus H} (X)) := HY (X, Q%) has a structure of a k vector space.

— Let X € AnSp(C). Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z

its De Rham cohomology HY (X)) := HI (X, Q%).



e For X € AnSp(C), we denote o(X) : Cx — Q% the embedding in C(X). For X € AnSm(C),
a(X) : Cx — Q% is an equivalence usu local by Poincare lemma.

e We denote I" := [0,1]" € Diff(R) (with boundary). For X € Top and R a ring, we consider its
singular cochain complex

* o (X, R) := (ZHome, (I*, X)¥) ® R

sing

and for [ € Z its singular cohomology H. (X, R) := H"C%_.(X,R). For f: X’ — X a continuous

sing sing
map with X, X’ € Top, we have the canonical map of complexes

ffCLL (X, R) = Ch . (X,R),0— ffo:=(y—a(fory)).

sing sing
In particular, we get by functoriality the complex

C;(,Rsing € CR(X)v (U - X) = :ing(Uv R)

We recall that

— For X € Top locally contractible, e.g. X € CW, and R a ring, the inclusion in Cr(X)
cx @ Bx — Cx, Rsing 1S by definition an equivalence top local and that we get by the small

chain theorem, for all I € Z, an isomorphism H'cx : H'(X, Rx) = Hsling(X, R).
— For X € Diff(R), the restriction map
rx : ZHompigr) (I", X)V = CLo (X, R), w = w : (¢ — w(¢))
is a quasi-isomorphism by Whitney approximation theorem.
e We will consider the morphism of site given by the analytification functor
An: AnSp(C) — Var(C), X + An(X):= X" (f: X' — X)— An(f) := fo".
For X € Var(C), we denote by

any = Anjxe = xamet o X any (U — X) := U™,

its restriction to the small etale site ox (X ) C Var(C), where ox (U — X) = U, in particular we
have the following commutative diagram

AnSp(C) 22~ Var(C) ,

\LOXan \LOX

X anet anx xet

where oxan (U < X%) = U. We get the morphism in RTop anx := anxjocx) : X" — X,

0:0(X) C X¢ being the embedding of the Zariski open subsets of X.

2.2 Complex integral periods

Let k be a field of characteristic zero and X € SmVar(k) be a smooth variety. Let X = Uj_;X; be an
open affine cover. For each embedding o : k — C, we have the evaluation period embedding map which
is the morphism of bi-complexes

ev(X)s : I'(X,,0%,) — ZHomDiH(T,XET’.)V ® C,

wy € D(X7, Q, ) = (ev(X);(wh) : ¢ € ZHompia(I', X&Y)¥ ® C > evp(wh)(6]) = /l o7 wy)
I



given by integration. By taking all the affine open cover (j; : X; — X) of X, we get for o : k — C, the
evaluation period embedding map

ev(X) = hﬂ ev(X)e: hﬂ I'(X,.,Q%,) = hﬂ ZHomDiH(R)(H',X&i)V ®C

It induces in cohomology, for j € Z, the evaluation period map

Hiev(X) = Hiev(X)s: Hpp(X) = HIT(X.,Q%,) — H,

sing

(Xgn, ) = H‘j (HomDiﬁ'(]R) (]I., ngl.)v & (C)

which does NOT depend on the choice of the affine open cover by acyclicity of quasi-coherent sheaves on
affine noetherian schemes for the left hand side and from Mayer-Vietoris quasi-isomorphism for singular
cohomology of topological spaces and Whitney approximation theorem for differential manifolds for the
right hand side.
Let X € SmVar(k). Then,
H*ev(Xc) = H*RT(X&", (X)) o T(XE", ELar(Qany))) : Hpp(Xc) = H

sing

(Xg", C)

is the canonical isomorphism induced by the analytical functor and the quasi-isomorphism «(X) :
Cxan <> Q%an, which gives the periods elements H*ev(X)(Hpp(X)) C HE, (XE", C).

sing

2.3 Algebraic cycles and motives

For X € Sch noetherian irreducible and d € N, we denote by Z¢(X) the group of algebraic cycles of
codimension d, which is the free abelian group generated by irreducible closed subsets of codimension d.
For X, X' € Sch noetherian, with X" irreducible, we denote by Z/5/X' (X' x X) c Z4,., (X' xX) which
consist of algebraic cycles a = ), nya; € Zq,, (X' x X) such that, denoting supp(a) = Usa; € X' x X
its support and p’ : X’ x X — X'’ the projection, pi supp(a) supp(a) — X’ is finite surjective.
Let k be a field. We denote by Cor SmVar(k) the category whose objects are {X € SmVar(k)} and

Homg,, SmVar(k) (X/v X) = ZfS/XI(X/ x X)

(see [3] for the composition law). We denote by Tr : Cor SmVar(k) — SmVar(k) the morphism of site
given by the embedding Tr : SmVar(k) < Cor SmVar(k). Let F' € PSh(SmVar(k)), we say that F admits
transfers if F' = Tr, F' with F' € PSh(Cor SmVar(k)).

Let k be a field. We recall that DA(k) := Hoa: (C(SmVar(k))) is the derived category of mixed
motives.

We have (see e.g. [1]) the Hodge realization functor

FHa9 . DA(C) - D(MHS), M — FHA9 (M) .= =Y (FFPR(M), Bti* M, a(M)),

where D(MHS) < Da7iy(C) X1 Dy (Q) is the derived category of mixed Hodge structures.
For X € Var(k) and Z C X a closed subset, denoting j : X\ Z < X the open complementary, we will

consider
I'}Zx := Cone(ad(jy, j*)(Zx) : jyj*Zx — Zx) € C(Var(k)*™/X)

and denote for short
vy =95 (Zx):=c(Zx):Zx — TyZx

the canonical map in C(Var(k)*™/X). For X € Var(k) and Z C X a closed subset, denoting ax : X —
Spec k the structural map, we have then the motive of X with support in Z defined as

My(X) = axiIya'xZ € DA(k).
If X € SmVar(k), we will also consider

axyl'yZx = Cone(axy o ad(jy, j°)(Zx) : Z(U) — Z(X)) =: Z(X, X\ Z) € C(SmVar(k)),



and denote for short
vy = axyyy(Zx) = c(Z(X)) : Z(X) — Z(X, X\Z)

the map in C'(SmVar(k)). Then for X € SmVar(k) and Z C X a closed subset
Mz(X) = axiTya'vZ = ax;TyZyx = Z(X, X\Z) € DA(k).

