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Hodge conjecture for projective hypersurfaces

Johann Bouali

December 14, 2023

Abstract

We show that an Hodge class of a complex smooth projective hypersurface is an analytic loga-
rithmic De Rham class. On the other hand we show that for a complex smooth projective variety an
analytic logarithmic De Rham class of of type (d, d) is the class of codimension d algebraic cycle. We
deduce the Hodge conjecture for smooth projective hypersurfaces.
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1 Introduction

1.1 Complex analytic De Rham logarithmic classes

In [2], we introduced, for X an algebraic variety over a field, the notion of logarithmic De Rham coho-
mology classes. For X a complex algebraic variety, we also introduce the notion of logarithmic analytic
De Rham cohomology classes. In proposition 4 we give an analytic analogue of [2] theorem 2 (ii), that is
if X is a smooth complex projective variety,

e a logarithmic analytic De Rham cohomology class of type (d,d) is the class of a codimension d
algebraic cycle.

e we have HIOL xan (HI (X, O )) = 0 for j,I € Z such that 21 > j.

usu Xan log

The proof of proposition 4 is motivic and similar to the proof of [2] theorem 2 : a logarithmic analytic
class of bidegree (p,q), p,q # 0, p > q, ¢ # dy is acyclic for the etale topology on each open subset
U C X such that there exists an etale map e : U — Afé” such that e : U — e(U) is finite etale and

A% \e(U) € A% is a divisor (proposition 2), this allows us to proceed by a finite induction using the



crucial fact that the purity isomorphism for De Rham cohomology preserve logarithmic analytic classes
since the purity isomorphism is motivic (c.f. [3], see proposition 1).

1.2 Hodge conjecture for smooth projective hypersurfaces

Let X = V(f) € PY a smooth projective hypersurface. Denote j : U := PY\X < P& the open
complementary subset. Using the fact the filtered De Rham complex of U

to : Qo L (log X)?=0[—p] < (Qpx ®o,y F*775.0u)™

is locally acyclic for the complex topology, more precisely is acyclic on open balls (see e.g.[6]), we show,
considering an open cover PY = U, B; by open balls ¢; : B; ~ D(0,1)" such that ¢;(B; N X) =
0 x D(0,1)", that an Hodge class o € FPHN (U™, Q) is logarithmic, that is

a € HNOLyen (HE,, (U™, Q520,)
(proposition 3). We get that, if N =2p+ 1 and A € FPH?P(X%" Q) is an Hodge class,

)\:RGSXy[pN(OL)—Fm[H]EHNOLXGTL(HP (Xan7QN7p N,

usu Xan log

where Resx pv : HN (U™, C) = H?P(X", C) is the residu map, using the fact that since the residu map
is motivic (see definition 1), it preserve the logaritmic De Rham classes. Proposition 4 (ii) then implies
that A = [Z], Z € ZP(X), is the class of an algebraic cycle.

2 Preliminaries and Notations

2.1 Notations
e Denote by Top the category of topological spaces and RTop the category of ringed spaces.
e Denote by Cat the category of small categories and RCat the category of ringed topos.

e For § € Cat and X € S, we denote S/ X € Cat the category whose objects are Y/ X := (Y, f) with
YeSand f:Y — X is a morphism in S, and whose morphisms Hom((Y”, /'), (Y, f)) consists of
g:Y" =Y in S such that fog=f'.

e For (S,05) € RCat a ringed topos, we denote by

— PSh(S) the category of presheaves of Og modules on S and PShp, (S) the category of presheaves
of Og modules on S, whose objects are PSho, (S)? := {(M,m), M € PSh(S),m : M ® Os — M},
together with the forgetful functor o : PSh(S) — PSho,(S),

— C(S) = C(PSh(S)) and Cp,(S) = C(PShp,(S)) the big abelian category of complexes of
presheaves of Og modules on S,

= Cogs@2)fi(S) = C2)7a(PShog(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered

complexes of presheaves of Og modules on & such that the filtration is biregular and PSho (2) ra (S) :=

(PShog (S), F,W).

e Let (S,0g) € RCat a ringed topos with topology 7. For F' € Co(S), we denote by k : F — E(F)
the canonical flasque resolution in Co4(S) (see [1]). In particular for X € S, H*(X, E,(F)) =
H* (X, F).

e For f: 8 — S a morphism with §,8" € RCat, endowed with topology 7 and 7’ respectively, we
denote for F' € Cp4(S) and each j € Z,

— f*i=HIT(S, koad(f*, fx)(F)) : H/ (S, F) — HI(S', f*F),



— f* = HIT(S, koad(f*™°d f)(F)) : B/ (S, F) — H/(S', f*modF),
the canonical maps.

For X € Top and Z C X a closed subset, denoting j : X\Z < X the open complementary, we will
consider
F%ZX = COHe(ad(j!,j*)(Zx) Zj!j*ZX — Zx) S C(X)

and denote for short vy := Y (Zx) : Zx — '} Zx the canonical map in C(X).

Denote by Sch C RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). We denote by PSch C Sch the full subcategory of proper schemes. For a field k,
we counsider Sch /k := Sch /Speck the category of schemes over Speck, that is whose object are
X = (X,ax) with X € Sch and ax : X — Speck a morphism and whose objects are morphism of
schemes f : X’ — X such that f oax, = ax. We then denote by

— Var(k) = Sch’* /k  Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

— PVar(k) € QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) C SmVar(k) C Var(k), PSmVar(k) := PVar(k) N SmVar(k), the full subcategories
consisting of smooth varieties and smooth projective varieties respectively.

Denote by AnSp(C) C RTop the subcategory of analytic spaces over C, and by AnSm(C) C AnSp(C)
the full subcategory of smooth analytic spaces (i.e. complex analytic manifold).

Let (X,0x) € RTop. We consider its De Rham complex Q% := DR(X)(Ox).

— Let X € Sch. Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z its
De Rham cohomology H} (X)) := H/ (X, Q%).

