Romain Abraham 
email: romain.abraham@univ-orleans.fr
  
Hongwei Bi 
  
Jean-François Delmas 
email: jean-francois.delmas@enpc.fr
  
Jean-François Delmas 
  
Bienaymé-Galton- Watson Conditioning 
  
Trees 
  
Jean-Franc ¸ois Delmas 
  
  
  
  
CONDITIONING BIENAYMÉ-GALTON-WATSON TREES TO HAVE LARGE SUB-POPULATIONS

Keywords: . 2010 Mathematics Subject Classification. 60J80; 60B10 Bienaymé-Galton-Watson tree, generic probability distribution, local limit

published or not. The documents may come  

Introduction

Local limit of large Bienayme-Galton-Watson (in short, BGW) trees have been extensively studied in recent years. The classical result of Kesten [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF] describes the local limit of a critical or subcritical BGW tree conditioned on reaching at least height h locally converges in distribution as h goes to infinity to the so-called size-biased tree or Kesten's tree, which is a tree with an infinite spine. We refer to Section 2.5 for a precise description of the Kesten's tree.

Over the years, motivated by various point of view from theoretical probability, combinatorics, biology or physics, other conditionings have been considered, such as large total progeny [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF][START_REF] Geiger | The shape of large Galton-Watson trees with possibly infinite variance[END_REF], large number of leaves [START_REF] Jonsson | Condensation in nongeneric trees[END_REF][START_REF] Curien | Random non-crossing plane configurations: A conditioned Galton-Watson tree approach[END_REF], large number of protected nodes [START_REF] Abraham | Local limits of Galton-Watson trees conditioned on the number of protected nodes[END_REF], existence of an individual with a large number of out-degree or children [START_REF] He | Conditioning Galton-Watson trees on large maximal outdegree[END_REF][START_REF] He | Local convergence of critical random trees and continuous-state branching processes[END_REF]. Janson [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] surveyed the local limit of BGW trees when conditioned on a large total population size, and Abraham and Delmas [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the condensation case[END_REF] provided a general framework, which describes in full generality the local limit of critical or subcritical BGW trees conditioned on having a large sub-population. Notice that in [START_REF] Jonsson | Condensation in nongeneric trees[END_REF][START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF][START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the condensation case[END_REF][START_REF] Stufler | Local limits of large Galton-Watson trees rerooted at a random vertex[END_REF] the local limit may exhibit a condensation phenomenon, as one node of the limiting tree has an infinite number of children. With other conditioning, such as a large size of a late generation [START_REF] Abraham | Very fat geometric Galton-Watson trees[END_REF][START_REF] Abraham | Asymptotic properties of expansive Galton-Watson trees[END_REF], or with exponential weight given by the total height of the tree among tree with given large size [START_REF] Durhuus | Trees with exponential height dependent weight[END_REF], the local limit is a tree with an infinite backbone. Local limit of large multi-type Galton-Watson trees has also been considered in [START_REF] Pénisson | Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process[END_REF][START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF], and also in [START_REF] Stephenson | Local convergence of large critical multi-type Galton-Watson trees and applications to random maps[END_REF][START_REF] Thévenin | Critical exponential tiltings for size-conditioned multitype bienaymé-galton-watson trees[END_REF] when conditioning on a linear combination of the sizes of the sub-populations with a given type.

One can also consider scaling limits of BGW trees (seen as metric space), the so called Lévy continuum trees, as initiated by Aldous [START_REF] Aldous | The Continuum Random Tree. I[END_REF] and generalized by Duquesne and Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF]. Let us mention that there is a large recent literature on this subject. In particular Marzouk [START_REF] Marzouk | On scaling limits of random trees and maps with a prescribed degree sequence[END_REF] considered the scaling limit of random trees with a prescribed degree sequence, and Kargin [START_REF] Kargin | Scaling limits of slim and fat trees[END_REF] and Kortchemski and Marzouk [START_REF] Kortchemski | Large deviation local limit theorems and limits of biconditioned planar maps[END_REF] the scaling limit of BGW trees conditioned on its total progeny and the number of leaves.

Motivated by those last works, we shall investigate the local limit of BGW tree when conditioning on its total progeny and the number of leaves being large. More generally, let A = (A i ) i∈[ [1,J]] , where [[a, b]] = [a, b] ∩ N, be a finite collection of pairwise subsets of N and α = (α i ) i∈[ [1,J]] a probability measure on [ [1, J]]. We denote by A 0 the complementary of i∈[ [1,J]] A i in N, which might be empty or not. We shall then generalize [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and consider the local limit of BGW trees conditioned to have ⌊α i n⌋ nodes with out degree in A i for all i ∈ [ [1, J]] as n goes to infinity. We stress that there is no condition on the nodes with out-degree in A 0 .

More precisely let p = (p(n)) n∈N be a probability distribution on N; its support is supp (p) = {n ∈ N : p(n) > 0}. We assume that p is non-trivial in the sense that p(0) > 0 and p({0, 1}) < 1, where p(A) = n∈A p(n) for A ⊂ N. We denote by µ(p) ∈ (0, +∞] its mean. We denote by T p a BGW tree with offspring distribution p. Notice we don't assume that µ(p) is even finite, however since p(0) is positive the tree T p is finite with positive probability. Set N = N ∪ {∞}. For a tree t we denote by L A (t) the number of its nodes with out-degree (or number of children) in A. We simply set:

L A (t) = (L A i (t)) i∈[[1,J]] ∈ NJ .
In Theorem 4.1 we completely characterize the non-trivial probability distributions p ′ on N such that supp (p ′ ) ⊂ supp (p) and for all n = (n i ) i∈[ [1,J]] ∈ N J such that P(L A (T p ′ ) = n) > 0 (and thus P(L A (T p ) = n) > 0), we have:

dist T p L A (T p ) = n = dist T p ′ L A (T p ′ ) = n .
Such probability distributions are called (p, A)-compatible. The (p, A)-compatible probability distributions can be continuously parametrized by a parameter (θ, β) in a subset of [0, +∞] × R J + . When the parameter θ is positive and finite, then the (p, A)-compatible probability distribution pθ,β associated with the parameter (θ, β) is given by: pθ,β (n) = β i θ n p(n) for n ∈ A i and i ∈ [[0, J]], where β 0 = θ -1 .

