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This paper studies an application of indefinite proximity learning to the prediction of baskets of products of logs in the sawmill industry. More precisely, it focuses on the usage of the dissimilarity space embedding framework to generate a set of features representing wood logs. According to this framework, data points are represented by a vector of dissimilarity measures toward a set of representative data points named landmarks. This representation can then be used to train any of the large variety of available ML models requiring structured features. However, this framework raises the problem of selecting these landmarks. A new method is proposed to select these landmarks which is compared with four other methods from the literature. Numerical experiments are run to compare these methods on a dataset from the Canadian sawmill industry. The data representations obtained are used to train random forests and neural networks ensemble models. Results demonstrate that both the Partition Around Medoids (PAM) method and the newly proposed CoreSelect methods lead to a small but significant reduction in the mean square error of the predictions.

INTRODUCTION

The process of sawing a wood log into lumber is diverging and in co-production. From a single log, a sawmill will obtain simultaneously several products with different dimensions and grades. In addition, the heterogeneity of shape and internal defects between logs make it difficult to anticipate what set of lumber would be obtained from sawing a log. All these factors greatly complicate production planning and control in this industry. Simulation tools have been, however, widely studied alone or in conjunction with other decision-support tools to alleviate these problems [START_REF] Chabanet | Toward digital twins for sawmill production planning and control: benefits, op-portunities, and challenges[END_REF]. Simulators can, in particular, be used to predict the set of lumber that would be obtained by sawing a specific log. This set of lumber is named the Basket of Products (BoP) of the log in the following of this study. To repeat this operation over all logs to be sawed, or at least a representative sample, allow to approximate the mix of product that would be obtained by a specific production plan.

Several authors, however, have mentioned the important computational time associated with saw-ing simulation models [START_REF] Morneau-Pereira | An optimization and simulation framework for integrated tactical planning of wood harvesting operations, wood allocation and lumber production[END_REF][START_REF] Wery | Simulation-optimisation based framework for sales and operations planning taking into account new products opportunities in a co-production context[END_REF]. This complicates their use for short-term decision problems which might still require several thousand simulation runs. To alleviate this problem, [START_REF] Morin | Machine learning-based metamodels for sawing simulation[END_REF], in particular, proposed to train machine learning surrogate models of these simulation models. These surrogate models, equivalently called metamodels, are machine learning models trained on past simulation results to predict the BoP of logs. These surrogate models are, therefore, approximations of the simulation models for specific sawmill configurations.

Many different sawmill simulation surrogate models have been studied in the literature. They can be distinguished, in particular, by the input considered to describe a log and predict its BoP. Some sawing simulation models like Optitek [START_REF] Goulet | Optitek: User's manual[END_REF] or SAWSIM1 can, indeed, process logs described by 3D scans of their surfaces. These scans are 3D point clouds providing information over the shape of the logs. Few ML models are, however, able to process this type of input directly. For this reason, [START_REF] Morin | Machine learning-based metamodels for sawing simulation[END_REF][START_REF] Morin | Machine learning-based models of sawmills for better wood allocation planning[END_REF] propose surrogate models making predictions from structured represen-tations of the logs based on know-how features commonly used in the industry. In particular, they use the length of the logs, their volumes, diameter at both extremities, curvature, and shrinking. [START_REF] Selma | An iterative closest point method for measuring the level of similarity of 3d log scans in wood industry. Service Orientation in Holonic and Multi-Agent Manufacturing: Proceedings of SOHOMA[END_REF] propose to use a dissimilarity function to compare pairs of logs from their scans and predict their BoP using a nearest-neighbors scheme. More precisely, they propose to use the Iterative Closest Point (ICP) dissimilarity which is a consequence of the ICP algorithm commonly used to align 3D shapes [START_REF] Besl | Method for registration of 3-d shapes[END_REF]. The idea of using pairwise ICP dissimilarity toward class medoids as features for other ML models was investigated, for example, by [START_REF] Chabanet | Medoid-based mlp: an application to wood sawing simulator metamodeling[END_REF] in the case of neural network surrogate models. Lastly, [START_REF] Martineau | Neural network architectures and feature extraction for lumber production prediction[END_REF] study several neural network surrogate models, including models based on the architecture pointnet [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF], which is able to learn directly from 3D point clouds.

