N

N

A Demonstration of End-User Code Customization
Using Generative Al
Mathieu Acher

» To cite this version:

Mathieu Acher. A Demonstration of End-User Code Customization Using Generative AI. VAMOS
2024 - 18th International Working Conference on Variability Modelling of Software-Intensive Systems,
Feb 2024, Bern, Switzerland. pp.1-6, 10.1145/3634713.3634732 . hal-04312909

HAL Id: hal-04312909
https://hal.science/hal-04312909
Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04312909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Demonstration of End-User Code Customization Using
Generative Al

Mathieu Acher
Univ Rennes, IRISA, Inria, CNRS, IUF
Rennes, France
mathieu.acher@irisa.fr

ABSTRACT

Producing a variant of code is highly challenging, particularly for
individuals unfamiliar with programming. This demonstration in-
troduces a novel use of generative Al to aid end-users in customizing
code. We first describe how generative Al can be used to customize
code through prompts and instructions, and further demonstrate
its potential in building end-user tools for configuring code. We
showcase how to transform an undocumented, technical, low-level
TikZ into a user-friendly, configurable, Web-based customization
tool written in Python, HTML, CSS, and JavaScript and itself con-
figurable. We discuss how generative Al can support this transfor-
mation process and traditional variability engineering tasks, such
as identification and implementation of features, synthesis of a
template code generator, and development of end-user configura-
tors. We believe it is a first step towards democratizing variability
programming, opening a path for end-users to adapt code to their
needs.

CCS CONCEPTS

« Software and its engineering — Software product lines;
Context specific languages; - Computing methodologies —
Machine learning approaches.

KEYWORDS

variability, end-user programming, software product lines, genera-
tor, generative Al, LLM, code synthesis, customization

1 INTRODUCTION

Customizing code is highly challenging, particularly for individuals
unfamiliar with programming. The customization of code involves
modifying or extending an existing piece of software code to create
a new, different variant that has, e.g., different features or func-
tionalities. The process involves different activities. There is first
the need to understand existing code. A code can be more or less
documented, written by someone else, or simply challenging to
comprehend. There is also the need to master different program-
ming languages, technologies, frameworks, or libraries, each with
a specific syntax. A person familiar with one language may strug-
gle to read, let alone modify, code written in a different language.
Furthermore, each modification can potentially affect other parts
of the code. In general, there is a gap between the intention and
the technical realization. Programming per se is already a difficult
task and variability further increases this complexity since multiple
features, code variations, and an exponential number of possible
variants should be implemented [4, 27].

In this demonstration paper, we defend the idea that generative
Al and large language models (LLMs) can be leveraged to support

end-users in the customization of code. We first show how gen-
erative Al can be used to customize code through prompts and
instructions. In a sense, LLMs act as a new variability tool capable
of transforming a high-level specification (prompt) into variable
code or features. We then demonstrate LLMs’ potential in building
end-user tools for configuring code. Such dedicated tools for end-
users do not operate over technical code and provide simplified
interfaces for customization.

Throughout the demonstration, we aim to show how to trans-
form an undocumented, technical, low-level TikZ code into a user-
friendly, configurable version via a Web-based customization tool.
This transformation process involves identifying and implementing
explicit features, leading to a template code generator accessible
to the end-user. Moreover, the Web application, written in Python,
HTML, CSS, and JavaScript, is itself customizable, thanks to end-
user interactions with generative Al to control the layout, the image
border or size. We believe it is a first step towards democratizing
variability programming, opening a path for end-users to adapt
code to their needs.

1.1 Related work

LLMs such as BERT [9], GPT-2 [34], GPT-3 [5], GPT-4 [33], PaLM [8],
to name a few, are scaling to support a variety of tasks such as text
generation, question-answering, arithmetic on numbers, etc. [10,
15, 21, 36, 39]. In software engineering [12, 18], code assistants have
been proposed like Alphacode, CodeParrot or Codex [7, 24] and are
now deployed at scale, such as GitHub Copilot [16].