— Let X € Var(k). Considering its De Rham complex Q% := Q%) = DR(X/k)(Ox), we have
for j € Z its De Rham cohomology HY,,(X) := H’(X,Q%). The differentials of Q% := Q% /i
are by definition k-linear, thus H},,(X) := H7 (X, Q%) has a structure of a k vector space.

— Let X € AnSp(C). Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z
its De Rham cohomology HY,,(X) := H/ (X, Q%).

For X € AnSp(C), we denote a(X) : Cx — Q% the embedding in C(X). For X € AnSm(C),
a(X) : Cx — Q% is an equivalence usu local by Poincare lemma.

We denote I" := [0,1]™ € Diff(R) (with boundary). For X € Top and R a ring, we consider its
singular cochain complex

# (X, R) := (ZHomre, (I*, X)¥) ® R

sing

and for [ € Z its singular cohomology H. (X, R) := H"C% (X, R). For f: X’ — X a continous

sing sing
map with X, X’ € Top, we have the canonical map of complexes

ffCLL (X, R) = Ch . (X,R), 0= ffo:=(y—a(fory)).

sing sing
In particular, we get by functoriality the complex

C;(,Rsing € CR(X)7 (U C X) = G5 (U7 R)

sing

We recall we have



— For X € Top locally contractile, e.g. X € CW, and R a ring, the inclusion in Cr(X)
cx @ Bx = CX pgng 18 by definition an equivalence top local and that we get by the small

chain theorem, for all I € Z, an isomorphism H'cx : H'(X, Rx) = Hsling(X, R).
— For X € Diff(R), the restriction map

rx + ZHompig(r) (I, X)” — Clng(X, R), w = w: (¢ = w(9))
is a quasi-isomorphism by Whitney approximation theorem.
e We will consider the morphism of site given by the analytification functor
An: AnSp(C) — Var(C), X + An(X):= X" (f: X' — X)— An(f) := fo".
For X € Var(C), we denote by
anx := An|xe := xomet o X any (U — X) = U™,

its restriction to the small etale site ox (X ) C Var(C), where ox (U — X) = U, in particular we
have the following commutative diagram

AnSp(C) 22> Var(C) ,

l/OXan lox

X an.et anx Xet

where oxan (U < X) = U. We get the morphism in RTop anx := anxjocx) : X" — X,
0:O(X) C X¢ being the embedding consisting of the Zariski open subsets of X.

2.2 Complex integral periods

Let k a field of characteristic zero.
Let X € SmVar(k) a smooth variety. Let X = U{_, X; an open affine cover. We have for o : k — C
an embedding, the evaluation period embedding map which is the morphism of bi-complexes

ev(X)s : T(X,,Q%,) = ZHOmDiﬂ‘(H.,XETZ.)V ®C,

wh € (X1 9,) = (eolX)}(wh) : ¢} € ZHompun(I', XE)” © € enba)(6}) = [ o)
It

given by integration. By taking all the affine open cover (j; : X; — X) of X, we get for o : k — C, the
evaluation period embedding map

ev(X) = lim ev(X)g:  lim I'(X., Q%,) — lim Z Homp;gr) (I*, X&7%)Y @ C
(i X 5 X) (ji: X 5 X) (ji: X X)

It induces in cohomology, for j € Z, the evaluation period map

Hiev(X) = Hlev(X)s : Hhp(X) = HIT(X,,Q%,) — HZ (X&",C) = H’ (Hompigr) (I°, X&) ® C).

sing
which does NOT depend on the choice of the affine open cover by acyclicity of quasi-coherent sheaves on
affine noetherian schemes for the left hand side and from Mayer-Vietoris quasi-isomorphism for singular
cohomology of topological spaces and Whitney approximation theorem for differential manifolds for the
right hand side.
Let X € SmVar(k). Then,
H*ev(Xc) = H*RT(XE™", (X)) L o T(XE", ELar(Qanx))) : Hpp(Xc) = H

sing

(Xg",C)

is the canonical isomorphism induced by the analytical functor and the quasi-isomorphism «a(X) :
Cxgn = Q%an, which gives the periods elements Hev(X)(Hpp(X)) C HE, o (XE™, C).

sing



2.3 Algebraic cycles and motives

For X € Sch noetherian irreducible and d € N, we denote by Z¢(X) the group of algebraic cycles of
codimension d, which is the free abelian group generated by irreducible closed subsets of codimension d.

For X, X’ € Sch noetherian, with X irreducible, we denote Z/$/X' (X" x X)) Z4,., (X' x X) which
consist of algebraic cycles a = ), nya; € Zq,, (X' x X) such that, denoting supp(a) = Usa; € X' x X
its support and p’ : X’ x X — X'’ the projection, pi supp(a) ° supp(a) — X’ is finite surjective.

Let k a field. We denote by Cor SmVar(k) the category such that the objects are { X € SmVar(k)} and
such that Homcor smvar(k) (X', X) = Zfs/X (X' x X). See [3] for the composition law. We denote by Tr :
Cor SmVar(k) — SmVar(k) the morphism of site given by the embedding Tr : SmVar(k) < Cor SmVar(k).
Let F' € PSh(SmVar(k)). We say that F' admits transfers if F' = Tr, F' with F' € PSh(Cor SmVar(k)).
We recall that DA (k) := Hoa1 4 (C(SmVar(k))) is then the derived category of mixed motives.