This study focuses on surrogate models predicting BoP from pairwise dissimilarities. Several previous studies have, in particular, proposed sawing simulation surrogate models able to predict the BoP of a log based on a vector of features composed of the dissimilarities of this log toward a set of representative logs from the model training dataset. This strategy is called the dissimilarity space embedding framework in the literature [START_REF] Duin | The dissimilarity representation for pattern recognition: a tutorial[END_REF]. For example, [START_REF] Chabanet | Medoid-based mlp: an application to wood sawing simulator metamodeling[END_REF] use such vectors as input to multi-layer perceptrons, while (Chabanet et al., 2021a) use a variant of a naïve Bayes classifier. These past studies, however, do not study alternative methods for the selection of the representative data points, also called landmarks, used to generate the vectors of dissimilarity features fed to the classifier.

The main contribution of this study is, therefore, the proposition of a novel method to select landmarks and its comparison with four other methods from the literature. The landmarks selected by these methods are used to train two types of ensemble models to predict BoP of logs.

The remainder of this article is organized as follows. Section 2 reviews the literature on indefinite proximity learning and formally introduces the dissimilarity space embedding framework. Section 3 presents the learning problem studied, the landmarks selection methods compared in this study as well as the dataset used during experiments. Experimental results are detailed in section 4. Lastly, section 5 concludes this study.

INDEFINITE PROXIMITY LEARNING

Non-metric proximity (similarity or dissimilarity) functions naturally arise in many fields to compare how alike two data items are. For example, the dynamic time warping dissimilarity [START_REF] Müller | Dynamic time warping. Information retrieval for music and motion[END_REF] is a popular method to compare time series, or the Jaccard dissimilarity [START_REF] Luo | Text document clustering based on neighbors[END_REF] has been used in many studies to compare text documents. Learning from these proximity functions can be an attractive alternative to learning from descriptive features. Most of the common methods proposed to learn from proximity function require specific properties such as symmetry or semi-definiteness which are not always respected in practice. Several families of methods have been, however, proposed by the literature to deal with the non-metric case [START_REF] Schleif | Indefinite proximity learning: A review[END_REF]. Many methods, for example, rely on applying transformations to the proximity matrix M that contains the pairwise proximity evaluation on the training dataset to make it positive semi-definite [START_REF] Munoz | From indefinite to positive semi-definite matrices[END_REF]. Once transformed, the matrix M can, then, be used to train kernel-based models like Support Vectors Machines (SVM). The out-of-sample extension of these methods, i.e, their extension to data points not in the training dataset to make new predictions, is, however, often not straightforward, and computationally costly [START_REF] Schleif | Indefinite proximity learning: A review[END_REF].

Other authors, like [START_REF] Ong | Learning with non-positive kernels[END_REF], extend the theory of reproducing kernel Hilbert spaces, which underlie, for example, SVM, to reproducing Krein spaces. Learning algorithms in a Krein space can consider non-definite proximity matrices. This theory leads, in particular, to training models that are linear combinations of dissimilarities toward training data points.

Lastly, another general method, which is the one considered in this study, is the proximity (similarity or dissimilarity) space embedding method [START_REF] Duin | The dissimilarity representation for pattern recognition: a tutorial[END_REF]. Such a scheme first selects a small set of prototypes, called landmarks, in the training dataset. A point is, then, represented by the vector of dissimilarities toward these prototypes. More precisely, considering a training set D and a subset R = {r 1 , ..., r q } ⊆ D, a data point x is represented by:

D(x, R) = (d(x, r 1 ), ..., d(x, r q )), , (1) 
where d denotes the proximity function. The points r 1 , ..., r q are the landmarks.

The use of dissimilarity space embedding has been, in particular, extensively studied in the context of labeled graph classification [START_REF] Livi | Optimized dissimilarity space embedding for labeled graphs[END_REF]. This framework has been, similarly, applied to time series classification. [START_REF] Jain | Time series classification in dissimilarity spaces[END_REF], for example, study a method to train SVM models for time series classification, using the time warping dissimilarity and a dissimilarity space embedding framework. Lastly, this framework has been used to predict BoP of logs based on the ICP dissimilarity in (Chabanet et al., 2021a;[START_REF] Chabanet | Medoid-based mlp: an application to wood sawing simulator metamodeling[END_REF].