The application of machine learning in Software Product Line
(SPL) and variability engineering encompass various use cases [3,
17, 20, 22, 30-32, 37, 38, 40-43, 45]. These use cases include perfor-
mance prediction, optimization, specialization, debugging, detec-
tion of configuration-related errors, etc. In the current study, we
focus on the potential of generative artificial intelligence and LLMs
that rely on transformers’ technology, an advanced deep learning
architecture initially developed for Natural Language Processing
(NLP) applications. The adoption of NLP in SPL engineering has
drawn several interests, predominantly for domain analysis and
requirements engineering [6, 13, 19, 28, 29, 35]. The usage of LLMs
into variability has recently started to catch attention. Acher and
Martinez [2] explored how SPL can be synthesized out of variants.
Galindo et al. [14] evaluated the ability of LLMs to synthesize valid
instances of feature models. Acher et al. [1] introduced the use of
LLMs to assist developers in implementing variability in different
programming languages and mechanisms. In this demonstration
paper, (1) we specifically target end-users’ scenarios; (2) we span
different kinds of artifacts (not only TikZ) and replicate on differ-
ent codes, engineering different generators and configurators; (3)

we give more details about the process (feature location, template
synthesis, etc.).

End-user software engineering [23, 25], a branch of software
engineering, focuses on empowering individuals who are not pro-
fessional programmers to design, implement, and maintain software
applications. This paper specifically considers how end-users can
implement variability with the assistance of generative AI. While
traditional works in end-user programming have typically focused
on providing dedicated tools and notations, this research proposes
two novel directions: first, relying on LLMs to construct these spe-
cialized tools, and second, considering LLMs themselves as a tool
and an interface for end-users. Additionally, our approach is tai-
lored to assist users in dealing with "unfamiliar" software-intensive
artifacts, aiming to enable or simplify their customization.

1.2 Audience

We believe a demonstration of generative Al technology can be of
interest for the variability community, especially when specifically
targeting end-users and variability. We are targeting two kinds of
users: (1) end-users that want to synthesize variants of a piece of
(unfamiliar) code, automatically generate and configure variants
with dedicated tools; (2) developers that want to build generators,
configurators, or SPLs. Both can benefit from generative Al for some
variability tasks (feature location, template synthesis, variation
implementation, automated derivation of variants). The approach
is also applicable to different kinds of technical artefacts and code:
TikZ, HTML, CSS, JavaScript, SVG, SCAD, etc.

We share sessions (prompts used, sequences of interactions, etc.)
and resulting codes:

https://github.com/acherm/progvary-withgpt/

The repository contains additional examples that go beyond the
end-to-end demonstration we plan to conduct. During the demon-
stration, the sessions will be presented, reviewed and discussed. We
believe our prompts can be reused and revisited on top of different
LLMs and generative Al technologies.

2 FROM UNFAMILIAR, NON-CUSTOMIZABLE
CODE TO END-USER CUSTOMIZATION
WITH LLM

We are tasked with the challenge of personalizing a squid image,
developed in TikZ, a commonly utilized package within IKTEX for
creating illustrations. A visual of the squid is rendered in the bottom
right of Figure 2. Due to the lack of space, we refer to Listing 1 that
gives a rough idea of the TikZ code. It should be noted that the
original TikZ code is not subject to variation and here to produce a
unique squid. The 40 lines of code are arguably hard to understand:
there is no comment for describing the different parts of the squid
while TikZ code combines different low-level primitives like fill,
ellipse, etc. The code was found in a public forum [44], created by
a TikZ expert, without many explanations.

Hence, the challenge is as follows: transforming the unfamiliar,
non-variable code into something configurable by end-users.

Listing 1: Generated template TikZ code (excerpt)

squidt/.pic={
\begin{scope}[x=3cm/480,y=3cm/480]

Mathieu Acher

\useasboundingbox (-256, -256) (256, 256);
\reflect[split={DeepOrange500 and DeepOrange7003}1{

(% if agressive_shading %)

\fill [left color=fill color, right color=fill color
140!black, middle color=fill color!70!black]
(0,96) ellipse [x radius=96, y radius=128]

(% else %)

\fill [fill color] (0,96) ellipse [x radius=96, y
radius=1281];

(% endif %)

% \fill [fill color] (@0,96) ellipse [x radius=96, y
radius=128];

% \fill [fill color] (0,96) ellipse [x radius=96, y
radius=128];

