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Abstract A stress-affected chemical reaction front propagation is considered using the concept of a chemical
affinity tensor. A reaction between an elastic solid constituent and a diffusing constituent, localized at the
reaction front, is considered. As a result of the reaction, the elastic constituent transforms into viscoelastic
one. The reaction is accompanied by volume expansion that in turn may result in stresses at the reaction front,
which affect the front velocity through the normal component of the chemical affinity tensor. Considering a
plane strain problem with a planar chemical reaction front propagation under uniaxial deformation, we focus
on the studies of the reaction front kinetics in dependence on external strains and material parameters with
the use of the notion of the equilibrium concentration. Then, stress relaxation behind the propagating reaction
front is modeled. A standard linear solid model is used for the reaction product, and its particular cases are
also considered. Analytical solutions are obtained which allow to study in explicit form the strain influence
and material parameters on the front retardation or acceleration and stress relaxation.

Keywords Mechanochemistry · Chemical affinity tensor · Reaction front kinetics · Stress relaxation ·
Standard linear solid model

1 Introduction

The influence of stress–strain state on chemical reactions has been widely considered since the 70s of the
last century. The oxidation of silicon in nanowires, e.g., [2], or in MEMS, e.g., [36], reactions in ceramic
composites with inclusions, e.g., [37], lithiation of silicon in Li-ion batteries, e.g., [32], can be mentioned
among the examples that demonstrate the importance of establishing interconnections between stress-affected
chemical reactions and the stress–strain state at the reaction front (see also [20,33,46] and the references in
[14]).

The above-mentioned andmany other reactions can be described using a two-phase reactionmodel inwhich
the reaction is localized at the sharp interface—a reaction front, and the diffusing reactant is transported to the
reaction front through the transformed solid material. One of the first and most simple models that described
such reactions was the model proposed by Deal and Grove based on a planar reaction front [6]. This model
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gave a general scenario of the problem statement but did not consider stress effects (see also [11,14] where
this model is described in the context of introducing a chemical affinity tensor). However, chemical reactions
can be accompanied by volumetric expansion that produces internal stresses, which in turn may affect the
chemical reaction (see, e.g., [7,27,37]). An extension of the Deal–Grove model was proposed by considering
a stress-dependent diffusion coefficient and a reaction rate constant, e.g., [22,28,43]. Other alternatives to take
into account the influence of stresses on the diffusion and the reaction are to introduce additional terms in the
expression of the diffusion flux, e.g., [25,26], or to consider the influence through a scalar chemical potential
[1,29,30].

In fact, stresses may affect the reaction front propagation via the influence on the diffusivity, e.g., [22], or
additional stress-gradient terms in the diffusion flux, e.g., [25]. This case can be referred as diffusion-controlled
reactions. But the front propagation may be affected by stresses via the direct influence on the reaction rate,
see, e.g., [4]. This corresponds to the case of the reaction front propagation controlled rather by the reaction
rate than by the diffusion, and lithiation is an example of such a reaction (see, e.g., [21,47]).

In the present paper, we focus on the second case. Modeling of the reaction front kinetics is based on the
chemical affinity tensor. The expression of the chemical affinity tensor was derived initially in [8] for the case of
a chemical reaction between diffusing and nonlinear elastic constituents as a tensor defining a thermodynamic
force conjugate to the front velocity in the expression of the energy dissipation due to the front propagation,
similar to the derivation made in [24] for a propagating phase interface in a nonlinear elastic solid. Then, it
was derived from fundamental balance laws and the entropy inequality written down for an open system with a
chemical reaction between diffusing and solid constituents of arbitrary rheology in the case of finite strains (see
[9,10,15] and a review [14]). It was shown that the normal component of this tensor acts as a thermodynamic
force conjugated to the reaction rate in the expression of the energy dissipation due to the front propagation,
and a kinetic equation in the form of the dependence of the reaction rate on the normal component of the
affinity tensor was formulated.

In a quasi-static case, the chemical affinity tensor is represented by the linear combination of the chemical
potential tensors, which are the Eshelby energy–momentum tensors divided by the reference mass densities.
This combination is the same as the combination of scalar chemical potentials which defines the classical
chemical affinity (see, e.g., [41]), and the notion of the chemical affinity arises to pioneering works by Gibbs
[16] and de Donder [5]. Therefore, the consideration based on the affinity tensor is consistent with the approach
of classical physical chemistrywhere reaction rate is determined by a scalar chemical affinity. Since the reaction
front velocity is defined by the reaction rate, in the framework of the mechanics of configurational forces
[19,23,31], the affinity tensor determines the configurational force driving the reaction front.

Note that the tensorial nature of the chemical affinity in the case of solid constituents follows from the
consideration of a chemical reaction on the oriented area element of the reaction front (see a more detailed
discussion in [14]), as well as the tensorial nature of the chemical potential followed from the fact that a phase
equilibrium took place not just in a point but at the oriented area elements of the phase interface passing through
the point (see, e.g., [18] and reference therein).

The approach based on the chemical affinity tensor has been applied to the statement and solution of
a number of boundary value problems with propagating reaction fronts for the case of linear elastic solid
constituents [11,12,15,44]. Then, the theory has been used to describe numerically two-phase lithiation of
Si particles used in Li-ion batteries, where the constituent materials undergoing finite elasto-viscoplastic
deformations were considered [39,40].

In the present paper, we come back to the case of small strains and, at first, study in detail the influence of
elasticmoduli of the solid constituents on the reaction front behavior in dependence on external strains. Then,we
develop amodel for analytical studies of stress relaxation behind the reaction frontwhich relevance ismotivated
by the fact that reaction products often exhibit viscous rather than elastic behavior, e.g., [22]. The difference
of molar volumes of initial and transformed materials is a source of volume expansion due to a chemical
reaction. Kinematic compatibility, i.e., displacement continuity at the reaction front, restricts the expansion
and produces stresses which could be huge in the case of a pure elastic behavior. Viscoelastic assumptions
allow the strain to be partly accommodated by the viscous deformation, and the stresses can relax (see, e.g.,
[3,7,27]). In addition, since the total thickness of the transformed layer is observed in experiments with planar
reaction fronts, even simple models may be useful for the estimation of the impacts of the transformation and
viscous strains on the thickening during the front propagation.

The paper is organized as follows. A short summary of the concept of the chemical affinity tensor is
given in Sect. 2, along with the formulation of a general quasi-static coupled problem involving mechanics,
diffusion and chemistry. This is followed in Sect. 3 by the formulation and solution of the problem for a
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Fig. 1 Chemical reaction between solid and diffusive constituents; � is the reaction front

planar reaction front propagation in a plate made initially of a linear elastic material that becomes viscoelastic
after the reaction. A standard linear solid model is taken for the reaction product. The kinetic equation for
the propagating reaction front and detailed studies of the influence of elastic moduli and an energy parameter
on the front propagation and blocking are presented. Then, the derivations and solutions of the equations for
the stress relaxation and inelastic strains description behind the propagating front are given and discussed.
Conclusions are presented in Sect. 4.

2 General framework

In this section, a brief summary of the concept of chemical affinity tensor, that is used in the present paper, is
given. More detailed explanations can be found in [9,10,14,15].

2.1 Chemical affinity tensor: kinetic equation

A chemical reaction between solid and diffusing constituents of the following type is considered:

n−B− + n∗B∗ −→ n+B+,

where B−, B∗ and B+ are the chemical formulae of initial solid, diffusing and transformed solid constituents,
respectively; n−, n∗ and n+ are the stoichiometric coefficients. The reaction is localized at the reaction front
� that divides the solid constituents B− and B+, and it is sustained by the diffusion of B∗ through the reaction
product B+ (see Fig. 1).

Note that chemical reactions may be accompanied by large transformation strains, and the general theory
based on the chemical affinity tensor was developed for finite strains. But further a small strain approach is used
that allows to obtain analytical solutions and to demonstrate the features of problem setting and the influence
of parameters on the behavior of the reaction front in an analytically controlled way.