This method has, in particular, two main advantages which motivate its choice in this study. The first advantage is that it does not restrict the choice of the ML model used. Data points are effectively embedded in a vector feature space. Therefore, any of the many and extensively studied ML models designed to learn in this classic setting can be used. For the specific problem studied in this paper, this allows, for example, to train Random Forests (RF) or multi-layer perceptrons to predict BoP from the ICP dissimilarity space. RF were, in particular, proven effective when trained on know-how features [START_REF] Morin | Machine learning-based models of sawmills for better wood allocation planning[END_REF]. The second advantage is that it allows the user to select the dimension of the proximity space. This is important because, while a larger proximity space might lead to better models, at least up to some point, it also means that more proximity function evaluations are required to embed new data points before making a prediction. Such evaluations can, however, be computationally expensive. The ICP dissimilarity, for example, is the result of an iterative optimization algorithm whose complexity is dependent on the number of points in the point clouds. Computational efficiency is, however, very important in the context of surrogate models.

Such a method, however, raises the problem of how to select landmarks. The best selection method, however, is dependent on the learning problem and dataset [START_REF] Pękalska | Prototype selection for dissimilarity-based classifiers[END_REF].

CASE STUDY

This study focuses on the usage of the dissimilarity space embedding framework to train sawing simulation surrogate models to predict baskets of products of logs from 3D scans of their surface. From a machine learning perspective, this problem can be modeled and has been modeled as either a classification problem or as a regression problem.

If the problem is modeled as a classification problem, every BoP present in the training dataset is associated with a class to be predicted. The main advantage of this method is that the surrogate model will always predict a feasible BoP. However, these training datasets can contain many different BoP, some of them appearing only once in the training dataset. It is If the problem is modeled as a (multi-output) regression problem, a BoP is modeled as a vector of size p where p is the number of standard products that can be sawed in the sawmill considered. The i th element of this vector correspond to the quantity of the i th type of lumber present in the BoP. While this eliminates the problem caused by rare and unobserved BoP, it also means that unfeasible BoP will be predicted. Typically, BoP predicted by regression model contains fractional quantities of product. It should be noticed, however, that these predictions are not designed to be used individually, but aggregated by batches of logs and fed to operational research models. For these reasons, in this study, the problem of predicting BoP of logs is modeled as a regression problem.

Dataset

The dataset used in this study originates from the Canadian forest-product industry. It contains information over 2219 pine, fir, and spruce wood logs. More precisely, each log has a 3D scan, a set of six know-how features, and a BoP obtained by simulating the sawing of the log with the software Optitek.

The 3D scans are point clouds, describing the surface of the logs. They are, therefore, constituted of an unordered list of points with three coordinates each. The number of points in a cloud varies from scan to scan and is, in particular, dependent on the length of the logs. The points are ordered in rough ellipsoids spanning the log surface. An example of such a scan is provided in figure 1.

In addition to these scans, each log is described by six know-how features: its length, diameters at both extremities, curvature, shrinking, and volume. These features are, in particular, used by [START_REF] Morin | Machine learning-based metamodels for sawing simulation[END_REF] to predict BoP of logs. Models trained to predict BoP Some of these features are used in this industry to classify logs in the log yard. This is, in particular, the case of the length and diameters. Logs from different clusters would have different possible BoP. This dataset, in particular, can be divided into four clusters, based on the length of the logs. Figure 2 presents the histogram of the length of logs, to which was fitted a mixture of four Gaussian distributions.

The sawmill model set to the simulator Optitek to generate this dataset was able to produce 47 types of products. The BoP are, therefore, modeled as vectors of dimension 47. In total, 870 different BoP are present in this dataset, of which 614 appear only once.

Landmarks selection

In this study, five methods will be compared to select landmarks to train dissimilarity features. These dissimilarity features will also be compared to the knowhow features introduced in the previous section.