The fact that such exponentially tilted probability distributions are (p, A)-compatible was already observed in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] for J = 1 and in Thévenin [START_REF] Thévenin | Critical exponential tiltings for size-conditioned multitype bienaymé-galton-watson trees[END_REF] for the multi-type BGW tree setting. In comparison with those two papers, we give here an exhaustive description of the (p, A)compatible probability distributions. In particular, it is possible to observe degenerate cases when the parameter θ can take the values 0 and ∞, see [START_REF] Kargin | Scaling limits of slim and fat trees[END_REF] and [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF]. In both cases, when possible, we get that 0 ∈ A 0 and for the latter that A 0 ∩ supp (p) is either empty or reduced to {1}. As suggested by this remark, we shall indeed distinguish in most of the proofs according to 0 ∈ A 0 (the leaves are directly involved in the conditioning) or not.

For x = (x i ) i∈[[1,J]] ∈ R J , we set |x| = i∈[[1,J]] |x i | the L 1 norm of x.
As in [START_REF] Pénisson | Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process[END_REF], it is interesting to have a fixed (asymptotic) proportion of sub-populations, and thus consider the local limit of T p conditionally on {L A (T p ) = n} when n/|n| converges to some α ∈ R J + such that |α| = 1, as |n| goes to infinity. For p non-trivial, intuitively we have that L A (T p ) is of order p(A) times the total size of the population ♯T p = L N (T p ) when the tree is large, see [START_REF] Janson | Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton-Watson trees[END_REF][START_REF] Thévenin | Vertices with fixed outdegrees in large Galton-Watson trees[END_REF] for precise statement. Thus, it is natural to consider among the (p, A)-compatible probability distribution those which are in the direction α = (α i ) i∈[ [1,J]] , that is:

pθ,β (A i ) ∝ α i for all i ∈ [[1, J]].
From this, we can write α as a function of (θ, β), provided that pθ,β (A c 0 ) > 0 or equivalently that β = 0 (see Remark 3.7 for details), and similarly β as a function of (θ, α). This gives an elementary reparametrization (p θ,α ) of the family (p θ,β ) by the parameter θ and its direction α, provided β = 0. The family (p θ,β ) is explicitely given in Lemma 5.3 and the possible directions in Proposition 5.4. In particular, α is not a possible direction if and only if there exists j ∈ [ [1, J]] such that α j = 0 and 0 ∈ A j or α j = 1 and A 0 ∪ A j ⊂ {0, 1} (those two latter conditions correspond to p θ,α being non-trivial). In particular, if the entries of α are all positive then α is a possible direction. Furthermore, if α is a possible direction, then the set I α ⊂ [0, +∞] of possible value for the parameter θ is an interval, see Section 5.2. As observed in previous works, the existence of a critical parameter θ α such that µ(p θα,α ) = 1, is a key point to obtain the local limit of the conditioned BGW tree. Proposition 5.10 asserts that the mean function θ → µ(p θ,α ) is increasing when µ(p θ,α ) ≤ 1, and thus there is at most one such critical parameter θ α . Let us stress this result is not obvious as the map θ → µ(p θ,α ) is not monotone in general (see an example in Remark 5.12). When the critical parameter θ α exists, then the distribution p is called generic for the direction α, and we set: [START_REF] Abraham | Local limits of Galton-Watson trees conditioned on the number of protected nodes[END_REF] p α = p θα,α (and thus µ(p α ) = 1).

We provide necessary and sufficient conditions for p to be generic in the direction α in Theorem 5. [START_REF] He | Conditioning Galton-Watson trees on large maximal outdegree[END_REF] which are similar to those obtained in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] when J = 1. We don't study further the relation between the sets A = (A i ) i∈[ [1,J]] and the fact that p is generic, and refer to [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] again to appreciate the complexity already when J = 1.

Let T *

p denote the Kesten tree associated with the probability distribution p when µ(p) = 1, that is, the local limit in distribution of T p conditioned to have height at least h, as h goes to infinity. Before giving the main result of the paper, we recall the hypothesis: (H1) p is a non-trivial probability distribution on N (there is no moment condition). Without loss of generality we assume that the sets A = (A i ) i∈[ [1,J]] are pairwise disjoint subsets of the support of p. (H2) α ∈ R J + with |α| = 1, is a possible direction (this condition is always satisfied if all the entries of α are positive). (H3) p is generic in the direction α. (H4) p is aperiodic in the sense of Definition 6.2. (In particular being aperiodic depends on the sets A and the direction α, see also Remark 6.3.)

We are now ready to state the main result of the paper. Recall p α in (1).

Theorem 1. Assume that Hypothesis (H1)-(H4) hold. We have the following local limit in distribution:

dist (T p | L A (T p ) = n) ----→ |n|→∞ dist (T * pα ),
along any sequence (n) in N J such that: the sub-populations are large, that is, lim |n| = ∞; the conditioning is legit, that is, P(L A (T p ) = n) > 0, and the direction is strictly α, that is,

lim |n|→∞ n/|n| = α and, with α = (α i ) i∈[[1,J]] and n = (n i ) i∈[[1,J]] , for all j ∈ [[1, J]]:
(2)

α j = 0 =⇒ n j = 0.
To be complete, we also refer to Lemma 6.1 on the existence of a sequences of n in N J satisfying the hypothesis above.