We have (see e.g. [1]) the Hodge realization functor

FH49 . DA(C) - D(MHS), M s FH49 (M) .= Y FIPR(M), Bti* M, a(M))

For X € Var(k) and Z C X a closed subset, denoting j : X\ Z < X the open complementary, we will

consider
'} Zx := Cone(ad(jy, j*)(Zx) : Zx — Zx) € C(Var(k)*"/X)

and denote for short v := v%(Zx) : Zx — TI'}Zx the canonical map in C(Var(k)*/X). Denote
ax : X — Speck the structural map. For X € Var(k) and Z C X a closed subset, we have the motive of
X with support in Z defined as

Mz(X) := axiTYaxZ € DA(k).
If X € SmVar(k), we will also consider
axiTyZx := Cone(axy o ad(jy, j*)(Zx) : Z(U) — Z(X)) =: Z(X, X\ Z) € C(SmVar(k)).
Then for X € SmVar(k) and Z C X a closed subset
Mz(X) = axiTya'yZ = ax;TyZyx =: Z(X, X\Z) € DA(k).

e Let (X,Z) € Sch? with X € Sch a noetherian scheme and Z C X a closed subset. We have the
deformation (DzX,AL) — A, (DzX,AL) € Sch® of (X, Z) by the normal cone Cyzix = Z, ie.
such that

(DzX,AY)s = (X,2), s € ANO, (DzX,Ay)o = (Cz/x,Z).
We denote by i1 : (X,Z) — (DzX,A}) and i : (Cz/x,Z) — (DzX,A}) the closed embeddings
in Sch®.

e Let k a field of characteristic zero. Let X € SmVar(k). For Z C X a closed subset of pure

codimension ¢, consider a desingularisation € : Z — Z of Z and denote n : Z < Z € X. We have
then the morphism in DA (k)

Grx : M(X) 22 0 (Z) () 2¢) 2D M(2)(c)[2]

where D : HomDA(k)(MC(Z),MC(X)) = HomDA(k)(M(X),M(Z)(c)[2c]) is the duality isomor-
phism from the six functors formalism (moving lemma of Suzlin and Voevodsky) and Z(n) :=
ad(n;,n!)(a!XZ)7~ noting that ny = n. since n is proper and that a'y = a’[dx] and a!Z = a*ZLdZ]
since X, resp. Z, are smooth (considering the connected components, we may assume X and Z of
pure dimension).

We recall the following facts (see [3] and [1]):



Proposition 1. Let k be a field a characteristic zero. Let X € SmVar(k) and i : Z C X a smooth
subvariety of pure codimension d. Then Cz/x = Nz/x — Z is a vector bundle of rank d. The closed

embeddings i1 : (X, Z) < (DzX,A}) and i : (Cz/x,Z) — (DzX,AL) in SmVar®(k) induces isomor-
phisms of motives Z(i1) : Mz(X) = My (DzX) and Z(io) : Mz(Nz/x) = My (DzX) in DA(k). We
get the excision isomorphism in DA (k)
PZ,X = Z(io)_l o Z(ll) : Mz(X) = MZ(NZ/X)-
We have
Th(Nz/X) 9 PZ,X 9 ’y%(Zx) = GZ,X = D(Z(l)) : M(X) — M(Z)(d)[2d]
Proof. See [3]. O

Definition 1. Let k be a field a characteristic zero. Let X € SmVar(k) and i : Z C X a smooth
subvariety of pure codimension d. We consider using proposition 1 the canonical map in DA(k)

Pyl oTh(Ng x)™* .
Reszx - M(Z)(d)[—2d) —2XM 0200y p (xy SEXDD),

M(X\Z)[1]

where, for m : A — B, A,B € C(A), A an additive category, c(A) : Cone(m : A — B) — A[l] is the
canonical map.

e Recall that we say that F' € PSh(SmVar(k)) is Al invariant if for all X € SmVar(k), p* := F(p) :
F(X) — F(X x A') is an isomorphism, where p : X x Al — X is the projection.

e Similarly, we say that F € PSh(AnSm(C)) is D! invariant if for all X € AnSm(C), p* := F(p) :
F(X) — F(X x D) is an isomorphism, where p : X x D! — X is the projection.
2.4 The logaritmic De Rham complexes
We recall from [2] the following notion :
e For k a field and X € Var(k), we consider the embedding in C'(X)
OLx : Q% 105 = Q% = Q% s,

such that, for X? C X an open subset and w € Q% (X°), w € Q% ;. (X°) if and only if there exists
(ni)lgigs € Z and (fi,ak)1<i<s 1<k<p € F(XO, Ox)* such that

128,13 R>

w = Z nidfs.ar [ fian N Ndfia, ] fisa, € Q5% (X°),

1<i<s
and for p =0, Qgﬂog :=Z. Let k a field. We get an embedding in C(Var(k))

OL : Q;k)log — Q;k, given by, for X € Var(k),
OL(X) 1= OLx : QJ) 15,(X) := ['(X, Q% 1op) = ['(X, Q%) =: Q9,(X)

and its restriction to SmVar(k) C Var(k).
e For X € AnSp(C), we consider the embedding in C(X)
OLx : Q% 10g = %,

such that, for X° C X an open subset and w € Q% (X°), w € Q% ;. (X°) if and only if there exists
(ni)lgigs € 7Z and (fi,ak)lgigs,lgkgp S F(XO, Ox)* such that

w = Z nidfs.ar /[ fian N Ndfia, ] fisa, € Q5% (X°),

1<i<s



and for p = 0, Q% 1, = Z. We get an embedding in C(AnSp(C))

OL™ : Q24" < Q%" given by, for X € AnSp(C),

* “"log

OL™(X) = OLx : Qp"(X) 1= [(X, Q% 10g) = [(X, Q%) =: Q**"(X)

log
and its restriction to AnSm(C) C AnSp(C).

Definition 2. Recall that An : AnSp(C) — Var(C) denote the analytical functor. We will consider, for
each p € Z, the exact sequence in PSh(AnSp(C))

0— Qpe” N (An® 0 An, Qpr-tany & Qg 4, Qg "= QR /(Qpg" N (An” 0 An, Qp-hanyy 0,

and its restriction in PSh(AnSm(C)). Note that for X € Var(C) and 0f € Qb (X ) with f € O(X™),
we have Of = (9ef)/ef € Qllo’g"(X“"). We have then the commutative diagram in C(AnSp(C))

Ql'o’g” N (An* 9 An, Q°*—1an) o An* 9 An, Qe Lan ,
Qlo)g OLan Q.)an
| |
QU = QR /(OB A (An® 9 An, Qe Lem) PR gean/(An* 9 An, Qe—ten)

whose columns are exact with e injective and q surjective.
We have the following :

Lemma 1. (i0) The sheaves O, € PSh(AnSm(C)) and Qllc;gn € PSh(AnSm(C)) admit transfers com-
patible with transfers on Q19" € PSh(AnSm(C)).