The first and simplest method is to select landmarks at random in the training dataset. It is used as a baseline, for example, by [START_REF] Pękalska | Prototype selection for dissimilarity-based classifiers[END_REF] on binary and multi-class classification problems. While systematic methods perform, overall, better, the difference is sometimes small and depends on the number of landmarks selected.

The second method is an algorithm providing a locally optimal solution to the k-medoid clustering problem. It is often named alternate in the literature. The k-medoid problem consist in finding a subset R = (r 1 , ..., r q ) in a dataset D = (x 1 , ..., x n ) so that R minimize:

q ∑ i=1 ∑ x∈C i d(x, r i ) , (2) 
with x ∈ C i if d(x, r i ) = min r∈R d(x, r).
This method is named k-center in [START_REF] Pękalska | Prototype selection for dissimilarity-based classifiers[END_REF] and is, overall, the best-performing method on the classification problems it was tested on. While [START_REF] Pękalska | Prototype selection for dissimilarity-based classifiers[END_REF] apply it on a class-by-class basis, however, it is applied on the whole dataset here. This method is based on a k-medoids algorithm, i.e, a generalization of the well-known k-means algorithm for data clustering. The landmarks correspond to the cluster centers. The general principle of this algorithm is presented in algorithm 1.

Algorithm 1 Alternate

Input D = (x 1 , ..., x n ), set of training inputs Output R = (r 1 , ..., r q ), set of landmarks Initialize R = (r 1 , ..., r q ) at random or following an heuristic.

Initialize clusters C 1 , ...,C q so that D = j∈ 1,q C j while End condition is False do for x ∈ D do i ← max j∈ 1,q (d(x, r j )) set x into C i end for for i ∈ 1, q do r i ← argmin x∈C i (∑ x∈C i (d(x, r j )) end for end while

This algorithm is iterative. The complexity of one iteration is O(n 2 ) with n the size of the training dataset [START_REF] Schubert | Fast and eager k-medoids clustering: O (k) runtime improvement of the pam, clara, and clarans algorithms[END_REF]. Iterations are performed until some ending condition appends, either that a maximum number of iterations is reached or that the set of landmarks stops changing.

The third method is based on the Partitioning Around Medoids (PAM) algorithm [START_REF] Sarle | Finding groups in data: An introduction to cluster analysis[END_REF]. It solves the same k-medoid problem and is more computationally intensive but more accurate [START_REF] Schubert | Fast and eager k-medoids clustering: O (k) runtime improvement of the pam, clara, and clarans algorithms[END_REF]. PAM is constituted of two parts: Build, which initializes the centers of the clusters, and Swap, which swaps cluster centers with other data points in order to decrease the clustering cost defined in equation 2. An outline of the Swap procedure is presented in algorithm 2. Depending on the exact implementation, the complexity of one iteration ranges from O(n 2 ) to O(q 2 n 2 ) with n the size of the training dataset and q the number of clusters. The implementation used for this article is O(q(nq) 2 ) [START_REF] Maranzana | On the location of supply points to minimize transportation costs[END_REF].

The fourth method evaluated in this study is named Dselect and proposed by [START_REF] Kar | Similarity-based learning via data driven embeddings[END_REF]. This heuristic is based on the idea that landmarks should be as dissimilar from one another as possible. In particular, they introduced a heuristic, named Dselect, that iteratively selects new landmarks as the ones minimizing the average dissimilarity toward previously selected landmarks. A pseudocode of this Algorithm 2 PAM Swap Input D = (x 1 , ..., x n ), set of training inputs Output R = (r 1 , ..., r q ), set of landmarks R ← Build(D) Initialize clusters C 1 , ...,C q empty for x ∈ D do i ← max j∈ 1,q (d(x, r j )) set x into C i end for while cost decrease do for r ∈ R do for x ∈ D \ R do Compute cost change when swapping r and x end for end for perform the best swap end while heuristic is presented in algorithm 3. It is an iterative greedy algorithm. Contrary to k-medoids where all landmarks are reevaluated at every iteration, Dselect starts from an empty set of landmarks and adds them one by one until the set is completed. As such, the complexity of the whole algorithm is O(nq 2 ) with n the size of the training dataset and q the number of landmarks. It is, therefore, less costly than Alternate and PAM as long as the number of landmarks remains small in comparison with the dataset size.