Other simplifications relate to diffusion and are motivated by focusing on the front propagation controlled
by the reaction rate and the direct influence of stresses on the reaction rate. The simplest Fick’s diffusion law
with stress-independent diffusivity coefficient is accepted. The transformed material B+ is considered as a
solid skeleton for the diffusing constituent B∗, i.e., we neglect the deformations which could be produced in
the transformed material by the diffusing constituent. We also neglect the influence of the pressure produced
by the diffusing constituent on total stresses, implying that the hydrostatic part of the stresses produced by the
transformation strains is much greater. Note that the diffusion is affected by stresses even in this case, but not
through the constitutive equation of the diffusion but through the boundary conditions at the propagating stress-
affected reaction front. The thermal effects of the chemical reaction are also neglected, and the temperature T
is assumed to be a given parameter.

To describe the chemical reaction front kinetics, we use an approach based on the concept of chemical
affinity tensor. As it was mentioned in Introduction, the normal component of the chemical affinity tensor
appears in the expression of the energy dissipation due to the reaction front propagation. It was shown that the
dissipation Dis per unit area of the propagating reaction front takes the forms

Dis = ρ−
n−M−

ANNVN = ANNω(N), (2.1)
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where ρ− is the mass density of the initial material B−, VN is the normal component of the reaction front
velocity, ω(N) is the reaction rate at the reaction front area element with normal N, and ANN = N · A · N is
the normal component of the tensor A, called the chemical affinity tensor. In a quasi-static case

A = n−M−M− + n∗M∗μ∗I − n+M+M+, (2.2)

where M− and M+ are the chemical potential tensors which are equal to the Eshelby energy–momentum
tensors, divided by the reference mass densities of solid constituents B− and B+, μ∗ is the chemical potential
of the diffusing constituent, I is the second-rank identity tensor, and M±,∗ are the molar masses of B±,∗,
respectively. It is used in (2.1) that the normal component VN of the front velocity is related to the reaction
rate as

VN = n−M−
ρ−

ω(N). (2.3)

Note the similarity between the expressions (2.1) of the dissipation with the affinity tensor (2.2) and the
classical expressions of the dissipation Dis = Aω with the scalar chemical affinity A = −∑

nkMkμk , where
ω is the reaction rate in a point,μk are the scalar chemical potentials of the constituents, and the stoichiometric
coefficients nk(k = 1, 2...) are substituted into the sum with the sign “+” if the k-th constituent is produced
in the reaction and with the sign “−” if the constituent is consumed by the reaction [41].

One can see in (2.1) that ANN is a thermodynamic force conjugate to the reaction rate at the oriented area
element, and, therefore, a kinetic equation can be formulated in the form of the dependence of the reaction
rate ω(N) on ANN. Then, from Eq. (2.3) it follows that ANN also determines the reaction front velocity. Since
the velocity VN determines changing the configuration of the body, it is natural, in the spirit of the mechanics
of configurational forces [19,23,31], to treat the multiplier conjugate to VN in the dissipation formula as the
configurational force. Thus, the chemical affinity tensor defines the configurational force driving the reaction
front, similarly to how the jump of the Eshelby energy–momentum tensor defines the configurational force
driving a phase interface in the case of stress-induced phase transformations (see, e.g., [45]).

The substitution of the normal component ANN of the chemical affinity tensor into a known relationship
between the reaction rate and the scalar chemical affinity, valid for the wide range of chemical reactions (see,
e.g., [17]), instead of a scalar chemical affinity gives the following formula for the reaction rate ω(N) at the
reaction front area element with normal N [9]:

ω(N) = k∗c
(

1 − exp

(

− ANN

RT

))

, (2.4)

where k∗ is the reaction rate constant, R is the universal gas constant, and c is the molar concentration of the
diffusing constituent per unit volume.

Then, from (2.3) and (2.4) it follows that the dependence of the normal component of the reaction front
velocity on the normal component of the affinity tensor can be taken as [9,10,15]:

VN = n−M−
ρ−

k∗c
(

1 − exp

(

− ANN

RT

))

. (2.5)

Furtherwewill use kinetic equations (2.4) and (2.5) rewritten in terms of a current and so-called equilibrium
concentrations of the diffusing constituent [9,15]. The equilibrium concentration ceq corresponds to chemical
equilibrium such that

ANN(c = ceq) = 0. (2.6)

By the skeleton approach, the tensors M± in the expression (2.2) do not depend on the concentration. Then,
the mechanical part of ANN is related to ceq as

n−M−N · M− · N − n+M+N · M+ · N = −n∗M∗μ∗(ceq), (2.7)

and the normal component of the affinity tensor can be expressed via the difference of the chemical potentials
of the diffusing constituent calculated at the current concentration c(�) and the equilibrium concentration ceq
found for stresses and strains at the front:

ANN = n∗M∗
(
μ∗(c(�)) − μ∗(ceq)

)
. (2.8)

To avoid misunderstanding, note that the equilibrium concentration is defined by Eq. (2.6) irrespective of the
diffusion problem.
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The chemical potential of the diffusing constituent is specified further as

M∗μ∗ = f∗ + RT ln
c

c∗
, (2.9)

where f∗ and c∗ are the reference chemical energy and concentration of the diffusing constituent, respectively.
Then, in the case of small strains the normal component of the chemical affinity tensor takes the form [10,11,15]:

ANN = n−M−
ρ−

(γ − χ) + n∗RT ln
c

c∗
(2.10)

where

χ = w+ − w− − σ± : [[ε]] (2.11)

characterizes the input of stresses and strains, w± are the strain energies of the solid constituents per unit
volume, [[ε]] = ε+ − ε− is the jump of the strain tensor across the reaction front, ε± are the strains of the
materials B±,

γ = f −
0 − f +

0 + ρ−
n−M−

n∗ f∗ (2.12)

is the temperature-dependent energy parameter equal to the combination of the chemical energies f ∓
0 of the

solid constituents B∓ (Helmholtz free energies of solids in stress-free states) and the reference energy f∗ of
the diffusing constituent, and γ is taken further as a parameter of the model.

Note that since the traction t = σ · N is continuous across the reaction front, from the displacement and
traction continuity it follows that the stresses σ± on any side of the front can be substituted into σ± : [[ε]] in
(2.11). Indeed, since, due to the continuity of displacements, the jump of strain tensor is represented in the
form

[[ε]] = 1

2
(a ⊗ N + N ⊗ a), (2.13)

where a is the jump amplitude, the following equalities are valid:

σ− : [[ε]] = a · σ− · N = a · σ+ · N = σ+ : [[ε]].

During further analysis, the stoichiometric coefficients are normalized by n∗:

n− → n−/n∗, n+ → n+/n∗, n∗ → 1.

Then, by Eqs. (2.4), (2.5), (2.8) and (2.9), the reaction rate and the reaction front velocity are expressed directly
through the current concentration of the diffusing constituent and the equilibrium concentration corresponding
to the stresses and strains at the front (see, e.g., [11]):

ω(N) = k∗
(
c(�) − ceq

)
, VN = n−M−

ρ−
k∗

(
c(�) − ceq

)
, (2.14)

where, by (2.6) and (2.10), ceq is determined by the formula

ceq
c∗

= exp

{

−n−M−
ρ−

(γ − χ)

RT

}

. (2.15)

In such a representation, stresses and strains affect the reaction rate via the equilibrium concentration, and
one can see that the front may propagate only if c(�) > ceq.
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2.2 Problem statement

To find the reaction front velocity, one has to know stresses and strains at the front, to calculate ceq and to solve
the diffusion problem. To find stresses in a quasi-static case, in the absence of body forces, one has to solve
the equilibrium equation

∇ · σ = 0, (2.16)

where σ is the Cauchy stress tensor. The equation (2.16) is to be solved within domains υ− and υ+, which
are occupied by materials B− and B+, respectively, with boundary conditions at the outer surface of the
body (forces or displacements are prescribed), interface conditions at the reaction front (continuity of the
displacement u and traction) and with constitutive equations of solid constituents.