(i) For each |l € Z, the sheaf QiO‘;n € PSh(AnSm(C)) admits transfers compatible with transfers on

Qban € PSh(AnSm(C)), that is Q*" € C(Cor AnSm(C)) and the inclusion OL : Qfg;"[—l] — Qean
in C(AnSm(C)) is compatible with transfers.

1) For each | € Z, the sheq, Qhammne ¢ pPSh(AnSm(C)) given in definition 2 is A' invariant.
log g

Proof. (i0):Let W C X’ x X with X, X’ € AnSm(C), X’ connected, and px: : W C X' x X — X’ finite
surjective over X’. Then M(px) : M(X') — M (W) is a finite, where for Y € AnSp(C) irreducible,
M(Y) := Frac(O(Y)) denote the field of meromorphic function. Since O(X') C M(X') is integrally
closed, the trace map Try,x : M(W) — M(X') sends O(W) to O(X’), and the norm map Ny x :
MW)* — M(X')* sends O(W)* to O(X')*.

The sheaf O}, € PSh(AnSm(C)) admits transfers : for W C X’ x X with X, X’ € AnSm(C) and
W finite surjective over X’ and f € O(X)*, W*f := Ny, x:/(pk f) where px : W — X' x X — X
is the projection and Ny, x, : M(W)* — M(X')* is the norm map. This gives transfers on Qllo’g" €
PSh(AnSm(C)) compatible with transfers on Q%" € PSh(AnSm(C)) : for W C X’ x X with X, X’ €
AnSm(C) and W finite surjective over X’ and f € O(X)*,

Wrdf/f = dW" f/W*f = Trw;x (px (df/ f)),

where we recall px : W — X' x X — X is the projection and Try,x: : O(W) — O(X’) is the trace

map. Note that d(fg)/fg=df/f +dg/g.
(i): By (i0), we get transfers on

RpUae", @62 € PSh(AnSm(C))



since ®(ZQ)Q]1(;2" = H0(®é’lQll(;g") and ®,0L" = H0(®é’lQL‘m). This induces transfers on

EAYSS ::(w®w/>—>w®w®w')

1 Ql,an Srycn,...,

log ®RbYea") € PSh(AnSm(C)).

1, _
/\f@Q o= coker(®r,c,... ®(l@ log

log
and

®rycit,.. . AL =(wuw —weWeW")

) ®L Q" € PSh(AnSm(C)).

/\IOQLan = COkeI‘(@]zc[l)m’[] ®6_k1 Ql,an

(ii): Follows from the fact that for X € AnSp(C), QP(X x Al) = QP(X) @0 (AL9") and that Q(ALem)
DO(ALam),

oo

We have the following result :
Proposition 2. Consider, for each p € Z, the presheaf Q%‘flzgle € PSh(AnSm(C)) given in definition 2.

(i) Let D € AnSm(C) be an open ball. Then, for each p,q € Z, ¢ # 0, Hl,,, (D, ,,,) = 0.

su

(i)’ Let D € AnSm(C) be an open ball. Then, for each p,q € Z, q # 0, H{,, (D, Q570" ) = 0.

(ii) Let U € SmVar(C) such that there exists an etale map e : U — AY such that e : U — e(U) is
finite etale and A(d:"\e(U) C A(d:" is a divisor. Then, for each p,q € Z, p,q # 0, p > q, q # dy,
HY,, (U, QP27 = ),

usu log

Proof. (i):Let B = D(0,1)Y € AnSm(C) be an open ball. Let a € Hi (B, 0.), 0 € Z, g # 0.
Consider a sequence of sub-balls

ln: By :=D(0,7,)Y < B := D(0,1)",n € N, with r, — 0 when n — oc.

Since (B, := D(0,7,))nen form a basis of neighborhood of 0 € B and since QF, log 18 & single presheaf,
there exists n := n, € N (depending on «) such that

l;kza =0¢ H'gsu(Bn7 Q%,log)'
But it follows immediately from the definition of the the presheaf Q%,log considering the isomorphism

bn: Bn = B, ¢p(2) :=1,'2

n

so that (¢,,) "t ol, =r,I, that
a=1¢, "o a=r,¢iac HI,, (B,, Q%Jog).

Hence ¢;,a = 0. Since ¢,, is an isomorphism, we get a = 0.
(i):Let B = D(0,1)Y € AnSm(C) be an open ball. Let o € HY

usu(Ba Qp,an,ne)7 qc Z7 q 7£ 0. Consider a
sequence of sub-balls

B,log

ln: By :=D(0,7,)Y — B:=D(0,1)",n € N, with r, — 0 when n — ooc.

Since (By, := D(0,7))nen form a basis of neighborhood of 0 € B and since Q37" is a single presheaf,
there exists n := n, € N (depending on «) such that

lra=0e H!

usu

(Bn, Q07).

But it follows immediately from the definition of the the presheaf QF log considering the isomorphism

$n: Bn = B, ¢n(z) =1,z



so that (¢,) "t ol, = r,1I, that

La=1o " oha=r,¢ia € HY

usu (Bn? Q%fllgéne)'

Hence ¢} a = 0. Since ¢, is an isomorphism, we get a = 0.