Algorithm 3 Dselect

Input D = (x 1 , ..., x n ), set of training inputs Output R = (r 1 , ..., r q ), set of landmarks

r 1 ← random element from D for i ∈ 1, q do r i ← argmax x∈D\R ( 1 i ∑ r j ∈R d(x, r j )) end for
The fifth method evaluated is a variant of Dselect which is proposed in this study. This method is named CoreSelect. A pseudocode is given in algorithm 4. Like Dselect, it is a greedy algorithm. The difference is that at every iteration, the next landmark is selected as the data point that maximizes their minimal dissimilarity with previously selected landmarks. A motivation for this modification of Dselect is that, in the metric case, this strategy yields an approximate solution to a q-center problem [START_REF] Dyer | A simple heuristic for the p-centre problem[END_REF]:

min R=(r 1 ,...,r q )⊂X ∆(r 1 , ..., r q ) , (3) 
with

∆(r 1 , ..., r q ) = max x∈X min R d(x, r i ) . (4)
More precisely, it ensures that the maximum distance between a point and the nearest selected landmark is at most twice that of the optimal solution. It should be noticed that this q-center problem is different from the one solved by the alternate and PAM algorithms. These algorithms minimize the sum of distances toward cluster centers. On the other hand, this method has been proven to be an approximate solution to the problem of minimizing the radiuses of the clusters. The complexity of this algorithm is the same as Dselect: O(nq 2 ).

Algorithm 4 CoreSelect

Input D = (x 1 , ..., x n ), set of training inputs Output R = (r 1 , ..., r q ), set of landmarks r 1 ← random element from D for i ∈ 1, q do r i ← argmax x∈D\R (min r j ∈R (d(x, r j )) end for

Surrogate models

Two ensemble models are used as sawing simulation surrogate models in this study. The first is the Random Forest (RF) algorithm [START_REF] Breiman | Random forests[END_REF]. The prediction of the forest is the average of the prediction of individual decision trees. Random forests were, in particular, selected for their good performances as sawmill simulator surrogate models in [START_REF] Morin | Machine learning-based metamodels for sawing simulation[END_REF][START_REF] Morin | Machine learning-based models of sawmills for better wood allocation planning[END_REF] on know-how features. An important characteristic of random forest is that, to lower the correlation between the base trees and further reduce the variance of the ensemble, trees are trained on bootstrap samples of the training dataset. In addition, every split of the tree is optimized on a random subsample of the available features. Hyperparameters for this model were selected by trial and error. In particular, the number of trees in the forest was set to 500, the total number of landmarks used for the dissimilarity space embedding was set to 100 and the fraction of the number of features considered to optimize each split was set to 10, except for the baseline using the know-how features. In this case, all six features are considered for each split selection.

The second ensemble model investigated in this study is an ensemble of small artificial neural network (ANN) models. These neural networks are feedforward models with a single hidden layer, trained with the Levenberg-Marquardt algorithm. Similarly to what was done in [START_REF] Chabanet | Medoid-based mlp: an application to wood sawing simulator metamodeling[END_REF], the activation function of the hidden layer is a hyperbolic tangent and the activation function of the output layer is a sigmoid. The sigmoid output, in particular, ensure that, after rescaling the predictions, the quantities of lumber predicted are always between 0 and the maximum quantity observed in the training dataset. The number of neurons in the hidden layer was set by trials and errors to 2, which is consistent with the results of [START_REF] Chabanet | Medoid-based mlp: an application to wood sawing simulator metamodeling[END_REF]. As for the random forest model, the number of landmarks was set to 100 and the number of weak learners to 500. The number of features used as input for each network was set to 10.

EXPERIMENTAL RESULTS

Experiments are run as follows. The dataset is, first, divided at random into a small training set of size 500, and an evaluation set of size 1719. For each landmark selection method, 100 landmarks are selected on the training set and used to embed the data in a dissimilarity space. The know-how features are also used to obtain a sixth representation of the data. For each representation, a random forest and an ANN ensemble are trained on the training set. The Mean Square Error (MSE) of the prediction is measured on the evaluation set. To average out the impact of the exact train-test separation of the dataset, this process is repeated 30 times.