e Let (X,Z) € Sch? with X € Sch a noetherian scheme and Z C X a closed subset. We have the
deformation (DzX,AL) — A, (DzX,AL) € Sch® of (X, Z) by the normal cone Cyzix = Z, ie.
such that

(DzX,AY)s = (X,2), s € ANO, (DzX,A)o = (Cz/x,Z).
We denote by i1 : (X,Z) — (DzX,A}) and ig : (Cz/x,Z) — (DzX,A}) the closed embeddings
in Sch?.

e Let k be a field of characteristic zero. Let X € SmVar(k). For Z C X a closed subset of pure

codimension ¢, consider a desingularisation € : Z — Z of Z and denote n : Z 5 Z ¢ X. We have
then the morphism in DA(k)

Z(€)

ZE M(Z)(0)12d D M(Z)(€)[2d]

GZ,X . M(X)
where D : HomDA(k)(MC(Z),MC(X)) = HomDA(k)(M(X),M(Z)(c)[2c]) is the duality isomor-
phism from the six functors formalism (moving lemma of Suzlin and Voevodsky) and Z(n) :=
abd(m,n!)(a!XZ)7~ noting that ny = n. since n is proper and that a'y = a’[dx] and a!Z = a*ZLdZ]
since X, resp. Z, are smooth (considering the connected components, we may assume X and Z of
pure dimension).

We recall the following facts (see [3] and [1]):

Proposition 1. Let k be a field a characteristic zero. Let X € SmVar(k) and i : Z C X a smooth
subvariety of pure codimension d. Then Cz/x = Nz/x — Z is a vector bundle of rank d. The closed

embeddings i1 : (X, Z) < (DzX,A}) and i : (Cz/x,Z) — (DzX,AL) in SmVar®(k) induces isomor-
phisms of motives Z(i1) : Mz(X) = My, (DzX) and Z(io) : Mz(Nz;x) = My, (DzX) in DA(k). We
get the excision isomorphism in DA (k)

Pz.x :=Z(io) " 0 Z(i1) : Mz(X) = Mz(Nz/x).

We have
Th(Nz/x)o Pzx o v3(Zx) = Gz x = D(Z(i)) : M(X) — M(Z)(d)[2d).
Proof. See [3]. O

Definition 1. Let k be a field a characteristic zero. Let X € SmVar(k) and i : Z C X a smooth
subvariety of pure codimension d. We consider using proposition 1 the canonical map in DA(k)

Py oTh(Nz/x)™} e(Z(X\Z))

Resz x : M(Z)(d)][—2d]

Mz(X) M(X\Z)[1].
We recall that ¢(Z(X\Z)) : Z(X, X\Z) — Z(X\Z)[1] is the canonical map in C(SmVar(k)).

e Recall that we say that F' € PSh(SmVar(k)) is Al invariant if for all X € SmVar(k), p* := F(p) :
F(X) — F(X x A') is an isomorphism, where p : X x Al — X is the projection.

e Similarly, we say that F' € PSh(AnSm(C)) is A! invariant if for all X € AnSm(C), p* := F(p) :
F(X) — F(X x A') is an isomorphism, where p : X x Al — X is the projection.



2.4 The logaritmic De Rham complexes

We recall from [2] the following notion :
e For k a field and X € Var(k), we consider the embedding in C'(X)
OLX : Q;(,log — QS( = Q;{/k}’

such that, for X? C X an open subset and w € Q% (X?), w € Q% 1, (X°) if and only if there exists
(ni)i<i<s € Z and (fi o )1<i<s,1<k<p € T'(X?,Ox)* such that

128,13 R>

w = Z nidfs.ar [ fian N Ndfia, ] fisa, € Q5% (X°),

1<i<s
and for p = 0, Q%J% :=Z. Let k be a field. We get an embedding in C(Var(k))

OL : QY 10 = Q7 given by, for X € Var(k),
OL(X):=0Lx : ;k,log(X) =X, 0% 10g) = T'(X,0%) = Q;k(X)
and its restriction to SmVar(k) C Var(k).

e For X € AnSp(C), we consider the embedding in C(X)
OLx : Q% 10g = %,

such that, for X? C X an open subset and w € Q% (X°), w € Q% | . (X°) if and only if there exists
(ni)lgigs € Z and (fi,ak)lgigs,lgkgp S F(XO, Ox)* such that
w=Y" nidfia,/fion N Adfiay ] fio, € (X0,
1<i<s

and for p = 0, Q% ., := Z. We get an embedding in C(AnSp(C))

OL™™ - Qui™ — Q%" given by, for X € AnSp(C),

OLan(X) = OLX : Q°7an(X) = F(X, Q?X,log) (SN I‘(X7 Q;{) = Q.’an(X)

log

and its restriction to AnSm(C) C AnSp(C).

Definition 2. We consider the (non full) subcategory AnSm(C)P" C AnSp(C) whose set of objects
consists of X x Abe" X € AnSm(C) and

Hom g psm(cyer (X x AD" Y x A*™) := Homansp(c) (X, Y) ® Iytan.
We have then the morphism of sites
e m:AnSm(C) — AnSm(C)?P", 7(X x Aba) .= X, n(f® 1) :=f,
e p: AnSm(C)P" — AnSm(C), p(X) := X x Aben p(f) = f® I,
in particular pom = 1. We have then, for each p € Z, a canonical splitting in PSh(AnSm(C)P")
QPan9=0 — g L OOP~HA" — 5 4, 0QP LI @ QP

with o0
QPe(X x Al) = {Z anz"w(z) +w' Adz,a, € C,w € QP(X),w € QPH(X x Al)}
n=1

C Qus@QP~ 1 (X x Al



where z is the coordinate of A', a,r™ — 0 when n — oo for all r € RY, and x € X. We have the
factorization in PSh(AnSm(C))

ad(m) := ad(m*, 7,) (=) : TP S ¥ Ay 0P ™1 1= T, 1,5, OO 197
L0240, o d () (rr Qpoe) 249 g a0p—ban,
and we denote again by abuse
70 = ad(m) (T Q) C s, OQP 1 C Q%™
We will consider, for each p € Z, the exact sequence in PSh(AnSm(C))

0 — Q" N (77 QPe) 5 Qg 4, Qg "= QR /(Qpg" N (77 QP9)) — 0.