(ii): We proceed by induction on the dimension of U. Let U € SmVar(C) such that there exists an etale
map e : U — A, such that e : U — e(U) is finite etale and AV \e(U) € AL is a divisor Denote

D := A" \e(U) the complementary closed subset. Since HZ,, (A%U,Qfo’g"’"e) =0 for all p,q € Z,

~

(G(U), Qp,an,ne) S Hq+1 (A((éU , Qp,an,ne)

Hunsu (Qp,anyne)(c(Z(S(U)))) = a : Hq log usu,D log

log usu

is an isomorphism for all p,q € Z. By (i),

HEy s (") € PSh(AnSm(C))

is A! invariant for each p, ¢ € Z. Indeed, for X € AnSm(C) connected, take an open cover X = U;erD;
by open balls D; ~ D(0,1)%x, and then we get the isomorphism

~

(X x At Qpanmney =y

log

Pt HUE g (20 ) (X x Al) := HY

log usu

~

HQ(D. % Al,QP,an,ne) BN HqF(D. % Al,Qp’an’ne)

log log
— HIT(Da, Q"™ ") = HI(Da, Q™") = Hij,, (X, QPE™") =t H Busu (g ") (X)

log log

where px : X x A — X is the projection, and the second and the fourth map is the isomorphism given
by (i). Take a desingularization of the pair € = €1 : (AX, E) — (A%, D), so that E = U{_, E; C A

is a normal crossing divisor and e : AfiCU\E = Afé” \D. We thus get by proposition 1, for each p,q € Z,
p.q # 0,

HI By (2™ ) (P )t HIL (A Qhamne) & 1

log Ei,AgU usu,F; log usu

(E; x Gy, QP07

log

For p,q € Z, p,q # 0, p > q, ¢ # dy, we get, using the induction hypothesis, by a finite decreasing

induction Fjq—1 C EgﬁQ, -+, Fjg C F;, where

e E?:= E;\E; C E; is an open subset such that there exists a finite etale map e; : EY — e;(Ef) C
A= with Adv—1\e;(E2) C Adv—1 a divisor, €3 : (E;, Eig) — (Ei, Eig) is a desingularization,

o Y = ~ik\Eik+1 C El-k is an open subset such that there exists a finite etale map e;, : £ —
eik(Efk) C A%—F with AdU*k\eik(Efk) C Adv—F g divisor, € : (Ei]X;EikJrl) — (Eik,EfL'kJrl) is a
desingularization

since dy > p > q (), =0 for p > dy,Y € AnSm(C)),

q p,an,ney\ __ q+1 dy p,an,ney __ q+1 TU p,an,ne
Husu (G(U), Qlog ) - Husu,D(AC 7Qlog ) - Husu,E(AC 7Qlog )
~ r 1 ~. q—1 p,an,ney __
— EBi:lHusu(E“]—l X Gm 7Qlog ) =0

since Pic(E;,—1) = Pic(E;) = 0 by induction as e(E;) C A% and ek(EikH) C E;j, are hypersurfaces of
dimension at least two. We thus have, since M (U) ~ M(e(U)), for each p,q € Z, p,q #0,p > q, ¢ # dy

q p,an,ne _ q
Husu(U7 Qlog ) - Husu

(e(U), Qbemmey = 0,

log



3 Hypersurface De Rham cohomology and its complex periods

We denote PV := PY := Proj(Clzo, - ,2n]). Let X = V(f) C PV be a smooth hypersurface. If
N — 1 = 2p is even, we consider the decompositions

Hpp'(X) =CIANX]® Hpp (X)), Hi (X, Q) = CIANX] & HE (X, Q)

sing sing,v
of vector spaces, where A C P¥ is a linear subspace of codimension p. If N — 1 = 2p + 1 is even, we set

Hpp(X) = Hpp'(X) , HYDL (X Q) = HILH (X, Q).

sing,v sing

Let X = V(f) C P¥ be a smooth hypersurface. Denote j : U := PN\ X < PV the open embedding.
We consider the algebraic Hodge module

j*Hdg(OUan) = ((]*OUvF)vj*QUanuj*a(U)) € HM(]P)N)u

where F¥j,0p = Clzy, - - - xn][4]. Recall for each p € Z,

fk
FPHNR(U) == HN 2P (HN (PN, Q3P (log X)) = HN 2P HY (PY, Q2 ®0,, F*77j.00)
and
FPANY(X) = HN 12PN (X, Q%))
where

127 Q];,J%p(log X) = Qn(logX), 127 : Qpn ®o.n F*77j0u = Qpn ®o,_y §xO0v = 7.

and (2P : Q;(ZP — 1% are the canonical embeddings. Then the map Resx p~v of definition 1 induces for
each p € Z, canonical isomorphisms

HNQ(Resxpn) : FPTYHNR(U) = FPHY RN (X)), , HY Bti(Resxpn) : HY (U, Q) = HY - 1(X, Q).

sing sing

Lemma 2. Let X = V(f) C PV be a smooth hypersurface. Denote j : U := PN\ X < PV the open
embedding. Let B C PN, ¢ : B ~ D(0,1) be an open ball such that ¢(X N B) = {0} x D(0,1)VN~1L.
Then,

(i) Forq € Z, q # 0, H{,, (B, (Qp~ ®0,n F*?5,.0p)*) = 0.
(ii) For q € Z, q #0, Hi,, (B, Q0" (log X)?=%) = 0.
Proof. (i): Since B is Stein, we have for r,q € Z, ¢ # 0,
Hilw (B, Qpy @0,y F"7j.00)™) = 0.

On the other hand the De Rham complex of (j.Op\ x, F') is acyclic (see e.g. [6] corollary 18.7)
(ii): Since open balls form a basis of the topology of PV:%" we have

. AN— Neptly ~ N— =0
Qysul - ausu(]*QUanp)log S 89@1\7,51 ) — ausquN,fn (10g X)

where
s QN—p 8QN7;D+1 Qpr 1 X 9=0
2 Uen log S¥) PN.an — PN,an( og )

is the canonical embedding. Now,
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e Let B = D(0,1)Y € AnSm(C) be an open ball. Let a € H%(B, 89@{5:1), q € Z, q # 0. Consider
a sequence of sub-balls

lp: By := D(0,7,)Y < B:=D(0,1)",n € N, with r, — 0 when n — ooc.
Since (B,, := D(0,7,))nen form a basis of neighborhood of 0 € B and since 8Qg{fj1 is a single
presheaf, there exists n := n, € N (depending on «) such that

lia=0¢€ HY(B,, 000 2.
But it follows immediately from the definition of the the presheaf 8Qngfj ! considering the isomor-
phism

Gn: By =5 B, ¢n(2) =12

so that (¢,)~tol, = r,I, that
lha =10, ora=ragha € HY(B,, 0 1.
Hence ¢} o = 0. Since ¢, is an isomorphism, we get a = 0.

e we have for g € Z, ¢ # 0, HZ (B, Qg;zplog) = 0 by proposition 2 (i). Hence

HIE su () (c(Z(B))) =0 : Hl

log usu

N— ~ +1 N—
(B N U’ QU‘”‘p,log) - Hgsu,BﬁX (B’ QB‘”‘p,log)
is an isomorphism. Proposition 2 (i) also gives, using the spectral sequence associated to a double
complex, for q € Z,
HA

; N—p —
usu (B7 SlngD* QB‘”‘,log) =0.

