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CONDITIONING BIENAYME-GALTON-WATSON TREES TO HAVE
LARGE SUB-POPULATIONS

ROMAIN ABRAHAM, HONGWEI BI, AND JEAN-FRANCOIS DELMAS

ABSTRACT. We study the local limit in distribution of Bienaymé-Galton-Watson trees con-
ditioned on having large sub-populations. Assuming a generic and aperiodic condition on the
offspring distribution, we prove the existence of a limit given by a Kesten’s tree associated
with a certain critical offspring distribution.

1. INTRODUCTION

Local limit of large Bienayme-Galton-Watson (in short, BGW) trees have been extensively
studied in recent years. The classical result of Kesten [20] describes the local limit of a
critical or subcritical BGW tree conditioned on reaching at least height h locally converges
in distribution as h goes to infinity to the so-called size-biased tree or Kesten’s tree, which is
a tree with an infinite spine. We refer to Section 2.5 for a precise description of the Kesten’s
tree.

Over the years, motivated by various point of view from theoretical probability, combi-
natorics, biology or physics, other conditionings have been considered, such as large total
progeny [19, 12], large number of leaves [17, 8], large number of protected nodes [1], existence
of an individual with a large number of out-degree or children [13, 14]. Janson [15] surveyed
the local limit of BGW trees when conditioned on a large total population size, and Abra-
ham and Delmas [4, 3| provided a general framework, which describes in full generality the
local limit of critical or subcritical BGW trees conditioned on having a large sub-population.
Notice that in [17, 15, 3, 27| the local limit may exhibit a condensation phenomenon, as one
node of the limiting tree has an infinite number of children. With other conditioning, such
as a large size of a late generation [2, 5], or with exponential weight given by the total height
of the tree among tree with given large size [11], the local limit is a tree with an infinite
backbone. Local limit of large multi-type Galton-Watson trees has also been considered in
[24, 6], and also in [26, 29] when conditioning on a linear combination of the sizes of the
sub-populations with a given type.

One can also consider scaling limits of BGW trees (seen as metric space), the so called Lévy
continuum trees, as initiated by Aldous [7] and generalized by Duquesne and Le Gall [10]. Let
us mention that there is a large recent literature on this subject. In particular Marzouk [22]
considered the scaling limit of random trees with a prescribed degree sequence, and Kargin
[18] and Kortchemski and Marzouk [21] the scaling limit of BGW trees conditioned on its
total progeny and the number of leaves.

Motivated by those last works, we shall investigate the local limit of BGW tree when
conditioning on its total progeny and the number of leaves being large. More generally, let
A = (Ai)ieq, s, where [a,b] = [a,b] NN, be a finite collection of pairwise subsets of N and
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@ = (a4)ie[,s] a probability measure on [1,J]. We denote by Ay the complementary of
Uiepi,sp Ai in N, which might be empty or not. We shall then generalize [4] and consider
the local limit of BGW trees conditioned to have |a;n| nodes with out degree in A; for
all i € [1,J] as n goes to infinity. We stress that there is no condition on the nodes with
out-degree in Ayg.

More precisely let p = (p(n)),en be a probability distribution on Nj its support is supp (p) =
{n € N: p(n) > 0}. We assume that p is non-trivial in the sense that p(0) > 0 and
p({0,1}) < 1, where p(A) = >, c4p(n) for A C N. We denote by u(p) € (0,+00] its mean.
We denote by T, a BGW tree with offspring distribution p. Notice we don’t assume that u(p)
is even finite, however since p(0) is positive the tree 7, is finite with positive probability. Set
N = NU {oc}. For a tree t we denote by L4(t) the number of its nodes with out-degree (or
number of children) in A. We simply set:

La(t) = (La,(t))ieq,n € N7

In Theorem 4.1 we completely characterize the non-trivial probability distributions p’ on N
such that supp (p') C supp (p) and for all n = (n;)ieq g1 € N7 such that P(L4(7y) =n) >0
(and thus P(L4(7,) = n) > 0), we have:

dist (7, | La(Tp) =n) =dist (Ty | La(Ty) =mn).

Such probability distributions are called (p,.A)-compatible. The (p,.A)-compatible probability
distributions can be continuously parametrized by a parameter (6, 3) in a subset of [0, +00] x
]Ri. When the parameter 6 is positive and finite, then the (p,.A)-compatible probability
distribution py g associated with the parameter (6, 3) is given by:

Posg(n) = pi0"p(n) for neA; and i€[0,J], where fy= o1,

The fact that such exponentially tilted probability distributions are (p,.A)-compatible was
already observed in [4] for J = 1 and in Thévenin [29] for the multi-type BGW tree setting.
In comparison with those two papers, we give here an exhaustive description of the (p,.A)-
compatible probability distributions. In particular, it is possible to observe degenerate cases
when the parameter € can take the values 0 and oo, see (18) and (19). In both cases, when
possible, we get that 0 ¢ Ag and for the latter that Ay Nsupp (p) is either empty or reduced to
{1}. As suggested by this remark, we shall indeed distinguish in most of the proofs according
to 0 ¢ Ap (the leaves are directly involved in the conditioning) or not.

For x = (24)ieq,y] € RY, we set |x| = > ieq, g [zil the L' norm of x. As in [24], it is
interesting to have a fixed (asymptotic) proportion of sub-populations, and thus consider the
local limit of 7, conditionally on {L4(7,) = n} when n/|n| converges to some a € RY such
that || = 1, as |n| goes to infinity. For p non-trivial, intuitively we have that L4(7,) is of
order p(A) times the total size of the population 7, = Ln(7,) when the tree is large, see
[16, 28] for precise statement. Thus, it is natural to consider among the (p,.4)-compatible
probability distribution those which are in the direction o = (c;);e1, 7, that is:

Pos(A;) o o forall i€ [L,J].

From this, we can write o as a function of (6, 3), provided that pg 5(Af) > 0 or equivalently
that 8 # 0 (see Remark 3.7 for details), and similarly § as a function of (6, ). This gives an
elementary reparametrization (pg o) of the family (py g) by the parameter § and its direction
a, provided 8 # 0. The family (pgg) is explicitely given in Lemma 5.3 and the possible
directions in Proposition 5.4. In particular,  is not a possible direction if and only if there
exists j € [1,J] such that a; = 0 and 0 € A;j or a; = 1 and Ay U A; C {0,1} (those two
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latter conditions correspond to pg o being non-trivial). In particular, if the entries of av are all
positive then « is a possible direction. Furthermore, if « is a possible direction, then the set
I, C [0, +0o¢] of possible value for the parameter 6 is an interval, see Section 5.2. As observed
in previous works, the existence of a critical parameter 6, such that p(pg, ) = 1, is a key
point to obtain the local limit of the conditioned BGW tree. Proposition 5.10 asserts that
the mean function 6 — p(pg o) is increasing when p(pgpo) < 1, and thus there is at most one
such critical parameter 6,. Let us stress this result is not obvious as the map 6 — p(pg,qo) is
not monotone in general (see an example in Remark 5.12). When the critical parameter 60,
exists, then the distribution p is called generic for the direction «, and we set:

(1) Pa = Don.o (and thus p(pa) = 1).

We provide necessary and sufficient conditions for p to be generic in the direction « in
Theorem 5.13 which are similar to those obtained in [4] when J = 1. We don’t study further
the relation between the sets A = (A;);c[1, s and the fact that p is generic, and refer to [4]
again to appreciate the complexity already when J = 1.

Let 7, denote the Kesten tree associated with the probability distribution p when w(p) =1,
that is, the local limit in distribution of 7, conditioned to have height at least h, as h goes
to infinity. Before giving the main result of the paper, we recall the hypothesis:

(H1) pis a non-trivial probability distribution on N (there is no moment condition). With-
out loss of generality we assume that the sets A = (A;);c[1,s] are pairwise disjoint
subsets of the support of p.

(H2) o € RY with |a| = 1, is a possible direction (this condition is always satisfied if all
the entries of o are positive).

(H3) p is generic in the direction «.

(H4) p is aperiodic in the sense of Definition 6.2. (In particular being aperiodic depends
on the sets A and the direction «, see also Remark 6.3.)

We are now ready to state the main result of the paper. Recall p, in (1).

Theorem 1. Assume that Hypothesis (H1)-(H/) hold. We have the following local limit in
distribution:
dist (7, | La(T,) = n) T) dist (7;;),
n(—oo
along any sequence (n) in N’ such that: the sub-populations are large, that is, lim In| = oco;
the conditioning is legit, that is, P(La(T,) = n) > 0, and the direction is strictly «, that is,
im0 0/ 0| = a and, with o = ()i, and n = (n;)ien, g, for all j € [1,J]:

(2) aj:0:>nj:O.

To be complete, we also refer to Lemma 6.1 on the existence of a sequences of n in N7/
satisfying the hypothesis above.

The proof of Theorem 1 relies on two ingredients. The first one is the use of Rizzolo’s
transformation from [25] to reduce the problem to the case Ay empty. The second is the
existence of a local limit for multi-type BGW tree conditioned to the sub-populations of each
type to be large (with proportion given by the positive left eigenvector of the mean matrix)
obtained in [3]. One could also use the results of Pénisson [24], but this would require
stronger hypothesis, see Remark 6.9 for further comments. Let us mention that Corollary 3.5
in Abraham, Delmas and Guo [6] gives Theorem 1 in the very specific case where u(p) = 1,
p(Ap) = 0, and the direction « is the one naturally given by p: o; = p(4;).
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Remark 1 (Conditioning on the total size and the number of leaves). Motivated by the scaling
limits of BGW trees conditioned on its total progeny and the number of leaves to be both large
considered in [18] and [21], we give as a consequence of the Theorem above the corresponding
local limit of such BGW trees in Remark 6.5. Conditioning on the total progeny and the
number of leaves amount to consider A; = N*Nsupp (p) and Ay = {0}. Notice the directions
« can be written as (a,1 — a). As explained in Remark 6.5, we have to consider two cases.

If the support of p is reduced to two elements say 0 and k (with k£ > 2 as p is non-trivial),
then Hypothesis (H4) is not satisfied. However in this case the conditioning is equivalent to
conditioning on the total size and the existence of the local limit is then given by [15] and [4].
Furthermore there is only one possible direction for which p is generic; it is given by a = 1/k.

If the support of p is not reduced to two elements, then provided the smallest subgroup in
Z containing {z —y : x,y € supp (p) N N*} is Z itself, then Hypothesis (H4) holds. In this
case, Hypothesis (H2) is satisfied if and only if a € (0,1). It is easy to check that p is generic
in the direction « if and only if there exists a positive finite root (which is then 6,) to the
equation:

9(0) = p(0) + ablg'(0).

The critical probability measure p, is given by p,(0) = 1 —a and pa(n) = 67 p(n)/g'(0,)
for n € N*; and we can apply Theorem 1.

Remark 2 (On the strict convergence of the sequence n to the direction o). Assume that the
offspring distribution p is generic in the direction « and that « has some zero entries. We
provide in Section 6.5 an example where removing Condition (2) (that is, n; = 0 if o; = 0)
on the sequence of n = (n;);cq1 7 such that limp, . n/[n| = a prevents to get the local
limit of conditioned BGW tree from Theorem 1.

Remark 3 (On non-generic distribution). If p is not generic in the possible direction « because
of Condition (i) in Theorem 5.13, then as in the case J = 1 studied in [3], we conjecture the
existence of a condensation phenomenon at the limit: the existence of a node of the local
limit at finite height with an infinite degree. The first step to prove this would be considering
the condensation for non-generic multi-type BGW trees. Notice that the others conditions
in Theorem 5.13 might happen for probability distributions with bounded supports, see
Remark 5.14 (a).

The rest of the paper is structured as follows. we introduce in Section 2 the general notation
and the framework of discrete trees, BGW trees and Kesten’s tree. We define the (p,.A)-
compatible probability distributions in Section 3 and characterize all the (p,.A)-compatible
probability distributions in Section 4 (handling the degenerate cases § € {0,400} and the
case 0 ¢ Ay are delicate). We study in Section 5 the existence of the critical parameter 6,
and thus the probability distribution p,. Eventually, we prove the main theorem in Section 6
see Theorem 6.4 as well as Remark 2.

2. NOTATION

2.1. General notation. We denote by R* = (0,00) (resp. N* = {1,2,...}) the set of
positive real numbers (resp. integers) and by Ry = [0,00) (resp. N = {0,1,...}) the set of
nonnegative real numbers (resp. integers). For i,j € N such that ¢ < j, note [i, 7] = NN, j].

Let J € N*. For x = () e[1,] € R’ we set [x| = Z;-Izl |z;|. Let:
Ay={xeR]: [x|=1}.
We set 1 € R’ (resp. 0 € R”) the vector of R’ with all its coordinates equal to 1 (resp. 0).
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Let p = (p(n))nen be a probability distribution on N and supp (p) = {n € N : p(n) > 0}
be its support. For A C N, we set:

p(A4) = Zp(n) and ga(r) = Z r"p(n) forr >0,

neA neA
where the sum over an empty set is 0 by convention. In particular, we have g4 = 0 for any
set A C N such that p(A) = 0. We also denote by p4 the radius of convergence of g4:
(3) pa=sup{r > 1: ga(r) < +oo}.
For simplicity, when A = N, we write g(r) = gn(r) and p = py. We write the mean of p by:

p(p) = > np(n).
neN

We say that a probability distribution p is critical (resp. sub-critical) if p(p) = 1 (resp.
wu(p) < 1). The probability distribution p is non-trivial if:
(4) 0<p(0) and p(0)+p(1) <1.