Table 1 presents the number of landmarks selected by each method in each of the 4 length clusters defined in section 3.1. These numbers are averaged over 30 repetitions of the experiments. Different selection methods have different behavior. The number of landmarks selected by the random method in each cluster is, naturally, proportional to the size of each cluster. Therefore, the largest cluster, cluster 3, which represents 60% of the dataset, has, on average, approximately 60% of the landmarks. Similarly, cluster 4, which represents 22% of the dataset, contains, on average, approximately 22% of the landmarks. On the opposite, the smallest cluster, cluster 2, contains only 6.7% of the landmarks.

Both PAM and CoreSelect smooth slightly the distribution of the landmarks over the clusters. In particular, 40.0 and 35.9 landmarks are selected in average in cluster 3 by PAM and CoreSelect respectively. This is less than the amount selected by the random selection method. On the opposite, they select respectively 16.3 and 17.2 landmarks in cluster 2.

Dselect and Alternate have very different behavior. Dselect, in particular, mostly selects landmarks in the two extremal clusters, clusters 1 and 4. This might be explained, in the metric case, by the tendency of DSelect to select the next point far from the geometric median of the previously selected landmarks, which is the point minimizing the sum of distances toward the landmarks. On the opposite, Alternate selects most of the landmarks, 90 on average, from cluster 3 which is the largest cluster.

The MSE evaluated on the evaluation test for the different landmark selection methods and surrogate models are presented in table 2. Several facts have to be mentioned. First, the lowest MSE is obtained for the RF surrogate model and the PAM and CoreSelect landmark selection results. These two MSE cannot be said to be statistically different from these experiments. In particular, a paired student test over the MSE measured on the 30 repetitions of the experiment has a p-value of 0.41. It should be noticed, however, that CoreSelect has a lower computational cost than PAM. Comparing both these methods to the third best method, i.e., the RF model with random landmarks, yields p-values lower than 3 × 10 -5 in both cases. Therefore, both PAM and the newly proposed CoreSelect selection methods allow to improve upon the random baseline, as well as the know-how features. On the contrary, both the Dselect and Alternate selection methods show significantly worse MSE for the Random Forest model. P-values of the students test are 3 × 10 -10 and 5 × 10 -4 respectively. This might be due to the highly irregular dispersion of the landmarks across clusters.

In general, ANN ensemble surrogate models have higher MSE than RF surrogates. The impact of the various landmarks selection methods over the average MSE is, however, different. In particular, in this case, the method with the lowest MSE is PAM alone. This time, using CoreSelect does not lead to lower MSE than the random method. In particular, the p-value of a paired student test is, here, 0.32. Both Dselect and Alternate, however, lead to higher MSE than the random selection method.

Selection method

Selection Time Random 8.9 × 10 -5 (2.8 × 10 -4 ) Alternate 2.6 × 10 -2 (1.9 × 10 -3 ) PAM 15.7 (0.6) Dselect 2.0 × 10 -2 (6.7 × 10 -4 ) CoreSelect 2.3 × 10 -2 (6.8 × 10 -4 ) Table 3: Average and standard deviation over 100 repetitions of the time required by each method to select 100 landmarks in a subset of size 500 of the dataset.

To complement the previous experimental results, the computation times required by the selection methods with the implementation used for these experiments were estimated. Dselect and CoreSelect were implemented from scratch in Python using the numpy library. Alternate and PAM were implemented as wrapper around clustering functions from the scikitlearn-extra 2 library. All experiments were run on a computer with an intel Core i7 vPRO 10 th generation CPU at 2.70GHz. Table 3 presents the average times required by each landmark selection method, over a hundred new random subsets of size 500 of the whole dataset. Unsurprisingly, the fastest method is by far the random selection. Dselect, CoreSelect, and Alternate have very similar computational times, between 0.020 and 0.026 seconds in these experiments. On the opposite, PAM is very slow, as it needs, on average, 15.7 seconds to select the landmarks. Considering that the two best methods are, here CoreSelect and PAM which perform similarly with random forest models, Coreselect present a clear advantage in terms of time.