The proof of Theorem 1 relies on two ingredients. The first one is the use of Rizzolo's transformation from [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF] to reduce the problem to the case A 0 empty. The second is the existence of a local limit for multi-type BGW tree conditioned to the sub-populations of each type to be large (with proportion given by the positive left eigenvector of the mean matrix) obtained in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the condensation case[END_REF]. One could also use the results of Pénisson [START_REF] Pénisson | Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process[END_REF], but this would require stronger hypothesis, see Remark 6.9 for further comments. Let us mention that Corollary 3.5 in Abraham, Delmas and Guo [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] gives Theorem 1 in the very specific case where µ(p) = 1, p(A 0 ) = 0, and the direction α is the one naturally given by p: α i = p(A i ).

Remark 1 (Conditioning on the total size and the number of leaves). Motivated by the scaling limits of BGW trees conditioned on its total progeny and the number of leaves to be both large considered in [START_REF] Kargin | Scaling limits of slim and fat trees[END_REF] and [START_REF] Kortchemski | Large deviation local limit theorems and limits of biconditioned planar maps[END_REF], we give as a consequence of the Theorem above the corresponding local limit of such BGW trees in Remark 6.5. Conditioning on the total progeny and the number of leaves amount to consider A 1 = N * ∩ supp (p) and A 2 = {0}. Notice the directions α can be written as (a, 1a). As explained in Remark 6.5, we have to consider two cases.

If the support of p is reduced to two elements say 0 and k (with k ≥ 2 as p is non-trivial), then Hypothesis (H4) is not satisfied. However in this case the conditioning is equivalent to conditioning on the total size and the existence of the local limit is then given by [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] and [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. Furthermore there is only one possible direction for which p is generic; it is given by a = 1/k.

If the support of p is not reduced to two elements, then provided the smallest subgroup in Z containing {xy : x, y ∈ supp (p) ∩ N * } is Z itself, then Hypothesis (H4) holds. In this case, Hypothesis (H2) is satisfied if and only if a ∈ (0, 1). It is easy to check that p is generic in the direction α if and only if there exists a positive finite root (which is then θ α ) to the equation: g(θ) = p(0) + aθg ′ (θ). The critical probability measure p α is given by p α (0) = 1a and p α (n) = θ n-1 α p(n)/g ′ (θ α ) for n ∈ N * ; and we can apply Theorem 1.

Remark 2 (On the strict convergence of the sequence n to the direction α). Assume that the offspring distribution p is generic in the direction α and that α has some zero entries. We provide in Section 6.5 an example where removing Condition (2) (that is, n j = 0 if α j = 0) on the sequence of n = (n i ) i∈[ [1,J]] such that lim |n|→∞ n/|n| = α prevents to get the local limit of conditioned BGW tree from Theorem 1.

Remark 3 (On non-generic distribution). If p is not generic in the possible direction α because of Condition (i) in Theorem 5.13, then as in the case J = 1 studied in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the condensation case[END_REF], we conjecture the existence of a condensation phenomenon at the limit: the existence of a node of the local limit at finite height with an infinite degree. The first step to prove this would be considering the condensation for non-generic multi-type BGW trees. Notice that the others conditions in Theorem 5.13 might happen for probability distributions with bounded supports, see Remark 5.14 (a).

The rest of the paper is structured as follows. we introduce in Section 2 the general notation and the framework of discrete trees, BGW trees and Kesten's tree. We define the (p, A)compatible probability distributions in Section 3 and characterize all the (p, A)-compatible probability distributions in Section 4 (handling the degenerate cases θ ∈ {0, +∞} and the case 0 ∈ A 0 are delicate). We study in Section 5 the existence of the critical parameter θ α and thus the probability distribution p α . Eventually, we prove the main theorem in Section 6 see Theorem 6.4 as well as Remark 2. 

Notation

+ = [0, ∞) (resp. N = {0, 1, . . .}) the set of nonnegative real numbers (resp. integers). For i, j ∈ N such that i ≤ j, note [[i, j]] = N ∩ [i, j]. Let J ∈ N * . For x = (x j ) j∈[[1,J]] ∈ R J , we set |x| = J j=1 |x j |. Let: ∆ J = x ∈ R J + : |x| = 1 .
We set 1 ∈ R J (resp. 0 ∈ R J ) the vector of R J with all its coordinates equal to 1 (resp. 0). Let p = (p(n)) n∈N be a probability distribution on N and supp (p) = {n ∈ N : p(n) > 0} be its support. For A ⊂ N, we set:

p(A) = n∈A p(n) and g A (r) = n∈A r n p(n) for r ≥ 0,
where the sum over an empty set is 0 by convention. In particular, we have g A = 0 for any set A ⊂ N such that p(A) = 0. We also denote by ρ A the radius of convergence of g A :

(3)

ρ A = sup{r ≥ 1 : g A (r) < +∞}.
For simplicity, when A = N, we write g(r) = g N (r) and ρ = ρ N . We write the mean of p by:

µ(p) = n∈N np(n).
We say that a probability distribution p is critical (resp. sub-critical) if µ(p) = 1 (resp. µ(p) < 1). The probability distribution p is non-trivial if:

(4) 0 < p(0) and p(0) + p(1) < 1.

2.2.