Note that for X € AnSp(C) and Of € Qb(X) with f € O(X™), we have df = (9ef)/ef €

Qllc;g"(X o™y hence, since open balls form a basis of the complex topology on complex analytic manifold,

lan 1,an,0=0 __
ausu(Qlog X C) = Ayusu§? an — ausuaoan'

We have then the commutative diagram in C(AnSm(C))

Ql.‘;(gln N (W*Q.7e) OL%™ Q€ )
e.an S
o OLo" 9)
! q
Ql'(;gn,ne = Ql.(;(gln/(Ql.(;gn N (W*Qo,e) Lan_) Q'*an/(ﬂ-*Q%B)

whose columns are exact with e injective and q surjective, and of course all differentials of Ql'c;‘gm and of
Q%€ are trivial.

Lemma 1. We have a splitting in C(AnSm(C))

e.an e.an *()e, e.an,ne
ausuQIOg = Qysu (Qlog N (7T Q e)) © ausuglog

Proof. We have
TON(X) = lim Q(m)(QV(Y x A1) C QM (X),
m: X —Y xAl

where we denote again by abuse
7Q° = ad(m) (7" Q°) C Q%"

Now,
eifgom: X Y x A' 4 Al is non constant, we can factor

m:(nxl)om’:XgY’xAln—X%YxAl

with dimY” = dim X — 1 and m/(X) C Y’ x Al an open subset, and
Q(m’) : Q2 (Y x AY) — Q% (X)

so that we still have a splitting in the image of Q(m’)



eifgom: X Y x Al 4 Al is constant with value ¢,
Qm)(7T* Q) (Y x A =0
since c¢*dz = 0, where ¢ : Y x {c} < Y x Al is the closed embedding.

We then define
(7 Q%)™ C Qs (77 Q°)"(X) = hg Q(m)(Q**™(Y x Al)) C Q% (X),

m: X —Y x D! gomNC

where nc means non constant. Now consider a splitting a complex vector spaces
Ql,@:O(Dl) _ 91,8:0(A1> ® Ql,na(Dl).

We consider similarly the (non full) subcategory AnSm(C)?”" c AnSp(C) whose set of objects consists of
X x D', X € AnSm(C) and

Homapsm(cyer (X x D', Y x D') := Homapsp(c)(X,Y) @ Ipr.
We have then similarly the morphism of sites
e ' : AnSm(C) — AnSm(C)?"”", #/(X x DY) := X, 7'(f @ I) := f,
e o/ : AnSm(C)?" — AnSm(C), p/(X) := X x D', p/(f) == f @1,
in particular p’ o 7’ = I. We define similarly

(T Q)" C 100, (7 FQ%)(X) = limy Q(m)(Q**(Y x DY) C 7 *Q°*(X).

m:X—Y x D! gomNC

We have then

Qean — ausu(ﬂ_'*ﬂo)nc _ ausu(W*Q-)nc D ausuﬂ_'*ﬂo,nc,na,
W/*Q.’na(X) = ]& Q(m)(Q._l’an(Y) % Ql,na(Dl)) cC Qo,an(X)

m:X—Y x D! gomNC

and thus

ausqu.égn = ausu(Ql.ng N (W/*Q.)nc) = Qusu (Ql.c;gn N (7"Q%)™) © ausu (Ql.z;(gln N W/*Q.)ncma)

where the first equalities follows from the fact for an open ball D4 C X, we have the morphism
my : D — D=1 x D! which is the canonical isomorphism. Hence,

e.an __ e.an *()®,€e ~e,an,ne
Ausug " = ausu(Qlog N (r*Q%)) @ Qg

with

™" (X)) 1= ausu( Qe N (770 Q%)™) @ e (g N7 *QV""),

We have the following :

Lemma 2. (i0) The sheaves O, € PSh(AnSm(C)) and Qllogn € PSh(AnSm(C)) admit transfers com-
patible with transfers on Q19" € PSh(AnSm(C)).

(i) For each | € Z, the sheaf Q{;ag" € PSh(AnSm(C)) admits transfers compatible with transfers on

Qban € PSh(AnSm(C)), that is Q" € C(Cor AnSm(C)) and the inclusion OL : Qfg;"[—l] — Qeon
in C(AnSm(C)) is compatible with transfers.



(i1) For each |l € Z, the presheaf Qfg;"’ne € PSh(AnSm(C)) given in definition 2 is Al invariant.
(i1)’ For eachl € Z, the sheaf ausuﬂffg"’"e € PSh(AnSm(C)) given in definition 2 is A' invariant, where
aysy @ PSh(AnSp(C)) — Shv(AnSp(C)) is the sheaftification functor.

Proof. (10):Let W C X’ x X with X, X’ € AnSm(C), X’ connected, and px/ : W C X' x X — X' finite
surjective over X’. Then M (px) : M(X') — M(W) is a finite, where for Y € AnSp(C) irreducible,
M(Y) := Frac(O(Y)) denote the field of meromorphic function. Since O(X') C M(X') is integrally
closed, the trace map Try,x: : M(W) — M(X') sends O(W) to O(X’), and the norm map Ny, x :
MW)* = M(X")* sends O(W)* to O(X')*.

The sheaf O, € PSh(AnSm(C)) admits transfers : for W € X’ x X with X, X’ € AnSm(C) and
W finite surjective over X’ and f € O(X)*, W*f := Ny x:(pkx f) where px : W — X' x X — X
is the projection and Ny /x: : M(W)* — M(X')* is the norm map. This gives transfers on Qllo’g" €
PSh(AnSm(C)) compatible with transfers on Q%" € PSh(AnSm(C)) : for W C X’ x X with X, X’ €
AnSm(C) and W finite surjective over X’ and f € O(X)*,

Wrdf/f = dW”" f/W*f = Trw;x (px (df / f)),

where we recall px : W — X' x X — X is the projection and Try,x: : O(W) — O(X’) is the trace

map. Note that d(fg)/fg=df/f +dg/g.
(i): By (i0), we get transfers on

Db, @04 € PSh(AnSm(C))

log

since ®(lQ)Q]1(;g" = H%@év@ﬁé") and @L 0" = HO(@5'Q%%"). This induces transfers on
-~ Drocii,..., Ary:=(w@w —wRww’)
/\(l@Qllc;gn = coker(@bc[1 vvvvv I ®<lQ 1 Qllovgn IpC1,.. 1| Ay ®(1@Qllo,gn) € PSh(AnSm(C)).
and

Brycq,... 1A =(wduw' —wWeW")

Ao = coker(D ... ®F, " Q8" ) ®L Q" € PSh(AnSm(C)).