(% if crazy_tentacles %)

(% if agressive_shading %)

\path [left color=fill color, right color=fill color
140!black, middle color=fill color!70!black,
shading angle=90]

(% else %)

(% endif %)

(% if original_tentacles %) %%%% original tentacles

(% if agressive_shading %)

\path [left color=fill color, right color=fill color
'40!black, middle color=fill color!70!black,
shading angle=90]

(% else %)

\fill [fill color]

(% endif %)

(72,-16)
controls ++(270:128) and ++(270:160) .. (o,
-16);

(% endif %)

\fill [fill color] (64, 16) circle [radius=48]

\fill [((outer_eye_color))]1 (64, 16) circle [radius
=32];

\fill [((inner_eye_color))] (64, 16) circle [radius
=121];

\fill [fill colorl (-4, -20)
controls ++(270:256) and ++(225: 64) (128,-192)

}

(% if prominent_mouth %)

\fill [DeepOrange900] (-40,-40) arc (150:390:40 and 20)
arc (390:150:40 and 50);

(% else %)

\fill [DeepOrange900]

(-40,-40) arc (180:360:40 and 16) arc (360:180:40 and
40);

(% endif %)

% \fill [DeepOrange300]

(% for spot in spots %)

(\fill [((spot.color)) 1 (((spot.x)), ((spot.y)
)) circle [radius=((spot.radius))] ;

(% endfor %)

\end{scope}

3,

2.1 Customizing code with LLM

We now detail how LLMs assisted us in customizing the TikZ code.
We have used! ChatGPT-4 [33], using the Web chat interface of
OpenAl Using "prompts” (referred to as

(User) green boxes

!Recordings of the sessions and interactions will be made available for sharing.

https://github.com/acherm/progvary-withgpt/

A Demonstration of End-User Code Customization Using Generative Al

), which are natural language instructions that can incorporate
existing code, LLMs automatically generates programs and potential
explanations (see

(LLM) red boxes

hereafter). We start asking about the TikZ code.

(User) What'’s this TikZ code is doing?

(LLM) This TikZ code defines a custom drawing or picture called
"squid" using the ".pic" syntax. The code specifies the coordinates,
shapes, and colors of various elements to create the image of a
squid. The code consists of several parts:

\begin{scope}[x=3cm/480,y=3cm/480]: This line begins a
scope environment and scales the x and y coordinates
to create a proportional drawing.

\reflect[split={DeepOrange500 and DeepOrange7003}1{...}:
This block of code defines the symmetrical parts of
the squid, such as the body and tentacles. It uses a

custom reflect command that is not part of the

standard TikZ package (you will need the
corresponding macro definition for this to work).
The split option specifies the colors for the left
and right halves of the squid.

A line-by-line technical explanation of the TikZ code is not that
helpful, especially for end-users. The level of details is too low, and
the explanations are not really actionable, especially for relating
code elements to visual aspects.

Instead, we can directly ask what kinds of customizations we
want.

(User) can you vary the eye of the squid with the blue color? tell
me what to varies in the TikZ code

(LLM) To change the color of the squid’s eye to blue, you’ll need
to modify the fill commands that define the eye. The lines that
define the eye are:

\fill [Grey50] (64, 16) circle [radius=32];
\fill [BlueGrey900] (64, 16) circle [radius=12];
To change the eye color to blue, you can replace the colors

\fill [blue] (64, 16) circle [radius=32];
\fill [blue!60!white] (64, 16) circle [radius=121;

The answer is correct. The visual and high-level description
("eyes") has been mapped to a precise line of code. The proposed
variation is syntactically correct and only focuses on code parts
that need to be customized. End-users can locate and implement
other features related to the number of spots, the tentacles, etc. A
series of prompts can be fed to an LLM that then returns the piece
of code to modify and the suggested modification corresponding to
a feature.

squid squid2 squidt

Figure 1: Three variants of a squid: original configuration,
manual configuration, random configuration

2.2 Building customizable tools with LLM

So far, end-users can customize parts of the code with LLM. How-
ever, there are some limitations:

e end-users have to manually integrate the code and follow
technical instructions;

e end-users can apply individual customizations but not their
combinations;

e interactions of LLMs can change from time to time, even
with the same prompt. LLMs are by construction non-determinist,
and so are corresponding suggestions of customization.