2.2. The set of discrete trees. We consider ordered rooted trees in the framework of Neveu
23]. More precisely, let U = [J,,((N*)" be the set of finite sequences of positive integers

with the convention that (N*)Y = {()}. Note H(u) = n the generation or the height of u if
u=(u,...,u,) € (N*)". For u,v € U, denote by uv the concatenation of v and v, with the
convention that uv = u if v = ) and uv = v if u = (). The set of ancestors of u is the set:

An(u) = {v € U : there exists w € U such that v = vw}.

The most recent common ancestor of s C U, denoted by M (s), is the unique element u of
NuesAn(u) with maximal height H(u). Let < be the usual lexicographic order on U.

A tree t is a subset of U that satisfies: () € t; if u € t, then An(u) C t; for u € t, there
exists ky(t) € N* called the out-degree of u, such that, for every i € N*, ui € t if and only
if i € [1,ky(t)]. The vertex () is called the root of t. The vertex u € t is called a leaf if
ky(t) = 0. We set ky(t) = —1 if u € t. Let L4(t) be the number of vertices of the tree t
whose out-degree belongs to A C N:

L4(t)=Card (La(t)) with La(t)={uect: k,(t) € A}.
We simply write fit = Ly(t) for the cardinal of t, and L, (t) for L,;(t) when n € N. Remark
that we have:

(5) > kul(t) =tt— 1.
Then we get from (5):
(6) Lo(t) =1+ ) (k—1)Ly(t).

For u € t, we define the subtree above u by {v € U : uv € t} and the fringe subtree by:
(7) s={uv el : uw € t}.

We denote by T the set of trees, Ty the subset of finite trees, and Ty the set of trees with
only one infinite branch:

le{teT\TO: Tim H(M({u€t: H(u)=n})) :oo}.
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Let H(t) = sup{H(u) : u € t} be the height of the tree t; and for h € N*  let T = {t ¢
T: H(t) < h} be the set of trees with height less or equal to h.

2.3. Local convergence of trees. For h € Nand a treet € T, let r,(t) = {u e t: H(u) <
h} be the tree t truncated at level h. Let (T},)nen and T be T-valued random variables. We
say that the sequence (7},),en converges locally in distribution towards 7 if:

(8) VheN, vt € T, im P(r(T) = t) = P(ra(T) = t),

and writing dist(7") for the distribution of the random variable 7', we denote it by:
lim dist(7;,) = dist(7T).
n—o0

For t € T and = € Lo(t), we consider a convergence determining class of trees T(t,z) =
{t® (t,z) : t € T}, where:

t® (t,z)={uctU{zv:vect}

is the tree obtained by grafting t on the leaf 2 of t. We recall from [4, Lemma 2.1], that if
(Ty)nen and T are Ty U Ty-valued random variables, then the sequence (T,,),en converges
locally in distribution towards 7 if and only if for all t € Ty and = € Lo(t):

nlLH;OP(Tn € T(t,z)) =P(T € T(t,z)) and hm IP’( n=1%t)=P(T =t).

2.4. BGW trees. Let p be a probability distribution on N. A T-valued random variable 7 is a
BGW tree with offspring distribution p if ky(7) is distributed as p and the branching property
is satisfied: for n € N*, conditionally on {kg(7) = n}, the subtrees (Si(7),...,S,(7)) are
independent and distributed as 7. We denote by 7, the BGW tree with offspring distribution
p. For all finite tree t € Ty, we have:

®) B(T, = t) = [[ plku(6) = [ pn)"

uet neN

with the convention that 0° = 1. When (4) holds and p is critical or sub-critical, then a.s. 7,
is finite (that is, 7, € To) and in this case (9) completely characterizes the distribution of 7,.

2.5. Kesten’s tree. Let p be a critical probability distribution on N (and thus u(p) =
1) satisfying (4). We denote by p* = (p*(n) = np(n))nen the corresponding size-biased
distribution. The so called Kesten’s tree, T is a Ty-valued random tree defined as the local
limit in distribution, when n goes to mﬁmty, of a BGW tree conditioned to have height larger
than n:

nh_}n(lo dist(7,| H(T,) = n) = dist(7,).

Informally, it is the skeleton of a two-type BGW tree, where: individuals are of type s
(survivor) or n (normal); the root is of type s; each individual of type s has a random number
of children with offspring distribution p*, all of them of type n but for one uniformly chosen
at random which is of type s; each individual of type n has a random number of children with
offspring distribution p, all of them of type n. Its distribution is completely characterized by
P(7, € T1) =1 and:

P(T, =t)

(10) P(7,) € T(t,x)) = (0

forall te Ty and =z € Lo(t).
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3. DEFINITION OF THE DISTRIBUTION pyg 3

Let p be a probability distribution on N satisfying (4). Let A = (4;);ep, s, with J € N,
be pairwise disjoint non-empty subsets of supp (p). Note A the complementary of U;cp1, 514
in supp (p). Notice Ay may be empty. For J C [0, J], we set:

Az = 4.
Jje€T
For a probability distribution ¢ on N, we write:
Q('A) = (q(A1)7 s 7Q(AJ)) € [07 1]J
For a finite tree t, we write:
La(t) = (La,(t),... ,LAJ(t)) e N’.
We extend the definition of generic probability distribution with respect to a subset of N
in [4] to generic probability distribution with respect to a family of subsets.
Definition 3.1 (Generic probability distribution). Let p be a probability distribution on N
satisfying (4). Let A = (Aj)jeq, s, with J € N*, be pairwise disjoint non-empty subsets of
supp (p).
(i) (p, A)-compatible probability distribution. We say that a probability distribution
p' is (p, A)-compatible if p' satisfies (4), supp (p') C supp (p), and for alln € N’ such
that P(LA(Ty) =mn) >0 (and thus P(L4(T,) =n) > 0), we have:
(11) dist (7, | La(Tp) =n) =dist (T | La(Ty) =n).
(ii) Generic distribution. We say that p is generic for A in the direction o € Ay if
there exists a critical (p,.A)-compatible probability distribution p’ such that:

p(A)=(1-p'(A)) o with p'(Ag) < 1.
Remark 3.2 (On the one-dimensional case). When J = 1, Definition 3.1 (ii) reduces to the
definition of generic probability distribution with respect to the set A7 C N with o = 1.

Remark 3.3 (Positivity of «). If p is generic for A in the direction o € A; with 0 € A;
for some j € [1,J], then we have a; > 0. Indeed, the probability distribution p’ from
Definition 3.1 (ii) is (p,.A)-compatible and thus p'(A;) = p'(A§) a; with p'(A§) > 0; since p’
also satisfies (4), we deduce that p'(A;) > p’(0) > 0 which then gives «; > 0.

We now introduce a set of parameters which will allow us to describe all the compatible
probability distributions. We set:

Joo ={j €[1,J] : supA; < oo}.

Definition 3.4 (The set of parameters Pa(p,.A)). Let p be a probability distribution on N
satisfying (4). Let A = (Aj) e, s, with J € N*, be pairwise disjoint non-empty subsets of
supp (p). For 8= (B1,...,08)) € Ri, we set:
(12) Ji={jel,J]: B; >0} and Jg={0}UJT;.
The set Pa(p, A) C [0,+00] x RY of parameters is defined as follows.

(i) Non degenerate case. The parameter (0,53) € R% x R belongs to Pa(p, A) if:
(13) Z Bjga;(0) =1 where By = 6t

Jje€Ts
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(ii) Degenerate case. The parameter (0,/), with 0 € {0, +oc} and B € R, belongs to

Pa(p, A) if:
(14) Z Bi =1 where Bo=p(1)1lpeayy,
VISNE
and:
(15) if 0 =0, then 0¢ A,
(16) if 0 = +oo, then Ao C{0,1} and Jj C Joo-

For simplicity, we shall write 7* and J for Jj and Jg. Notice that J* might be empty
in the non degenerate case, and that J* is non empty in the degenerate cases thanks to (4).
We now define the family of probability distribution indexed by the parameter (6, 3).

Definition 3.5 (Probability distribution pyg). Let p be a probability distribution on N sat-
isfying (4). Let A = (Aj)jen, s, with J € N*, be pairwise disjoint non-empty subsets of
supp (p). For (0,5) € Pa(p, A), we define the probability distribution pg s = (Pe,s(n))nen as
follows, where the unspecified probabilities are set to be 0.

(i) Non degenerate case. If § € RY, then we set:

(17) po.s(n) =B;0"p(n)| forj € J and n € A;.

(ii)) Degenerate case at 0. If =0, then we set:
(18) pos(n)=p;| forjeJ andn=minA;.

(iii) Degenerate case at infinity. If 0 = +o00, then we set:

(19) Poo,g(n) = PBj| forjeJ and n = max A;j.

Conditions (13) and (14) insures that pg s is indeed a probability distribution. In the
next remark, we consider some particular cases of the probability distributions pg 3. For
convenience, for the BGW trees, we write:

77975 = 7;59,,3'

Recall that g4, = 0 if Ag = (). We shall consider the equation g4,(6) = 6 on R, which has
at least one root and at most two. It is elementary to check that:

(20) emin = mln{@ € R-l— P gAp (0) = 9} € [07 1)7

and that the second root, if it exists, belongs to (1,400). It is elementary to check the
following result.

Lemma 3.6. We have Oy = 0 if and only if 0 ¢ Ag.

Remark 3.7 (On particular cases). Recall 1 (resp. 0) denotes the vector of R’ with all its
coordinates equal to 1 (resp. 0).
(a) The case 6 =1 and 3 = 1. We trivially have p(; 1) = p, and thus (1,1) € Pa(p, A).
In particular, we get T, = 71 1.
(b) The case 6§ = 0. The support of pg g is equal to {1} U {min A4, : j € [1,J]} or to
{min A; : j € [1,J]} according to 1 belonging to A or not.
(c) The case 6§ = oco. The support of P g is equal to {1} U {maxA;: j € Jx} or
{max A, : j € Jx} according to 1 belonging to Ay or not.
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(d) The case 8 = 0. If (0,8) € Pa(p,.A), then we have that § = 0 is equivalent to
P0,0(Af) = 0. In this case, we have 6 € (0,+00) (as (4), which implies p(1) < 1,
and (14) rule out the case § € {0,4+00}) and that 6 is a root of ga,(f) = 6 by (13).
Thus 6 can take the value Oy, (only if O > 0 and then 0 € Ap), and possibly
another value, say 0y € (1,+00). We also have that u(pgo) = 9140(9)’ so that pg, .. o
is sub-critical and, if 6y exists, pg,, 0 is super-critical. In conclusion, for pg o not to
be super-critical, we need 0 € Ay and 0 = O,

In order (partially) remove the particular case 5 = 0, we set:

(21) Pa™(p, A) = {(0,8) € Pa(p, A) : B # 0},
o Pa(p,A) if 0 ¢ Ao,
(22) Pa’(p, A) = {Pa**(p,A) U{(Bmin, 0)} i 0 € Ap.

The introduction of the set Pa*(p,.A) is motivated by the following result.
Lemma 3.8 (Conditional finiteness of Ty g). Let (0, 3) € Pa(p, A). We have:
P(Tgs & To, sup La,(To,p) < +00) =0 if and only if (0,5) € Pa*(p, A).
JjeET*

Proof. 1f  # 0, then there exists j € [1, J] such that 5; > 0. This gives that a.s. on the event
{To,5 & To} we have La,(Tp,p) = +oc and thus P(Tp 53 & To, sup;c 7+ La,;(Tg,5) < +00) = 0.

If 8 = 0, we deduce from Remark 3.7 (d) that if (6,0) € Pa(p,.A) then we have either
0 = Omin > 0, (0,0) € Pa*(p, A), pgo is sub-critical; or 8 > Oyin, (6,0) & Pa*(p, A) and py o
is super-critical. In the former case, we get P(7g0 & To) = 0 and in the latter case:

P(T,0 & To, Sup La;(Tg0) < +00) =P(Tgo & To) > 0.
JeT"

This gives the result. U
We shall now restrict our study to the case where py g is non trivial.

Definition 3.9 (Compatible parameter). The parameter (0, 3) is (p, A)-compatible if (6, 5) €
Pa*(p, A) and the probability distribution py g satisfies condition (4).

We now characterizes the (p,.A)-compatible parameters.

Lemma 3.10 (Characterization of the compatible parameters). The parameter (6,3) €
Pa*(p, A) is (p, A)-compatible if and only if:
(i) For 6 € (0,400), we have 0 € Ay and p (A7 N {0,1}¢) > 0.
(11) For =0, we have 0 € A+ and maxjec7- min(A;) > 1.
(111) For § = 400, we have Aj, = {0} for some jo € J* and maxjc s+ max(A;) > 1 (and
Ag C {1} and J* C JTx)-

Proof. By construction, we have supp (pg,3) C supp (p). Since p(0) > 0, there exists jo €
[0, J] such that 0 € Aj,.

Let 6 € (0,400). The condition 0 € Ay in Point (i) is equivalent to £, > 0 and thus
to pg,3(0) > 0. The condition p (As N {0,1}¢) > 0 is clearly equivalent to pg 5({0,1}¢) > 0.
Therefore, conditions in (i) are equivalent to py g satisfying the non-degeneracy condition (4).