(ii): Let X € AnSm(C) and, denoting p : X x Al — X the projection,

Q(p) : QLX) = QPO (X x AL,

log log

Since €2(p) is split injective, it is enough to show that Q(p) is surjective. We have

Qp,an,ne(X % Al) = Q;D,an(X % Al)/Qp’e(X X Al)

log log

The result then follows from the fact that for X € AnSp(C), QP (X xAl) = QP(X)®(QP~1(X)@Q! (ALen))
and that Ab9" is simply connected. Indeed, for w = w' + w” A dz € QP(X x AN)?=0,

t=z t=z t=z
w(z, z) = 8(/ w’(x, t)dt) + w(z,0) = 8(/ w’(z, t)dt)e + (9(/ w”(z, t)dt)(z,0) + w'(x,0)
t=0 =0 =0
and O( :::02 w’(x,t)dt). € QP¢(X x Al)
(ii): Follows from (ii) since open ball form a basis of the complex topology on complex analytic manifolds.

O

We have the following result :

Proposition 2. Consider, for each p € Z, the presheaf Qfo’gn’"e € PSh(AnSm(C)) given in definition 2.

(i) Let D € AnSm(C) be an open ball. Then, for each p,q € Z, ¢ #0, HY,, (D, ..) = 0.

\log
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(i)” Let D € AnSm(C) be an open ball. Then, for each p,q € Z, q # 0, Hi,, (D, Qiloo"gm’ne) = 0.

(ii) Let U € SmVar(C) such that there exists an etale map e : U — A(‘é” such that e : U — e(U) is finite

etale and AV \e(U) C AL is a divisor. Then, for eachp € Z, p # 0, p # dy, HE,, (U™, Qpe™"e) =
0.

(i)’ Let U € SmVar(C) such that there exists an etale map e : U — Afé” such that e : U — e(U) is

finite etale and AflCU\e(U) C AflCU is a diwvisor. Then, for each p,q € Z, p,q # 0, p > q, q # dy,
HI,, (U, Qramne) — ),
usu g
Proof. (i):Let B = D(0,1)Y € AnSm(C) be an open ball. Let o € Hi (B, 0.), 0 € Z, g # 0.
Consider a sequence of sub-balls

ln: By :=D(0,7,)Y — B:=D(0,1)",n € N, with r, — 0 when n — oo.

Since (B, := D(0,7,))nen form a basis of neighborhood of 0 € B and since QF, log 18 & single presheaf,
there exists n := n, € N (depending on «) such that
Lhao=0¢€ H,, (Bn, Qp 0)-

usu

But it follows immediately from the definition of the the presheaf Q%,log considering the isomorphism
bn i By = B, ¢p(2) =1,z
so that (¢,,) "t ol, =r,I, that
Lo = Uo7 dna = radha € iy (Buy Q).

Hence ¢;a = 0. Since ¢,, is an isomorphism, we get a = 0.
(i):Consider the splitting

ean __ e.an x()e,e e.an,ne
a’usquog = Qusu (Qlog n (ﬂ- Q )) @ a’U«S’U«Qlog

given in lemma 1. It gives in particular a canonical isomorphism

H4

usu

(D, SY,,) = Hij

log usuU

(D, QP N7 QPe) @ HI

log usu

(D, Qﬁ;gn,ne> )

By (i) we have
HY, (D,Q ) =0=HY

usu log usu

(D, QP N7 QPe) @ HI

log usu

(D, Qp5g"™").

Hence H{,, (D, Qp2""™) = 0. This proves (i)’. One can also prove (i)’ directly using the same arguments
as in the proof of (i).

(ii): We proceed by induction on the dimension of U. Let U € SmVar(C) such that there exists an etale
map e : U — A(‘é”. such that e : U — ¢(U) is finite etale and AfiCU\e(U) C A(‘é” is a divisor Denote

D := A%’ \e(U) the complementary closed subset. Since HY,, (AflCU,Qfo’g"’"e) =0 for all p,q € Z,

(G(U), Qp,an,ne) :_> Hq+1 (AgU7Qp,an,ne)

Hunsu (Qp,an,ne)(c(Z(e(U)))) =0:H} log usu,D log

log usu

is an isomorphism for all p,q € Z. By (i),

Hunsu (Qp,an,ne) S PSh(AnSm((C))

log

is Al invariant for each p, ¢ € Z. Indeed, for X € AnSm(C) connected, take an open cover X = U;erD;
by open balls D; ~ D(0,1)%*, and let Dy € Fun(A, AnSm(C)) be the associated simplicial complex

11



manifold, with for J C I, j;5: Dy := NijerD; — Dy := N;esD; the open embedding. Then we get the
isomorphism

Pyt H1E, e (0O (X x AY) = HI, (X x AL QPonmey =

log usu log

HQ(D. % A17Q;D,an,ne) ; qu'\(D. X Al7ausugp,an,ne)

log log
=5 HD (Do, ausuQ08™ ™) S HY(Dy, Q™) S HI (X, Q08™™) =2 HO B,y (Q2™")(X)

log log

where @, is the sheafification functor, px : X x A’ — X is the projection, and the second and the
fourth map is the isomorphism given by (i)’, and the middle map is an isomorphism by lemma 2(ii)’.
Take a desingularization of the pair € = ¢; : (Afé”,E) — (AflCU,D), so that £ = U;_, E; C Afé” is a normal

crossing divisor and € : AéU\E = A(d:" \D. We thus get by proposition 1, for each p,q € Z, p,q # 0,