The set of discrete trees. We consider ordered rooted trees in the framework of Neveu [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF]. More precisely, let U = n≥0 (N * ) n be the set of finite sequences of positive integers with the convention that (N * ) 0 = {∅}. Note H(u) = n the generation or the height of

u if u = (u 1 , . . . , u n ) ∈ (N * ) n . For u, v ∈ U , denote by uv the concatenation of u and v, with the convention that uv = u if v = ∅ and uv = v if u = ∅.
The set of ancestors of u is the set:

An(u) = {v ∈ U : there exists w ∈ U such that u = vw}.
The most recent common ancestor of s ⊂ U , denoted by M (s), is the unique element u of ∩ u∈s An(u) with maximal height H(u). Let ≺ be the usual lexicographic order on U . A tree t is a subset of U that satisfies: ∅ ∈ t; if u ∈ t, then An(u) ⊂ t; for u ∈ t, there exists k u (t) ∈ N * , called the out-degree of u, such that, for every i ∈ N * , ui ∈ t if and only if

i ∈ [[1, k u (t)]]. The vertex ∅ is called the root of t. The vertex u ∈ t is called a leaf if k u (t) = 0. We set k u (t) = -1 if u ∈ t. Let L A (t)
be the number of vertices of the tree t whose out-degree belongs to A ⊂ N:

L A (t) = Card (L A (t)) with L A (t) = {u ∈ t : k u (t) ∈ A}.
We simply write ♯t = L N (t) for the cardinal of t, and L n (t) for L {n} (t) when n ∈ N. Remark that we have:

(5) u∈t k u (t) = ♯t -1.
Then we get from ( 5):

(6) L 0 (t) = 1 + k∈N * (k -1)L k (t).
For u ∈ t, we define the subtree above u by {v ∈ U : uv ∈ t} and the fringe subtree by:

(7) s = {uv ∈ U : uv ∈ t}.
We denote by T the set of trees, T 0 the subset of finite trees, and T 1 the set of trees with only one infinite branch:

T 1 = t ∈ T \ T 0 : lim n→∞ H M ({u ∈ t : H(u) = n}) = ∞ .
Let H(t) = sup{H(u) : u ∈ t} be the height of the tree t; and for h ∈ N * , let T (h) = {t ∈ T : H(t) ≤ h} be the set of trees with height less or equal to h.

2.3.

Local convergence of trees. For h ∈ N and a tree t ∈ T, let r h (t) = {u ∈ t : H(u) ≤ h} be the tree t truncated at level h. Let (T n ) n∈N and T be T-valued random variables. We say that the sequence (T n ) n∈N converges locally in distribution towards T if: [START_REF] Curien | Random non-crossing plane configurations: A conditioned Galton-Watson tree approach[END_REF] ∀h ∈ N, ∀t ∈ T (h) ,

lim n→+∞ P r h (T n ) = t = P r h (T ) = t ,
and writing dist(T ) for the distribution of the random variable T , we denote it by:

lim n→∞ dist(T n ) = dist(T ).
For t ∈ T and x ∈ L 0 (t), we consider a convergence determining class of trees T(t, x) = {t ⊛ ( t, x) : t ∈ T}, where:

t ⊛ ( t, x) = {u ∈ t} ∪ {xv : v ∈ t}
is the tree obtained by grafting t on the leaf x of t. We recall from [4, Lemma 2.1], that if (T n ) n∈N and T are T 0 ∪ T 1 -valued random variables, then the sequence (T n ) n∈N converges locally in distribution towards T if and only if for all t ∈ T 0 and x ∈ L 0 (t):

lim n→∞ P(T n ∈ T(t, x)) = P(T ∈ T(t, x)) and lim n→∞ P(T n = t) = P(T = t).
2.4. BGW trees. Let p be a probability distribution on N. A T-valued random variable τ is a BGW tree with offspring distribution p if k ∅ (τ ) is distributed as p and the branching property is satisfied: for n ∈ N * , conditionally on {k ∅ (τ ) = n}, the subtrees (S 1 (τ ), . . . , S n (τ )) are independent and distributed as τ . We denote by T p the BGW tree with offspring distribution p. For all finite tree t ∈ T 0 , we have:

(9) P(T p = t) = u∈t p(k u (t)) = n∈N p(n) Ln(t) ,
with the convention that 0 0 = 1. When (4) holds and p is critical or sub-critical, then a.s. T p is finite (that is, T p ∈ T 0 ) and in this case [START_REF] Deutsch | Dyck path enumeration[END_REF] completely characterizes the distribution of T p .

2.5. Kesten's tree. Let p be a critical probability distribution on N (and thus µ(p) = 1) satisfying (4). We denote by p * = (p * (n) = np(n)) n∈N the corresponding size-biased distribution. The so called Kesten's tree, T * p , is a T 1 -valued random tree defined as the local limit in distribution, when n goes to infinity, of a BGW tree conditioned to have height larger than n:

lim n→∞ dist(T p | H(T p ) = n) = dist(T * p )
. Informally, it is the skeleton of a two-type BGW tree, where: individuals are of type s (survivor) or n (normal); the root is of type s; each individual of type s has a random number of children with offspring distribution p * , all of them of type n but for one uniformly chosen at random which is of type s; each individual of type n has a random number of children with offspring distribution p, all of them of type n. Its distribution is completely characterized by P(T * p ∈ T 1 ) = 1 and:

(10) P(T * p ∈ T(t, x)) = P(T p = t) p(0) for all t ∈ T 0 and x ∈ L 0 (t).

Definition of the distribution pθ,β

Let p be a probability distribution on N satisfying (4). Let A = (A j ) j∈[[1,J]] , with J ∈ N * , be pairwise disjoint non-empty subsets of supp (p). Note A 0 the complementary of ∪ j∈[[1,J]] A j in supp (p). Notice A 0 may be empty. For J ⊂ [[0, J]], we set:

A J = j∈J A j .
For a probability distribution q on N, we write:

q(A) = (q(A 1 ), . . . , q(A J )) ∈ [0, 1] J .
For a finite tree t, we write:

L A (t) = (L A 1 (t), . . . , L A J (t)) ∈ N J .
We extend the definition of generic probability distribution with respect to a subset of N in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] to generic probability distribution with respect to a family of subsets. Definition 3.1 (Generic probability distribution). Let p be a probability distribution on N satisfying (4). Let A = (A j ) j∈[[1,J]] , with J ∈ N * , be pairwise disjoint non-empty subsets of supp (p).