By a finite decreasing induction on N, using purity for complex analytic motives, we get for ¢ € Z,

q #0,
H(I

usu

(BNU,QN.P )= HY

Uan log usu

(BNU, singD*Qg;f?log) =0.

We have by the local acyclicity of the De Rham complex of (j.Oy, F) a canonical map :

Definition 3. Let X = V(f) C P¥ be a smooth hypersurface. Denote j : U := PN\X — PV the
open embedding. Let PN-*" = U™ B; an open cover, with ¢; : B; ~ D(0,1)N open balls such that
#:(X N B;) = {0} x D(0,1)N~L. Denote, for I C [1,...,n], Iy : By < PN the open embeddings, with
B :=NjerB;. Since, for each I C [1,...,n] and p € Z,

ljto : [ P, (log X)?=0[—p] — 1} (Qpn @0,y F*775.0u)™"

is an quasi-isomorphism (see e.g. [6] corollary 18.7), the spectral sequence of the filtration on the total
complex of a bi-complex gives, for each p € Z, a canonical isomorphism, where the first and last map are
isomorphism by lemma 2(i) and (ii) respectively,

By : FPHpr(U) := HY 2PHY

zar(PN?QE’N ®OH;N F._pj*OU)
HY (15 =Q(l))1<i<n)

HYNZPHNT(B,, (Q8y ®0,, F*75.00)"")

HY ((17=Q(1i))1<i<n) "

= HIT(By, g 1 (log X)) HY,, (BN Q)P (log X)7=0),

usu

given by, for w € T'(U, Q]{,YN), inductively by a p step induction where p is the order of the pole of w at X,

o taking for each 1 < i < n, [fw = Jw;; since Ow = 0 for dimensional reason and by exactness of
lFio,

11



o we then have for each 1 <i,j < n, considering wi;; := lj; (w1 — wiy), wiy; = Owa; since
811}11']‘ = lz*] (811)11 — 8w1j) = l:} (lfw — l;w) =0
and by ezactness of I7;ta,

e at the final p step, B(w) :== wy; € HY (B, QIJPYN_,fn (log X)9=9), cardI = p.
Let X = V(f) C P¥ be a smooth hypersurface. Denote U := PN\ X. For [ € Z, we consider

e the sequence of embeddings in C(U*)

1 .ol OLLI-1_ 8=0 Lo, ye o—p.; 2 e
OLy : Qjog[—1] ——— Qpn (log X)7=7[~] = Qpx @0,y F* 770y — Qf
e and the sequence of embeddings in C(U")

OLL an[-1] 1

OLsen : Qbgar gl 1] U o (log X)?=0[~1] 12 (U ®0_, F*P5.00)" = Q.

where
Lo+ Qi an (log X)?=0[=1] < (v ®0,, F*7j.0p)™"
is an equivalence usu local (see [6]).

The main result of this section is the following :

Proposition 3. Let X = V(f) C PV be a smooth projective hypersurface. Denote U := PN\ X. Let
w E Fp"’ngR(U). Then the following assertions are equivalent

(i) ev(U)(w) € HY. (U™, 2irQ),

sing

—

(ii) Ba(w) € OLY! (Hp"’l(U“",Qg;flog)) (see definition 3),

usu

(iii) w € OLy.P(HEE (U™, Qeh ) = OLyan (HELH U™, Q0 L))

usu Uan log uUSU

Proof. (i) implies (ii): Let PV:9" = U_, B; an open cover, with ¢; : B; ~ D(0,1)" open balls such that
#:(X N B;) = {0} x D(0,1)N¥~1. Denote, for I C [1,...,n], I; : B = PV the open embeddings, with
By := NyerB;. Then

Bo(w) = (wpi1,1) € HPTH(Ba, Qo 2. (log X)?70).

We have, for each I C [1,...n], a decomposition

a _ _
Wp41,1 = Z_fdzl Awp +wi € T(By, ngv,gl (log X)?=7)

with w) € T(Br, Qpy *~")?=0 and w/ € T(Br, Qo *)?=C. Consider the evaluation map
ev(U)g : T(B\X, Qpn) = Cig(Bo\X ", C),
which is a morphism of bi-complexes. On the other hand, we have the following canonical map

T(Be\ X" 1) [(Be\ X", . 2N ~P)
—_

BCo: HPD(BA\X, CYl ) = HVD(BAX, CLEN )

(HY (I;=:Cfan qisr (li))1<i<n)

= HVD(BAX™, Chran i) HY, (U, Q) = HNT (U™, Cron i),

sing

where HY (1) is an isomorphism by the acyclicity of C{,%,{Y&g(B;\X“”) for each I C [1,---n], and

C;J“",diﬁ" — Cl.fa",singv for V C Uan, C(;lff(v) — Os.mg(v)

12



is the canonical quasi-isomorphism in C(U*"). We then have the following commutative diagram

HNZPHND(PN, Q8 @0, F*75.0y)

lHN((lZ_Q(ZiM

HY 2P HNT(Ba, (o @0,y F*~75.00p)"") —2—— = HPT(B,, Q2 2, (log X )?=°)

LEU(U) lev(U):

H (U, C) = HND(U, Clran ain ® C) 556525 HPT(B\ X, CN-P9=0 0 C)

Since ev(U) is injective by the strictness of the Hodge filtration and since By is an isomorphism, ev(U)$
is injective and