HI By (L") (P =) HIE o (A2, Q0™ ") 25 HILH(E; X Gy, QR27),

log Ei,AgU usu,E; log usu log

For p € Z, p # 0,dy, we get, using the induction hypothesis, by a finite decreasing induction Ei. C
Ez’JX—i-l? -+, By C F;, where
o E?:= E;\E;y C E; is an open subset such that therNe exists a finite etale map e; : EY — e;(E?) C
A1 with Adv—1\e;(E?) € A1 a divisor, € : (E;, Eig) — (Ei, Ej) is a desingularization,

o Y = Nik\Eik_H C E’ik is an open subset such that there exists a finite etale map ey, : Ej —
eir(E,) C A% —F with AdU—k\eik(Ez‘-’k) c A%v—Fk g divisor, € : (EX, Eikt1) = (Big, Eig41) is a
desingularization

since dy > p () =0 for p > dy,Y € AnSm(C)),

D p,an,ney __ p+1 dy p,an,ney __ p+1 /E; p,an,ne
Husu (G(U), Qlog ) - Husu,D(AC 7Qlog ) - Husu,E(A(C 7Qlog )
~ r —c( 1 c p,an,ney
— ®i:1H55u (Eicfl X va Qlog ) =0

since Pic(E;._1) = Pic(E;) = 0 by induction as €(E;) C A% and ek(EikH) C E;;, are hypersurfaces of
dimension at least two, and for ¥ € AnSm(C),

9 X = 1c ] ] 7 = aﬂ- 1m X @
HY (Y. QL% = Pic(Y), H. (Y, Q%) = gL (Y, 7*Qb¢n QL) ¢ HE

uUsU log usu log usu log usu

vl

where the second equality follows from lemma 1. We thus have, since M (U) ~ M (e(U)), for each p € Z,

p # Oa dU
2, (U, Q4 = 2, (e(U), 242) = 0.

log usu log

(ii):Follows from (ii). O

3 Hypersurface De Rham cohomology and its complex periods

We denote PV := PY := Proj(Clzo, - ,2n]). Let X = V(f) C PV be a smooth hypersurface. If
N — 1 = 2p is even, we consider the decompositions

HYZ'(X)=CIANX] @ Hp (X)), Hi N (X", Q) =CANX] & HI L (X, Q)

sSing smg,v
of vector spaces, where A C P is a linear subspace of codimension p. If N — 1 = 2p + 1 is even, we set
Hpo(X) = Hpp (X)) Hil (X", Q) := HG M (X", Q).

sing,v sing
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Let X = V(f) C P¥ be a smooth hypersurface. Denote j : U := PN\ X < PV the open embedding.
We consider the algebraic Hodge module

j*Hdg(OU;Fb) = ((j*OU,F),]*QUan,j*Oé(U)) € HM(]P)N)a

where F*j, Oy = Clxy, - - - :CN][ka] Recall for each p € Z,

FPHNR(U) == HN 2P (HN (PN, Q33 (log X)) = HN 2P HY (PY, Q2 ®0,, F*77j.00)

and
FPHN=Y(X) = HN 12PN H(X, Q7).

where
2P QP (log X) — Qpn (log X) |, 127+ Qpy ®o,n F* 7750 = Qpn @0,y §xOv = 827,

and (2P : Q;?p — Q% are the canonical embeddings. Then the map Resx p~ of definition 1 induces for
each p € Z, canonical isomorphisms

HNQ(Resxpn) : FPT HNp(U) = FPHN (X)), , HY Bti(Resx pn) « HY,, (U, Q) = HEH(X, Q)y.

sing

Lemma 3. Let X = V(f) C PV be a smooth hypersurface. Denote j : U := PN\ X < PV the open
embedding. Let B C PN, ¢ : B ~ D(0,1) be an open ball such that ¢(X N B) = {0} x D(0,1)V~1.
Then,

(i) Forq€Z, q#0, H, (B, (Qhx Gy F*7j.00)™) =0,

usu

(i) Forq€ Z, q+#0, H?

(B, Qg 2 (log X)7=0) = 0.
Proof. (i): Since B is Stein, we have for r,q € Z, ¢ # 0,
Hio (B, (Qpn @0,5 F'77j.00)*") = 0.

On the other hand the De Rham complex of (j.Op\ x, F') is acyclic (see e.g. [6] corollary 18.7)
(ii): Consider a sequence of sub-balls

ln: By :=D(0,7,)Y < B :=D(0,1)",n € N, with r, — 0 when n — ooc.

Since (By, := D(0,7y,))nen form a basis of neighborhood of 0 € B and since Qg{fm (log X)9=0 is a single
presheaf, there exists n := n, € N (depending on «) such that

lia=0€ H(B,, Q0 (log X)?=0).

But it follows immediately from the definition of the the presheaf Qg{gl (log X)9=0 considering the
isomorphism
bn: Bn = B, ¢p(2) =712

n

so that (¢,) "t ol, = r,1I, that
U= g pha = rp¢ha € HI(B,, Qpy L, (log X)?70).
Hence ¢} a = 0. Since ¢, is an isomorphism, we get a = 0. O

We have by the local acyclicity of the De Rham complex of (j.Op, F') a canonical map By :
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Definition 3. Let X = V(f) C PV be a smooth hypersurface. Denote j : U := PN\ X < PN the open
embedding. Consider the canonical embedding

1o+ Qi (log X)=0[—p] = (n @0, F*77ju0u)™"

Let PN:an = U | B; an open cover, with ¢; : B; ~ D(0,1)N open balls such that ¢;(X N B;) = {0} x
D(0,1)N=1. Denote, for I C [1,...,n], Iy : B = PY the open embeddings, with Br := Nie1B;. Since,
for each I C[1,...,n] and p € Z,

ljio « Qi b (log X)7=C[—p] = 15 (W @0,y F*7j.0p)™"

is an quasi-isomorphism (see e.g. [6] corollary 18.7), the spectral sequence of the filtration on the total
complex of a bi-complex gives, for each p € Z, a canonical isomorphism, where the first and last map are
isomorphism by lemma 3(i) and (ii) respectively,

By : FPHpr(U) := HY 2PHY

zar(PN?QI}’N ®OH;N F._pj*OU)
HY((17=9(l:))1<i<n)

HNZPHNT(B,, (Q8y ®0,, F*775.00)"")

HY ((17=Q(1:))1<i<n) "