To find the concentration c, we assume that the diffusion flux j∗ is given by Fick’s law

j∗ = −D∇c,

where D is the diffusion coefficient of the reactant B∗ through B+. We assume that D is a constant. We neglect
the initial stage of the diffusion prior to the start of the reaction at the outer boundary of the body. Considering
that the front propagation is controlled by the reaction rate rather than by the diffusion rate, we assume that
the diffusion process is happening on much faster timescale than the chemical reaction and is fast enough to
consider a steady-state diffusion. Then, the diffusion is described by the Laplace equation

�c = 0 (2.17)

with the boundary conditions

D
∂c

∂N

∣
∣
∣
∣

+

− α (c∗ − c(
)) = 0, D
∂c

∂N

∣
∣
∣
∣
�

+ ω(N) = 0, (2.18)

where 
+ is the part of the outer surface of the body through which the diffusion flux is supplied, it is the
external boundary of the transformed material (Fig. 1), c∗ is the solubility of B∗ in the material B+, and α is
the mass transfer coefficient. Without loss of generality, one may take c∗ also as the reference volume density
in Eqs. (2.9) and (2.10).

The first boundary condition states that the diffusion flux through the outer boundary of the body becomes
zero if the solubility c∗ is reached. The second condition means that all the diffusing reactant is fully consumed
at the reaction front and with the use of Eq. (2.14) can be rewritten as

D
∂c

∂N

∣
∣
∣
∣
�

+ k∗
(
c(�) − ceq

) = 0. (2.19)

Eventually, we come to the coupled problem for a solid with propagating interface which velocity depends
on the concentration of a diffusing matter and mechanical stresses at the interface, while the concentration
and stresses depend on the position of the interface. All the equations are summarized in the following set
of equations (see the box below). Note that this set of equations is valid for any constitutive models of solid
constituents.
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Fig. 2 Plane strain problem for a plate with a planar reaction front

Equilibrium equation:

∇ · σ = 0, [[σ ]]|� · N = 0, [[u]]|� = 0 + B.C.

Constitutive equations of solid constituents.
Equilibrium concentration: ceq : ANN|c=ceq = 0,

ceq
c∗

= exp

{

−n−M−
ρ−

(γ − χ)

RT

}

, χ = w+ − w− − σ± : [[ε]].

Diffusion problem: �c = 0,

D
∂c

∂N

∣
∣
∣
∣

+

− α (c∗ − c(
+)) = 0,

D
∂c

∂N

∣
∣
∣
∣
�

+ k∗
(
c(�) − ceq

) = 0.

Chemical reaction front kinetics:

VN = n−M−
ρ−

k∗
(
c(�) − ceq

) = 0.

3 A chemical reaction front propagation in the case of a linear viscoelastic reaction product

3.1 Reaction front kinetics

To demonstrate the influence of the viscosity on the reaction front kinetics, we consider in this section the
simple plane strain problem for a chemical reaction in a plate of thickness H and length L >> H with a
planar reaction front (see Fig. 2). The reaction starts at the outer surface y = 0 of an initially elastic plate. The
planar reaction front propagates in the y-direction, and the reaction front position is given by y = h. The lower
y = 0 and upper y = H faces of the plate are traction free. Displacement u0 at the edges x = ±L prescribes
the strain ε0 = u0/L in x-direction. Therefore, the strains have to satisfy the following conditions:

εz = εxz = εyz = 0, εx = ε0.

The diffusion problem is reduced to the diffusion equation

d2c

dy2
= 0, y ∈ [0, h] (3.1)

with boundary conditions

D
dc

dy

∣
∣
∣
∣
y=0

= α(c(0) − c∗), D
dc

dy

∣
∣
∣
∣
y=h

= −k∗(c(h) − ceq). (3.2)
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From the solution of the diffusion problem (3.1), (3.2), it follows that the concentration of the diffusing
constituent B∗ at the reaction front is equal to

c(h) =
c∗ + k∗

(
h

D
+ 1

α

)

ceq

1 + k∗
(
h

D
+ 1

α

) . (3.3)

Then, by Eq. (2.14), the reaction front velocity can be calculated as

V = n−M−
ρ−

c∗ − ceq
1

k∗
+ 1

α
+ h

D

, (3.4)

where the equilibrium concentration ceq, defined by Eq. (2.15), depends on stresses and strains at the reaction
front.

Formula (3.4) can be rewritten as

ξ̇ = n−M−
ρ−

c∗ − ceq
Tch + TDξ

,

where ξ = h

H
, the dot denotes the time derivative, and the characteristic times of diffusion and chemical

reaction, TD and Tch, are defined by formulae

TD = H2

D
, Tch = H

(
1

k∗
+ 1

α

)

. (3.5)

In the stress problem, the equilibrium equations and the boundary conditions are satisfied in the Saint–
Venant sense if one takes in the plate

σy = 0, σxy = 0. (3.6)

From continuity of the displacement, it follows that at the reaction front

[[εx ]] = 0.

Then, from Eq. (3.6) and plane strains conditions it follows that σ− : [[ε]] = 0 in the expressions (2.10), (2.11)
for the normal component of the chemical affinity tensor.

We assume that the initial material “−” is isotropic linear elastic. Then, due to the plane strains conditions,
by Hooke’s law, in the elastic layer y ∈ [h, H ] the stresses

σ−
x = 4μ− (3k− + μ−)

3k− + 4μ−
ε0, σ−

z = 2μ− (3k− − 2μ−)

3k− + 4μ−
ε0,

σzx = σzy = 0, (3.7)

where k− and μ− are the bulk and shear modules of the material B−. Then, the strain energy density of the
material B− is

w− = 2μ− (3k− + μ−)

3k− + 4μ−
ε20 . (3.8)

For the inelastic material “+,” we assume that volumetric strains are elastic, and inelastic behaviors are
represented by rheological models formulated as relationships between deviatoric parts of stress and strain
tensors. Then, we use the following decompositions

σ = σ I + s, ε = ϑ

3
I + e, (3.9)
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(a) (b) (c) (d)

Fig. 3 Rheological viscoelastic models: a standard linear solid model, bMaxwell model, c Kelvin–Voigt model, d linear viscous
model

where σ = 1

3
tr σ and ϑ = tr ε denote the hydrostatic parts of the stress tensor and volume strain, and s and e

are the deviatoric stress and strain, respectively.
We assume that the transformation strain is spherical: εtr = (ϑ tr/3)I. Then, the hydrostatic parts of the

stress tensor and volume strain are related in constituent “+” as

σ+ = k+(ϑ+ − ϑ tr). (3.10)

To study how the viscosity and the specified choice of the viscoelastic rheology of the transformed material
affect the stress redistribution due to the chemical reaction, we take at first the standard linear solid model
(SLSM) (Fig. 3a) that was also referred as the Poynting–Thomson viscoelastic material [42] (see also [38]).
Then, we examine particular cases of SLSM.

The constitutive equation which relates the deviatoric tensors s+ and e+ in the material “+” is derived
from the following relationships (see Fig. 3):

s+ = s1 + s2, e+ = e1 = e2,
s1 = se1 = sη, e1 = ee1 + eη, (3.11)

se1 = 2μ1ee1, sη = 2ηėη, s2 = 2μ2e2, (3.12)

where μ1 and μ2 are the shear moduli of the elastic elements, η is the viscosity, e and s with various indices
denote deviatoric strains and stresses in corresponding rheological elements, e.g., se1 is the deviatoric stress in
the first elastic element, and eη is the viscous deviatoric deformation. Finally, the constitutive equation takes
the known form

(

1 + μ2

μ1

)

ė+ + μ2

η
e+ = 1

2μ1
ṡ+ + 1

2η
s+. (3.13)

The strain energy of the constituents “+” is defined as

w+ = 1

2
k+(ϑ+ − ϑ tr)2 + μ1ee1 : ee1 + μ2e+ : e+, (3.14)

where it is taken into account that e2 = e+.
To find the strain energy w+ at the reaction front, there is no need to solve complete viscoelastic prob-

lem. Indeed, viscous strains cannot occur at a point instantly when the front passes through it, while the
transformation and elastic strains appear instantaneously. Therefore,

eη(y, ty) = 0, (3.15)

where ty is the time at which the reaction front passes through the position having the coordinate y. It depends
on y, and the dependence ty = ty(y) is determined by the kinetics of the front propagation and follows from
the equation

ty∫

0

V (t)dt = y. (3.16)
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Equation (3.15) will serve as an initial condition in the stress relaxation analysis, but now it is enough to
know that from (3.15), it follows that at the reaction front ee1 = e+ and