Let § = 0 (and thus 0 € Ap). The condition 0 € Ay« in Point (ii) is equivalent to 8;, > 0
and to pg 3(0) > 0, as min A;; = 0. Since {minA; : j € J*} C supp (pgs) C {minA;: j €
J*} U {1}, we deduce that max;c s+~ min(A;) > 1 is equivalent to pgg({0,1}¢) > 0. Thus,
conditions in (ii) are equivalent to py g satisfying (4).
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Let § = 4o00. The conditions jo € J* and Aj, = {0} in Point (iii) are equivalent to
Po,3(0) > 0 (notice that, by (14), pg g(Ao) > 0 if and only if 1 € Ay, and then 0 € Ay implies
that pg g(0) = 0). Eventually the condition max;e 7+ max(A4;) > 1 is also clearly equivalent
to pg.3({0,1}¢) > 0. Thus, conditions in (iii) are equivalent to py g satisfying (4). O

4. THE (p,.A)-COMPATIBLE PROBABILITY DISTRIBUTIONS

We identify all the (p, A)-compatible probability distributions. Recall that p is a probability
distribution on N satisfying (4) and A = (4;);eq,s7, with J € N*, are pairwise disjoint non-
empty subsets of supp (p).

Theorem 4.1 (Characterization of the compatible probability distributions). Let p be a
probability distribution on N satisfying (4). The probability distribution p' is (p, A)-compatible
if and only if p' = Py g, for some (p, A)-compatible parameter (6, 3).

As being (p, A)-compatible implies by definition that p is non-trivial (that is, Condition (4)
holds), we shall only consider the probability distributions pg g satisfying the conditions of
Lemma 3.10.

The end of this section is devoted to the proof of this result. We first prove that py g are
(p, A)-compatible, provided Condition (4) holds: see Lemma 4.2 for the non-degenerate cases
and Lemma 4.3 for the degenerate cases. Then we prove that all (p, .4)-compatible probability
distributions are of the form py g, distinguishing according to 0 € Ap in Lemma 4.4 or 0 € Ay
in Lemma 4.5, where the proof of the latter is more technical.

We set €’ = 0 and for j € [1, J]:

e/ = (¢ ...,e?) € N’ with e{ = Lfi—jy-

In particular, we have ijl e/ = 1. Notice that P(7, = t) > 0 implies t € Ty and k,(t) €
Ao, q for all u € t.

Lemma 4.2. Under the assumptions of Theorem 4.1, if the parameter (6,03) is (p, A)-
compatible with 6 € (0,+00), then the probability distribution pg g is (p,A)-compatible.

Proof. We suppose that the parameter (6, 3) is (p, A)-compatible (which implies that pg g
is non-trivial) and that 6 € (0,+00). We prove that the probability distribution pg s is
(p, A)-compatible. Recall J = {0} U{j € [1,J]: 5; > 0}.

Notice that P(L4(7p ) = n) > 0 implies that n; = 0 for all j ¢ J*, wheren = (n1,...,ny).
Using the definition of py g, we obtain for t € Ty such that P(7, =t) > 0 and La,(t) = 0 for
j € J that:

P(Top =t) = [ [ Bos(ku(t))

uct

=1 1II 8 Ypk.(t))

JjeJ uEﬁAj(t)
_ La,(t)
:]P)(,];?:t)eﬁt ! HBJ !
JjeT

_ ]P;(/];) _ t) 9—1 H (,BjQ)LAj(t)'

JjeET*



CONDITIONING BGW TREES TO HAVE LARGE SUB-POPULATIONS 11

where we used (5) for the third equality, and ;. 7 La;(t) = ft as well as o) = 1 for the
fourth equality. As P(7, =t) = 0 implies P(Tp 3 = t) = 0, we deduce that for n € N’:

P(La(Top)=n)= > P(Tog=1t)+P(Top & To, La(Ts3) =)
teTo, La(t)=n
= Y P(Tys=t)

teTo, La(t)=n
=P (La(T;) =m) 67" [] (3;0),
JeET*
where we used Lemma 3.8 for the second equality.
So for every n € N’ such that P(L4(7p5) = n) > 0, we have P(L4(7,) = n) > 0, and for
every t € Ty such that L4(t) = n, we get:
P(To,s =t La(To,3) =) = P(T, = t| La(Tp) = n).
Hence, the probability distribution pg g is (p,.A)-compatible. O

Lemma 4.3. Under the assumptions of Theorem 4.1, if the parameter (0,3) is (p, A)-
compatible with 6 € {0,400}, then the probability distribution pg g is (p,A)-compatible.

Proof. We first consider the case § = +oo. For simplicity, write p’ = poo g and T’ = Too 3.
We suppose that the parameter (oo, ) is (p,.A)-compatible. As p’ is non-trivial, we get
that 3 € RZ\{0} and thus J* # 0. In particular, we have Ay C {1}, thanks to (16) and
Lemma 3.10 (iii). We prove that the probability distribution p’ is (p,.A)-compatible.

Notice that P(LA(7”) =n) > 0 implies that n; = 0 for all j ¢ J*, where n = (n1,...,ny),
and, by (5), that:
(23) Z nj(max A; — 1) = —1.

JET*

To simplify notations, recall we write Ly for Ly, for k € N. Fix such n € N’ and consider
the set To, = {t € To: La(t) = n and P(7’ = t) > 0}, which is clearly not empty.
Using (5), we get, for t € Topn, that 3-;c 7+ > pea, Li(t)(k — 1) = —1. We deduce from (23)
that for k ¢ Ay we have: Li(t) =n; if j € J* and k = max A;, and Lj(t) = 0 otherwise.

Let t € Tp,. We distinguish two cases according to 1 belonging to Ay or not. First, we
consider the case 1 € Ay, that is Ay = {1}, elementary computation gives:

P(T' = t| La(T") =m) = ' p(1)1),
with, as J* # 0, ¢ positive and finite given by:
c= > p(1)" ) 4+ P(T' ¢ To, La(T') =n) = > p(1)" ),
t’€To s.t. La(t')=n t’€To s.t. La(t')=n
Similarly, we have:
P(T, = t|La(Tp) =) = ¢ p(1)1®.
This readily implies that p’ is (p, A)-compatible.
Secondly, we consider the case 1 ¢ Ay, that is Ay = (). We get that the set Ty, is finite.
Similarly to the first case, we obtain, with ¢ = Card (Ty,,) > 1, that:

P(T' = ¢ LA(T") = m) = B(Ty = t| LA(T;) =) = ¢,
This readily also implies that p’ is (p, A)-compatible.
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Eventually, the case 8§ = 0 can be handled similarly using Z]—E g+ nj(min A; — 1) = —1
instead of (23). O

Lemma 4.4. Under the assumptions of Theorem /.1, if the probability distribution p’ is
(p, A)-compatible and 0 € Ag, then we have p' = py g for some (p, A)-compatible parameter

(0, 5)-

Proof. For k € N, let t; denote the tree with the root having & children, all of them being
leaves (that is: kg(ty) = k and fity =k + 1).

We assume that 0 € Ay and that p’ is (p,.A)-compatible. For simplicity, we write 7’ for
T. We have p(0) > 0 and p/(0) > 0 since p and p’ satisfy (4). Let j € [0, J] be such that
p'(Aj) > 0. There exists k; € A; such that p'(k;) > 0. We have:

P(LA(T') = &) = P(T' = ty,) = (k;)p'(0) > 0.

This also implies that P(L4(7,) = €/) > 0 as supp (p’) C supp (p). In particular, thanks to
Equation (11), we have for any k € A;:

P(T' =tg | La(T') =€) =P(T, =ty | La(T,) =¢€).

This gives:
PR (0" pk)p(0)*
P(La(T") =€)  P(La(Ty) =€)’
that is:
(24) P (k) = B;8"p(k),

with 6 = p(0)/p'(0) > 0 and B; = P(La(T") = €’)/P(La(T,) = €’) > 0. Notice that § and
B; does not depend on k € A;. For j =0, we have p'(Ap) > 0 as p'(0) > 0. For k =0 € Ao,
we deduce from (24) that ﬁo = p'(0 )/p( ) = 1/6. For j € [0,J] such that p/'(4;) = 0,
Equation (24) also holds with §; = 0. Notice that when 8 = 0, we have P(L4(7") =0) = 1
and P(La(7,) = 0) < 1, which entails that Sy = P(LA(T') = 0)/P(La(T,) = 0) > 1,
or equivalently, § € (0,1). This proves that p’ = pg g, the latter being defined in (17) a;
6 € (0,400).

To conclude, notice that Condition (13) holds as p’ is a probability distribution and Sy =
1/0. O

Lemma 4.5. Under the assumptions of Theorem 4.1, if the probability distribution p’ is
(p, A)-compatible and 0 & Ay, then we have p' = pg g for some (p, A)-compatible parameter

0, 5) -

The proof of this lemma is more technical and relies on the following result whose proof is
postponed at the end of this section. We introduce the sets:

J*={je1,J]: p'(4;) > 0},
T ={jeJ": Card (4;) > 2}.
Notice that once Lemma 4.5 is proved, then J* coincides with Jj defined in (12).

Lemma 4.6. Assume 0 & Ay and let p’ be a (p,.A)-compatible distribution. We have the
following properties.

(i) The map £ +— (p’(@)/p(ﬁ))l/(é_ ) is constant over {teAy: ¢ >2}.
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(ii) Assume there exists £ € Ao such that £ > 2 and k', k € Aj with j € J** such that
kK >k >0. Then we have:

pP(K)>0 <« p(k)>0 and p'¥) >0.

Furthermore if those conditions hold, then we also have, with o« = {—1 and = k' —k:

(28 - (29"

(iii) Assume there exist i,j5 € J**, €, k; € A; such that £ > k; > 0 and p'(k;) > 0, and
ki, k € Aj such that kj > k >0 and p'(kj) > 0. Then we have p’(¢) > 0 and p'(k) > 0
as well as, with o =1 —k; and B = k; — k:

@ p/(kj) “ p/(ki) 7 « B8
(26) y 00 = ( P p(6)".
p(k;) p(ki)
Proof of Lemma 4.5. We assume that 0 € Ag, that is without loss of generality, 0 € Ay, and
that p’ is (p,.A)-compatible. Since p and p’ satisfy (4), we get p(0) > 0 and p’(0) > 0. So, we
can define 31 = p/(0)/p(0) > 0. By considering trees with vertices having zero or one child,
we get:

(27) 1€ Ay = p'(1) = p(1).

Recall the set J* = {j € [1,J] : p/(A;) > 0}. Weset 3; =0 for j € [1,J]\ J* in accordance
with the definition of the pg g. Notice that J* is non empty as 1 € J*. For j € J*, let k; be
an element of A; such that p/(k;) > 0. For j € J*\ J**, we have A; = {k;} and, whatever
the value of § which will be defined later on, we set 3; = 0~ %ip/(k;)/p(k;) if 6 € (0, +00) and
B; = p'(k;j)/p(k;) otherwise; this is also in accordance with the definition of the pg 3. We now
have to consider the value of p/(¢) for £ € A; and j € {0} U JT**.

We first consider the case J** = (). In particular we get that Ay = {0}. Then we have
either that p’(Ag) = p’(Ap N {1}) or there exists kg € Ag such that kg > 2 and p'(kg) > 0. In
the former case, using (27) and Sy = p(1) 1{1¢4,}, the probability distribution can be written
as a pp g with 6 = 0. In the latter case, using Lemma 4.6 (i) and (27), we deduce that (17)
holds for all £ € Ay with a common 6 € (0,+00) (given by the constant value of the map in
Lemma 4.6 (i)) and Sy = 1/6; thus the probability distribution p’ can be written as a pp g
with 6 € (0, +00).

We now assume that J** # (). From Lemma 4.6 (iii), only three cases are possible:
(a) For all j € J**, we have k; = min 4;, p'(k;) > 0 and p'(4; \ {k;}) = 0.
(b) For all j € J**, we have k; = max A;, p/(k;) > 0 and p'(A4; \ {k;}) = 0.
(c) For all j € J**, we have p/(k) > 0 for all k € A;.
We shall investigate each case separately. In case (a), we deduce from Lemma 4.6 (ii) that
p'(¢) =0 for all £ € Ay with £ > 2. Thus, using (27), we get that the probability distribution
p' can be written as a py g with 6 = 0.

In case (b), since p'(0) > 0, we deduce that A; = {0} and that if j belongs to J** (and
thus to J*) then sup A; is finite. Then use Lemma 4.6 (ii) to deduce that there is no element
¢ >2in Ap, that is Ag C {1}. Thus, using (27), we get that the probability distribution p’
can be written as a py g with § = +o0.
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In case (c), to fix ideas, let i = min J** and consider k; = min A; and ¢ = min 4; \ {k;}.
This uniquely determine 3; and 6 € (0, +00) solution of, for k' € {k;, ¢}:

(28) (k') = Bio" p(k').
Then for k” € A; larger than ¢, use Lemma 4.6 (iii), and in particular (26), with j = 4,

kj = k" and k = ¢ to deduce that p’(k”) can also be written as in (28). For j € J** with
J # 1, set k =min A; and define §; by:

(29) p' (k) = B;0"p(k).

