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ABSTRACT
Producing a variant of code is highly challenging, particularly for
individuals unfamiliar with programming. This demonstration in-
troduces a novel use of generative AI to aid end-users in customizing
code. We first describe how generative AI can be used to customize
code through prompts and instructions, and further demonstrate
its potential in building end-user tools for configuring code. We
showcase how to transform an undocumented, technical, low-level
TikZ into a user-friendly, configurable, Web-based customization
tool written in Python, HTML, CSS, and JavaScript and itself con-
figurable. We discuss how generative AI can support this transfor-
mation process and traditional variability engineering tasks, such
as identification and implementation of features, synthesis of a
template code generator, and development of end-user configura-
tors. We believe it is a first step towards democratizing variability
programming, opening a path for end-users to adapt code to their
needs.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Context specific languages; • Computing methodologies →
Machine learning approaches.

KEYWORDS
variability, end-user programming, software product lines, genera-
tor, generative AI, LLM, code synthesis, customization

1 INTRODUCTION
Customizing code is highly challenging, particularly for individuals
unfamiliar with programming. The customization of code involves
modifying or extending an existing piece of software code to create
a new, different variant that has, e.g., different features or func-
tionalities. The process involves different activities. There is first
the need to understand existing code. A code can be more or less
documented, written by someone else, or simply challenging to
comprehend. There is also the need to master different program-
ming languages, technologies, frameworks, or libraries, each with
a specific syntax. A person familiar with one language may strug-
gle to read, let alone modify, code written in a different language.
Furthermore, each modification can potentially affect other parts
of the code. In general, there is a gap between the intention and
the technical realization. Programming per se is already a difficult
task and variability further increases this complexity since multiple
features, code variations, and an exponential number of possible
variants should be implemented [4, 27].

In this demonstration paper, we defend the idea that generative
AI and large language models (LLMs) can be leveraged to support

end-users in the customization of code. We first show how gen-
erative AI can be used to customize code through prompts and
instructions. In a sense, LLMs act as a new variability tool capable
of transforming a high-level specification (prompt) into variable
code or features. We then demonstrate LLMs’ potential in building
end-user tools for configuring code. Such dedicated tools for end-
users do not operate over technical code and provide simplified
interfaces for customization.

Throughout the demonstration, we aim to show how to trans-
form an undocumented, technical, low-level TikZ code into a user-
friendly, configurable version via a Web-based customization tool.
This transformation process involves identifying and implementing
explicit features, leading to a template code generator accessible
to the end-user. Moreover, the Web application, written in Python,
HTML, CSS, and JavaScript, is itself customizable, thanks to end-
user interactions with generative AI to control the layout, the image
border or size. We believe it is a first step towards democratizing
variability programming, opening a path for end-users to adapt
code to their needs.

1.1 Related work
LLMs such as BERT [9], GPT-2 [34], GPT-3 [5], GPT-4 [33], PaLM [8],
to name a few, are scaling to support a variety of tasks such as text
generation, question-answering, arithmetic on numbers, etc. [10,
15, 21, 36, 39]. In software engineering [12, 18], code assistants have
been proposed like Alphacode, CodeParrot or Codex [7, 24] and are
now deployed at scale, such as GitHub Copilot [16].

The application of machine learning in Software Product Line
(SPL) and variability engineering encompass various use cases [3,
17, 20, 22, 30–32, 37, 38, 40–43, 45]. These use cases include perfor-
mance prediction, optimization, specialization, debugging, detec-
tion of configuration-related errors, etc. In the current study, we
focus on the potential of generative artificial intelligence and LLMs
that rely on transformers’ technology, an advanced deep learning
architecture initially developed for Natural Language Processing
(NLP) applications. The adoption of NLP in SPL engineering has
drawn several interests, predominantly for domain analysis and
requirements engineering [6, 13, 19, 28, 29, 35]. The usage of LLMs
into variability has recently started to catch attention. Acher and
Martinez [2] explored how SPL can be synthesized out of variants.
Galindo et al. [14] evaluated the ability of LLMs to synthesize valid
instances of feature models. Acher et al. [1] introduced the use of
LLMs to assist developers in implementing variability in different
programming languages and mechanisms. In this demonstration
paper, (1) we specifically target end-users’ scenarios; (2) we span
different kinds of artifacts (not only TikZ) and replicate on differ-
ent codes, engineering different generators and configurators; (3)
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we give more details about the process (feature location, template
synthesis, etc.).