(i) (p, A)-compatible probability distribution. We say that a probability distribution p ′ is (p, A)-compatible if p ′ satisfies (4), supp (p ′ ) ⊂ supp (p), and for all n ∈ N J such that P(L A (T p ′ ) = n) > 0 (and thus P(L A (T p ) = n) > 0), we have:

(11) dist T p L A (T p ) = n = dist T p ′ L A (T p ′ ) = n .
(ii) Generic distribution. We say that p is generic for A in the direction α ∈ ∆ J if there exists a critical (p, A)-compatible probability distribution p ′ such that:

p ′ (A) = 1 -p ′ (A 0 ) α with p ′ (A 0 ) < 1.
Remark 3.2 (On the one-dimensional case). When J = 1, Definition 3.1 (ii) reduces to the definition of generic probability distribution with respect to the set A 1 ⊂ N with α = 1.

Remark 3.3 (Positivity of α). If p is generic for A in the direction α ∈ ∆ J with 0 ∈ A j for some j ∈ [[1, J]], then we have α j > 0. Indeed, the probability distribution p ′ from Definition 3.1 (ii) is (p, A)-compatible and thus p ′ (A j ) = p ′ (A c 0 ) α j with p ′ (A c 0 ) > 0; since p ′ also satisfies (4), we deduce that p ′ (A j ) ≥ p ′ (0) > 0 which then gives α j > 0.

We now introduce a set of parameters which will allow us to describe all the compatible probability distributions. We set:

J ∞ = {j ∈ [[1, J]] : sup A j < ∞}.
Definition 3.4 (The set of parameters Pa(p, A)). Let p be a probability distribution on N satisfying (4). Let A = (A j ) j∈[[1,J]] , with J ∈ N * , be pairwise disjoint non-empty subsets of supp (p). For β = (β 1 , . . . , β J ) ∈ R J + , we set:

(12) J * β = {j ∈ [[1, J]] : β j > 0} and J β = {0} ∪ J * β . The set Pa(p, A) ⊂ [0, +∞] × R J + of parameters is defined as follows. (i) Non degenerate case. The parameter (θ, β) ∈ R * + × R J + belongs to Pa(p, A) if: (13) j∈J β β j g A j (θ) = 1 where β 0 = θ -1 .
(ii) Degenerate case. The parameter (θ, β), with θ ∈ {0, +∞} and β ∈ R J + , belongs to Pa(p, A) if: [START_REF] He | Local convergence of critical random trees and continuous-state branching processes[END_REF] j∈J β β j = 1 where β 0 = p(1) ½ {1∈A 0 } , and:

if θ = 0, then 0 ∈ A 0 , ( 15 
)
if θ = +∞, then A 0 ⊂ {0, 1} and J * β ⊂ J ∞ . ( 16 
)
For simplicity, we shall write J * and J for J * β and J β . Notice that J * might be empty in the non degenerate case, and that J * is non empty in the degenerate cases thanks to [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF].

We now define the family of probability distribution indexed by the parameter (θ, β). 

= β j θ n p(n) for j ∈ J and n ∈ A j .

(ii) Degenerate case at 0. If θ = 0, then we set:

(18) p0,β (n) = β j for j ∈ J and n = min A j .

(iii) Degenerate case at infinity. If θ = +∞, then we set:

(19) p∞,β (n) = β j for j ∈ J and n = max A j .

Conditions [START_REF] He | Conditioning Galton-Watson trees on large maximal outdegree[END_REF] and [START_REF] He | Local convergence of critical random trees and continuous-state branching processes[END_REF] insures that pθ,β is indeed a probability distribution. In the next remark, we consider some particular cases of the probability distributions pθ,β . For convenience, for the BGW trees, we write:

T θ,β = T pθ,β .
Recall that g A 0 = 0 if A 0 = ∅. We shall consider the equation g A 0 (θ) = θ on R + which has at least one root and at most two. It is elementary to check that: [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF] θ min = min{θ ∈ R + :

g A 0 (θ) = θ} ∈ [0, 1),
and that the second root, if it exists, belongs to (1, +∞). It is elementary to check the following result.

Lemma 3.6. We have θ min = 0 if and only if 0 ∈ A 0 .

Remark 3.7 (On particular cases). Recall 1 (resp. 0) denotes the vector of R J with all its coordinates equal to 1 (resp. 0). (a) The case θ = 1 and β = 1. We trivially have p(1,1) = p, and thus (1, 1) ∈ Pa(p, A).

In particular, we get T p = T 1,1 . (b) The case θ = 0. The support of p0,β is equal to {1} ∪ {min A j : j ∈ [[1, J]]} or to {min A j : j ∈ [[1, J]]} according to 1 belonging to A 0 or not. (c) The case θ = ∞. The support of p∞,β is equal to {1} ∪ {max A j : j ∈ J ∞ } or {max A j : j ∈ J ∞ } according to 1 belonging to A 0 or not.