σ+ = k+
(
ϑ+ − ϑ tr) I + 2μ+e+, (3.17)

w+ = 1

2
k+(ϑ+ − ϑ tr)2 + μ+e+ : e+, (3.18)

where μ+ = μ1 + μ2, and deviatoric strain e+ is taken at the reaction front.
Due to the plane strain restriction, ε+

y = ϑ+ − ε0,

e+ : e+ = ε+ : ε+ − (ϑ+)2

3
= 2

(

ε20 − ε0ϑ
+ + (ϑ+)2

3

)

. (3.19)

Thus, to calculate the strain energy w+ it is enough to find the volume strain ϑ+. From the relationships

σ+
y = k+(ϑ+ − ϑ tr) + 2μ+e+

y = 0, (3.20)

e+
x = ε0 − ϑ+

3
, e+

z = −ϑ+

3
, e+

y = −(e+
x + e+

z ) = 2ϑ+

3
− ε0, (3.21)

it immediately follows that at the reaction front:

ϑ+ = 3(2μ+ε0 + k+ϑ tr)

3k+ + 4μ+
, (3.22)

e+
x = (3k+ + 2μ+)ε0 − k+ϑ tr

3k+ + 4μ+
, e+

y = k+(2ϑ tr − 3ε0)

3k+ + 4μ+
, e+

z = −2μ+ε0 + k+ϑ tr

3k+ + 4μ+
. (3.23)

The relationships (3.23) will be also used further in the stress relaxation analysis.
With the use of (3.22) and (3.19), the strain energy w+ becomes a function of ε0 and material parameters

k+, μ+ and ϑ tr . Then, the substitution of (3.8) for w− and obtained expressions of w+ and ϑ+ into (2.11)
gives χ as the quadratic function of external and transformation strains and elastic moduli of the constituents:

χ(ε0) = 2(G+ − G−)ε20 − 3Sϑ trε0 + S(ϑ tr)2, (3.24)

where

G± = μ± (3k± + μ±)

3k± + 4μ±
= E±

4(1 − ν2±)
, S = 2k+μ+

3k+ + 4μ+
= E+

9(1 − ν+)
, (3.25)

and E± and ν± are the Young moduli and Poisson’s ratios. Substitution of (3.24) into Eqs. (2.10) and (2.15)
leads to the explicit dependencies of ANN and ceq on external and transformation strains, elastic moduli of the
constituents and the chemical energies. In particular,

ceq
c∗

= exp

{

−n−M−
ρ−

(γ − χ(ε0))

RT

}

. (3.26)

Note that at given ε0, the equilibrium concentration does not depend on the front position. Then, the integration
of the equation (3.4) leads to the kinetic equation in the form of the parabolic law:

TD
2

ξ2 + Tchξ = Qt, (3.27)

where

Q = n−M−
ρ−

c∗(1 − φ), φ = ceq
c∗

= exp

{

−n−M−
ρ−

(γ − χ(ε0))

RT

}

(3.28)

(cf. with [34]).
By Eq. (3.27), the dependence (3.16) for ty(y), which is further substituted into (3.15), can be presented

in the explicit form:

ty = 1

Q

(
TD
2

( y

H

)2 + Tch
( y

H

))

. (3.29)
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(a) (b)

Fig. 4 Dependencies of the equilibrium concentration on the external strain: a G+ > G−, γ > γ∗, b G+ < G−, γ0 < γ < γ∗

3.2 Equilibrium concentration, kinetics of the reaction front and blocking effect

In this section, the time dependencies of the reaction front position are examined finally at various values of
the external strain ε0, the energy parameter γ and the elastic moduli k±, μ± of solid constituents. Since, by
(3.4), the reaction front velocity increases if ceq/c∗ decreases and, respectively, the velocity decreases if ceq/c∗
increases, the influence of various parameters on the reaction front behavior can be predicted qualitatively if
one knows how the parameters affect the equilibrium concentration. So, we start with such predictions.

By (3.4), the reaction front can propagate only if the stress–strain state at the front and the energy parameter
are such that ceq < c∗. We study further how the condition ceq < c∗ is affected by the parameters. By (3.26),
this is possible only if the transformation strain, external strains, elasticity parameters and the energy parameter
are such that χ < γ [9,15]. By (3.24), in the considered case this condition takes the form

χ(ε0) − γ = 2(G+ − G−)ε20 − 3Sϑ trε0 − (γ − γ0) < 0, (3.30)

where

γ0 = S(ϑ tr)2 (3.31)

is the critical value of the parameter γ in the sense that the reaction front may propagate at the external strain
ε0 = 0 only if

γ > γ0.

Formula (3.31) for the critical value of γ for the plane transformation strain with slightly different S was
presented in [11,15] for the case of elastic reaction constituents. The same formula appears here because of
the pure elastic behavior of both constituents at the front at the transformation moment ty .

The dependencies of ceq/c∗ on external strain ε0 for the planar front are schematically shown in Fig. 4.
The extrema are reached at ε0 = ε∗

0 with ceq/c∗ = c∗
eq/c∗ where

c∗
eq

c∗
= exp

{
n−M−

ρ−
(χ(ε∗

0) − γ )

RT

}

,

ε∗
0 = 3Sϑ tr

4(G+ − G−)
, χ(ε∗

0) =
(

1 − 9S

8(G+ − G−)

)

γ0 ≡ γ∗. (3.32)

Note that ε∗
0 	= 0, since k+ and μ+ are positive values.
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The character of the dependence of ceq/c∗ on ε0 and the signs of ε∗
0 and χ(ε∗

0) depend on the relation
between G+, G− and S and the sign of the transformation strain ϑ tr . Without loss of generality, we assume
further that ϑ tr > 0. As for the elastic moduli, in accordance with (3.32), the following three cases can be
distinguished for which different influences of the external strain on the front propagation can be observed.

(i) If
8(G+ − G−) − 9S > 0, (3.33)

then G+ > G− and, therefore, χ(ε∗
0) > 0 and ε∗

0 > 0 correspond to the minimal value of χ(ε0) as it is shown
in Fig. 4a. Note that the inequality (3.33) can be rewritten through elastic moduli as

μ+ >
4μ−(3k− + μ−)

3k− + 4μ−
⇐⇒ E+

1 + ν+
>

2E−
1 − ν2−

.

The front can propagate only if the energy parameter, elastic moduli of the solid constituents and transfor-
mation strain are such that γ > γ∗ and only at strains ε0 ∈ [ε I , ε II ] where ε I , ε II are the roots of the quadratic
equation χ(ε0) − γ = 0. If γ∗ < γ < γ0, then both roots are positive and the front cannot propagate without
applied tensile strain ε0 > ε I > 0.

If the front propagates at ε0 = 0, then γ > γ0 and the roots have different signs, ε I < 0 and ε II > 0. The
propagation is blocked starting from some strains in both tension at ε0 > ε II and compression at ε0 < ε I .

If the energy parameter γ < γ∗, then ceq/c∗ > 1 at all ε0, and the planar front cannot propagate in y-
direction. To avoid misunderstanding, note that this does not mean that the reaction cannot occur at all. In a
general case, χ depends on the geometry of the front since the stress–strain state at the reaction front depends
on the geometry. It may happen that other configurations of the reaction front than a configuration with a planar
reaction front may develop. On the other hand, a forbidden zone can be constructed in a strain space, formed
by the strains at which the reaction cannot go whatever the local normals to the front are [11,13]. Also, strictly
speaking, even if the considered solution with a planar propagating front is allowed by kinetic equation at given
ε0, an additional stability analysis would be appropriate [35]. Consideration of these aspects is beyond the
scope of this paper. Note only that the use of the semi-inverse approach may give a mathematically consistent
solution, but other solutions which do not follow a priori assumptions about the geometry of the front may
also be of interest.