= HYT(Be, Oy 2, (1o X)) HE (B, 00552, (log X)),

usu

given by, for w € T'(U, Q]{,YN), inductively by a p step induction where p is the order of the pole of w at X,

o taking for each 1 < i < n, [fw = Jw;; since Ow = 0 for dimensional reason and by exactness of
l;,k Lo,

o we then have for each 1 < 4,5 < n, considering wi;; := l;-*j (w1 — wij), wii; = Owsg; since
811}11']‘ = lz*] (811)11 — 8w1j) = l:} (lfw — l;w) =0

and by exactness of lj;ta,

e at the final p step, B(w) := wyr € HY (B, QIJPYN_,fn (log X)9=9), cardI = p.
By definition Ba(w) = (HP15) ™ (w).
Let X = V(f) C P¥ be a smooth hypersurface. Denote U := PN\ X. For [ € Z, we consider

e the sequence of embeddings in C(U*")

l l O/E/[_l] l 0=0 Lo [ o—p 2! .
OLY; : Q1o [~1] —%— Qb (log X)?=0[~1] % Qfx ®0,, F* 7.0y “— Qf,

e and the sequence of embeddings in C(U")

OLL an[-1] >

OLsen : Qbgan gl 1] O (log X)7=0[ 1] 22 (U ®0_, F*P5.00)™ = Q.

where
Lo+ U an (log X)?=0[=1] = (v ®0,, F*7j.0p)™"

is an equivalence usu local (see [6]).
The main result of this section is the following :

Proposition 3. Let X = V(f) C PV be a smooth projective hypersurface. Denote U := PN\ X. Let
w e FPH AN (U). Then the following assertions are equivalent

(i) ev(U)(w) € HY (U™, 2irQ),

sing
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(ii) Bo(w) € OLYyun (HE,, (U™, QNP ) (see definition 3),

(Uan,QN*ZD ))

(iii) w € OLY..(HE D log

usu

Proof. (i) implies (ii): Let PV:%" = U ; B; an open cover, with ¢; : B; ~ D(0,1)" open balls such that
$i(X N B;) = {0} x D(0,1)N~1. Denote, for I C [1,...,n], I; : B = PV the open embeddings, with
B :=NerB;. Then

Bo(w) = (wpy1,1) € HPT(Ba, 3 7, (log X)7=0).

We have, for each I C [1,...n], a decomposition

a _ _
Wpy11 = z_idZI Awy +wy € T'(By, QgN,fn (log X)?=0)

with w} € I'(By, Qg{f;l)azo and wf € I'(By, Qngfn)B:O. Consider the evaluation map
ev(U)e : T(B\ X", Qpnan) = Clig(B\ X", C),
which is a morphism of bi-complexes. On the other hand, we have the following canonical map

['(Be\ X% ,15) ['(Be\ X", Z2N—P)
_

BCy : HPT(B)\X", CYobd) HNT(BN\X", Cranift)

HY (1 =:Clan aise (li i<n) !
HNF(B-\XanaO[.Jan,diff) (H (1i=:Cgan air (Li)1i<n)

Hs']Xlg(Uan5 Q) = HNF(Uana O[.]a",diff)a
where HY (I¥) is an isomorphism by the acyclicity of C’éan)diﬂ € PSh(U*") for each j € Z, and

C(.]a",diﬂ' — C(‘]an)sing7 for V C Ua'n,, CJIH(V) — C2

sing

V)
is the canonical quasi-isomorphism in C(U%"). We then have the following commutative diagram

HNLZPHNF(PN, QI;’N ®O]PN F._pj*OU)

J{HW(!:—Q@M

HY 2P HNT(Ba, (U @0,y F*75.00)"") —2——> HPT(B,, Q2 2, (log X)?=0)

l/ev(U) \Lev(U):

H,(U™,C) = HND(U, Can ig ® C) 555 HPT(B\X ™", Cig ™7™ © C)

Since ev(U) is injective by the strictness of the Hodge filtration and since By is an isomorphism, ev(U)s
is injective and

(BC@ ® (C)/ = (BC(’? ® (C) P (logx)B:O)) :

an

lev(U)3 (HPT(Be, 20,

ev(U)s(HT (B, Qi b (log X)7=0)) — HJ,, (U™, C)

sing

is injective. For v; € C]S\i,rigp(BI\X‘m,Q)azo where py 0 ¢r(yr) C D(0,1)* is a loop around 0, we have by
the above diagram
ev(U)(w)(vr) = ev(U)(wp1,1)(7r) = ar.
Hence if ev(U)(w) € H,, (U™, 2imQ), then ar € Q, using the injectivity of (BCy ® C)'.
(ii) is equivalent to (iii): By definition By(w) = (HP1) ' (w). On the other hand by definition

N— N—
LZP OlLly O OLUanp = OLUanp-

(iii) implies (i): See [2] proposition 7. O

15



4 Complex analytic logarithmic de Rham classes
We recall (see section 2) the morphism of site given by the analytification functor

An : AnSm(C) — SmVar(C), X — An(X):= X", (f: X' — X) — An(f) := f*".
and for X € SmVar(C), the following commutative diagram

AnSm(C) _An_ SmVar(C) .

l/OXan lox
anx

Xan,et Xet

We have also the morphism of sites (see definition 2)
e 7: AnSm(C) — AnSm(C)P", m(X x AM*") = X, n(f @ 1) := f,
e p: AnSm(C)P" — AnSm(C), p(X) := X x Ab* p(f) = f® I,

in particular p o m = I. Consider the commutative diagram in C(AnSm(C))

e,an *()e,e *()e,e
Qe N (m*Q*°) oL 0 ,
| L
e.an e.an
Qlog oLen Qs
q

Ql.ogn ne Ql.o(gm/(Ql.(;gn n ( x()ee f O an/(ﬂ_*Qo e

whose columns are exact with e injective and ¢ surjective (see definition 2). We have the factorization in