(d) The case β = 0. If (θ, β) ∈ Pa(p, A), then we have that β = 0 is equivalent to pθ,0 (A c 0 ) = 0. In this case, we have θ ∈ (0, +∞) (as (4), which implies p(1) < 1, and ( 14) rule out the case θ ∈ {0, +∞}) and that θ is a root of g A 0 (θ) = θ by [START_REF] He | Conditioning Galton-Watson trees on large maximal outdegree[END_REF]. Thus θ can take the value θ min (only if θ min > 0 and then 0 ∈ A 0 ), and possibly another value, say θ M ∈ (1, +∞). We also have that µ(p θ,0 ) = g ′ A 0 (θ), so that pθ min ,0 is sub-critical and, if θ M exists, pθ M ,0 is super-critical. In conclusion, for pθ,0 not to be super-critical, we need 0 ∈ A 0 and θ = θ min .

In order (partially) remove the particular case β = 0, we set:

Pa * * (p, A) = {(θ, β) ∈ Pa(p, A) : β = 0}, (21) 
Pa * (p, A) = Pa * * (p, A) if 0 ∈ A 0 , Pa * * (p, A) ∪ {(θ min , 0)} if 0 ∈ A 0 . ( 22 
)
The introduction of the set Pa * (p, A) is motivated by the following result. Lemma 3.8 (Conditional finiteness of T θ,β ). Let (θ, β) ∈ Pa(p, A). We have:

P(T θ,β ∈ T 0 , sup j∈J * L A j (T θ,β ) < +∞) = 0 if and only if (θ, β) ∈ Pa * (p, A). Proof. If β = 0, then there exists j ∈ [[1, J]] such that β j > 0. This gives that a.s. on the event {T θ,β ∈ T 0 } we have L A j (T θ,β ) = +∞ and thus P(T θ,β ∈ T 0 , sup j∈J * L A j (T θ,β ) < +∞) = 0. If β = 0, we deduce from Remark 3.7 (d) that if (θ, 0) ∈ Pa(p, A) then we have either θ = θ min > 0, (θ, 0) ∈ Pa * (p, A), pθ,0 is sub-critical; or θ > θ min , (θ, 0) ∈ Pa * (p, A)
and pθ,0 is super-critical. In the former case, we get P(T θ,0 ∈ T 0 ) = 0 and in the latter case:

P(T θ,0 ∈ T 0 , sup j∈J * L A j (T θ,0 ) < +∞) = P(T θ,0 ∈ T 0 ) > 0.
This gives the result.

We shall now restrict our study to the case where pθ,β is non trivial. Definition 3.9 (Compatible parameter). The parameter (θ, β) is (p, A)-compatible if (θ, β) ∈ Pa * (p, A) and the probability distribution pθ,β satisfies condition (4).

We now characterizes the (p, A)-compatible parameters. (i) For θ ∈ (0, +∞), we have 0 ∈ A J and p (A J ∩ {0, 1} c ) > 0.

(ii) For θ = 0, we have 0 ∈ A J * and max j∈J * min(A j ) > 1.

(iii) For θ = +∞, we have A j 0 = {0} for some j 0 ∈ J * and max j∈J * max(A j ) > 1 (and

A 0 ⊂ {1} and J * ⊂ J ∞ ).
Proof. By construction, we have supp (p θ,β ) ⊂ supp (p). Since p(0) > 0, there exists

j 0 ∈ [[0, J]] such that 0 ∈ A j 0 . Let θ ∈ (0, +∞). The condition 0 ∈ A J in Point (i) is equivalent to β j 0 > 0 and thus to pθ,β (0) > 0. The condition p (A J ∩ {0, 1} c ) > 0 is clearly equivalent to pθ,β ({0, 1} c ) > 0.
Therefore, conditions in (i) are equivalent to pθ,β satisfying the non-degeneracy condition [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF].

Let θ = 0 (and thus 0 ∈ A 0 ). The condition 0 ∈ A J * in Point (ii) is equivalent to β j 0 > 0 and to pθ,β (0) > 0, as min A j 0 = 0. Since {min A j : j ∈ J * } ⊂ supp (p θ,β ) ⊂ {min A j : j ∈ J * } ∪ {1}, we deduce that max j∈J * min(A j ) > 1 is equivalent to pθ,β ({0, 1} c ) > 0. Thus, conditions in (ii) are equivalent to pθ,β satisfying (4).

Let θ = +∞. The conditions j 0 ∈ J * and A j 0 = {0} in Point (iii) are equivalent to pθ,β (0) > 0 (notice that, by [START_REF] He | Local convergence of critical random trees and continuous-state branching processes[END_REF], pθ,β (A 0 ) > 0 if and only if 1 ∈ A 0 , and then 0 ∈ A 0 implies that pθ,β (0) = 0). Eventually the condition max j∈J * max(A j ) > 1 is also clearly equivalent to pθ,β ({0, 1} c ) > 0. Thus, conditions in (iii) are equivalent to pθ,β satisfying (4).

The (p, A)-compatible probability distributions

We identify all the (p, A)-compatible probability distributions. Recall that p is a probability distribution on N satisfying (4) and A = (A j ) j∈[[1,J]] , with J ∈ N * , are pairwise disjoint nonempty subsets of supp (p). As being (p, A)-compatible implies by definition that p is non-trivial (that is, Condition (4) holds), we shall only consider the probability distributions pθ,β satisfying the conditions of Lemma 3.10.

The end of this section is devoted to the proof of this result. We first prove that pθ,β are (p, A)-compatible, provided Condition (4) holds: see Lemma 4.2 for the non-degenerate cases and Lemma 4.3 for the degenerate cases. Then we prove that all (p, A)-compatible probability distributions are of the form pθ,β , distinguishing according to 0 ∈ A 0 in Lemma 4.4 or 0 ∈ A 0 in Lemma 4.5, where the proof of the latter is more technical.

We set e 0 = 0 and for j ∈ [ [1, J]]: e j = (e j 1 , . . . , e j J ) ∈ N J with e j i = ½ {i=j} .