An answer to these limitations is to engineer customization
tools and build an actual configurable system composed of different
features. It has several benefits: (1) the integration of customized
transformations can be automated; (2) features can be combined
to synthesize variants; (3) the engineering of tools maturates the
customization knowledge and makes it reliable. Our idea is to build
customization tools with LLM.

(User) would it be possible to vary the original code using a
templating engine in Python in such a way it is possible to have
either eye of the squid with the blue color or the original eye
(as in the original TikZ code)? ... can you parameterize the spots
with a random color? if not random mode, then it’s the default
color

Listing 2 provides an excerpt of the Python generator in charge
of deriving variants out of template instantiations of Listing 1.

from jinja2 import Environment, FileSystemLoader
import random
def random_color():
color_options = ['Blue500"', 'Yellow50', 'Lime900"', '
DeepOrange900 ']
return random.choice(color_options)

Define the random_mode flag (True for random colors,
False for the default color)

random_mode = True
Define the spots
o_spots = [

]

Render the template with the chosen eye colors/spots
crazy_tentacles = False # True

original_tentacles = False # True

prominent_mouth = True

agressive_shading = True

Render the template with the chosen values
with open('squid_output.tex', 'w') as output_file:
output_file.write(template.render(eye_colors, spots=
extra_spots, crazy_tentacles=crazy_tentacles,
prominent_mouth=prominent_mouth,
agressive_shading=agressive_shading,
original_tentacles=original_tentacles))

Listing 2: Generated Python generator

Once individual features have been implemented, there is then
the need to combine all variations together. As TikZ has no obvi-
ous built-in mechanisms to support variation, we can implement
a template-based code generator with LLM. Listing 1 shows an
excerpt of the template. It should be noted that the prompt comes
after the series of prompts for locating and implementing features
(9 features were identified at the time of the session).

2.3 Further customization

The Python generator can then be used to synthesize a gallery of
diverse squids (e.g., with random colors and scales). The generator
can also be controlled through a Web application (see Figure 2). The
client side offers to users the control to configure different features
of a squid, while the server side internally calls the template-based
generator and renders the images in SVG. During the demonstration,
we will describe (1) the use of the Web configurator; (2) the effort
needed to engineer it. Moreover, end-users can also customize other
aspects of the Website. In the top, right-hand side of Figure 2, there
is a configuration panel that controls different features: (1) layout:
vertical, horizontal, or hybrid, having an effect on how the image
is located w.r.t. the squid configurator panel; (2) whether there is a
border on top of the image. This configuration perspective operates
over the HTML and CSS. It has been typically obtained through
high-level interactions describing some refinements of the Website.

In the bottom, right-hand side of Figure 2, there is another config-
uration panel that can customize the image (1) its relative position
and the ability to move from left to right the squid; (2) its size;
(3) its padding; (4) the ability to flip or mirror the image; (5) its
rotation. This configuration aspect of the squid internally operates
over an SVG artefact. For each variation point, high-level instruc-
tions have been formulated to specify the intent. The variations
have then been implemented by the LLM through the synthesis of
JavaScript functions that manipulate the SVG. Finally, at the center
of Figure 2 and below the SVG image, the variant of the TikZ code
is depicted. More technical users can benefit from this code, and
the idea is that end-users never interact with it. Overall, all these
features and variations, including the underlying Python, HTML,
CSS, and JavaScript have been synthesized through interactions
with generative AL

To summarize, Figure 2 demonstrates the final result of end-user
customization of TikZ code, but also with Python, HTML, CSS, and
JavaScript. We also show that the approach is applicable to other
technical artefacts like SVG.

3 THE RISE AND FALL OF LLMS

LLMs can support end-users or developers in the following vari-
ability activities, with pros and cons.