(ii) If the elastic moduli satisfy the inequalities

G+ > G− but 8(G+ − G−) − 9S < 0,

which can be rewritten as

μ+ <
4μ−(3k− + μ−)

3k− + 4μ−
<

4μ+ (3k+ + μ+)

3k+ + 4μ+
⇐⇒ E+

2(1 + ν+)
<

E−
1 − ν2−

<
E+

1 − ν2+
,

then ε∗
0 > 0 as in the case (i), but the minimal value of χ is negative, χ(ε∗

0) < 0. The front may propagate
even at negative jump of the chemical energies, γ < 0, but such that γ > −|γ∗|, and at strains ε0 such that
χ(ε∗

0) < χ(ε0) < γ < 0. This would be impossible without accounting for strain energy effects.
Since ε∗

0 > 0 at G+ > G−, the increase of the tensile strain from ε0 = 0 until ε∗
0 accelerates the reaction

front in both cases (i) and (ii). Further growth of ε0 retards the front until blocking at ε II . On the whole, if
|ε0 − ε∗

0 | increases, then the front velocity decreases until zero.
(iii) If G+ < G−, then γ0 < γ∗, ε∗

0 < 0, and χ(ε∗
0) > 0 corresponds to the maximal value on the

dependence χ(ε0) (Fig. 4b). Such a case was also discussed for an elastic case with plane transformation strain
in [15]. If γ > γ∗, then the front may propagate at any ε0. If γ < γ∗, then the front is blocked at ε0 ∈ [ε I , ε II ]
but may start to propagate at proper tension ε0 > ε II or compression ε0 < ε I . Thus, in this case, in contrast
to the previous ones, the front may propagate at any γ at some external strains.

By (3.32), the bulk and shear elastic moduli, k± and μ±, affect the dependence χ(ε0) and, thus, the
dependencies of ceq/c∗ and the reaction front velocity on ε0 via parameters (G+ − G−) and S, and the
strain ε∗

0 is determined by the dimensionless parameter S/(G+ − G−). For example, it is easy to see that ε∗
0

decreases if μ+ increases and other moduli are fixed. As another example, one can examine how k+ affects
the dependence χ(ε0) and the extrema values χ(ε∗

0) and ε∗
0 . From (3.24), it follows that

∂χ(ε0)

∂k+
= 2μ2+(3ε0 − 2ϑ tr)2

(3k+ + 4μ+)2
≥ 0. (3.34)
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(a) (b)

(c)

Fig. 5 Dependencies of the equilibrium concentration on external strain ε0 for the case G+ > G−: a for different values of the
energy parameter γ ; b for different values of the bulk modulus k+; c for different values of the shear modulus μ+

Then, if the front propagates at a given set of parameters, further increase of k+ increases χ(ε0) and, therefore,
decreases the front velocity. Note also that increase of k+ leads to increasing the extrema value χ(ε∗

0) for both
cases G+ > G− and G+ < G−.

By (3.32), the character of the dependence of the extrema strain ε∗
0 on the bulk modulus k+ depends on

the relations between elastic moduli. Since

∂ε∗
0

∂k+
= 3μ2+ϑ tr

(3k+ + 4μ+)2

8(G+ − G−) − 9S

4(G+ − G−)2
, (3.35)

one can see that if 8(G+ − G−) − 9S > 0 (the case (i)), then the point ε∗
0 in Fig. 4a is shifted to the right if

k+ increases and is shifted to the left leaving ε∗
0 positive if k+ decreases, respectively.

If G+ > G− but 8(G+ −G−)−9S < 0 (the case (ii)) or G+ < G− (the case (iii)), then the extrema point
ε∗
0 in Fig. 4a is shifted to the left or right if k+ increases or decreases, respectively.

More detailed quantitative analysis is presented in Figs. 5 and 6, where the dependencies of the relative
equilibrium concentration c∗

eq/c∗ on the external stain ε0 at various values of the energy parameter γ and the
bulk and shear modules k+, μ+ of the transformed material are shown for the cases G+ > G− and G+ < G−,
respectively. The reference values of the parameters for the casesG+ > G− andG+ < G− and corresponding
values of γ0, γ∗ and G+, G−, S are given in Tables 1 and 2, respectively. Only the parameters differ in two
cases which are shown in Table 2. If the parameter is varied, then the values are indicated in figures.

The choice of the values of the parameters was made according to the reasons of the consistency with a
small strain approach, wide range of values and better visualization of the parameters influence on the variety
of the reaction front behavior in dependence on external strain. Two sets of bulk and shear moduli, k± and μ±,
were taken which correspond to the cases G+ > G− (Figs. 5, 7, 8, 9, 10) and G+ < G− (Fig. 6).
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(a) (b)

(c)

Fig. 6 Dependencies of the equilibrium concentration on external strain ε0 for the case G+ < G−: a for different values of the
energy parameter γ ; b for different values of the bulk modulus k+; c for different values of the shear modulus μ+

Table 1 Material parameters used in the simulations for the case G+ > G−

Parameter k− [GPa] μ− [GPa] k+ [GPa] μ+ [GPa] ϑ tr

Value 27.3 25.9 90.9 67.7 0.03
Parameter γ [MJ/m3] γ0 [MJ/m3] γ∗ [MJ/m3] η0 [GPas] D [m2/s]
Value 42.9 20.4 14.03 15.9 8 × 10−10

Parameter α [m/s] k∗ [m/s] T [K] c∗ n− H [m]
Value 2.3 × 10−7 1.27 × 10−6 920 1 1 10−3

Parameter M− [g/mol] ρ− [g/cm3] G− [GPa] G+ [GPa] S [GPa]
Value 28.1 15 15 42.6 22.6

Table 2 Material parameters used in the simulations for the case G+ < G−

Parameter k− [GPa] μ− [GPa] k+ [GPa] μ+ [GPa] γ [MJ/m3]
Value 62.3 33.9 27.3 25.9 21.9
Parameter γ0 [MJ/m3] γ∗ [MJ/m3] G− [GPa] G+ [GPa] S [GPa]
Value 6.86 14.04 23.2 15 7.6
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(a) (b)

(c)

Fig. 7 Kinetics of the reaction front at various values of external tension ε0 for the case G+ > G−: a dependencies of the
dimensionless front position on time, b dependencies of the front velocity on the position, c the front position versus time at the
initial stage of the front propagation

We took c∗ = 1 for the sake of simplicity, implying that the concentration of the diffusing constituent
may be considered in dimensionless form, divided by the solubility c∗. Note that the dimensionless forms
of the current and equilibrium concentrations are consistent with Eqs. (3.1)–(3.3) and (3.26) defining the
concentrations.

Figures 5a and 6a reflect the competition between strain and chemical energies atG+ > G− andG+ < G−,
respectively. If γ = γ0, then the dependence of ceq/c∗ on ε0 passes through the point ε0 = 0, ceq/c∗ = 1. If
G+ > G− and γ = γ0, then the frontmay propagate only at tension restricted by the strain ε̂ = 3Sϑ tr/[2(G+−
G−)], i.e., at strains 0 < ε0 < ε̂ (ε̂ = 0.037 in Fig. 5a). One can see how increasing γ results in enlarging the
interval of allowed strains ε0 (see the curves for γ = 2γ0 and γ = 5γ0) and how the decrease of γ shortens
and shifts the interval of the strains at γ∗ < γ < γ0.

If G+ < G− and γ = γ0, then the front may propagate only at tension ε0 > 0 or compression ε0 < ε̂ =
−0.042 (Fig. 6a). If γ < γ0, for example, γ = γ0/2, then the front can propagate only if additional tension
ε0 > ε I I > 0 or compression ε0 < ε I < 0 is applied. The case γ0 < γ < γ∗ is presented by γ = 1.5γ0, and
the front propagation is blocked at ε0 ∈ [−0.036,−0.006]. If γ > γ∗ (γ = 2γ0 and γ = 5γ0 in Fig. 6a), then
the front may propagate at any ε0.