End-user software engineering [23, 25], a branch of software
engineering, focuses on empowering individuals who are not pro-
fessional programmers to design, implement, andmaintain software
applications. This paper specifically considers how end-users can
implement variability with the assistance of generative AI. While
traditional works in end-user programming have typically focused
on providing dedicated tools and notations, this research proposes
two novel directions: first, relying on LLMs to construct these spe-
cialized tools, and second, considering LLMs themselves as a tool
and an interface for end-users. Additionally, our approach is tai-
lored to assist users in dealing with "unfamiliar" software-intensive
artifacts, aiming to enable or simplify their customization.

1.2 Audience
We believe a demonstration of generative AI technology can be of
interest for the variability community, especially when specifically
targeting end-users and variability. We are targeting two kinds of
users: (1) end-users that want to synthesize variants of a piece of
(unfamiliar) code, automatically generate and configure variants
with dedicated tools; (2) developers that want to build generators,
configurators, or SPLs. Both can benefit from generative AI for some
variability tasks (feature location, template synthesis, variation
implementation, automated derivation of variants). The approach
is also applicable to different kinds of technical artefacts and code:
TikZ, HTML, CSS, JavaScript, SVG, SCAD, etc.

We share sessions (prompts used, sequences of interactions, etc.)
and resulting codes:

https://github.com/acherm/progvary-withgpt/
The repository contains additional examples that go beyond the
end-to-end demonstration we plan to conduct. During the demon-
stration, the sessions will be presented, reviewed and discussed. We
believe our prompts can be reused and revisited on top of different
LLMs and generative AI technologies.

2 FROM UNFAMILIAR, NON-CUSTOMIZABLE
CODE TO END-USER CUSTOMIZATION
WITH LLM

We are tasked with the challenge of personalizing a squid image,
developed in TikZ, a commonly utilized package within LATEX for
creating illustrations. A visual of the squid is rendered in the bottom
right of Figure 2. Due to the lack of space, we refer to Listing 1 that
gives a rough idea of the TikZ code. It should be noted that the
original TikZ code is not subject to variation and here to produce a
unique squid. The 40 lines of code are arguably hard to understand:
there is no comment for describing the different parts of the squid
while TikZ code combines different low-level primitives like fill,
ellipse, etc. The code was found in a public forum [44], created by
a TikZ expert, without many explanations.

Hence, the challenge is as follows: transforming the unfamiliar,
non-variable code into something configurable by end-users.

Listing 1: Generated template TikZ code (excerpt)
squidt /.pic={

\begin{scope}[x=3cm/480,y=3cm/480]

\useasboundingbox (-256, -256) (256, 256);

\reflect[split={ DeepOrange500 and DeepOrange700 }]{

(% if agressive_shading %)

\fill [left color=fill color , right color=fill color

!40! black , middle color=fill color !70! black]

(0,96) ellipse [x radius =96, y radius =128];

(% else %)

\fill [fill color] (0,96) ellipse [x radius =96, y

radius =128];

(% endif %)

% \fill [fill color] (0,96) ellipse [x radius =96, y

radius =128];

% \fill [fill color] (0,96) ellipse [x radius =96, y

radius =128];

(% if crazy_tentacles %)

(% if agressive_shading %)

\path [left color=fill color , right color=fill color

!40! black , middle color=fill color !70! black ,

shading angle =90]

(% else %)

...