Code understanding. Gaining a thorough comprehension of a
technical artifact is important before customization to ensure any

Mathieu Acher

edits will have the expected effect. Unfortunately, the explanations,
though correct, are often too low-level and may not resonate with
the intended audience (e.g., users not familiar with TikZ).
Feature location. Instead of directly editing the code, users formu-
late prompts and LLMs can map high-level descriptions into lines
of code. The promise is to raise the level of abstraction and gives to
end-users the means to express their intent onto a technical arte-
fact. The counterpart is that LLMs can be inaccurate and provide a
wrong mapping, with unexpected results. In our experience, several
interactions might be needed to guide or correct the LLM. A chal-
lenge, and a possible barrier for end-users, is that some interactions
require a technical expertise (e.g., to report on compilation errors).
Feature and variation implementation. LLMs can synthesize
variants of a piece of code, aiding end-users who do not have to
write code themselves. For developers, this generative approach
not only boosts productivity, but is also advantageous for those
unfamiliar with a particular technological domain. A risk is that
the generated code can be of bad quality, leading to compilation
errors or wrong implementation of a feature, and calling to debug
and further interact. Another challenge arises from feature interac-
tions: as the code base expands with added features, managing and
understanding the complex interplay between them can become
increasingly difficult, especially for end-users that are not supposed
to deal with this kind of technical complexity.

Combination of features and automated derivation. LLMs can
synthesize template-based generators or configurators (including
user interfaces) that provide the means to combine different fea-
tures. This task falls beyond the skill set of end-users, whereas the
boilerplate code can significantly enhance developers’ experience.
A counterpart is that LLMs might improperly handle the underlying
logics, such as commonalities and dependencies between features.
In our end-user scenarios, we did not use LLMs for specifying
constraints across features, though some works have emerged to
synthesize feature models [14].

Code integration, back and forth. Incorporating LLM outcomes
require a back-and-forth with the code base. It is an obstacle for fully
automating the involvement of end-users. This iterative process
often requires continuous switching and adjustments, adding layers
of complexity and potential frustration for developers. The emer-
gence of Al-based code environments can mitigate this issue. We
envision specialized development environments, geared towards
end-users, and capable of parsing, integrating, and executing the
suggested modifications.

Prompts. Specifying effective, tailored prompts for each inter-
mediate task, ranging from code understanding to variation im-
plementation, is essential. A research direction is to thoroughly
evaluate LLMs for their robustness and sensitivity to prompts in
realizing variability tasks. Existing studies suggests that prompt
variations can have an impact on the quality of the generated
code [11, 12, 18, 26]. Our goal is to maintain the possibility of
informal, high-level formulations, embracing the spirit of end-user
programming. However, it might well be the case that more struc-
ture and detail are needed to make an LLM effective. We envision
having a systematic prompting strategy that could integrate the
informal directives of end-users while offering a structured frame-
work for more technical people.

A Demonstration of End-User Code Customization Using Generative Al

Customize Your Squid

[J crazy Tentacles
Prominent Mouth
Aggressive Shading
Original Tentacles
Outer Eye Color:

L]

Inner Eye Color:

[

Number of Extra Spots:

Your Squid

1kz,border=5]{standalone}
\usepackage[efix=]{xcolor-material}
\pgfmathdeclarerandomlist{material}{%
{Red}{Blue}{Green}}

\tikzset{%
half clip/.code={

® Random color

for spots?

\clip (@, -256) rectangle (256, 256);

- 3
SeneralelSquid color/.code=\colorlet{fill color}{#1},

HTML Configuration

Layout:

Border for Image:

SVG Configuration

Moving the squid...

Size of the squid:

l 1

Padding:

Flip/Mirror:

ol

Rotation:

Figure 2: End-user customization of (1) TikZ code (squid) (2) HTML/CSS (Website layout) (3) SVG (post-process over the resulting
image). The Python template-based generator produces a variant of the TikZ code, which is displayed, but end-users do not

interact with it.

4 CONCLUSION

In this demonstration, we plan to showcase how LLMs can be
leveraged to support end-users in the customization of code and
technical artefacts. We aim to describe how to transform an undocu-
mented, technical, low-level TikZ into a user-friendly, configurable,
Web-based customization tool written in Python, HTML, CSS, and
JavaScript and itself customizable. Other demonstrations over SVG
and OpenSCAD artefacts are also planned. Spanning topics from
code understanding to implementing features and offering end-user
configurators, the presentations will provide an opportunity to re-
view the benefits and drawbacks of generative Al for supporting
variability tasks.