(BO@ X (C)’ = (BC@ (2] C)|8'U(U):(HT"F(B.751N7P (log X)9=0Y) :

pN,an

ev(U)s(HPT(Bo, Q05 2, (log X)7=0)) — HY, (U, C)

sing

is injective. For v; € C]S\i,rigp(BI\X‘m,Q)azo where py 0 ¢r(yr) C D(0,1)* is a loop around 0, we have by
the above diagram
ev(U)(w)(vr) = ev(U)(wp1,1)(71) = ar.
Hence if ev(U)(w) € HJ,, (U, 2iwQ), then a; € Q, using the injectivity of (BCy ® C)'.
(ii) is equivalent to (iii): By definition By(w) = (HP1) ! (w). On the other hand by definition

2P oo OLJ[}[;f = OL][}[;p.
(iii) implies (i): See [2]. O

4 Complex analytic logarithmic de Rham classes
We recall (see section 2) the morphism of site given by the analytification functor
An: AnSm(C) — SmVar(C), X — An(X):= X", (f: X' — X) — An(f) := f*".

and for X € SmVar(C), the following commutative diagram

AnSm(C) _An SmVar(C) .

l/OXan lox

xan,et anx xet

Consider the commutative diagram in C'(AnSp(C))

Qpe" N (An* 9 An, Q°—hem) RYXD An* 9 An, Q®~ban :
Qg oL Qe
| |
QA = QRO /(RS N (An® 9 An, QLo PET o gean/(An* 9 An, Q- Lan)
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whose columns are exact with e injective and ¢ surjective (see definition 2). Let X € SmVar(C). Then,
for k € Z, we have the commutative diagram

H'ﬁsu (Xan, Ql.n;(gln N (An* 0 An, Q'-l,an))ﬂ% Hﬁsu (Xan7 An* 9 An, Qo—l,an)
Hk(e)l lHk(e)
an ()®an H*FOoL™ an Cve.an
Hﬁsu (X ’ Qlog ) HER(X) = Hﬁsu (X ’ o )

Hk(‘l)l/ lH’C(Q)

kAran

Hﬁsu (X“", Ql.o’gn’"e) . Hory HZSU(XG", Q"an/(An* 9 An, Qo—l,an))

whose columns are exact. Let Z C X a closed subset. Then, for k € Z, we also have the commutative
diagram

(X9, Q00" (1 (An* 9 An, Qo) fLOL gk (xon An® 9 An, Qo= 1an)

Hk(e)l lH’C(e)

Hk (Xan Qo,an) H*orL*" HER,Z(X) — Hk (Xan, Q-,an)

usu,z ’ % "log usu

Hk(q)l lHk(q)

(Xan Q-,an,ne) HkOL?nHk (Xan, Q-,an/(An* 6An* Q-—l,an))

’ % “log usu,z

Hk

usu,z

Hk

usu,Z

whose columns are exact.

Proposition 4. Let X € PSmVar(C). Consider the morphism anx : X — X in RTop given by
analytical functor.

(i) The analytic De Rham cohomology class of an algebraic cycle is logarithmic and is of type (d,d),
that is, for Z € Z4(X)

(2] := H*Q(y2)([Z]) € H**OLxon (Hyjo (X", Qan 105)) € HER(X™) = HER(X).
i) Conversely, any w € H??OLxan(HE, (X Q%,, is the class of an algebraic cycle Z €
usu Xan log
ZUX)®Q, i.e. w=[Z].
(iii) We have HIOL xan (Hﬁ;ll(X‘m,QlXan’log)) =0 for j,l € Z such that 21 > j.

Proof. Consider, for j,l € Z and X € SmVar(C),
LMHX) o= HIOLxcern (HiGH (X, Qg 10g)) = HIOL®™ (I~ Hom(An" Z(X), Bl (U))).
Consider also for j,1 € Z, X € SmVar(C) and Z C X a closed subset,
LN X) i= HIOLxan (Hy oy 7 (X", Qan 1)) := H/OL™ (H?~' Hom(An" Z(X, X\Z), Eg,. ().
Counsider, for j,1 € Z and X € SmVar(C),
LM7hme(X) = HI(OL™)(H'~" Hom(An* Z(X), Ef, (2""))).

Consider also for j,1 € Z, X € SmVar(C) and Z C X a closed subset,

Ly ~0"(X) = H/(OL*™)(H'~ Hom(An" Z(X, X\ Z), ES, ("™ ))).
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For each [, j € Z, the presheaf Hj*lEusu(Qfg;"’ne) € PSh(AnSm(C)) is A! invariant by proposition 2(i).
Indeed, for Y € AnSm(C) connected, take an open cover Y = U;e;D; by open balls D; ~ D(0,1)%, and

then we get the isomorphism

Py Hj—lEusu(Ql,an,ne)(Y ~ Al) — Hj—l(y « Al, Ql,an,ne) -~

log usu log
j— l,an,ney ~ j— l,an,ne
HI~ (D x AT, Q") = HIT'D(Dy x A, Q")
S B (Da ) S (D) S LY. Q) = B (V)

where py : X x Al — Y is the projection, and the second and the fourth map is the isomorphism given by
(i). This gives in particular, for X € SmVar(C) and Z C X a smooth subvariety of (pure) codimension
d, by proposition 1 an isomorphism

Eusu(Qig;nﬁne)(PZ,X> . LlZ,jfl,ne(X) :_> LlZ,jfl,ne(NZ/X) :_) Llfd,jflfd,ne(z).

(i):Similar to the proof of [2] theorem 2.
(ii): Let X € PSmVar(C) and

a=H*OLxan (o) € LY (X): = H*OLxan(Hf, (X", Q%an 10g))

H* 0L (H* Hom(An" Z(X), ES,, (Q452™)).