Then use Lemma 4.6 (iii), and in particular (26), with k; > k (and k; € A;), to deduce
that (29) holds for k replaced by k;. Then for ¢ > 2 in Ag, use Lemma 4.6 (ii) to get
that p/(¢) = 0°~1p(¢) (which is also consistent with (27)). We deduce that the probability
distribution p’ can be written as a pg 3 with 6 € (0, +00). This concludes the proof. O

Proof of Lemma 4.6. Without loss of generality, we assume 0 € A;. In the following descrip-
tion of trees we don’t precise the number of leaves, as it is determined through Equation (6).
The argument is based on considering two well chosen trees t and t’ such that L 4(t) = L 4(t').
Recall that we write Ly for Lz and k € N.

We prove Point (i). Assume there exist k, k" € Ay such that min(k, k") > 2. Consider a
tree t having only leaves and aw = k' — 1 > 0 vertices of out-degree k (that is Li(t) = «) and
a tree t’ having only leaves and 8 =k — 1 > 0 vertices of out-degree £k’ (that is Ly (t') = /).
Set a =14 (k' —1)(k — 1) > 1. Thanks to (6), we get Lo(t) = Lo(t') = a, and thus:

La(t)=Lx(t)=n with n=ae'.

Assume that p'(k) > 0. We have P(La(7,y) = n) > P(7T, = t) = p/(k)*p'(0)* > 0, and
thus P(L4(7,) =mn) > 0. We set:

P(La(Ty) = n)
P(LA(Tp) =)
Then, we apply (11) to the trees t and t’ to get:

P/ (k)*p'(0)* = ep(k)* p(0)* and  p'(K")7p'(0)* = ep(K')” p(0)".
This readily implies that p/(k') is positive (as k' € Ay implies that p(k’) > 0) and that
(0 (k) /()50 = (9 (k) /p(k")) /¥~ This gives Point (i).

We now prove Point (ii). Assume there exist ¥ > k > 0 which are elements of A; with
j € J* and ¢ > 2 which is an element of Ag. Notice that j can possibly take the value 1 when
1 € J** (that is, Card (A;) > 2). Consider a tree t having only leaves and « = ¢ —1 > 0
vertices of out-degree k' (that is Ly/(t) = «) and a tree t’ having only leaves, 5 =k —k > 0

vertices of out-degree ¢ and, if k > 0, a vertices of out-degree k (that is L,(t') = 8 and, if
k>0, Lk(t/) = a).

We first assume that k£ > 1 (which is automatically satisfied if j > 2). Thanks to (6), we
get witha=1+4+a(k' —1) =1+ a(k—1)+ (£ — 1) that Lo(t) = Lo(t') = a, and thus:

(30) La(t)=Ls(t)=n with n=ae' +ae.

Assume that p/(k") > 0. We have P(LA(T,) =n) > P(T, =t) =p/(K')*p'(0)* > 0, and thus
P(LA(T,) =n) > 0. We set:

> 0.

 P(Lu(Ty) = n)
BT =)
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Then, we apply (11) to the trees t and t’ to get:
p'(K)* p'(0)" = ep(K)* p(0)* and p'(k)* p'(0)° p'(0)* = ep(k)™ p(£)” p(0)™.

This readily implies that p/(k) and p/(¢) are positive (as k € A; and £ € Ay imply that p(k)
and p(¢) are positive). Similarly, assuming that p/(k) and p/(¢) are positive implies that p’(k’)
is positive. Notice also that (25) is obvious.

We now consider the case k = 0 and thus j = 1 (as 0 € Ay). One has Ly, (t) = Lo(t) +
Li(t)=14+a —1)+a=1+{(—1)k,and La,(t') = Lo(t') =1+ 8((—-1) =1+ (- 1)K,
which implies that (30) still holds. We then conclude similarly as in the case k& > 0. This
gives Point (ii).

Eventually, we prove Point (iii). Assume there exist 4,5 € J**, k; > k > 0 which are
elements of A;, £ > k; > 0 which are elements of A;, with p/(k;) > 0 and p/(k;) > 0. Notice
that i and j can be possibly equal and can possibly take the value 1 when 1 € J**. Consider a
tree t having only leaves, o = £—k; > 0 vertices of out-degree k; and, if k; > 0, 8 =k;j—k >0
vertices of out-degree k; (that is Ly, (t) = a and, if k; > 0, Ly, (t) = 3) and a tree t' having
only leaves, 8 vertices of out-degree ¢, and, if k > 0, « vertices of out-degree k (that is
Li(t') = and, if £ > 0, Li(t") = o).

We assume that £ > 1 and k; > 1, and leave the cases kK = 0 (and thus j = 1) and/or
k; =0 (and thus i = 1) to the reader as the proof can be handled very similarly; see also the
end of the proof of Point (ii). Thanks to (6), we get with a = 1+ a(k; — 1)+ B(k; — 1) =
14+ a(k—1)+ (¢ —1) that Lo(t) = Lo(t') = a and thus:

La(t)=Ls(t)=n with n=ae!+ae’ + Be'.
We have P(La(Ty) = n) = B(Ty = t) = /()2 p'(k)° p/(0)° > 0, and thus P(LA(T;) =
n) > 0. We set:
P(La(Ty) = n)
P(La(Tp) =)
Then, we apply (11) to the trees t and t’ to get:
P (k)™ 0 (k)" p'(0)* = ep(ky)® p(k:)? p(0)* and  p'(k)* p'(£)° p'(0)" = ep(k)* p(¢)” p(0)™.

This readily implies that p'(k) and p/(¢) are positive (as k € A; and ¢ € A; imply that p(k)
and p(¢) are positive). Equation (26) is then obvious. This gives Point (iii). O

> 0.

5. EXISTENCE OF A CRITICAL (p, A)-COMPATIBLE DISTRIBUTION

5.1. Parametrization of the (p,.4)-compatible probability distributions using their
direction. We define the direction of a probability distribution p’ with respect to .A.

Definition 5.1 (Direction of compatible probability distributions). The direction o € A7 of
a (p, A)-compatible probability distribution p’ such that p'(Ag) < 1 is defined by:

(31) a=a'p'(A) with a=1-p'(Ag) > 0.

Because by definition p’ is non trivial, see (4), we shall see below that the set of possible
directions is:

(32) T] = AJ\Aou
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where the set of ineligible directions are given by:

J
9= U{QGAJ:aj:0 if0cA; or aj=1if AOUAjC{O,l}}.

j=1
We shall use a parametrization of the probability distribution pg g using the parameter 6
and its direction a € A%, Recall that pyg(Ag) = 1 if and only if 5 = 0, see Remark 3.7 (d).
Recall the set of parameters Pa™(p, A) defined in (21), where the cases § = 0 are removed,
and the set of (p,.A)-compatible parameters given in Definition 3.9. The direction map
D:(0,5) — (0,«) given by (31) is defined on the subset of Pa*™(p,.A) of (p,.A)-compatible

parameters; and it is clearly injective.

Definition 5.2 (Compatible parameters). The parameter (6, ) = D(0, 3) is (p, A)-compatible
if (0, 8) is (p, A)-compatible (and B # 0).

We shall write py o for pp g when (0, ) = D(0, 3), and it satisfies (4) when (0, 3) is (p, A)-
compatible. Notice that for o € A% the set:

Ji={ell,J]: B; >0} ={je[l,J]: o >0}

is by definition non empty, and we shall also denote it by J} or simply J* when there is no
ambiguity on the parameter. For the convenience of the reader, we give explicit formulas for
the probability distributions py o, using (31) and Lemma 3.10. To simplify the expression we
set:
(33) q1=1-p(1)1gea,y > 0.

Lemma 5.3 (The probability distributions pg ). Let o € A% and 6 € [0,400] be such that
the parameter (0,«) is (p, A)-compatible. The non-zero terms of the probability ditribution
Po.o are given as follows. (Recall that 0 € Ay and p (A7 N{0,1}¢) >0.)

(i) If 0 € (0,+00), then we have ga,(0) < 0, ga,;(0) < +oo for j € J* and:

p@,a(k) = Hk_lp(k‘) for k € Ay,
0 —ga,(6)
94,(0)
(i) If 6 = 0, then we have 0 ¢ Ay, max;c 7+ min(A;) > 1, pgo(1) = p(1) if 1 € Ay and:

Po.o(k) = o 0 L p(k) forke Ajand je J".

Poa(k) =ajq fork=minA; and j € J".

(111) If § = +oo, then we have Ay C {1}, A, = {0} for some jo € T*, T* C Jwo,
max;e 7+ max(A4;) > 1, ppo(l) = p(1) if 1 € Ag and:

po.a(k) =ajq  for k=maxA; and j e J".

For o € A%, we get that pi1 o = p1,g with 8; = p(Af) oj/p(A;) satisfies (4), and thus
that (1,«) is (p, A)-compatible. So A% is indeed the set of all possible directions of (p,.A)-
compatible probability distributions. We however complete this picture with the following
result.

Proposition 5.4 (Possible directions). For every o € A%, there exists § € (0,1) such that
(0,a) is (p, A)-compatible, that is, such that (0, 3) is (p, A)-compatible for some 3 € R with
B # 0 and « is the direction of pg g.
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Proof. We recall the convention g4, = 0 if Ay = (. Let us first prove that there exists
6 € (0,1) such that 6 > ga,(6). If 0 € Ap, then ga,(0) = p(0) > 0 and g4,(1) < 1, so there
exists fp € (0,1) such that 0y = ga,(6o), and then gy (6p) < 1. This implies 6 > ga,(6) for
0 € (6p,1). If 0 ¢ Ag, then ga,(0) =0 and g4,(1) < 1, so 0 is the only root of 8 = g4,(f) in
[0,1], and thus 6 > g4,(0) for § € (0,1).

Let us now fix 6 € (0,1) such that 6 > ga,(6). We set for all j € [1, J]:

0 — ga,(0)
5. = —2L0N > 0,
! ! egAJ(H)

and Sy = 6. Since 23-]:1 a; = 1, we have:
D Biga,(0) =071 gag(0) + Y ;0710 - ga(0)) = 1.
j€l0,J] jelt.J]
Hence Condition (13) is satisfied. Moreover we have:
Po,5(A5) =1~ Po,s(Ao) = 07" (6 — g4, () > 0.

Finally, a € A% (and thus a ¢ AY%) insures that pg g satisfies Lemma 3.10 (i), that is, pg g is
non trivial. O

5.2. Properties of the mean of pg,. For o € A%, we consider the following set:
(34) I,={0€]0,40]: (0,a) is (p, A)-compatible} .
Notice that 1 € I,. Note ps the radius of convergence of > jeg 9A; or equivalently:

(35) pg =minpa; € [1,+o0].
JjeT
We define:
(36) Omin = inf I, € [0,1) and  Opax =supl, € [1,p7].

On the one hand, notice that 0y, is the only root of ga,(0) = 6 in [0, 1), so this definition is
consistent with (20), and thus €, does not depend on . On the other hand, we have that
Omax depends on the support of « as:

(37)  Omax = max (pg+, sup{d € [L,pay) : g4,(0) <0}) with pg7- = min pa;.

We also have that (fmin, fmax) C Io and that § — pg, is continuous on I, for the norm of
the total variation. The next result is a direct consequence of Lemma 5.3 (the first point is
also in Lemma 3.6).

Lemma 5.5. We have that:
(i) Omin = 0 if and only if 0 & Ao,
(11) Omin € Io if and only if 0 & Ay and maxje 7+ min(A;) > 1.
(i11) If 0 € Ag, then we have I, C (0,400).

In order to consider finite means, we set for a € A%:
(38) I(i = {9 €ly: Moo < +OO} where Moo = M(pe,a) € [07 +OO]

is the mean of py . Notice that I, C IL U {Omax -

We are now interested in the existence of a critical probability distribution among the
(p, A)-compatible probability distributions pg , with a given direction o € A%, that is in the
existence of 6 € I, such that pg, = 1.
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For a € A% and € > 0 such that 3¢ 7. g4;(6) < +oo, we set:
(39) Ho(0) = Y ajh;(0),
JET*
where, for j € J*, h;(0) = min A; and for § > 0:
0g, (6) E|X0%1(xcay]

hy(0) = - ,

where X is distributed according to p. For 6 € I, " R% , we have using Lemma 5.3 (i):
0 —ga,(0)

Recall ¢; from (33). Using Lemma 5.3, if 0 € I, we have that:

(41) Ho,a = 1-—q)+aq Z a;min A;.
JET™

and if 400 € I, that:

(42) Hoo,a = 1—q)+aq Z ajmax Aj;.
JjeET*

We now recall some elementary properties of the function h;, see also [15, Lemma 3.1] for
a part of the proof. Notice that if A; is a singleton, say {k;}, then the function h; is constant
equal to kj. Recall that py ;s the radius of convergence of g A; and that lim,_, 4, 94 (x) =

ga,;(pa;), with the limit being possibly infinite.

Lemma 5.6. Let j € [1,J] with Card (A;) > 2. The function h; defined on [0,pa;,) is C*
and increasing, with h; >0 on (0,pa;). If pa; = +oc or if ga,(pa;) = 400, then we have
hmf)—mAj h;(0) = sup A;.