Acknowledgements. We thank reviewers for their valuable
suggestions for future work.

REFERENCES

[1] Mathieu Acher, Jean-Marc Jézéquel, and José A. Galindo. 2023. On Programming
Variability with Large Language Model-based Assistant. In Proceedings of the
27th International Systems and Software Product Line Conference (SPLC 2023) -
Research Track (SPLC °23). ACM, New York, NY, USA.

[2] Mathieu Acher and Jabier Martinez. 2023. Generative Al for Reengineering Vari-
ants into Software Product Lines: An Experience Report. In Proceedings of the
27th ACM International Systems and Software Product Line Conference - Volume
B, SPLC 2023, Tokyo, Japan, 28 August 2023- 1 September 2023, Paolo Arcaini,
Maurice H. ter Beek, Gilles Perrouin, Iris Reinhartz-Berger, Ivan Machado, Sil-
via Regina Vergilio, Rick Rabiser, Tao Yue, Xavier Devroey, Ménica Pinto, and
Hironori Washizaki (Eds.). ACM, 57-66. https://doi.org/10.1145/3579028.3609016

[3] Juliana Alves Pereira, Hugo Martin, Mathieu Acher, Jean-Marc Jézéquel, Goetz
Botterweck, and Anthony Ventresque. 2021. Learning Software Configuration
Spaces: A Systematic Literature Review. Journal of Systems and Software (JSS)
(June 2021). https://doi.org/10.1145/nnnnnnn.nnnnnnn

[4]

[10]

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer-Verlag.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Jessie Carbonnel. 2018. L’analyse formelle de concepts: un cadre structurel pour
I’étude de la variabilité de familles de logiciels. Ph.D. Dissertation. Université
Montpellier.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing Large Language Models Trained on Code. Technical Report arXiv:2107.03374.
arXiv. https://doi.org/10.48550/arXiv.2107.03374 arXiv:2107.03374 [cs] type:
article.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin,
Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang,
Kellie Webster, Marie Pellat, Kevin Robinson, Kathy Meier-Hellstern, Toju Duke,
Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2021. GLaM: Efficient Scaling of Language Models with Mixture-of-Experts.
arXiv:2112.06905 [cs.CL] https://arxiv.org/abs/2112.06905

https://doi.org/10.1145/3579028.3609016
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.48550/arXiv.2107.03374
https://arxiv.org/abs/2107.03374 [cs]
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2112.06905

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Jean-Baptiste Ddderlein, Mathieu Acher, Djamel Eddine Khelladi, and Benoit
Combemale. 2023. Piloting Copilot and Codex: Hot Temperature, Cold Prompts,
or Black Magic? arXiv:2210.14699 [cs.SE]

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large Language Models for Software Engineer-
ing: Survey and Open Problems. arXiv preprint arXiv:2310.03533 (2023).

Alessio Ferrari, Giorgio Oronzo Spagnolo, and Felice dell’Orletta. 2013. Mining
commonalities and variabilities from natural language documents. In SPLC.
José A. Galindo, Antonio J. Dominguez, Jules White, and David Benavides. 2023.
Large Language Models to generate meaningful feature model instances. In
Proceedings of the 27th ACM International Systems and Software Product Line
Conference - Volume A, SPLC 2023, Tokyo, Japan, 28 August 2023- 1 September
2023, Paolo Arcaini, Maurice H. ter Beek, Gilles Perrouin, Iris Reinhartz-Berger,
Miguel R. Luaces, Christa Schwanninger, Shaukat Ali, Mahsa Varshosaz, Angelo
Gargantini, Stefania Gnesi, Malte Lochau, Laura Semini, and Hironori Washizaki
(Eds.). ACM, 15-26. https://doi.org/10.1145/3579027.3608973

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020. Injecting Numerical Rea-
soning Skills into Language Models. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 946-958. https://doi.org/10.18653/v1/2020.acl-main.89
Github. 2021. GitHub Copilot - Your Al pair programmer. https://copilot.github.
com

Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In ASE.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large language models for soft-
ware engineering: A systematic literature review. arXiv preprint arXiv:2308.10620
(2023).