(% endif %)

(% if original_tentacles %) %%%% original tentacles

(% if agressive_shading %)

\path [left color=fill color , right color=fill color

!40! black , middle color=fill color !70! black ,

shading angle =90]

(% else %)

\fill [fill color]

(% endif %)

(72,-16)

.. controls ++(270:128) and ++(270:160) .. ( 0,

-16);

(% endif %)

\fill [fill color] (64, 16) circle [radius =48];

\fill [(( outer_eye_color ))] (64, 16) circle [radius

=32];

\fill [(( inner_eye_color ))] (64, 16) circle [radius

=12];

\fill [fill color] (-4, -20)

.. controls ++(270:256) and ++(225: 64) .. (128 , -192)

}

(% if prominent_mouth %)

\fill [DeepOrange900] (-40,-40) arc (150:390:40 and 20)

arc (390:150:40 and 50);

(% else %)

\fill [DeepOrange900]

(-40,-40) arc (180:360:40 and 16) arc (360:180:40 and

40);

(% endif %)

% \fill [DeepOrange300]

(% for spot in spots %)

(\fill [ (( spot.color )) ] ( (( spot.x )), (( spot.y )

) ) circle [radius =(( spot.radius ))] ;

(% endfor %)

\end{scope}

},

2.1 Customizing code with LLM
We now detail how LLMs assisted us in customizing the TikZ code.
We have used1 ChatGPT-4 [33], using the Web chat interface of
OpenAI. Using "prompts" (referred to as

(User) green boxes

1Recordings of the sessions and interactions will be made available for sharing.

https://github.com/acherm/progvary-withgpt/
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), which are natural language instructions that can incorporate
existing code, LLMs automatically generates programs and potential
explanations (see

(LLM) red boxes

hereafter). We start asking about the TikZ code.

(User) What’s this TikZ code is doing?

(LLM) This TikZ code defines a custom drawing or picture called
"squid" using the ".pic" syntax. The code specifies the coordinates,
shapes, and colors of various elements to create the image of a
squid. The code consists of several parts:

\begin{scope}[x=3cm/480,y=3cm /480]: This line begins a

scope environment and scales the x and y coordinates

to create a proportional drawing.

...

\reflect[split={ DeepOrange500 and DeepOrange700 }]{...}:

This block of code defines the symmetrical parts of

the squid , such as the body and tentacles. It uses a

custom reflect command that is not part of the

standard TikZ package (you will need the

corresponding macro definition for this to work).

The split option specifies the colors for the left

and right halves of the squid.

...

A line-by-line technical explanation of the TikZ code is not that
helpful, especially for end-users. The level of details is too low, and
the explanations are not really actionable, especially for relating
code elements to visual aspects.

Instead, we can directly ask what kinds of customizations we
want.

(User) can you vary the eye of the squid with the blue color? tell
me what to varies in the TikZ code

(LLM) To change the color of the squid’s eye to blue, you’ll need
to modify the fill commands that define the eye. The lines that
define the eye are:

\fill [Grey50] (64, 16) circle [radius=32];
\fill [BlueGrey900] (64, 16) circle [radius=12];
To change the eye color to blue, you can replace the colors
...
\fill [blue] (64, 16) circle [radius=32];
\fill [blue!60!white] (64, 16) circle [radius=12];
...

The answer is correct. The visual and high-level description
("eyes") has been mapped to a precise line of code. The proposed
variation is syntactically correct and only focuses on code parts
that need to be customized. End-users can locate and implement
other features related to the number of spots, the tentacles, etc. A
series of prompts can be fed to an LLM that then returns the piece
of code to modify and the suggested modification corresponding to
a feature.

squid squid2 squidt

Figure 1: Three variants of a squid: original configuration,
manual configuration, random configuration

2.2 Building customizable tools with LLM
So far, end-users can customize parts of the code with LLM. How-
ever, there are some limitations:

• end-users have to manually integrate the code and follow
technical instructions;

• end-users can apply individual customizations but not their
combinations;

• interactions of LLMs can change from time to time, even
with the same prompt. LLMs are by construction non-determinist,
and so are corresponding suggestions of customization.