As an immediate application, we get the following result (one only needs to take care of
the case 0 = 0, where H,(0) = ), 7. a;jmin A;, and of the case § = +oo, where Hy(00) =

Z]GJ* aj sup AJ if minjej* pj — +OO)

Corollary 5.7 (Regularity of pg). The map 0 — pg o is continuous on I, finite on It
and C* on (Omin, Omax) and also on [0, Omax) if 0 € I,.

5.3. Generic distributions. Notice that 1 € I,; however we don’t assume a priori that
1 € I as p1 o, might have infinite mean. Recall p7 = minje s pa;, see (35).

In the next lemmas we give preliminary results on the existence of 6 € I, for pg, to be
sub /super /-critical according to 0 belonging to Ay or not.

Lemma 5.8. Assume that 0 € Ay and let o € A%

(i) There exists 0 € 1, such that jig o < 1.
(11) If pg = 400, then there exists 6 € 1, such that pig o > 1.

Proof. As 0 € Apy, we get using Lemma 5.5 that I, N [0,1] = (Omin, 1]. By continuity, we
deduce from (40) that:

eiielilin Ho,a = 9:40 (emin) <1

This gives Point (i).
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We now prove Point (ii). On the one hand, if there exists k € Ay such that k > 2, then the
function g4, is strictly convex and limg_,oo ga,(0)/0 = +00 as pa, > ps = +00. We deduce
that ga,(0max) = Omax, and, as Opax > 1, that g;‘o(@max) > 1. By continuity, we deduce
from (40) that:

G%ieﬁlax Moo = 9140 (Hmax) > 1.

On the other hand, if Ay C {0,1}, then we get that ga,(6) = p(0) + (1 — ¢1)6. Thus there is

no root of g4,(0) = 6 on (1,+00), but we have:
lim b= 92 )
0—r00 0

Then, use Lemma 5.6 and (40) to deduce that:
li —(1— . . _ _
Jm pge=(1=q)+a Z ajsupA; > (1—q1) + a1 Z aj =1,
JjeJ* JET*
where for the inequality we used that supj¢ 7« sup A; > 1 as py o is non trivial and sup 49 < 1.
This gives Point (ii). O

Recall Joo = {j € [1,J] : supA; < oo}.

Lemma 5.9. Assume that 0 € Ay and let o € A%,
(i) There exists 0 € 1, such that jig o < 1 if and only if:

=q > 0.

(43) > ajmind; <1
JjeET*
(11) If pg = 400, then we have pg o < 1 for all 0 € 1, if and only if:
(44) AgCc {1}, T CUw, and Y ajmaxA; <l
JET*

Proof. We prove Point (i). We first assume that jegs @jmin A; < 1. By assumption 0 ¢ A
and 0 € Ay+ as 1 € I, and p; o satisfies (4). According to Lemma 5.5, we have 6, = 0.

If 0 € I, we deduce from (41) that ppo =1—q1 +q1 Ejej* ajmin A; < 1.

If 0 & I, that is maxje s+ min(A;) < 1, we get that >, 7. oymin A; <1las0€ Ay, that
is, min A; = 0 for some j € J* and a;; > 0. We then deduce from (40), using that ¢; defined
in (33) is positive, that:

%ilrg,ugﬂ =(1-q)+a Z a;jmin A; < 1.
JjeJ*
So by Corollary 5.7, there exists 6 € (0, 1], such that pg, < 1.

In conclusion, Condition (43) implies that g, <1 for some 6 € I,.

Let us now assume that >, 7. a;min A; > 1 (and thus 0 € I, by Lemma 5.5). Using (40),
the fact that the functions h; are non-decreasing (see Lemma 5.6 and the fact that h; is
constant equal to k; when A; is reduced to the singleton {k;}), we get that for § € I, N
(0, +00):

0 — g4, (9)

0 — 0 .
Lo, = 94, (9)—1-%() Z o;min A; > gy (0)+ 7

JjeJ*
where X has distribution p. Since 0 ¢ Ay, we deduce that E[(X — 1)0% "1 xc4,3] is non-
negative and thus pp o > 1. Thanks to (41), we also have 19 o > 1, and thus py o > 1 for all

= I+E[(X—1)0" 1 ixea)),
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0 € 1, (notice that for § = +o0, if it belongs to I,, thanks to (42) one gets fioo,q > Ho,0 > 1).
This ends the proof of Point (i).

We prove Point (ii). If Ag C {1}, we get Opin = 0 by Lemma 5.5 and 60 = +00 as
9ga,(0) = (1 —q1)8 < 0 and py = +o0, see (37). This gives that (0, +00) C I, and we have:

(45) Ho,0 = 1—q1 + qua(H) for 6 € l,.

So, if (44) holds, we have thanks to Lemma 5.6 that 1y, < 1 for § € (0,400) C I,. We
also get fig o < 1, resp. floo,o < 1, whenever 0 € I, resp. +oo € I,. This gives that py, <1
for all 6 € 1.

Let us assume that Ag C {1} and sup A; = +oo for some j € J* (that is J* ¢ Jx). Since
pg = +oo, Lemma 5.6 gives that limg_, 116, = +00.

We now assume that Ag C {1}, J* C Joo and Zjej* ajmax A; > 1. Let jo € J* such that
0€ Aj. If A;) = {0}, we get that Omax = +00 belongs to I, and (45) implies that pe o > 1.
If Card (Aj,) > 2, then we get that minjc 7 max A; > 1 and maxjec s+ max A; > 1 (as pgq
satisfies (4)), and thus >, 7. oy max A; > 1. Using (45) , we get that limg 0 p1g,0 > 1. In
both cases, there exists ¢ € I, such that ug, > 1.

We now assume that Ayg ¢ {1}. Then the function g4, is increasing and strictly convex.
As pg = oo, we deduce from (37) that Opax € (1,+00) is the maximal root of ga,(0) = 6,
and thus ¢/s (fmax) > 1. Then, we get from (40) that limgsg,,,, 16,0 = 94, (Omax) > 1.

In conclusion, if (44) does not hold then there exists 6 € I, such that gy, > 1. O
Recall 7** = {j € J* : Card (4;) > 2}. We consider the following condition:
(46) Agn{1}#£0 or T #0.

Proposition 5.10 (Monotonicity of 8 — pg o). Let o € A¥.

(i) Assume (46) does not hold. Then I, = I., = [0, +oc] and the map 0 — pgo (as well
as the map 6 — 1Ho,a ) is constant.

(ii) Assume (46) holds. Then Opjigo > 0 on the interval {0 € I', : g o < 1}. If this set is
not empty, then its minimum is Oyin. Furthermore, there exists at most one element
0 € 1, such that g = 1.

Remark 5.11 (g, independent of ). Recall g1 = 1 — p(1)1{1¢c4,}-

(a) If (46) holds and the map 6 — pg o is constant, then pg o > 1.

(b) If (46) does not hold, that is Ay C {1} and A; is a singleton, say {k;} for all j € J*
(with one of the k; equal 0 and another larger than 1 in order for pg, to be non
trivial), then I, = [0, +00] and pp o = (1 —q1) + @1 Zjej* ajkj € (0,400). Thus, we
recover Proposition 5.10 (i).

(c) Consider the example: Ag = {1,k} with k > 2, a € A% and A; = {k;} for j € JT*
(and thus J** = ) such that k = . 7. a;k;. Notice that H, is constant equal to
k and that the mean pp , is constant as:

po.o = p(1) + k0¥ Ip(k) + (1 = p(1) = 0" p(k)) Ha(0) = 1+ (1 = p(1))(k — 1).
Thus Point (a) of this remark is not void.

Remark 5.12 (Is p19 o, monotone in #7). Consider the probability p defined by p(2) = 1/2 and
p(0) =p(4) =1/4; J =1 (and thus a = 1) and A; = {0,4} (and thus Ay = {2}). We get that
I, = (0,2) as by Lemma 5.5 (ii) Oin = 0 € I1 and Oyax = 2 by (37). It is elementary to check
that limg_,o+ o1 = 0, po1 ~ 1 for 6 ~ 0.36 and that Jppp1 < 0 if and only if 0 € [0, 6]
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with 0p ~ 1.24 and ¢ ~ 1.92. This provides an example where the function  — pg o is not
monotone.

Proof of Proposition 5.10. Let 6 € If, N R%. Let Xy be a random variable with distribution
Po,o- We have:

P(Xg € Ag) =07 gay(0) and g, (0) = E[Xgl{x,ca0}]-
Set:

7o) = =980 _ gy ¢ ),
so that g o = g4, (0) + f(0)Ha(0). We get:
(47) Ootio.o = 94, (0) + f(O)HL(O) + f'(0) Ha(0).

(This expression can possibly be equal to +00 if 0 = Opax.) We have H,(0) € (0,+o0]
as 0 > 0. We have that H/, () = 0 if 7** = 0 and, by Lemma 5.6, that H/,(0) € (0, +oc]
otherwise. We also have ¢4 () = 0if Ag C {0,1} and ¢} (#) € (0, +o0] otherwise. Eventually

we have f(#) > 0 and:
_0(0) ~ 094,

(48) 1) 72 =07"E [(1 - Xo)1x,ca0}] -
which is finite as § € If. Notice that oo = E[Xp]|, which is finite, and thus:
(49) 9f’(6) =FE [(X@ — 1)1{X9QA0}] + (1 — ,UG,a)'

Case 0 € Ap. We first assume that 0 € Ap, and thus I, C R} and Oy ¢ Ia, see
Lemma 5.5. We consider € I’ such that pg o < 1. We deduce from (49) that f'(6) = 0 if J*
is reduced to a singleton, say {jo}, with A;, = {1} and pp, = 1, and that f’(f) > 0 otherwise
(as 0 € Ap). Notice that it is not possible to have Ay C {0,1}, A, = {1} and J* = {jo}
together as py o is non trivial, so at least ¢4 () € (0,400] or E [(Xg — 1)11x,¢a,)] > 0. The
latter implies that f/(6) > 0 as pg < 1. Since f(0) > 0 and H,(#) > 0, we deduce from (47)
that Oppp, > 0 on {0 € It fo.o < 1}

Case 0 ¢ Ayg. We now assume that 0 € Ag. This implies that 0, = 0. The function f
has a continuous extension at 0 given by f(0) = ¢; > 0, see (33). We distinguish according
to Ap being empty or reduced to {1} and Ay N {1} # 0.

Sub-case Ay C {1}. We consider the sub-case Ay C {1}. The function f is constant equal
to g1, and ppo =1 —q + qHa(8). If T = 0 and thus (46) does not hold, then we have
Po,0(kj) = 1oy for Aj = {k;} and j € J*. Thus Point (i) is obvious.

If 7** # 0, then we deduce from Lemma 5.6 that the functions H, and 0 — pg, are
increasing on I .

Sub-case 0 ¢ Ay and AgN{1}° # (). We get in particular that 0. < +00. We introduce
an auxiliary parameterized function defined on I, g for v > 0 by:

(50) My (0) = gla, (0) + f(6).
Notice that m~(0) = (1 — ¢1) + g1y > 0. On the one hand, direct computation yields:
(51) my(0) =my(0) + D (k=)0 p(k).

keAon{1}¢

We deduce that if v < min(Ag N {1}¢), and in particular if v < 2, then m/, > 0 on It . (Notice

that m/, is finite on I, I except possibly at fpax in the case where it belongs to I%.) On the
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other hand, if there exists 0, € [ g such that mfy(ﬁ*) <1, we deduce that v < 1 if , = 0 and,
from (50) that:

oL G4y (0:) _ 0. — 0., (0:)
T f(0) 0x — ga,(0)

<1 if 6,>0.

In conclusion:
(52) 30, €I, st my(0,) <1 = ml >0.

Now, we go back to the function 6 — 19 . Assume there exits 6, € I f such that Mo, o < 1.
Set fix = o, a5 Y+ = Ha(0y) and m, = m.,,. By construction, we have that m.(0,) = . <1
and, as H, is non-decreasing, for 6 € I':

(0 = 0.) (10,0 — m(0)) = (6 — 02)(Ha(0) — Hy(6:))f(6) = 0.

This implies that dp—g, po,o > m/,(0), and thus is positive thanks to (52). We have obtained
that Oppe,a > 0 on {0 € Igy D Mg <1}

In conclusion, if A9 C {1} and J** = 0, then 6 — g, is constant; if A9 N {1}¢ # 0 or
J** % 0, we have Ogpg o > 0 on {0 € If : g, < 1}, this set is either empty, or equal to I,
or of the form If N[0, 6], and it contains at most one element 6 such that Ho,o = 1. O

Recall that p7 is the radius of convergence of the function jeg 9A; and I, is an interval
of [0,400] defined in (34). We have the following theorem. Recall that assuming (46) is not
very restrictive as otherwise the map 6 — py  is constant, see Proposition 5.10.

Theorem 5.13 (Generic distribution). Let p be a probability distribution on N satisfying (4).
Let A = (Aj)jeq, s, with J € N*, be pairwise disjoint non-empty subsets of supp (p). Let
a € A% and assume that (46) holds. The distribution p is not generic for A in the direction
a if and only if one of the following conditions holds.

(i) pg <0, gy (p7) <1, 97(pg) < 00 and:

1— g, (pg)

(53) Hu(pg) < pg P

(i) 0 ¢ Ag and 3, 7o ajmin Aj > 1.
(iii) Ao C {1}, pg =00 and ;¢ 7+ ajsup A; < 1.