One can also see in Figs. 4b, and 6a that if, at G+ < G−, the front can propagate at some ε0, then further
increase of the absolute value |ε0| decreases c∗

eq/c∗ and, thus, increases the front velocity.
Figures 5b, c and 6b, c characterize quantitatively the role of volume and shear strain energies via the

influence of the bulk modulus k+ and shear modulus μ+ on the dependencies of c∗
eq/c∗ on ε0.
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(a) (b)

Fig. 8 Dependencies of the front position on time (a), and the front velocity on the position (b) at various values of energy
parameter γ (G+ > G−)

(a) (b)

Fig. 9 Dependencies of the front position on time: a at various values of the bulk modulus k+, b at various values of the shear
modulus μ+ (G+ > G−)

SinceG+ decreases and, thus, approaches toG− ifμ+ decreases andG+ > G−, then one can also observe
in Fig. 5c how the dependence of ceq/c∗ on external strain changes if G+ → G−. (The curves move to right
and straighten up.) Analogously, Fig. 6c demonstrates how the dependencies change at G+ < G− if G+
increases and approaches to G− if μ+ increases.

Corresponding dependencies of the front position on time and the front velocity on the position under
various ε0 for the case G+ > G− are shown in Fig. 7. One can see how the strains retard or accelerate the
reaction front. The maximal velocity is observed at tensile strain ε0 = ε∗

0 = 0.019. The velocity decreases at
both additional tension (as at ε0 = 0.04) and at compression relatively to ε∗

0 (as at ε0 = 0.005, 0.009,−0.005),
as it has to be in accordance with the increasing ceq/c∗ in Fig. 5a.

Figures 8 and 9 demonstrate how increase of the energy parameter accelerates the front, and how the values
of elastic moduli affect the front kinetics. These dependencies are consistent with the dependencies of ceq/c∗
shown in Fig. 5.

The initial thickness of the plate also has an effect on the front kinetics (Fig. 10) through characteristic
times TD and Tch of the diffusion supply and chemical reaction (see Eq. (3.5)). Increasing the plate thickness
increases the characteristic times and therefore decreases the relative front velocity.

Kinetic curves analogous to the dependencies shown in Figs. 7, 8, 9 and 10 can be constructed atG+ < G−,
and finally, we illustrate how the sign of the difference G+ − G− and the value of the parameter S affect the
reaction front kinetics (Fig. 11). By (3.27), (3.28) and (3.24), the elastic moduli and external strain affect the
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(a) (b)

Fig. 10 a Dependencies of the front position on time, b dependencies of the front velocity on the position at various initial
thickness H of the plate (G+ > G−)

Fig. 11 Kinetics of the reaction front at various values of external tension ε0 for the case G+ > G− (solid lines) and for the case
G+ < G− (dashed lines)

parabolic kinetic via the influence on the coefficient Q, i.e., via changing the timescale due to changing the
parameters S and the difference G+ − G−.

If ε0 = 0, then, by (3.24), χ(ε0) = S(ϑ tr)2 in (3.28), and the difference G+ − G− itself does not affect
the front kinetics. The front propagates slower in the case G+ < G− only because the value S is smaller in
this case than in the case of G+ > G− at taken elastic moduli (see Tables 1, 2). Recall that S is defined by the
elastic moduli of the transformed material only.

One can also compare quantitatively how the external strain affects the kinetics if the elastic moduli are
such that G+ > G− orG+ < G−. In particular, the front propagates at G+ < G− slower than at G+ > G− as
it was due to the different values of S, but compared to the case ε0 = 0, the difference is greater at compression
and smaller at tension.

3.3 Stress relaxation and strains behind the reaction front

To calculate stresses and strains in the transformed material, i.e., behind the reaction front, according to
Eqs. (3.9)–(3.12) one has to calculate the time evolution of volume strain ϑ+ and deviators e2 = e+, eη, ee1.
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Substitution of ε+ − ϑ+

3
I and σ+ −σ+I into Eq. (3.13) instead of s+ and e+ with the restrictions ε+

x = ε0,

ε+
z = 0, leads to the equations

−
(

1 + μ2

μ1

)
ϑ̇+

3
+ μ2

η

(

ε0 − ϑ+

3

)

= 1

2μ1

(
σ̇+
x − σ̇+) + 1

2η
(σ+

x − σ+), (3.36)

−
(

1 + μ2

μ1

)
ϑ̇+

3
− μ2

η

ϑ+

3
= 1

2μ1

(
σ̇+
z − σ̇+) + 1

2η
(σ+

z − σ+). (3.37)

Adding Eqs. (3.36) and (3.37) and taking into account Eq. (3.10), we derive the differential equation for
ϑ+:

ϑ̇+ + ϑ+

τ+
− 3(k+ϑ tr + 2μ2ε0)

τ1 (3k+ + 4μ+)
= 0, (3.38)

where

τ1 = η

μ1
, τ+ = (3k+ + 4μ+)

(3k+ + 4μ2)

η

μ1
. (3.39)

The initial condition for Eq. (3.38) is the value ϑ+(ty) at time ty ; it is given by (3.22). Then, the solution of
Eq. (3.38) takes the form:

ϑ+(y, t) = a exp

(

− t − ty
τ+

)

+ b, (3.40)

where

a = 2βμ1k+
3k+ + 4μ+

(3ε0 − 2ϑ tr), b = βϑ tr + 6μ2ε0

3k+ + 4μ2
, (3.41)

β =
(

1 + 4μ2

3k+

)−1

, (3.42)

and the time ty = ty(y) is given by (3.29). Note that here t > ty , and the coordinate y is presented in ty(y)
in a dimensionless form as ζ = y/H ∈ [0, ξ ]. One can see that the volume strain in points behind the front
decreases or increases with time depending on the sign of the difference (3ε0 − 2ϑ tr).

Next steps are finding e+
x , e

e
1x and then

σ+
x = k+(ϑ+ − ϑ tr) + 2μ1e

e
1x + 2μ2e

+
x , (3.43)

σ+
z = 3k+(ϑ+ − ϑ tr) − σ+

x . (3.44)

Since e+
x = ε0 − ϑ+/3, it follows from (3.40) that

e+
x (y, t) = 2βμ1

3k+ + 4μ+

(
2ϑ tr

3
− ε0

)

exp

(

− t − ty
τ+

)

+3k+ + 2μ2

3k+ + 4μ2
ε0 − βϑ tr

3
. (3.45)

By constitutive equations (3.12),
ee1 = τ1ėη = τ1(ė+ − ėe1).

Then, since ė+
x = −ϑ̇+/3, it follows that ee1x can be found from the equation

ėe1x + 1

τ1
ee1x = − ϑ̇+

3
(3.46)

with the initial condition

ee1x (y, ty) = e+
x (y, ty) = ε0 − ϑ+(y, ty)

3
(3.47)
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(a) (b)

Fig. 12 Stress relaxation behind the reaction front: a stress distributions behind the front for two front positions at times t = ty(ξ1)
and t = ty(ξ2);b stress relaxation in points ζ = 0 and ζ = ξ1 starting from themoments t = ty(0) = 0 and t = ty(ξ1), respectively

that follows from Eq. (3.15) with ϑ+(y, ty) defined by Eq. (3.22).
After calculating the time derivative ϑ̇+ from Eq. (3.40) and substituting it into the right-hand side of

Eq. (3.46), we come to the equation for ee1x that, with the initial condition (3.47), has a solution:

ee1x (y, t) = k+(3ε0 − 2ϑ tr)

2(3k+ + 4μ+)
exp

(

− t − ty
τ+

)

+ ε0

2
exp

(

− t − ty
τ1

)

. (3.48)

Finally, from (3.43), (3.40), (3.45) and (3.48) it follows that

σ+
x (y, t) = 3βμ1k+

(
3ε0 − 2ϑ tr

)

3k+ + 4μ+
exp

(

− t − ty
τ+

)

+μ1ε0 exp

(

− t − ty
τ1

)