Nili Itzik and Iris Reinhartz-Berger. 2014. SOVA - A Tool for Semantic and
Ontological Variability Analysis. In Joint Proceedings of the CAiSE 2014 Forum
and CAISE 2014 Doctoral Consortium. 177-184. http://ceur-ws.org/Vol-1164/
PaperDemo06.pdf

Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Akshay Patel, and Yuvraj
Agarwal. 2017. Transfer Learning for Performance Modeling of Configurable
Systems: An Exploratory Analysis. In IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE Press, 497-508.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020.
How Can We Know What Language Models Know? Transactions
of the Association for Computational Linguistics 8 (2020), 423-438.
https://doi.org/10.1162/tacl_a_00324 arXiv:https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf

Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. 2019. Distance-Based Sampling of Software Configuration Spaces.
In Proceedings of the International Conference on Software Engineering (ICSE).
Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-User Software Engineering. ACM Comput. Surv. 43,
3, Article 21 (apr 2011), 44 pages. https://doi.org/10.1145/1922649.1922658
Thomas Wolf Lewis Tunstall, Leandro von Werra. 2022. Natural Language Process-
ing with Transformers, Revised Edition [Book]. https://www.oreilly.com/library/
view/natural-language-processing/9781098136789/ ISBN: 9781098136796.
Wendy E. Mackay. 1990. Patterns of Sharing Customizable Software. In Proceed-
ings of the 1990 ACM Conference on Computer-Supported Cooperative Work (Los
Angeles, California, USA) (CSCW ’90). Association for Computing Machinery,
New York, NY, USA, 209-221. https://doi.org/10.1145/99332.99356

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli,
Simone Scalabrino, Rocco Oliveto, and Gabriele Bavota. 2023. On the robustness
of code generation techniques: An empirical study on github copilot. arXiv
preprint arXiv:2302.00438 (2023).

Gabriela K Michelon, Wesley KG Assuncéo, David Obermann, Lukas Linsbauer,
Paul Griinbacher, and Alexander Egyed. 2021. The life cycle of features in highly-
configurable software systems evolving in space and time. In Proceedings of
the 20th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. 2—15.

Daniel-Jesus Munoz, Dilian Gurov, Ménica Pinto, and Lidia Fuentes. 2021. Cate-
gory Theory Framework for Variability Models with Non-functional Require-
ments. In Advanced Information Systems Engineering - 33rd International Confer-
ence, CAISE 2021, Melbourne, VIC, Australia, June 28 - July 2, 2021, Proceedings
(Lecture Notes in Computer Science, Vol. 12751), Marcello La Rosa, Shazia W. Sadiq,
and Ernest Teniente (Eds.). Springer, 397-413. https://doi.org/10.1007/978-3-
030-79382-1_24

Alexandr Murashkin, Michal Antkiewicz, Derek Rayside, and Krzysztof Czar-
necki. 2013. Visualization and exploration of optimal variants in product line
engineering. In 17th International Software Product Line Conference, SPLC 2013,
Tokyo, Japan - August 26 - 30, 2013, Tomoji Kishi, Stan Jarzabek, and Stefania
Gnesi (Eds.). ACM, 111-115. https://doi.org/10.1145/2491627.2491647

(30]

(40]

[41]

[42]

[44]

[45]

Mathieu Acher

I Made Murwantara, Behzad Bordbar, and Leandro L. Minku. 2014. Measuring
Energy Consumption for Web Service Product Configuration. In Proceedings
of the 16th International Conference on Information Integration and Web-based
Applications & Services (Hanoi, Viet Nam) (iiWAS). ACM, New York, NY, USA,
224-228.

Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using Bad
Learners to Find Good Configurations. In Proceedings of the European Software
Engineering Conference/Foundations of Software Engineering (ESEC/FSE). 257-267.
Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. 2018.
Finding Faster Configurations Using Flash. IEEE Transact. on Software Engineering
(2018).

OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAlI blog 1, 8 (2019), 9.