Remark 5.14 (Direction and generic distribution). A probability distribution might not be
generic in all the directions; and it may happen that it is generic only in one direction.

(a) Suppose supp (p) = [0,3] and A = ({0},{2,3}) and thus Ay = {1}. Consider the
direction a = (o, av2).

e The distribution p is generic for A in the direction « if and only if ae € [1/3,1/2].

o If ay € (1/2,1), then Point (ii) of Theorem 5.13 holds since 0 ¢ Ay and
Z§:1 a;min(A;) = 2a > 1; and in this case all the py , are sub-critical.

o If ay € (0,1/3), then Point (iii) of Theorem 5.13 holds since Ap C {1} and
Z§:1 ajsup(A;) = 3as < 1; and in this case all the py , are super-critical.

(b) Suppose supp (p) = {0,2}, and A = ({0},{2}). Notice that (46) does not hold. In
this example all probability distribution p’ such that supp (p’) = supp (p) is (p,.A)-
compatible. The direction of p’ is given by (p'(0),p'(2)). We recover that for all
directions in A} there exists a (p,.A)-compatible probability distribution. However,

the probability distribution p is generic for A only in the direction (1/2,1/2).
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Proof. We simply write M, and m,, for the respective supremum and infimum of {yg o : 0 €
I,}. Let = be the usual logical negation.

We first prove that:
(54) pg <+oo and —(i) = M, > 1.

If p7 < oo and gy (p7) > 1, then we have Ag N {0,1}¢ # (), the function ga, is strictly
convex. So there exists 0" € (Omin, p7) such that ga,(6*) < 0 and g4 (0*) = 1. Notice that
0* € I, and use (40) to deduce that g« o > 1.

If p7 < o0, g4, (p7) < 1 and g7(py) = oo, then we have p7 > 1 and ps & I (by
Lemma 5.3 (i)). Since ¢/ (p7) < 1, we deduce that ga,(p7) < p7, and thus Op. = p7
by (37). Since g7(p7) = oo, we deduce there exists j € J* such that pa, = p7, ga;(p7) = 0
as well as sup A; = +oo. This implies by Lemma 5.6 that H,(py) = +o0c and hence by
continuity that limgqg,,,. 16, = +00.

If p7 <00, g, (p7) <1, 97(pg) < 00 and:

1—g),(p7)

(55) Holpg) = pg e

then we have ga,(p7) < ps and thus Omax = ps belongs to I,. Use (40) and (55) to deduce
that g0 = 1.
This proves that (54) holds.

We now consider the case 0 € Ag. Thanks to Lemma 5.8 (i), we have m, < 1. So p is
generic in the direction « if and only if M, > 1. If Point (i) holds, then 6,,,x = ps belongs
to I, and by (40) and (53) we get that pg, .. o < 1, which by Proposition 5.10 implies that
M, < 1; thus p is not generic in the direction . Now assume that Point (i) does not hold.
If p7 < 400, then use (54) to deduce that M, > 1 and that p is generic in the direction o.
If p7 = +00, then use Lemma 5.8 (ii) to get that M, > 1, and thus p is also generic in the
direction a. This proves the theorem in the case 0 € Ag.

We now consider the case 0 ¢ Ag. If Point (ii) holds, we deduce from Lemma 5.9 (i) that
meq > 1 and thus p is not generic in the direction a.

We now assume that » .. 7. ajmin A; < 1. Thanks to Lemma 5.9 (i), we get that mq < 1.
So p is generic in the direction « if and only if M, > 1. If py = oo, we deduce from
Lemma 5.9 (ii) that Ag C {1} and }_;c 7. ajsup A; < 1 are equivalent to M, < 1, that is, p
is not generic in the direction a. We eventually assume that p7 < oco. If Point (i) holds, then
Omax = pg belongs to I, ..o <1, and M, < 1 by Proposition 5.10, and thus p is not
generic in the direction «. If Point (i) does not hold, then use (54) to deduce that M, > 1
and that p is generic in the direction a. O

6. LOCAL LIMIT OF LARGE GALTON-WATSON TREES

We give the main theorem, see Theorem 6.4, on the local limit of conditioned BGW
tree in the next section. Its proof relies on a transformation of BGW trees from Rizzolo,
see Section 6.2, and a direct application of local limit theorems for multi-type BGW trees
from [6], see Section 6.3.
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6.1. Main result. Let p be a probability distribution on N satisfying (4), and let A =
(Aj)jeq1,p> with J € N*, be pairwise disjoint non-empty subsets of supp (p). Let a € A% be
a possible direction, see (32). We assume the distribution p is generic for A4 in the direction
« (recall Theorem 5.13). Thus, there exists a (unique) 6, € I, such that:

(56) Pa i= Do, IS critical.
Recall 7; denotes a BGW tree with offspring distribution ¢ and 7. the corresponding
Kesten tree when (q) < 1. Recall |n| is the L'-norm of n € N”.

Lemma 6.1. If p is generic for A in the direction o« € A%, then there exists a sequence
(n™),en in N7 such that:

(57) P(L4(T,) =n'™) > 0,
1; (m) 1i n(™)
(58) i [ = oo, lim ey = @

and for allm € N, j € [1,J], with n™ = (n&m), o 7n§]m)):

(59) aj=0 = n" =0

Proof. Since p is generic for A in the direction v € A¥, there exists a critical (p, A)-compatible
distribution p, with direction «. Thus, by Definition 3.1 of (p,.A)-compatible probability
distribution, it is enough to find a sequence (n(™),,cx such that (57)-(59) hold, with T,
replaced by 7p,,.

Let 7;,(:) be distributed as 7,, conditioned to have n vertices. Notice that for all finite
M > 0, there exists n > M such that the probability of 7,, to have n vertices is positive.
Recall L (t) denotes the number of vertices in t with out-degree k. According to [15, Theorem
7.11], along the sequence {n € N: P(§7,, = n) > 0}, the following convergences hold in
probability for all £ € N:

-1 (n) P
0 Li(Ty") —= palk).
Since (n~!Ly (7;,(:))) keN is a random probability distribution on N, we also get that:

-1 n P
(60) ma |0 L, (T37) = po(4))| 2 0.
In particular, for m € N* large enough, we deduce that there exists a tree t[™ such that
gtlml > m; P(T,, = tI") > 0; and, with n(™ = (ngm),...,nf,m)) = La(tl), ngm) =0 if
aj =0 and for all j € J*:
(m)
;T pal4))
n(m)| 1 —py(Ao)
Recall also that P(7,, = t) > 0 implies that P(7, = t) > 0. This and the fact « is the
direction of py, that is pa(A4;)/(1 — pa(Ao)) = ¢, end the proof. O

Recall:

<

1
m

J'={je[l,J]: >0} and J={0}UJ".
For ACN,wewrite A—1={a—1:a€A}and A—A={a—0b: a,be A}. We define:
(61)  To=[J 4}, where Aj=Ag—1 and Aj=A;—A; for jeJ"
JjeJ
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Definition 6.2 (Aperiodicity). Let p be generic for A in the direction o € A¥%. The prob-
ability distribution p is aperiodic for A in the direction o if 0, € (0,400) and the smallest
subgroup of 7 that contains I, is Z.

Remark 6.3 (On aperiodicity).

(a) If 0 € Ay, then —1 € A{, and thus the distribution p is aperiodic for A in the
direction «.

(b) If p is aperiodic for A in the direction «, then (46) holds.

(¢) Looking carefully at the proof of Lemma 6.8 (iii), it would be more natural to consider
7., defined as 'y, in (61) but with A; replaced by A; Nsupp (pa). For 6, € (0,+00)
this yields no modification as I/, = I',. However, for 6, € {0,00} (which is ruled
out in Definition 6.2), the set I, is reduced to {0} (as A; N supp (pa) is either a
singleton of empty). So, with the more natural definition that p is aperiodic for A in
the direction « if the smallest subgroup of Z that contains I/, is Z, then we still have
0a € (0,00).

We now state the main result. Notice we don’t assume that p has a finite mean.

Theorem 6.4 (Local limit of conditioned BGW tree). Let p be a probability distribution on
N satisfying (4). Let A = (Aj)jen,sp, with J € N*, be a family of pairwise disjoint non-
empty subsets of supp (p) and consider the direction o € AY,. We assume that p is generic
and aperiodic for A in the direction a (and thus 04 € (0,4+00)). If (n(™),.cn is a sequence
in N7 satisfying (57)-(59), then we have:

dist (7, | La(T,) = n™) —— dist (7).

m—r0o0

We refer to Remark 2 and the details of its proof given in Section 6.5 for the usefulness of
the condition (59), that is, a; =0 = ng»m) = 0 for the sequence (n(™),,cx.
Remark 6.5 (Conditioning on the total size and the number of leaves). Notice that condi-
tioning on the total size and the number of leaves, or equivalently on the number of internal
nodes and the number of leaves, corresponds to 47 = N* Nsupp (p) and Ay = {0}. Notice
that Ag = (). (By Remark 6.3 (b) notice that the case A; reduced to a singleton is excluded
from Theorem 6.4, but then it is equivalent to condition on the number of leaves; and this
is considered in [4].) Provided the assumptions on genericity and aperiodicity are satisfied, ,
this case is included in Theorem 6.4 whereas it is excluded a priori in Corollary 3.5 in [6].

Remark 6.6 (On the case J* = () and Ay = 0 or Ay = {1}). Let jo € J* be such that
A, = {0}. Notice that a;, € (0,1). Since J** = ) and Ay C {1}, the aperiodic hypothesis is
not satisfied. However the condition (6) implies no choice on Lo, so that we can without loss
of generality replace Ay by Aj = Ao U{0} and remove jy from J*, as well as a by o/ € Ri_l
with o = a;/(1 — ay,) for j € [1,J] \ {jo}. Then the conditioning is the same and the
distribution p is aperiodic for A" = (A;)jeq1,s7\(jo} in the direction o.

Using this trick, we see that the local convergence of Theorem 6.4 holds in this case,
eventhough p is not aperiodic.

The next two sections are devoted to the proof of the theorem. In Section 6.2, for a tree t
such that £4(t) # 0, we describe a map from £ 4(t) onto a multi-type tree, which is a direct
extension of Rizzolo [25]. Then, in Section 6.3, we use [6] on local limit of multi-type BGW
trees to conclude.
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From now on the direction o € A% is fixed and p, given by (56) is the unique critical prob-
ability distribution (p,.4)-compatible with the direction «. In particular, we have p(py) = 1.
By construction, we have p,(A4;) = 0 if a; = 0 for j € [1,J]. Since only the indices j
such that «; is positive are pertinent, for a sequence x = (%’)je[l, Jg]» we shall consider the
subsequence:

(62) x" = (zj)jeg
where, we recall that J* = {j € [1,J]: o; > 0}. For example, we write L-(t) =
(L, (t))jeq=

6.2. Extension of Rizzolo’s transformation. In the following, we use the framework for
multi-type trees from [6, Section 2|. For a tree t such that £4(t) # (), we describe a map
from £ 4(t) onto a multi-type tree, which is a direct extension of [25].

The vertex u € t is said to have type j € J, which we denote by eg(u) = j, if k,(t) € A; so
that (t,eq) can be treated as a J-type tree. Note t) = {u € t : e(u) = i}. In order to remove
the O-type vertices, following [25], we build a bijection ¢ (depending on (t,e;)) from t\t!
to a tree t* with a J*-type ey, which preserves the types, that is, e;a(¢(u)) = eg(u) € J*.
Furthermore, if t/ is empty (which is automatically the case if Ag = )), then we shall have
t4 =t and ¢ is the identity map (and thus ey = eg4).

Let (t,et) be a J-type tree such that #(t\t[%) = n > 1. Following [4], we define recursively
a sequence of growing J*-type trees (t,et, )re[i,n) and identify the last one as (tA4, epa).
The map ¢ is a by-product of this construction. Denote < the lexicographic order on U. Let
up < -+ < uy, be the ordered list of vertices of t\t 0], Then, we define recursively:

e d(up) =0, t; = {0} and et, (0) = et (uq).
e For 1 < k <m,let M(ug_1,ux) € {u1,...,ux_1} be the most recent common ancestor
of up_1 and uy and s the fringe subtree of t above M (uj_1,u), see (7).
Note v = min{u € s : eg(u) # 0} (for the lexicographic order). Then we set ¢(uy)
as the concatenation of ¢(v) and (kg(y)(tr—1) + 1) and consider the tree:

tr = tr_1 U{p(u)},

and the type map ey, coincide with ey, , on ty_; and et, (¢(ug)) = eg(ug). (This
ensures that ¢ preserves indeed the types.)

It is obvious that (t, et, )ke[1,n] 1S @ sequence of (increasing) multi-type trees. Let (tA, epa) =
(tn,et,) and we view ¢ as a bijection from t\t! to t# which preserves the types. See Fig. 1
for an example of t and t and their types.

Notice that La;(t) = Card {u € tA . epa(u) = 5} is the total progeny of type j (which is
equal to 0 if j & J*). For the J*-type tree (t, e;a), we denote by ft the vector of the total
progeny of each type in J* of t:

(63) A = L (t) e NI,

Let 7, be a BGW tree with critical offspring distribution p,. Let 7, . be distributed as
T conditioned to have at least one vertex with out-degree in A§, that is, on {L.4(7,) # 0},
and, with a slight abuse of notation, we set (T4, eTaA) the J*-type tree associated with 7, «
by the previous construction. The proof of the next result, which is left to the reader, is an
adaptation of the proof of [25, Theorem 6].