An answer to these limitations is to engineer customization
tools and build an actual configurable system composed of different
features. It has several benefits: (1) the integration of customized
transformations can be automated; (2) features can be combined
to synthesize variants; (3) the engineering of tools maturates the
customization knowledge and makes it reliable. Our idea is to build
customization tools with LLM.

(User) would it be possible to vary the original code using a
templating engine in Python in such a way it is possible to have
either eye of the squid with the blue color or the original eye
(as in the original TikZ code)? ... can you parameterize the spots
with a random color? if not random mode, then it’s the default
color

Listing 2 provides an excerpt of the Python generator in charge
of deriving variants out of template instantiations of Listing 1.
from jinja2 import Environment , FileSystemLoader

import random

def random_color ():

color_options = ['Blue500 ', 'Yellow50 ', 'Lime900 ', '

DeepOrange900 ']

return random.choice(color_options)

...

# Define the random_mode flag (True for random colors ,

False for the default color)

random_mode = True

# Define the spots

o_spots = [

...

]

# Render the template with the chosen eye colors/spots

crazy_tentacles = False # True

original_tentacles = False # True

prominent_mouth = True

agressive_shading = True
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# Render the template with the chosen values

with open('squid_output.tex', 'w') as output_file:

output_file.write(template.render(eye_colors , spots=

extra_spots , crazy_tentacles=crazy_tentacles ,

prominent_mouth=prominent_mouth ,

agressive_shading=agressive_shading ,

original_tentacles=original_tentacles))

Listing 2: Generated Python generator

Once individual features have been implemented, there is then
the need to combine all variations together. As TikZ has no obvi-
ous built-in mechanisms to support variation, we can implement
a template-based code generator with LLM. Listing 1 shows an
excerpt of the template. It should be noted that the prompt comes
after the series of prompts for locating and implementing features
(9 features were identified at the time of the session).

2.3 Further customization
The Python generator can then be used to synthesize a gallery of
diverse squids (e.g., with random colors and scales). The generator
can also be controlled through aWeb application (see Figure 2). The
client side offers to users the control to configure different features
of a squid, while the server side internally calls the template-based
generator and renders the images in SVG. During the demonstration,
we will describe (1) the use of the Web configurator; (2) the effort
needed to engineer it. Moreover, end-users can also customize other
aspects of the Website. In the top, right-hand side of Figure 2, there
is a configuration panel that controls different features: (1) layout:
vertical, horizontal, or hybrid, having an effect on how the image
is located w.r.t. the squid configurator panel; (2) whether there is a
border on top of the image. This configuration perspective operates
over the HTML and CSS. It has been typically obtained through
high-level interactions describing some refinements of the Website.

In the bottom, right-hand side of Figure 2, there is another config-
uration panel that can customize the image (1) its relative position
and the ability to move from left to right the squid; (2) its size;
(3) its padding; (4) the ability to flip or mirror the image; (5) its
rotation. This configuration aspect of the squid internally operates
over an SVG artefact. For each variation point, high-level instruc-
tions have been formulated to specify the intent. The variations
have then been implemented by the LLM through the synthesis of
JavaScript functions that manipulate the SVG. Finally, at the center
of Figure 2 and below the SVG image, the variant of the TikZ code
is depicted. More technical users can benefit from this code, and
the idea is that end-users never interact with it. Overall, all these
features and variations, including the underlying Python, HTML,
CSS, and JavaScript have been synthesized through interactions
with generative AI.

To summarize, Figure 2 demonstrates the final result of end-user
customization of TikZ code, but also with Python, HTML, CSS, and
JavaScript. We also show that the approach is applicable to other
technical artefacts like SVG.