Iris Reinhartz-Berger, Arnon Sturm, and Yair Wand. 2013. Comparing function-
ality of software systems: An ontological approach. Data Knowl. Eng. 87 (2013),
320-338. https://doi.org/10.1016/j.datak.2012.09.005

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A Neural Attention
Model for Abstractive Sentence Summarization. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, 379-389. https://doi.org/10.18653/v1/D15-
1044

A. Sarkar, Jianmei Guo, N. Siegmund, S. Apel, and K. Czarnecki. 2015. Cost-
Efficient Sampling for Performance Prediction of Configurable Systems (T). In
ASE’15.

Norbert Siegmund, Alexander Grebhahn, Christian Késtner, and Sven Apel. 2015.
Performance-Influence Models for Highly Configurable Systems. In ESEC/FSE’15.
Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb,
Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, et al. 2022. Beyond the Imitation Game: Quantifying and
extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615
(2022).

Shaghayegh Tavassoli, Carlos Diego Nascimento Damasceno, Ramtin Khos-
ravi, and Mohammad Reza Mousavi. 2022. Adaptive behavioral model learning
for software product lines. In SPLC ’22: 26th ACM International Systems and
Software Product Line Conference, Graz, Austria, September 12 - 16, 2022, Vol-
ume A, Alexander Felfernig, Lidia Fuentes, Jane Cleland-Huang, Wesley K. G.
Assuncio, Andreas A. Falkner, Maider Azanza, Miguel A. Rodriguez Luaces,
Megha Bhushan, Laura Semini, Xavier Devroey, Claudia Maria Lima Werner,
Christoph Seidl, Viet-Man Le, and José Miguel Horcas (Eds.). ACM, 142-153.
https://doi.org/10.1145/3546932.3546991

Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, and Olivier Barais. 2017.
Learning-Contextual Variability Models. IEEE Software 34, 6 (Nov. 2017), 64-70.
https://hal.inria.fr/hal-01659137

Paul Temple, José Angel Galindo Duarte, Mathieu Acher, and Jean-Marc Jézéquel.
2016. Using Machine Learning to Infer Constraints for Product Lines. In Soft-
ware Product Line Conference (SPLC’16). Beijing, China. https://doi.org/10.1145/
2934466.2934472

Maurice H. Ter Beek, Axel Legay, Alberto Lluch Lafuente, and Andrea Vandin.
2020. A Framework for Quantitative Modeling and Analysis of Highly
(Re)configurable Systems. IEEE Transactions on Software Engineering 46, 3 (2020),
321-345. https://doi.org/10.1109/TSE.2018.2853726

Stackexchange thread about TikZ. 2023. https://tex.stackexchange.com/
questions/387047/the-duck-pond-showcase- of-tikz-drawn-animals- ducks.
Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. 2015. Empirical Comparison
of Regression Methods for Variability-Aware Performance Prediction. In SPLC’15.

https://arxiv.org/abs/2210.14699
https://doi.org/10.1145/3579027.3608973
https://doi.org/10.18653/v1/2020.acl-main.89
https://copilot.github.com
https://copilot.github.com
http://ceur-ws.org/Vol-1164/PaperDemo06.pdf
http://ceur-ws.org/Vol-1164/PaperDemo06.pdf
https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf
https://doi.org/10.1145/1922649.1922658
https://www.oreilly.com/library/view/natural-language-processing/9781098136789/
https://www.oreilly.com/library/view/natural-language-processing/9781098136789/
https://doi.org/10.1145/99332.99356
https://doi.org/10.1007/978-3-030-79382-1_24
https://doi.org/10.1007/978-3-030-79382-1_24
https://doi.org/10.1145/2491627.2491647
https://arxiv.org/abs/2303.08774
https://doi.org/10.1016/j.datak.2012.09.005
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.1145/3546932.3546991
https://hal.inria.fr/hal-01659137
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1145/2934466.2934472
https://doi.org/10.1109/TSE.2018.2853726
https://tex.stackexchange.com/questions/387047/the-duck-pond-showcase-of-tikz-drawn-animals-ducks
https://tex.stackexchange.com/questions/387047/the-duck-pond-showcase-of-tikz-drawn-animals-ducks

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Audience

	2 From unfamiliar, non-customizable code to end-user customization with LLM
	2.1 Customizing code with LLM
	2.2 Building customizable tools with LLM
	2.3 Further customization

	3 The Rise and Fall of LLMs
	4 Conclusion
	References