Then

H*(q)(a) = H*¥(q) 0o H*¥OLxan () = H*¥OL™ o H*(q)(a)
€ L*ne(X) := H*OL*"(H* Hom(An* Z(X), B3, (Q52™"))).

log
Up to split X by its connected components, we may assume that X is connected. The case d = dx is
trivial. So let assume d # dx. Let U C X an open subset such that there exists an etale map e : U — A(d:"

such that e : U — ¢e(U) is finite etale and AfiCU\e(U) C Afé” is a divisor Denote j : U — X the open
embedding. By proposition 2(ii), we have

(Uan7 Qd,an,ne) — 0

j*H2d(q)(o‘) =0¢ H log

usu

Considering a divisor X\U C D C X, we get

sz(q)(a) _ HdEo (Qd,an,ne)(,}/%)(o/)7 O/ c Ll[,)jfl,ne(X)'

usu\" “log

Denote D° C D its smooth locus and [ : X° < X a Zariski open subset such that X° N D = D°. We
then have
l*a/ c L%f(XO) — Ld*l,d*l(Do)

We repeat this procedure with each connected components of D° instead of X. By a finite induction of
d steps, we get
H*(g)(a) = HE},,(Qiog™" ) (7)(e), o' € L7""(X) = L*"e(2°).

usu( log

with Z := D4y C --- C D C X a pure codimension d (Zariski) closed subset, thus

o= nilZ]+ P € HER(X), f € H*(e)(H, (X", An* 9 An, Q°~1e"))

where n; € Q and (Z;)1<i<i C Z are the irreducible components of Z. But since X is projective, the
E; degenerescence of the spectral sequence associated to the trivial filtration of the De Rham complex
shows that H%4(e)(H2%, (X, An* 9 An, Q®*~197)) = 0. Hence,

a=> niZ] € Hyp(X).
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(iii): Let j < 2I. Let X € PSmVar(C) and w € L"~!{(X). By the proof of (ii) there exists Z C X a
closed subset of pure codimension j — [ such that

HJ(q)(w) _ ijlEo (Ql,an,ne)(ﬂy§)(u)/)7 ’LU/ c LlZ,jfl,ne(X)'

usu \" “log

For Z' C X a closed subset of pure codimension ¢, consider a desingularisation e : Z' — Z' of Z' and
denote n: Z' 5 Z' € X. The morphism in DA (k)

(Z(n))

GZ/,X : M(X) D—) )

M(Z")(e)[2¢] == M(Z')(c)[2¢]

where D : Hompa () (M(Z'), M.(X)) = Hompa (1) (M(X),M(Z")(c)[2¢]) is the duality isomorphism
from the six functor formalism (moving lemma of Suzlin and Voevodsky) and Z(n) := ad(ni,n')(a'yZ),
is given by a morphism in C(SmVar(k))

Gz x : Lun(X) = Eoy(CuZur(Z"))(¢)[2¢).

Let I : X° — X be an open embedding such that Z° := Z N X is the smooth locus of Z with good
reduction. We then have the following commutative diagram of abelian groups

j—1 an Olan,ne r* j—1 o,an (l,an,ne 4] j—1+1 an Olan,ne
0 Husu,Z (X ’ Qlog ) Husu,Z" (X ) Qlog ) Husu,Z\Z" (X ) Qlog ) T
Q(éz,x)T Q(PZO,XO)T Q(éZ,X)T
0 an (2l—j,an,ne I 0 o,an ()2l—j,an,ne o 1 an ()2l—j,an,ne
0 Husu (Z ) Qlog ) Husu (Z ) Qlog ) Husu_,Z\Zo (Z ; Q]Qg ) e

whose rows are exact sequences. Consider

P’ = Q(Pgo xo)(w®) € HI ) o (X0, Quer™®), w® € HY (27, Qe 47").

usu,Z° log log

Since Al*w' =0 € Hi;j}l\zo (xom, Q{;ag"’"e), we get, considering the smooth locus with good reduction

(Z\Z°)° C Z\Z° and X°° C X is an open subset such that X N (Z\Z°)° = X°°N (Z\Z°),

1 2l—j,an,
ow’ =0¢€ Husu,Z\ZO (Zan7 Qlog pan n6)7

2l—j,an,ne

since H! (Z\ZD)\(Z\ZO)O(Z"", Qg

usu,

) = 0 for dimension reasons, that is

H (q)(w) = Q(Gz.x)(w'), withw' € HY,(zon Q2l—damney

log

Hence H7(q)(w) = 0 since H(Z %", QF ) = 0 for all k > 0 and all Z’ € PVar(C). But since X is

log
projective, the F; degenerescence of the spectral sequence associated to the trivial filtration of the De
Rham complex shows that H7(e)(H7,, (X", An* 9 An, Q*~19")) = 0. Hence w = 0. O

5 Hodge Conjecture for complex smooth projective hypersur-
faces

We now state and prove using the result of section 3 and section 4 the main result of this article :

Theorem 1. Let X = V(f) C P¥ be a smooth projective hypersurface, with N = 2p + 1 odd. Let
A€ FPH?P(X Q). Then there exists an algebraic cycle Z € ZP(X) such that A = [Z].
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Proof. Consider U := P¥\X. Consider Resyp~x : M(X) — M(U)[—1] the canonical map given in
definition 1. We the have the commuative diagram of abelian group

HNQ(ResX’H;N )

HEp(U) Hpp'(X)y

HNa(U‘m)—e'U(U)lT THNIQ(X'J")—GU(X)I
(H" Bti(Res ))®oC
sl HN?l(Xanv(C)v

sing

Hs]ivng(Uanv (C)

whose arrows are isomorphisms. Denote w()\) := HYN "1a(X)()\) € FpHépR(X). We have

A = HYV "' Bti(Resx pn)(a), with a € H} (U™, Q).

sing

Then
w(\) = HN7'Q(Resx pr ) (w(a)), with w(a) := HNa(U)(a) € FPT HY(U).

Since ev(U)(w(a)) = a € HY

sing

(U, 2imQ), we have by proposition 3,

w(a) € HYOLyan (HEEL (U QNP 1Y)

usu Uan log
Hence
w(A) = HY " 'OLxan (" (Resx pv ) (w())) € OLxan (Hg, (X", e 10))-
Hence by proposition 4(ii), w(\) = [Z] with Z € ZP(X). O
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