+ 4μ2(3k+ + μ2)ε0

3k+ + 4μ2
− 2βμ2ϑ

tr, (3.49)

σ+
z (y, t) = 3βμ1k+

(
3ε0 − 2ϑ tr

)

3k+ + 4μ+
exp

(

− t − ty
τ+

)

−μ1ε0 exp

(

− t − ty
τ1

)

+ 2μ2(3k+ − 2μ2)ε0

3k+ + 4μ2
− 2βμ2ϑ

tr (3.50)

Then, at the reaction front

σ+
x (y, ty) = 2μ+

(
2(3k+ + μ+)ε0 − 3k+ϑ tr

)

3k+ + 4μ+
, (3.51)

σ+
z (y, ty) = 2μ+

(
(3k+ − 2μ+)ε0 − k+ϑ tr

)

3k+ + 4μ+
(3.52)

The distributions of stress σ+
x behind the reaction front at two moments ty(y) which correspond to the

front positions ξ1 = y1/H and ξ2 = y2/H are schematically shown in Fig. 12a. The stress σ+
x in the point

ζ = ξ1 relaxes from A to B during the time of the front propagation from ξ1 to ξ2. Stress relaxation in two
points ζ = 0 and ζ = ξ1 starting from the moments t = ty(0) = 0 and t = ty(ξ1), respectively, is shown in
Fig. 12b.

The relaxation of stress σx becomes possible because the viscous deformations convert the volume expan-
sion ϑ tr into the strain ε+

y , i.e., thickening of the transformed layer. The dependence ε+
y (y, t) follows from the

equality
ε+
y = ϑ+ − ε0 (3.53)

where ϑ+ is determined by (3.40).
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To find inputs of viscous strain eη and elastic part ee1, note that it follows from (3.11), (3.12) that

eη =
(

1 + μ2

μ1

)

e+ − 1

2μ1

(
σ+ − σ+I

)
. (3.54)

Then, with e+
y = 2

3
ϑ+ − ε0 (see (3.21)) and σy = 0, σ+ = k+(ϑ+ − ϑ tr), it follows from (3.54) that

eη
y(y, t) = 1

2μ1

{(

k+ + 4

3
μ+

)

ϑ+(y, t) − (
k+ϑ tr + 2μ+ε0

)
}

, (3.55)

By (3.11), ee1 = e+ − eη. Then,

ee1y(y, t) = 1

2μ1

{

k+ϑ tr −
(

k+ + 4

3
μ2

)

ϑ+(y, t) + 2μ2ε0

}

. (3.56)

In Eqs. (3.55) and (3.56), the dependence ϑ+(y, t) is given by (3.40).
If ε0 = 0, then strains and stresses are sourced only by the transformation strain, and due to the relaxation

at t → ∞
ε+
y = ϑ+ → βϑ tr, eη

y → 2βϑ tr/3, ee1y → 0, (3.57)

ee1x → 0, e+
x → eη

x = −βϑ tr/3, σ+
x → −2μ2βϑ tr, (3.58)

and one can see that the coefficient β, defined by (3.42), characterizes the degree of the conversion of the
transformations strain into ε+

y and the value of the residual compressive stress σ+
x .

The strain ε+
y may be also of interest, since in experiments the thickness of the layer of the transformed

material is usually observed which does not coincide with the coordinate h of the front position. To estimate
the thickness, one have to add to h the displacements produced by strains ε+

y (y) at y ∈ [0, h], i.e., to calculate
the integral

h∫

0

ε+
y (y)dy =

h∫

0

(ϑ+(y, th) − ε0)dy

= a

h∫

0

exp

(
ty − th

τ+

)

dy + (b − ε0)h, (3.59)

where th is the moment of observation of the front position h, and, by (3.29),

ty = 1

Q

(
TD
2

ζ 2 + Tchζ

)

, th = 1

Q

(
TD
2

ξ2 + Tchξ

)

, ζ = y

H
, ξ = h

H
.

The integral in (3.59) is expressed in terms of a probability integral

Erfi(z) = 2

π

z∫

0

et
2
dt,

and finally, it can be derived that the relative thickening depends on the front position as

1

H

h∫

0

ε+
y (y)dy = a

√
π

2

(

Q
τ+
TD

)1/2
exp

(

− (TDξ + Tch)2

2Qτ+TD

)

(Erfi(z2) − Erfi(z1))

+
(

βϑ tr − (3k+ + 2μ2)

3k+ + 4μ2
ε0

)

ξ, (3.60)
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(a) (b)

Fig. 13 Stress relaxation at various values of viscosity coefficient η for the standard linear solid model: a stress distributions
behind the front for two front positions ξ = 0.001 (dashed lines) and ξ = 0.002 (solid lines), b stress relaxation in points
ζ = 0.001 (solid lines) and for ζ = 0.002 (dashed lines); ε0 = 0, η0 = 15.9 GPa s. Solid and dashed lines of the same color
correspond to the same viscosity coefficient

where

z1 =
(

TD
2Qτ+

)1/2 Tch
TD

, z2 =
(

TD
2Qτ+

)1/2 (
Tch
TD

+ ξ

)

(3.61)

The results of quantitative studies of stress relaxation and strains evolution and the redistribution of various
modes of strains are shown in Figs. 13, 14, 15 and 16. Material parameters are given in Table 1. Two sets of
the stress distributions behind the reaction front at two moments ty which correspond to the front positions
ξ = 0.001 and ξ = 0.002 and two sets of stress relaxation curves for stresses in points ζ = 0 and ζ = 0.005
are shown in Fig. 13 for various viscosity coefficients η. Note that the transformation strain may produce huge
stresses at the reaction front which would remain in a pure elastic statement and might cause plastic strains
and fracture. But one can see how narrow the high stresses domain can be and how fast the stresses may relax
due to the viscous behavior of the reaction product at proper viscosities. This demonstrates that, in dependence
of the viscosity, the stress relaxation can or cannot prevent damage accumulation and fracture at the reaction
front.

Figure 14a, c demonstrates the time evolution of viscous strains in two points, illustrating how fast the limit
values can be reached in dependence of the viscosity. Redistribution of the elastic and viscous strains within
the total strain in point ξ = 0 is shown in Fig. 14b, d.

Figure 15 shows how the stress dependencies are affected by external strain. It is seen how the limit values
of residual elastic stress are reached.

Relaxation times τ+ and τ1 do not depend on the energy parameter γ . But γ affects the front velocity
and, thus, the front kinetics. Increasing γ increases the front velocity. The stress behind the front does not
have enough time to relax, and the stress distribution becomes more smeared, as it is shown in Fig. 16a. If γ
decreases, then the front propagates more slowly, and a sharper drop of the compressive stress σx takes place
in the stress distributions behind the front.

The time dependencies of stress σx in points ζ = 0 and ζ = 0.005 for various γ are presented in Fig. 16b.
Stress relaxation in point ζ = 0 does not depend on γ , and the time dependence of the stress is presented by the
solid black line. If ζ 	= 0, then the stress relaxation starts at the moment ty for y = ζH . By (3.28) and (3.29),
if γ grows, then the parameter Q increases and, thus, the time ty decreases, i.e., the relaxation starts earlier.
One can see how the curves shift to the left when the gamma is increased. Note that the energy parameter
depends on temperature, and the temperature may also affect stress relaxation via the viscosity coefficient.
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(a) (b)

(c) (d)

Fig. 14 Evolution and redistribution of viscous and elastic strains: a, c evolution of viscous strains eη
x and eη

y , respectively, in
the point ζ = 0 from the moment t = 0 and in the point y front the moment ty = 30 s for various viscosity coefficients; b, d
redistribution of elastic strains ee1x , e

e
1y and viscous strains e

η
x , e

η
y within total strains e+

x , e
+
y in the point ζ = 0. Solid and dashed

lines of the same color correspond to the same viscosity

3.4 Particular cases of viscoelastic behaviors

In this subsection, we specify the equations for stresses and strains behind propagating reaction front for three
rheological models which can be considered as particular cases of standard linear solid model and discuss the
applicability of these models in the statement of mechanochemistry problems.