3 THE RISE AND FALL OF LLMS
LLMs can support end-users or developers in the following vari-
ability activities, with pros and cons.
Code understanding. Gaining a thorough comprehension of a
technical artifact is important before customization to ensure any

edits will have the expected effect. Unfortunately, the explanations,
though correct, are often too low-level and may not resonate with
the intended audience (e.g., users not familiar with TikZ).
Feature location. Instead of directly editing the code, users formu-
late prompts and LLMs can map high-level descriptions into lines
of code. The promise is to raise the level of abstraction and gives to
end-users the means to express their intent onto a technical arte-
fact. The counterpart is that LLMs can be inaccurate and provide a
wrong mapping, with unexpected results. In our experience, several
interactions might be needed to guide or correct the LLM. A chal-
lenge, and a possible barrier for end-users, is that some interactions
require a technical expertise (e.g., to report on compilation errors).
Feature and variation implementation. LLMs can synthesize
variants of a piece of code, aiding end-users who do not have to
write code themselves. For developers, this generative approach
not only boosts productivity, but is also advantageous for those
unfamiliar with a particular technological domain. A risk is that
the generated code can be of bad quality, leading to compilation
errors or wrong implementation of a feature, and calling to debug
and further interact. Another challenge arises from feature interac-
tions: as the code base expands with added features, managing and
understanding the complex interplay between them can become
increasingly difficult, especially for end-users that are not supposed
to deal with this kind of technical complexity.
Combination of features and automated derivation. LLMs can
synthesize template-based generators or configurators (including
user interfaces) that provide the means to combine different fea-
tures. This task falls beyond the skill set of end-users, whereas the
boilerplate code can significantly enhance developers’ experience.
A counterpart is that LLMsmight improperly handle the underlying
logics, such as commonalities and dependencies between features.
In our end-user scenarios, we did not use LLMs for specifying
constraints across features, though some works have emerged to
synthesize feature models [14].
Code integration, back and forth. Incorporating LLM outcomes
require a back-and-forth with the code base. It is an obstacle for fully
automating the involvement of end-users. This iterative process
often requires continuous switching and adjustments, adding layers
of complexity and potential frustration for developers. The emer-
gence of AI-based code environments can mitigate this issue. We
envision specialized development environments, geared towards
end-users, and capable of parsing, integrating, and executing the
suggested modifications.
Prompts. Specifying effective, tailored prompts for each inter-
mediate task, ranging from code understanding to variation im-
plementation, is essential. A research direction is to thoroughly
evaluate LLMs for their robustness and sensitivity to prompts in
realizing variability tasks. Existing studies suggests that prompt
variations can have an impact on the quality of the generated
code [11, 12, 18, 26]. Our goal is to maintain the possibility of
informal, high-level formulations, embracing the spirit of end-user
programming. However, it might well be the case that more struc-
ture and detail are needed to make an LLM effective. We envision
having a systematic prompting strategy that could integrate the
informal directives of end-users while offering a structured frame-
work for more technical people.
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Figure 2: End-user customization of (1) TikZ code (squid) (2) HTML/CSS (Website layout) (3) SVG (post-process over the resulting
image). The Python template-based generator produces a variant of the TikZ code, which is displayed, but end-users do not
interact with it.

4 CONCLUSION
In this demonstration, we plan to showcase how LLMs can be
leveraged to support end-users in the customization of code and
technical artefacts. We aim to describe how to transform an undocu-
mented, technical, low-level TikZ into a user-friendly, configurable,
Web-based customization tool written in Python, HTML, CSS, and
JavaScript and itself customizable. Other demonstrations over SVG
and OpenSCAD artefacts are also planned. Spanning topics from
code understanding to implementing features and offering end-user
configurators, the presentations will provide an opportunity to re-
view the benefits and drawbacks of generative AI for supporting
variability tasks.
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