C(AnSm(C))

ad(m) := ad(7*, m) (=) : Q¢ AN T Qs O 1 = T Ty 50, 0 17

(ad(m),0) ad(ﬂ')(ﬂ'*Q.’e) tad(m)

e—1,an
afusuaQ )

and we have denoted again by abuse
Q%€ i= ad(m) (7" Q%) C s, 0N~ C Q97

Let X € SmVar(C). Then, for k € Z, we have the commutative diagram

HE (X, Q0em 0 (- 00)) L ik | (X an, ad(r)(n* Qo))

uUSU log uUSU

H’“(@l lH’%e)

k an
Hk xan Qo,an) H"OL H%R(X) Hk (Xan,Qo,an)

usu( ) log USU

H’“(a)l lHk(Q)

k an
Hk xan Qo,an,ne) H"OL Hk (Xan7Qo,an/(ﬂ.*Qo,e))

usu( ) log USU
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whose columns are exact, and of course all differentials of Ql'o"gm and of 7*(2*¢ are trivial. Let Z C X a
closed subset. Then, for k € Z, we also have the commutative diagram

H*OoL*"™

HE,, (X0, Q™ 0 (r Q) T |, o (X0, ad(m) (770))

H’%e)l lme)

an e,an "k oL an e.an
Hﬁsu,Z(X ’ Qlog ) - HgR,Z(X) = HY, (X ) Qs )

usu

Hk(q)l lH’C(Q)

HE,, (X0, Q) —TOELHE (X0, Q0 (n0 )

% log usu,z
whose columns are exact.
Lemma 4. Let X € SmVar(C). For each k € Z, k # 0, we have HF _ (X" ad(7)(7*Q%¢)) = 0.

usu

Proof. We have the canonical splitting
HE

e (X, ad(m) (17 Q%)) = @pezHELP (X, ad(m) (mQP€))
Consider for each p € Z, the composition in C(AnSm(C))

ad(m)

ad(m) = ad(7™, m) (=) : w*(A'Zp"’e) ad(m)(m* (A'Zp’°’e) —>iad(7r) AZPe,

where the embedding
QpPe < (Q-Zp)e s A°2P-*e

in C(AnSm(C)?") is the Dolbeault resolution. We have, by Poincare lemma on open balls,

Hk (Xan,ad(ﬂ')(ﬂ'*Qp’e)) — HkF(Xan,ad(Tr)(Tr*A.Zp’.’e)),

usu

indeed, since open balls form a basis of the complex topology, there exists D? such that D' C D=1 x Al

We have

ad(m)(T" AZPS) (X =l AT(m)(ATZPU(Y x AL) C AP (X
m: X —Y xAl

Now

3

e ifgom: X ™Y x Al % Al is non constant, we can factor

’

m=(nxI)om : X" 25y x Al 2Ly x Al
with dimY’ = dim X — 1 and m/(X ") C Y’ x A! a dense open subset, and
AS(m) : (A®ZP24(Y! x AY) — A®2Po(X ™)
is injective, and

HYAC(m)(A®ZP2(Y x AY)) = HEA®(m/)(A®ZPS(Y" x A1)
Ae(m/)(Hk(A.Zp,-,e)(Yl % Al)) =0

by Kunneth formula for Y’ x Al
eifgom: X Y x A' 4 Al is constant with value ¢,
HE A% (m)(A*ZP*)(Y x Al)) =0

since ¢*dz = 0 and ¢*dz = 0, where ¢: Y x {c} = Y x Al is the closed embedding.
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O

Proposition 4. Let X € PSmVar(C). Consider the morphism anx : X — X in RTop given by
analytical functor.

(i) The analytic De Rham cohomology class of an algebraic cycle is logarithmic and is of type (d,d),
that is, for Z € Z4(X)

(2] := H**Q(v)([Z]) € H**OLxen (Hy

usu

(Xanagg(a",log)) C H%dR(Xan) = H%)dR(X)

(i) Conversely, any w € H?*IOLxan(HZ

d (X Q4 )) is the class of an algebraic cycle Z €
ZUX)®Q, i.e. w=[Z].

Xean log

(iii) We have HIOL xan (ijl(X‘m,QlXanylog)) =0 for j,l € Z such that 21 > j.

usu

Proof. Consider, for j,l € Z and X € SmVar(C),

LN X) = H OLxon (H /(X ™, Qan 10g)) := HOL™™ (HI~' Hom(An" Z(X), B}, (Q02"))).

usu log

Consider also for j,1 € Z, X € SmVar(C) and Z C X a closed subset,

LY NX) == HIOLxan (H1 . (X, Qan 10g)) == HIOL™ (H7~' Hom(An* Z(X, X\Z), E,,, (Q2"))).

usu,z log

Consider, for j,1 € Z and X € SmVar(C),

LY7hme(X) = HY(OL*™)(H' ™ Hom(An* Z(X), Eg, ("))

Consider also for j,1 € Z, X € SmVar(C) and Z C X a closed subset,

LY ~0"(X) = H(OL*™)(H'~' Hom(An" Z(X, X\ Z), B}, (Q.2""))).

log

For each [, j € Z, the presheaf Hj*lEusu(Qfg;"’ne) € PSh(AnSm(C)) is A! invariant by proposition 2(i).
Indeed, for Y € AnSm(C) connected, take an open cover Y = U;c;D; by open balls D; ~ D(0,1)% and
let Dy € Fun(A, AnSm(C) be the associated simplicial analytic manifold, with for J C I, j;; : Dy :=

NicrD; = Dj := NjcsD; the open embedding, we then get the isomorphism
p; . Hj—lEusu(Ql,an,ne)(Y > Al) — Hj—l(Y % A17Ql,an,ne) ~

log usu log
H/ (Do x A, Q") &5 HIT'T(Da x AL s 0"")
= HIZT (Do ausu 3" ) S5 B (Do, ) 5 BV, Q™) =2 B B (7))

where py : X x Al = Y is the projection, and the second and the fourth map is the isomorphism given
by proposition 2(i), and the middle map is an isomorphism by lemma 2(ii)’. This gives in particular, for
X € SmVar(C) and Z C X a smooth subvariety of (pure) codimension d, by proposition 1 an isomorphism

Eusu(Qig;nﬁne)(PZ,X) . LlZ,jfl,ne(X) :_> LlZ,jfl,ne(NZ/X) :_) Llfd,jflfd,ne(z).

(i):Similar to the proof of [2] theorem 2.
(ii): Let X € PSmVar(C) and

a=H?*OLxan (o) € LY(X): = H*OLxan(Hf\\ (X", Q%an 10g))

H2OL (H* Hom(An" Z(X), Bf, (2he™))).