3.4.1 Maxwell material

We obtain the Maxwell material, as shown in Fig. 3b, from SLSM setting μ2 = 0, β = 1 and μ1 = μ+. The
formula (3.24) for χ0 remains the same with new μ+. The formulae (3.40), (3.45), (3.48), (3.49) (3.50) for
strains ϑ+, e+

x , e
e
1x and stresses σ+

x and σ+
z behind the front become
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(a) (b)

Fig. 15 Stress relaxation at various values of external strain ε0: a stresses behind the front for two front positions ξ = 0.001
(dashed lines) and ξ = 0.002 (solid lines); b stress relaxation in two points ζ = 0.001 and ζ = 0.002. Solid and dashed lines of
the same color correspond to the same external strains

(a) (b)

Fig. 16 Stress relaxation at various values of energy parameter γ for the standard linear solid model (solid and dashed lines of
the same color correspond to the same energy parameter): a stresses behind the reaction front for two front positions ξ = 0.001
and ξ = 0.002; b stress relaxation in two points ζ = 0 (the solid line) and ζ = 0.005 (dashed lines)

ϑ+(y, t) = ϑ tr + 2μ+
(
3ε0 − 2ϑ tr

)

3k+ + 4μ+
exp

(

− t − ty
τ+

)

, (3.62)

e+
x (y, t) = ε0 − ϑ tr

3
− 2μ+

(
3ε0 − 2ϑ tr

)

3 (3k+ + 4μ+)
exp

(

− t − ty
τ+

)

, (3.63)

eex (y, t) = k+(3ε0 − 2ϑ tr)

2(3k+ + 4μ+)
exp

(

− t − ty
τ+

)

+ ε0

2
exp

(

− t − ty
τ1

)

, (3.64)

and

σ+
x (y, t) = 3k+μ+

(
3ε0 − 2ϑ tr

)

3k+ + 4μ+
exp

(

− t − ty
τ+

)

+ μ+ε0 exp

(

− t − ty
τ1

)

, (3.65)

σ+
z (y, t) = 3k+μ+

(
3ε0 − 2ϑ tr

)

3k+ + 4μ+
exp

(

− t − ty
τ+

)

− μ+ε0 exp

(

− t − ty
τ1

)

, (3.66)
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where

τ1 = η

μ+
, τ+ = (3k+ + 4μ+)

3k+
η

μ+
.

If t → ∞, then ϑ+(y, t) → ϑ tr , ε+
y → ϑ tr − ε0 and σ+

x → 0, i.e., stresses totally relax. Since the
conversion coefficient β = 1, the volume expansion resulting from the reaction is converted totally into the
strain ε+

y at ε0 = 0 (cf. with (3.57), (3.58) at μ2 = 0).

3.4.2 Kelvin–Voigt material

Another particular case is the Kelvin–Voigt material (Fig. 3c). In this case,

μ1 → ∞, μ2 → μ+, (3.67)

e+ = eη = ee, σ+ = k+
(
ϑ+ − ϑ tr) I + 2μ+e+ + 2ηė+. (3.68)

Since the dash-pot element cannot deform simultaneously, at the reaction front eη = e+ = 0. Then, this
degenerative case can be realized only if ε0 = 0. Then, w− = 0 and at the reaction front

ϑ = ϑ(y, ty) = 0. (3.69)

Then, χ = w+ = 1

2
k+(ϑ+)2. Mechanics just subtracts

1

2
k+(ϑ+)2 from γ in the expression of ANN. Of

course, this also directly follows from (3.24) and (3.25) if one takes the parameters according to (3.67).
The equation (3.38) for ϑ behind the front takes the form

ϑ̇+ + ϑ+

τ
− 3k+

4η
ϑ tr = 0, τ = 4η

3k+ + 4μ+
. (3.70)

The solution, satisfying the initial condition (3.69), is

ϑ+(y, t) = 3k+ϑ tr

3k+ + 4μ+

(

1 − exp

(

− t − ty
τ

))

. (3.71)

The volume strain in points behind the front increases with time if ϑ tr > 0. Since e+
x = e+

z = −ϑ/3, from
(3.68) and (3.71) it follows that the stresses behind the front can be expressed via ϑ and relax as

σ+
x (y, t) = σ+

z (y, t) = −2

3
ηϑ̇+ +

(

k+ − 2

3
μ+

)

ϑ+ − k+ϑ tr

= − 6k+μ+ϑ tr

3k+ + 4μ+

(

1 + 3k+
4μ+

exp

(

− t − ty
τ

))

. (3.72)

At the reaction front

σ+
x = σ+

z = −3

2
k+ϑ tr. (3.73)

Of course, Eqs. (3.71), (3.73) and (3.73) directly follow from (3.40), (3.49) and (3.51) if to take μ1 and μ2
from (3.67), but, since this case may be of a special interest, we presented the short derivations (3.68)–(3.72).
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3.4.3 Pure linear-viscous material

The linear-viscousmaterial (Fig. 3d) can be obtained by settingμ+ = 0 in above formulae. It can be considered

only at the same restriction ε0 = 0 as above. Then, at the reaction front w− = 0, χ = w+ = 1

2
k+(ϑ+)2,

ϑ+ = 0, σ+
x = σ+

z = −3

2
k+ϑ tr

It is easy to see that the volume strain in points behind the front increases up to ϑ tr > 0 (decreases if ϑ tr < 0)
with time as

ϑ+(y, t) = ϑ tr
(

1 − exp

(

− t − ty
τ

))

, τ = 4η

3k+
(3.74)

and stresses relax as

σ+
x (y, t) = σ+

z (y, t) = −3

2
k+ϑ tr exp

(

− t − ty
τ

)

(3.75)

Note that the restriction ε0 = 0 makes the Kelvin–Voigt and pure viscous materials rather unsuitable than
suitable as rheological models, as opposed the standard linear solid model and the Maxwell material. This
indicates that not every common rheological model can be used for reaction constituents in the considerations
of coupled problems of mechanochemistry.

4 Conclusions

The stress-affected chemical reaction front propagation in deformable solid in the case of a planar reaction
front has been considered basing on the concept of the chemical affinity tensor. The influence of strains and
material parameters on the kinetics of the front propagation was studied in detail with the use of the notion
of the equilibrium concentration. Two types of the dependencies of the equilibrium concentration and, thus,
front velocity on strain are demonstrated, depending on the relations between the combinations of elastic
moduli of solid reactants. In the first case, the front can propagate only if strains belong to some interval, and
it cannot propagate at all if the energy parameter is less than the critical value defined by the elastic moduli
and transformation strain. In the second case, the front can propagate at any energy parameter at proper strains
which are outside of a corresponding interval.

Different cases also correspond to different characters of the influence of strains on the acceleration or
retardation of the reaction front. In the first case, increasing strains within the interval of allowed strains over
the critical strain leads to reaction retardation. In the second case, increase of the absolute value of the strain
out of the interval of forbidden strains accelerates the reaction front.

The changing of the rheological behavior of a solid constituent, sourced by a localized chemical reaction,
was taken into account with the use of the standard linear solid model and its particular cases. The SLSM and
Maxwell model allowed to obtain analytical solutions which gave us possibilities to study the specific effects
of material parameters on stress relaxation behind the reaction front. On the other hand, the Kelvin–Voigt and
pure viscous materials can hardly be considered as proper candidates for modeling the reaction products.

Results show that viscous deformations of the reaction product do not affect directly the kinetics of the
front in the case of the SLSM if the external strain is applied along the interface plane, since they do not
have time to appear at the moment of the transformation. But they enable the possibility for a stress relaxation
phenomenon behind the reaction front and the accommodation of the transformation volume strain. Depending
on the viscous and elastic parameters, this relaxation can be fast, and the high stresses region may be localized
in a narrow layer adjacent to the transformation front. Note also that other external loadings are possible,
at which stress relaxation can restart the initially blocked reaction front. Following these results, different
perspectives could be drawn for coupled mechanochemistry simulations based on the chemical affinity tensor
in order to be applied for more complex external loading and various geometries.
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