In particular, we have J j=1 e j = 1. Notice that P(T p = t) > 0 implies t ∈ T 0 and k u (t) ∈ A [[0,J]] for all u ∈ t. Lemma 4.2. Under the assumptions of Theorem 4.1, if the parameter (θ, β) is (p, A)compatible with θ ∈ (0, +∞), then the probability distribution pθ,β is (p, A)-compatible.

Proof. We suppose that the parameter (θ, β) is (p, A)-compatible (which implies that pθ,β is non-trivial) and that θ ∈ (0, +∞). We prove that the probability distribution pθ,β is (p, A)-compatible.

Recall J = {0} ∪ {j ∈ [[1, J]] : β j > 0}.
Notice that P(L A (T θ,β ) = n) > 0 implies that n j = 0 for all j ∈ J * , where n = (n 1 , . . . , n J ). Using the definition of pθ,β , we obtain for t ∈ T 0 such that P(T p = t) > 0 and L A j (t) = 0 for j ∈ J that:

P(T θ,β = t) = u∈t pθ,β (k u (t)) = j∈J u∈L A j (t) β j θ ku(t) p(k u (t)) = P(T p = t) θ ♯t-1 j∈J β L A j (t) j = P(T p = t) θ -1 j∈J * (β j θ) L A j (t) .
where we used (5) for the third equality, and j∈J L A j (t) = ♯t as well as β 0 θ = 1 for the fourth equality. As P(T p = t) = 0 implies P(T θ,β = t) = 0, we deduce that for n ∈ N J :

P(L A (T θ,β ) = n) = t∈T 0 , L A (t)=n P(T θ,β = t) + P(T θ,β ∈ T 0 , L A (T θ,β ) = n) = t∈T 0 , L A (t)=n P(T θ,β = t) = P (L A (T p ) = n) θ -1 j∈J * (β j θ) n j ,
where we used Lemma 3.8 for the second equality. So for every n ∈ N J such that P(L A (T θ,β ) = n) > 0, we have P(L A (T p ) = n) > 0, and for every t ∈ T 0 such that L A (t) = n, we get:

P(T θ,β = t | L A (T θ,β ) = n) = P(T p = t | L A (T p ) = n).
Hence, the probability distribution pθ,β is (p, A)-compatible. Proof. We first consider the case θ = +∞. For simplicity, write p ′ = p∞,β and T ′ = T ∞,β . We suppose that the parameter (∞, β) is (p, A)-compatible. As p ′ is non-trivial, we get that β ∈ R J + \{0} and thus J * = ∅. In particular, we have A 0 ⊂ {1}, thanks to ( 16) and Lemma 3.10 (iii). We prove that the probability distribution p ′ is (p, A)-compatible.

Notice that P(L A (T ′ ) = n) > 0 implies that n j = 0 for all j ∈ J * , where n = (n 1 , . . . , n J ), and, by [START_REF] Abraham | Asymptotic properties of expansive Galton-Watson trees[END_REF], that:

(23) j∈J * n j (max A j -1) = -1.
To simplify notations, recall we write L k for L {k} for k ∈ N. Fix such n ∈ N J and consider the set T 0,n = {t ∈ T 0 : L A (t) = n and P(T ′ = t) > 0}, which is clearly not empty. Using (5), we get, for t ∈ T 0,n , that j∈J * k∈A j L k (t)(k -1) = -1. We deduce from ( 23) that for k ∈ A 0 we have: L k (t) = n j if j ∈ J * and k = max A j , and L k (t) = 0 otherwise. Let t ∈ T 0,n . We distinguish two cases according to 1 belonging to A 0 or not. First, we consider the case 1 ∈ A 0 , that is A 0 = {1}, elementary computation gives:

P(T ′ = t | L A (T ′ ) = n) = c -1 p(1) L 1 (t) ,
with, as J * = ∅, c positive and finite given by:

c = t ′ ∈T 0 s.t. L A (t ′ )=n p(1) L 1 (t ′ ) + P(T ′ ∈ T 0 , L A (T ′ ) = n) = t ′ ∈T 0 s.t. L A (t ′ )=n p(1) L 1 (t ′ ) .
Similarly, we have:

P(T p = t | L A (T p ) = n) = c -1 p(1) L 1 (t)
. This readily implies that p ′ is (p, A)-compatible.

Secondly, we consider the case 1 ∈ A 0 , that is A 0 = ∅. We get that the set T 0,n is finite. Similarly to the first case, we obtain, with c = Card (T 0,n ) ≥ 1, that:

P(T ′ = t | L A (T ′ ) = n) = P(T p = t | L A (T p ) = n) = c -1 .
This readily also implies that p ′ is (p, A)-compatible.

Eventually, the case θ = 0 can be handled similarly using j∈J * n j (min A j -1) = -1 instead of [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF]. Lemma 4.4. Under the assumptions of Theorem 4.1, if the probability distribution p ′ is (p, A)-compatible and 0 ∈ A 0 , then we have p ′ = pθ,β for some (p, A)-compatible parameter (θ, β).