CONCLUSION

This article studies surrogate models for sawmill simulation. In particular, it focuses on the use of the dissimilarity space embedding framework to create a feature space used to train models and make predictions. Because this framework raises the question of the methods used to select the landmarks which form its core, five landmarks selection methods are compared on this method.

Numerical experiments were run using a dataset from the Canadian Sawmill industry to train RF and ANN ensemble models on data representations obtained from each method. Results were also compared with baselines obtained from know-how representation of the data points.

Among the combinations of landmarks selection methods and ML models evaluated, the lowest MSE was obtained for the RF model, with landmarks obtained from either the PAM or the newly proposed CoreSelect method. CoreSelect, however, has lower computational complexity than PAM.

Several limits to this study should, however, be mentioned and lead to future works. First, previous works have shown that the performances of these surrogate models can change widely from one sawmill to another, especially depending on the number of standard products they produce. Therefore, the experiments presented in this study should be repeated on other independent datasets. Similarly, the impact of the size of the training dataset and of the number of landmarks should be investigated in detail. Lastly, the reason why CoreSelect leads to lower MSE than the random baseline with the RF models but not with the ANN ensemble should be explored as it might lead to a deeper insight into the behavior of these models on dissimilarity spaces.
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 1 Figure 1: Example of a 3D scan of a log also possible that the training dataset does not contain all of the possible BoP.If the problem is modeled as a (multi-output) regression problem, a BoP is modeled as a vector of size p where p is the number of standard products that can be sawed in the sawmill considered. The i th element of this vector correspond to the quantity of the i th type of lumber present in the BoP. While this eliminates the problem caused by rare and unobserved BoP, it also means that unfeasible BoP will be predicted. Typically, BoP predicted by regression model contains fractional quantities of product. It should be noticed, however, that these predictions are not designed to be used individually, but aggregated by batches of logs and fed to operational research models. For these reasons, in this study, the problem of predicting BoP of logs is modeled as a regression problem.
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 2 Figure 2: Histogram of the length of the logs in the dataset from these descriptive features are, therefore, used as baselines in this study.Some of these features are used in this industry to classify logs in the log yard. This is, in particular, the case of the length and diameters. Logs from different clusters would have different possible BoP. This dataset, in particular, can be divided into four clusters, based on the length of the logs. Figure2presents the histogram of the length of logs, to which was fitted a mixture of four Gaussian distributions.The sawmill model set to the simulator Optitek to generate this dataset was able to produce 47 types of products. The BoP are, therefore, modeled as vectors of dimension 47. In total, 870 different BoP are present in this dataset, of which 614 appear only once.

Table 1 :

 1 Average number and standard deviation over 30 repetitions of the number of landmarks in each length cluster

	Selection method	Cluster 1	Cluster 2	Cluster 3	Cluster 4
	Random	12.0 (3.1)	6.7 (2.5)	59.9 (5.9)	21.5 (4.4)
	Alternate	3.3 (1.2)	3.0 (1.3)	90.2 (2.0)	3.5 (1.0)
	PAM		23.8 (2.9)	16.3 (2.6)	40.0 (2.4)	19.9 (2.2)
	Dselect		48.8 (0.5)	0.03 (0.2)	0.9 (0.6)	50.3 (0.6)
	CoreSelect	27.5 (3.0)	17.2 (3.0)	35.9 (3.1)	19.4 (1.8)
	Selection	Random	ANN		
	method	Forest	ensemble		
	Know-how	1.819 (0.035) 1.968 (0.020)		
	Random	1.773 (0.027) 1.828 (0.020)		
	Alternate	1.847 (0.035) 1.985 (0.041)		
	PAM	1.762 (0.029) 1.823 (0.020)		
	Dselect	1.781 (0.034) 1.855 (0.023)		
	CoreSelect	1.763 1.830 (0.020)		

Table 2 :

 2 Average and standard deviation over 30 experiment repetitions of the MSE obtained for each model on the evaluation set.

https://www.halcosoftware.com/ software-1-sawsim, last accessed May

https://scikit-learn-extra.readthedocs.io/ en/stable/install.html, last accessed in May 2023
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