Lemma 6.7. The random tree (TaA, 67:1.,4) 18 a multy-type BGW tree, with types in J*.
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S

FIGURE 1. A tree t on the left with Ay = {2}, A; = {1,3}, A2 = {0} and the
tree t4 after the map on the right. We represent type 0 with o, type 1 with
o, and type 2 with e.

The root of T is of type e7A(0) = j with probability a; for j € J*. Let phe = (p;"a)jej*
be the offspring distribution of the J*-type BGW tree (T, 67;,4), where p;l’a, a probability

distribution on NV, is the offspring distribution of an individual of type j. To describe p;"a,
we introduce several intermediate random variables.

(a) Let X be a random variable on N distributed according to pq.
(b) Let X7 be distributed as X conditionally on {X € A;}.

(c) Let (X?)ien be independent random variables distributed as X — 1 conditionally on

{X S Ao}
(d) Let N be a geometric random variable with parameter p, (Ag).

We assume that the random variables X7, (X?),-eN and N are independent. We adopt the
convention inf () = +oo.

(e) Set T =inf{neN*: 3" XJ=-1}.

(f) Set Y; = X7 + Zfi_ll X9 on the event {N < T} and Y; = 0 otherwise.

(g) Conditionally on the above random variables, let Z; be a binomial random variable
with parameters (Y}, r), where:

(64) r=P(N <T)e(0,1].

(h) Conditionally on the above random variables, let X JA = (X 54(2)),6 7+ be a multinomial
random variable with parameter (Z;, a*).

Then, the probability distribution p}A’a is defined as the law of X ]“-4 conditionally on {N < T'}.

Recall that pA® is said to be aperiodic, if the smallest subgroup of Z7" that contains
Ujes- (supp (pf’o‘) — supp (p;l’o‘)) is Z7". The mean matrix M = (mj)jer- of p™* is
defined by:

(65) mj, = E[XA(0) | N < T7.
The offspring distribution p*® is critical if the spectral radius of the mean matrix M is

one. We have the following properties. Recall 6, is the unique 6 € [0, 4o00] such that pg , is
critical.

Lemma 6.8 (Properties of the offspring distribution p™®). Let p be a probability distribution
on N satisfying (4), such that it is generic for A in the direction o € A¥.

(i) The offspring distribution p s critical and o is the left eigenvector of the mean

matriz associated with the eigenvalue 1.
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(i) We have mj, > 0 for all j,¢ € J* and j # jo, where jo € J is defined by 0 € Aj,. If
Jo € J*, then we have that mjy, =0 for all ¢ € J* either if Aj, = {0} and Ay C {1}
or if 0o = 0, and that mjy, > 0 for all £ € J* otherwise.
(i) The offspring distribution p™* is aperiodic if and only if p in aperiodic for A is the
direction « (and thus 0, & {0,400} ).
Proof. We prove Point (i) on the criticality of p”®. By construction and (65), the entries of
the mean matrix M are given by, for j, ¢ € J*:
mj =E[X](0)|N < T] =E[Z; | N < T] oy = E[Yj]a.
In particular the mean matrix has rank one and a* is the left eigenvector associated with the
non-zero eigenvalue, say p. Since the mean matrix has nonnegative entries and o™ as positive

entries, we also get that p is the Perron-Frobenius eigenvalue and thus the spectral radius of
M. Since M has rank one, we also get that p is the trace of M:

p= Y Elja;

JjET™*

We now compute rE[Y}] using (64):

N-1
(Xj +) X?) 1{N<T}] = rE[X7] + E
=1

Using the strong Markov property of (X?);en+ at the stopping time 7' and its definition

(see (e)), we get: Z

E[Y;] = E
i=1 i=1

N-1 N-1
> X?] ~E [Z X?1{N>T}] :

E[Y;] = rE[X’] + E

N-1

0
2 X
i=1

N—-1
ZX?] —(1—7) (—1+E

=1
‘ N-1
X —14) X?]
=1

m; mo — pa(Ao)>
— 147 ( I 4 0 Palf0)
Pa(4;) Pa(Af)
m; mo — 1
=1+r ( I 4 - ) :
Pal4;)  pal4f)
where my = 3 4, kpa(k) for £ € J. As pq is critical, we get that } .., m; = 1. Recall
that oj = pa(A;j)/pa(AG) for j € J*. Therefore, we obtain:

m; mo —1 1 — my mo — 1
p= aj+r o +r =
]62\7:* ! ]62\7:* pa(AC) pa AC ;:* a pa(A(c]) pa(AC)

=14+rE

This ensures that p™® is critical.

We prove Point (i) on the positive entries of the mean matrix. Let j € J*. We deduce
from (65) and from (h) (where o has positive entries) and (g) (where 7 > 0) that (m¢)sec 7+
are all positive if P(Y; = 0) < 1 and all zero if P(Y; = 0) = 1. Notice that "= 1 a.s. implies
Ap = {0} and thus Y; > 0 a.s. on {N < T}, so P(Y; = 0) = 1 implies that P(T" > 2) > 0.
We deduce that P(Y; = 0) = 1 is equivalent to P(X/ = 0) = 1 and P(N = 1) = 1 or
P(X? = 0) = 1. Thus P(Y; = 0) = 1 is equivalent to 0 € A;, pa(A4; N {0}¢) = 0 and
Pa(Ao) =0 or po(Ag N {1}¢) =0, that is, 0 € A;j, pa(A4; N{0}¢) = 0 and pa(Ao N {1}¢) = 0.
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To conclude, notice that those conditions are equivalent to either A; = {0} and Ay C {1} or
0€ Ajand 0, =0.

We prove Point (iii) on the periodicity of p4®. Thanks to (h) and the fact that a* has
positive entries, we deduce that p+® is aperiodic (in z7 *) if and only if the smallest subgroup
of Z that contains I' = (¢ 7 (supp (Law(Z; | N < T)) —supp (Law(Z; | N < T))) is Z. From
the definition of the law of Z; given in (g), we shall consider the two cases r =1 and r < 1.
We also remark that » = 1 if and only if 7' = 400 a.s. or N = 1 a.s, which corresponds to
0 ¢ Ag Nsupp (pa), that is, 0 € Ag as p,(0) > 0.

In the easy case 0 € Ay (and thus 6, € (0,+00)), we get on the one hand that X7 >
0 ae., and as P(N = 1) > 0, we deduce that P(Y; > 0) > 0 and thus that {0,1} C
supp (Law(Z; | N < T')). This implies that p® is aperiodic. On the other hand, we also get
that p is (A, a)-aperiodic, see Remark 6.3 (a).

We now consider the case 0 ¢ Ay, that is » = 1 and thus Z; = Y} and a.s. T = +oo. If
Pa(Ap) > 0, we have P(N = k) > 0 for all k£ € N, and if p,(Ap) = 0, we have a.s. N =1 and
Ao Nsupp (po) C {1}. In both cases, we deduce from (f) that:

supp (Law(Z; | N < T)) = supp (Law(Y; | N < T')) = supp (LaW(Xj |IN <T))+N(AF — 1),

where NB ={nb: ,n € N,b € B} and A§ = Ap Nsupp (pa). We set A = Aj Nsupp (pq) for
J € J* and notice that Af = supp (Law(X7| N < T)). We then get that:

T = ( U (ag - A;“)) UZ(AS —1).
JET*
If 0, € {0, +00}, we get that Af C {1} and Af are singletons for j € J*, so that I' = {0}. If
0a € (0,400), we get that I' =T, defined in (61).
Thus p® is aperiodic if and only if 6, € {0,400} and the smallest subgroup in Z con-
taining I', is Z, that is, p is aperiodic for A in the direction a. O

6.3. Proof of Theorem 6.4. Recall (see Section 2.3) the set of trees T(t,z) for t € Ty and
x € Lo(t). As p is generic for A in the direction «, there exists by Lemma 6.1 a sequence
(n(™),,en satisfying (57)-(59). Since pq is (p, A)-compatible, we have for m € N, t € Ty and
r € Lioy(t), with 7o =Ty, and 77 = T, , that:

B(T, € T(6,2)|La(Ty) = n™) = B(T,, € T(t,2)|La(Ta) = n™).

For j € [1,J], recall & € N is the vector with all its entries equal to 0 but the j-th which
is equal to 1, and that e’ = 0. Set jo € [0, J] such that 0 € A;, and set:

b = .
We have:
P(Ta € T(t,2), La(Ta) =n™) = 3 P(Ta = t & (8,2))1 (1, (s(E.0))—ntm)
teTo

1 B}

" al0) > P(Ta =) P(Ta = O)1{1, @)=ntm L4}

@ teTy

1

= P T = P(La(Ta) =0 — La(6) +b)

=P(T5 € T(t,2)) P(La(To) = 0™ — La(t) +b),
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where we used that p, is critical (and thus 7, is a.s. finite) for first and third equalities
and (10) for the last. Recall the notation x* from (62) which is the restriction of the sequence
x indexed by [1, J] to the indices J*, and that La«(t) = (La,(t))je7+. We get:
P(La(Ta) =™ — LA( ) +b)
P(La(Ta) = nlm™)
P(La(Ta) = nt™) L -(t) +b")
P(La+(To) = (M) ’
where we used that La;(7) = 0 for j ¢ J (and thus P(7, € T(t,z)) = (7:; € T(t,xz)) =0
if La,(t) # 0 for some j ¢ J) as well as that (n (M), en satisfies (59) for the second equality.
Now we apply the extension of Rizzolo’s transformation for 7, to get a J*-type BGW tree
T such that #74 = L4+ (T5) (see definition (63)). Hence (66) is equivalent to:
P(t75 = n™" — L (t) +b*)
P(T" = nlm))
We consider the following condition which appears in Lemma 6.8 (ii):
(68) Ap c {1} and Aj, ={0} forsome jo€ J".
We first assume that (68) does not hold. Hypothesis of Theorem 6.4 and Lemma 6.8 ensure
that Assumptions (H;) (on the offspring distribution being critical and the mean matrix
primitive) and (Hs) (on the aperiodicity of the offspring reproduction) hold in [6] and that o*
is the positive normalized left eigenvector of the mean matrix (see hypothesis in Lemma 3.11
in [6] where a = o* and use that (n™), m € N) is a sequence in N’ satisfying (57)-(59)), so
that the strong ratio theorem or more precisely (19) in [6] holds, which entails that:
P74 = n™* — L4 (t) + b*
m— oo ]P’(jj’]:xA = n(m)*)
We deduce from (67) and (69) that for all t € T and = € Lypy(t):

lim P(7, € T(t,2)|La(Tp) = n™) = P(T; € T(t,2)).

P(T € T(t,2) | La(Ta) = n™) = P(T € T(t, x))

(66) =P(7, € T(t,z))

(67) P(T, € T(t,2)| La(Ta) = n™) = P(T} € T(t,z))

=1

For t € Ty, it is obvious from (58) that lim,, 0o P(7, = t|L4(T,) = n™) = P(T = t) = 0.
The result thus follows from the fact that the family {(T(t,z), t € Ty, x € Lo(t)} U Ty is
convergence determining for the local convergence in Ty U T .

We now consider that (68) holds. We first check that it is enough to consider the case
Ay = 0, where the Rizzolo’s transformation is the identity map. Indeed, if Ay # (), that
is, Ag = {1}, then the Rizzolo’s transformation corresponds to discarding individuals with
only one child. This amounts to replace the offspring distribution p (resp. pgo) by p’ (vesp.
Ppo = (P')o.a) where p'(k) = p(k)/q for k # 1 and p'(k) = 0 for k = 1. Then, notice that ¢
s.t. pj , is critical is exactly 6,, so without confusion, we can also replace p, by pl, = (p')a-
In coﬂclusion, using this modification amounts to only consider the case:

(70) Ap=0 and Aj, ={0} forsome joe J".
Notice this case is ruled out in [6, Corollary 3.5]. However a slight modification of the proofs
in [6], which we sketch in Section 6.4 (take d = Card (J*) and d = jp therein) allows to
get (69), which we now read as, for a sequence (n™, m € N) in N” satisfying (57)-(59):

. P(§To = nl™* — Las(t) +b¥)
71 1
( ) mgnoo ]P’(jj’]; = n(m)*)

=1,
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where 7, is seen as a multi-type BGW tree, where a node u € 7T, as type j € J* if
€ Aj. Notice the corresponding offspring distribution is p = (p™);cr+ where
i) (k))gens* is a probability distribution on N7" whose non-zero terms are given by:

T
!
N

p (k) = ZZ((%; Mult(k,a*) for |k| € A;,

and Mult(k, o*) is the probability that a multinomial random variable with parameter (|k|, a*)
takes the value k. Furthermore the type of the root is distributed as o*. With this setting,
we emphasize that (71) is exactly (19) in [6], up to a relabeling. Once (71) is established,
then we finish the proof as in the case where (68) does not hold.

We now give the properties of the offspring distribution p and the type of the root (recall
that (70) holds and that the Rizollo’s transformation is the identity map); Under assumption
of Theorem 6.4, we have:

(a) The type of the root is distributed as a*.

(b) pi0)(0) = 1.