Then,
H*(q)(a) = H*¥(q) 0 H*¥OLxan (o) = H*¥OL™ o H*(q)()

€ L4"e(X) := H*OL*"(H* Hom(An* Z(X), B3, (Q52™"))).
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Up to split X by its connected components, we may assume that X is connected. The case d = dx is
trivial. So let assume d # dx. Let U C X an open subset such that there exists an etale map e : U — Afé”
such that e : U — ¢e(U) is finite etale and AfiCU\e(U) C Afé” is a divisor Denote j : U — X the open
embedding. By proposition 2(ii), we have

(Uan7 Qd,an,ne) — 0

j*HQd(q)(o‘) =0¢€ H log

usu

Considering a divisor X\U C D C X, we get

sz(q)(a) _ HdEo (Qd,an,ne)(,}/%)(o/)7 O/ c Ll[,)jfl,ne(X)'

usu\" “log

Denote D° C D its smooth locus and [ : X° < X a Zariski open subset such that X° N D = D°. We
then have

l*a/ c L%Z(XO) _ Ldfl,dfl(DO)
We repeat this procedure with each connected components of D° instead of X. By a finite induction of
d steps, we get

H*(q)(a) = HIES,, (L") (y))(«), o € LEP™(X) = LO0ne(Z9).

usu\"“log

with Z:= Dy C--- C D C X a pure codimension d (Zariski) closed subset, thus

o= nilZi)+ B € HER(X), § € H¥(e)(H3, (X", ad(m)(x* Q"))

where n; € Q and (Z;)1<i<; C Z are the irreducible components of Z. But by lemma 4, we have

HE (X%, ad(7)(7* Q%)) = 0.

usu

for each k € Z, k # 0. Hence 8 = 0, that is

a= Zni[Zi] € H¥(X).

(iii): Let j < 2I. Let X € PSmVar(C) and w € L*~!(X). By proposition 2(ii)’, arguing as in the proof
of (ii), there exists Z C X a closed subset of pure codimension j — [ such that

H(q)(w) = HT'BS,, (Q2™") (v%) (w'), w' € LY ~H"(X).

usu( log

For Z' C X a closed subset of pure codimension ¢, consider a desingularisation € : Z' — Z' of Z' and
€

denote n: Z' % 7' ¢ X. The morphism in DA (k)

Z(€)

DEOD, M2 (02 2D M (27 ()26

Gz x : M(X)

where D : Hompa () (M(Z'), M.(X)) = Hompa (1) (M(X),M(Z")(c)[2¢]) is the duality isomorphism
from the six functor formalism (moving lemma of Suzlin and Voevodsky) and Z(n) := ad(ni,n')(a'yZ),
is given by a morphism in C(SmVar(k))

Gz x : Lun(X) = Eoy(CuZun(Z"))(¢)[2¢].

Let [ : X° — X be an open embedding such that Z° := Z N X°? is the smooth locus of Z. We have the
following commutative diagram of abelian groups

j—1 an Olan,ne " j—1 o,an (l,an,ne 17} j—I+1 an Olan,ne
0 Husu,Z(X ) Qlog ) Husu,Z" (X ) Qlog ) Husu,Z\ZO (X ’ Qlog ) e
Q(CA;Z,X)T Q(PZO,XO)T Q(éz,x)]\
0 an (2l—j,an,ne U 0 o,an ()2l—j,an,ne 0 1 an ()2l—j,an,ne
0 Husu(Z ’ Qlog ) Husu(Z ’ Qlog ) Husuﬁz\ZO (Z ) Qlog ) U
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whose rows are exact sequences. Consider

P'w' = Q(Pgo xo)(w®) € Hi ! 5o (X0 Quern™®), w® € HY (2o, Qe 04™"e).

Since dl*w’ =0 € Hi;i;l\zo (X, Q{fgn’"e), we get, considering the smooth locus (Z\Z°)° C Z\Z° and

X°° C X is an open subset such that X N (Z\Z°)° = X°° N (Z\Z°),

o __ 1 an 2l—j,an,ne
ow’=0¢€ Husu,Z\ZO (Z 7Qlog )7

since H! (Z\Zo)\(Z\Zo)o(Za", Qfégj’an’"e) = 0 for dimension reasons, that is

H (q)(w) = Q(Gz,x)(w'), withw' € HY(Z", Q7 4""),

Hence HY(q)(w) = 0 since HO(Z ", Q{“Og) =0 for all £ > 0 and all Z’ € PVar(C). But by lemma 4

J
H’U.S’U.

(X" ad(m)(n* Q%)) = 0.

Hence w = 0. O

5 Hodge Conjecture for complex smooth projective hypersur-
faces

We now state and prove using the result of section 3 and section 4 the main result of this article :

Theorem 1. Let X = V(f) C ]P)g be a smooth projective hypersurface, with N = 2p + 1 odd. Let
A\ € FPH?P(X Q). Then there exists an algebraic cycle Z € ZP(X) such that X = [Z].

Proof. Let U := PN\ X. Consider Resy p~x : M(X) — M(U)[—1] the canonical map given in definition
1. We have the commuative diagram of complex vector spaces :

HNQ(ResXYD,N )

HpR(U) Hpp' (X)y

HNa(Ua")—e'U(U)lT THNIQ(X'J")—GU(X)I
(H" Bti(Res ))®oC
(U™.C) S HYL (X ©),

sing

HN

sing

whose arrows are isomorphisms. Denote w()\) := HN~1a(X")(\) € FPH o (X). We have
A= HV ' Bti(Resxpn)(e) + m[H], withm € Q, a € Hf,, (U™, Q),
where H := X N A C X is an hyperplane section. Then
w(\) = HY10(Res g v )(w(@)) + m{H], with w(a) := HYa(U™)(a) € FPH HY(U).

Since ev(U)(w(a)) = a € HY

sing

(U, 2i7Q), we have by proposition 3,

w(a) € HNOLyen (HE,,, (U™, QNP )

usu Uan log
Hence

w(A) = HN 1O Lxon (0, 771" (Resx pr ) (w(@)) + m[H] € OLxan (HE, (X", Qan 10)).
Hence by proposition 4(ii), w(\) = [Z] with Z € ZP(X). O
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