(c) By Lemma 6.8 (ii), the mean matrix M = (mj;); jes+ is such that for j € J* we have
mi; € (0,+00) for i # jo and m;; = 0 otherwise.

(d) By Lemma 6.8 (i) p is critical and o* is the left eigenvector with eigenvalue 1.

(e) By Lemma 6.8 (iii) p is aperiodic.

(f) Since p, satisfies (4) and Ay = 0, we deduce from the definition of p that there exists
a type j € J* such that individual of type j has two children or more with positive
probability, that is, p is non-singular.

In particular, the offspring distribution p satisfies hypothesis (72)-(75) from Section 6.4. To
conclude, we refer to Section 6.4 on how to get (19) in [6] under this set of hypothesis.

Remark 6.9 (On related work). The case Ay = () and Card (4;,) > 2 where jo € [1,J] is
such that 0 € Aj, (compare with condition (68)) could be handled using [24, Theorem 5.1]
on multi-type BGW processes. (We also believe that condition (A5) there, which amounts to
say that for each j € [1,J] there is k € A; such that £+ 1 € A;, could certainly be relaxed.)
Notice that the moments condition considered there does not allow to consider directions
a such that 0, = 6pax (this case might indeed exist). The possible vector a = (aq,...,ay)
considered in [24] (which is associated with the critical BGW multi-type process) corresponds
in our framework to a; = 0,0 /p(A;) for j € [1,J] and the direction v which appears in [24,
Eq. (5.1)] corresponds to «. In our approach, we first fix the direction «, and then give
sufficient (and almost necessary) conditions for the existence and uniqueness of the critical
parameter 0, and thus how to choose the parameter a given the direction .

6.4. On the proof of (71). In this section we quickly revisit the proof of (19) in [6], using
slightly different assumptions in order to take into account the particular case (68) from
Section 6.3. In this section only, we stick to the notations introduced in [6]. Let d > 2
and set [n] = [1,n] for n € N*. Let p = (pW,i € [d]) with p®) = (p(k), k € N9) being
probability distributions on N¢. We assume that:

(72) p(0) =1}

For i € [d], let X; = (Xi(j ), j € [d]) be a random variable on N with probability distribution
p@. In particular, we have that a.s. Xq = 0. We consider the generating function f =
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(f% i e [d]) of p defined by:

. (4)
fO(s)=E H Sfij ., where s=(sj,j€[d])€[0,1]%
Jjeld]

We consider the mean matrix M = (m;j; 4, € [d]) with m;; = E[Xi(j)]. We assume that:
(73) mi; € (0,+00) forall ie[d—1], ;e [d]

notice that mg; = 0 for all j € [d]. In particular the matriz M is not primitive, as there is
no n € N* such that M"™ has only positive finite entries; notice that M primitive is part of
assumption (H1) in [6] (this condition is mainly used to apply Perron-Frobenius theorem on
the existence and uniqueness of a left and a right eigenvector having nonnegative entries, and
their corresponding eigenvalue is in fact the spectral radius of M). We recall that p is critical
if the spectral radius of M is 1; and that p is non-singular if f(s) # Ms. We assume that:

(74) p is critical and non-singular;
notice this is the other part of assumption (H1) in [6]. We also assume that:
(75) p is aperiodic,

that is, the smallest subgroup of Z¢ which contains Uie[d] (supp (p(i)) — supp (p(i))) is Z¢
itself; this correspond to hypothesis (H2) in [6].

For i € [d], let e; denote the vector of R? with all its entries equal to 0 but the i-th which
is equal to 1. Using Perron-Frobenius theorem for the matrix M reduced to the first d — 1
lines and columns and using that the d-th line of M is zero and the other entries are positive,
we deduce that:

- the eigenvalue 1 is simple;

- there exists two left eigenvectors with non-negative entries: the vector e; with eigen-
value 0, and a vector a € R% having positive with eigenvalue 1;

- there exists a unique right eigenvector a* = (a*(i),? € [d]) with eigenvalue 1, and its
entries are positive but for the d-th wich is zero: a*(d) = 0.

This result is the reason why we can remove the primitive assumption of M.

Then the results on the Dwass formula for BGW multi-type trees from Section 3.2 in [6]
also hold, as the expressions therein are algebraic in the entries of p. (For example Lemma 3.8
holds, but notice that both terms of the equality therein are zero if r = d.) Now formula
(19) in [6] is then a direct consequence of the Dwass formula and the technical Lemma 3.11
therein. This latter result, proved in Section 3.4, is also a direct consequence of Lemma 3.12,
which asserts that an intermediate random variable Y on Z2%~! has an aperiodic distribution,
and of Lemma 4.11, which is a variant of the strong ratio theorem for the random walk with
increments distributed as Y. Now looking carefully at the proof of Lemma 3.12, we see that
p is assumed to be aperiodic (this is (H2) therein and (75) here) and that hypothesis (H1)
is only used at the end of the proof to get that P(X; = 0) > 0; but this is clearly the case
if (72) holds. To conclude, notice that Lemma 4.11 on the strong ratio theorem requires only
that the law of Y is aperiodic (which is provided by Lemma 3.12) and that Y is integrable.
By the construction of Y given in Section 3.4, we notice that Y is integrable if and only if
the mean matrix M has finite entries, which is hypothesis (73). In conclusion, we obtain that
(19) in [6] holds (notice that the root has to be of type r # d otherwise the numerator and
denominator are both zero).
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Remark 6.10 (On the extension to the main result of [6] under hypothesis (72)-(75)). We leave
to the interested reader the construction of the corresponding Kesten tree, see Section 2.6
in [6], where here individuals on the infinite spine can not have type d (in particular, the
root has not type d). (For example Lemma 2.9 therein holds provided ¢, 7 belong to [d — 1].)
Then, assuming hypothesis (72)-(75), we have the analogue of Theorem 3.1 therein on the
local convergence in distribution, towards the Kesten tree of the BGW multi-type tree (with
the root not being a.s. of type d and with offspring distribution p) conditioned to have
population of type i equal to k(n); for ¢ € [d] with lim, o k(n);/|k(n)| = a(i), where
[k(n)| =3 ciq k(n); and limy, o0 [k(n)| = oo.

6.5. Details for Remark 2 on the condition n; = 0 if a; = 0. We consider the following
example: a probability distribution p such that supp (p) containing but not reduced to {0, 2},
1 & supp (p), J =2, A= (A1, As) is a partition of supp (p) (that is, Ag = () with 4; = {0,2}
and As C 3 + 2N. Notice that Ay # (). We set:

p(0)
p(2)

We consider the direction o = (1,0). It is elementary to check that p is generic for A in
the direction a and that p, = (pa(n))nen is given by pa(0) = po(2) = 1/2. The distribution
p is however not aperiodic for A in the direction «, but thanks to Remark 1, we still have
the convergence of 7 conditionally on LA(7T) = (n,0), with n odd going to infinity, locally
in distribution towards the Kesten’s tree 7.

For n odd going to infinity, we shall check that the distribution of 7 conditionally on
L A(T) = (n,1) does not converge locally to the distribution of 7., and thus Condition (59)
is required in general to get the local limit of conditioned BGW tree from Theorem 6.4. To
do so, we shall simply check the positivity of the limit, for n odd going to infinity, of:

P (ho(T) # 21 La(T) = (1) = 42

(76) € (0,400).

where
By(n) = P (ko(T) #2,La(T) = (n,1)) and Bay(n) = P(Lo(T) = (n,1)).

Before going further, we recall that the number of planar binary trees with n leaves is:

1 /2n—2
fl,n = - < >7
n\n—1
(in particular fi 41 is the so called n-th Catalan’s number) and that f; ,, = [2"]2C = [z"10,
where we write simply C for C(z) = (1 — /1 — 42)/2z. Recall also that 2C? — C +1 = 0.

We deduce that the number of planar forests with k binary trees and n > k leaves is given
by frn = [2"]2FCF = [2"~*]C*, and that according to [9, (B.5)]:

k (2n—Fk—1 n—k—1 on—k—1

(77) fkn:—<n >:<n >_<n > for n>k>1.
’ n n—1 n—1 n

We set fr., = 0if k > n.

Let n > k be odd integers. On the event ky(7) = k and L4(T) = (n,1), we get that T
can be seen as a forest of k trees grafted on the root and with the forest having (n + k)/2
leaves and (n — k)/2 internal nodes, all of them binary. We deduce that:

P (ky(T) =k, La(T) = (n. 1)) = p(k)p(0) " F2 p2) "D f o,
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and thus:
Bi(n) = (pO)p2)"* > fiturwy2pk)a®.

k€Ag, k<n

A tree t such that L4(t) = (n,1) can be decomposed as a binary tree with ¢ leaves, and on one
of those ¢ leaves one grafts a forest with & € A (and k < n) binary trees with (n+k)/2+1—¢
leaves; and in total the tree t has (n+k)/2 leaves, (n — k)/2 binary branching nodes and one
node with out-degree k. Thus, we have:

(n—k)/2+1
(78)  Ban)= Y pk)p(0)" I Ep2) RN Uy g k21—
k€Az, k<n =1
= (pO)p2)™* > Frnimyep(k)d,
k€A2, k<n
where for n > k£ > 1:
n—k+1
Fen= Y Ufrefremir e
=1

We give an explicit formula of Fj, ,,.

Lemma 6.11. We have:

2n — k 2n — k
Fk,n:<nn >= nk fkm for n>k>1.

Proof. We have:

1 ! n+1 n+1
_[.1 I k~k _1on k+1ok+1Y) _ 1 n+l k+1vk+1 _
Fi = ["](20) 0% = [ 1= (410%1) = M1 O = o fean.
Then, use (77) to conclude. U

We shall now consider that Ay is unbounded. Let ¢ € (0,1) and write:

Bi(n,e) = Z fr,(nsk) /2 0(k) a”,

k€Ag, k>en

Bs(n,e) = Z Fk,(n+k)/2p(k)aka
k€Ag, k<en

Bi(n,e) = Y Fyguynyp(k)a,
k€A, k>en

so that using the two latter terms, we can rewrite Ba(n) as:

(79) Bsy(n) = (p(0)p(2))"* (Bs(n,e) + Ba(n,¢)).
For k > en, we have that:

M| =

n
Frn+kyf2 = Trnak)2 < = frtnri)2:

This implies that:

(80) Ba(n,e) < éBl (n,e).
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We now assume that Ay = 3 + 2N and there exists b € (0,1) and M > 1 finite such that
M-1< p(k‘)b‘k < M for k € Ay. Then, we have with 2m =n + 3 and k = 3 + 2¢:

B3(TL, 6) <M Z Fk,(n+k)/2 (ab)k
ke3+2N,k<en

< M(ab)’ Z Fso0mae (ab)**
LeNL<em

= M(ab)"2™+3 (14 (a0)2)™" " Y <
leN<em
with 7/(1 —r) = (ab)? and thus r = (ab)?/ (1 + (ab)?). As r < 1, we deduce that:

2m — 3

m+lrq o \m—3—L
4 0 > rTH 1 =)

2 —
> < " 3) L =) =P(m < X < (1+e)m) < P(X < (14¢)m),
m+ /¢
leN<em
where X is binomial with parameter (2m — 3,7).

We now assume that ab > 1 and that ¢ is small enough so that ab > (1 +¢)/(1 —¢). This
yields 2r > 1 + ¢, so that for m large enough, we have (1 4+ e)m < r(2m — 3). We deduce
from [30, Theorem 2.1] that, with j = |(1 +¢)m| and 2 = r(2m — 3) — j + 1:

P(X < (1+&)m)
P(X =)
Since limyy, 00 ¢ = 400 and limg, oo ( + j)/j = 2r/(1 +¢), we deduce that:

_ P(X<(1+e)m) : r(l —¢)
mise  P(X = J) o W T T U e
Recall that n = 2m — 3. So for n large enough, we have with &' =3+2¢ and ¢/ = j —m =
lem |, and thus n + k' = 25, that:

<2—z++/22+4(1—r)j.

2m — 3

B3(n7€) < QCOM(ab)_2m+3 (1 4 (ab)2)2m_3 < j

) rI(1 — )23

= 2coM Fy (nyhr)/2 (ab).
Notice that j > (14 ¢)m — 1 and thus k¥’ > en + 1, so that:
(81) Bs(n,e) < 2coM? By(n, ).
Hence, using (80), we obtain that:
14 2coM?

Bs(n,e) + By(n,e) < .

Bl (’I’L, 8).
From the definition of By(n,¢), we get that:

(P(0)p(2)"? Bi(n.e) =P (ky(T) 2 en., La(T) = (n,1)).
We deduce from (79) that:

o .. . Bi(n,e) £
> = =
lhning(k@(T) >en|La(T) = (n,1)) llanigf Baln) = 15 2c00 I >

provided that there exists b € (0,1) and M > 1 finite such that M~' < p(k)b=F < M for
k € A2 =3+ 2N and € > 0 is chosen so that ab > (14 ¢)/(1 — ¢), with a defined by (76).

In conclusion, under the above hypothesis, the distribution of 7 conditionally on {L4(7) =
(n,1)} does not converge locally to the distribution of 7. as n goes to infinity, whereas the

0,
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distribution of 7" conditionally on {L 4(7) = (n,0)} converges locally to the distribution of

T

Furthermore, conditioning on {L4(7) = (n,1)} and letting n goes to infinity gives a

condensation at the root with positive probability.

(1]
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