Proof. For k ∈ N, let t k denote the tree with the root having k children, all of them being leaves (that is:

k ∅ (t k ) = k and ♯t k = k + 1).
We assume that 0 ∈ A 0 and that p ′ is (p, A)-compatible. For simplicity, we write T ′ for T p ′ . We have p(0) > 0 and p ′ (0) > 0 since p and p ′ satisfy (4). Let j ∈ [[0, J]] be such that p ′ (A j ) > 0. There exists k j ∈ A j such that p ′ (k j ) > 0. We have:

P(L A (T ′ ) = e j ) ≥ P(T ′ = t k j ) = p ′ (k j )p ′ (0) k j > 0.
This also implies that P(L A (T p ) = e j ) > 0 as supp (p ′ ) ⊂ supp (p). In particular, thanks to Equation ( 11), we have for any k ∈ A j :

P(T ′ = t k L A (T ′ ) = e j ) = P(T p = t k L A (T p ) = e j ).
This gives:

p ′ (k)p ′ (0) k P(L A (T ′ ) = e j ) = p(k)p(0) k P(L A (T p ) = e j ) ,
that is:

(24) p ′ (k) = β j θ k p(k),
with θ = p(0)/p ′ (0) > 0 and β j = P(L A (T ′ ) = e j )/P(L A (T p ) = e j ) > 0. Notice that θ and β j does not depend on k ∈ A j . For j = 0, we have p ′ (A 0 ) > 0 as p ′ (0) > 0. For k = 0 ∈ A 0 , we deduce from (24) that β 0 = p ′ (0)/p(0) = 1/θ. For j ∈ [[0, J]] such that p ′ (A j ) = 0, Equation ( 24) also holds with β j = 0. Notice that when β = 0, we have P(L A (T ′ ) = 0) = 1 and P(L A (T p ) = 0) < 1, which entails that

β 0 = P(L A (T ′ ) = 0)/P(L A (T p ) = 0) > 1,
or equivalently, θ ∈ (0, 1). This proves that p ′ = pθ,β , the latter being defined in [START_REF] Jonsson | Condensation in nongeneric trees[END_REF] as θ ∈ (0, +∞).

To conclude, notice that Condition (13) holds as p ′ is a probability distribution and β 0 = 1/θ. Lemma 4.5. Under the assumptions of Theorem 4.1, if the probability distribution p ′ is (p, A)-compatible and 0 ∈ A 0 , then we have p ′ = pθ,β for some (p, A)-compatible parameter (θ, β) .

The proof of this lemma is more technical and relies on the following result whose proof is postponed at the end of this section. We introduce the sets:

J * = {j ∈ [[1, J]] : p ′ (A j ) > 0}, J * * = {j ∈ J * : Card (A j ) ≥ 2}.
Notice that once Lemma 4.5 is proved, then J * coincides with J * β defined in [START_REF] Geiger | The shape of large Galton-Watson trees with possibly infinite variance[END_REF].

Lemma 4.6. Assume 0 ∈ A 0 and let p ′ be a (p, A)-compatible distribution. We have the following properties.

(i) The map ℓ → (p ′ (ℓ)/p(ℓ)) 1/(ℓ-1) is constant over {ℓ ∈ A 0 : ℓ ≥ 2}.

(ii) Assume there exists ℓ ∈ A 0 such that ℓ ≥ 2 and k ′ , k ∈ A j with j ∈ J * * such that k ′ > k ≥ 0. Then we have:

p ′ (k ′ ) > 0 ⇐⇒ p ′ (k) > 0 and p ′ (ℓ) > 0.
Furthermore if those conditions hold, then we also have, with α = ℓ-1 and β = k ′ -k:

(25) p ′ (k) p ′ (k ′ ) α p ′ (ℓ) β = p(k) p(k ′ ) α p(ℓ) β .
(iii) Assume there exist i, j ∈ J * * , ℓ, k i ∈ A i such that ℓ > k i ≥ 0 and p ′ (k i ) > 0, and k j , k ∈ A j such that k j > k ≥ 0 and p ′ (k j ) > 0. Then we have p ′ (ℓ) > 0 and p ′ (k) > 0 as well as, with α = ℓk i and β = k jk:

(26) p ′ (k) α p ′ (ℓ) β = p ′ (k j ) p(k j ) α p ′ (k i ) p(k i ) β p(k) α p(ℓ) β .
Proof of Lemma 4.5. We assume that 0 ∈ A 0 , that is without loss of generality, 0 ∈ A 1 , and that p ′ is (p, A)-compatible. Since p and p ′ satisfy (4), we get p(0) > 0 and p ′ (0) > 0. So, we can define β 1 = p ′ (0)/p(0) > 0. By considering trees with vertices having zero or one child, we get:

(27) 1 ∈ A 0 =⇒ p ′ (1) = p(1).
Recall the set

J * = {j ∈ [[1, J]] : p ′ (A j ) > 0}. We set β j = 0 for j ∈ [[1, J]] \ J * in accordance
with the definition of the pθ,β . Notice that J * is non empty as 1 ∈ J * . For j ∈ J * , let k j be an element of A j such that p ′ (k j ) > 0. For j ∈ J * \ J * * , we have A j = {k j } and, whatever the value of θ which will be defined later on, we set β j = θ -k j p ′ (k j )/p(k j ) if θ ∈ (0, +∞) and β j = p ′ (k j )/p(k j ) otherwise; this is also in accordance with the definition of the pθ,β . We now have to consider the value of p ′ (ℓ) for ℓ ∈ A j and j ∈ {0} ∪ J * * .

We first consider the case J * * = ∅. In particular we get that A 1 = {0}. Then we have either that p ′ (A 0 ) = p ′ (A 0 ∩ {1}) or there exists k 0 ∈ A 0 such that k 0 ≥ 2 and p ′ (k 0 ) > 0. In the former case, using [START_REF] Stufler | Local limits of large Galton-Watson trees rerooted at a random vertex[END_REF] and β 0 = p(1) ½ {1∈A 0 } , the probability distribution can be written as a pθ,β with θ = 0. In the latter case, using Lemma 4.6 (i) and ( 27), we deduce that [START_REF] Jonsson | Condensation in nongeneric trees[END_REF] holds for all ℓ ∈ A 0 with a common θ ∈ (0, +∞) (given by the constant value of the map in Lemma 4.6 (i)) and β 0 = 1/θ; thus the probability distribution p ′ can be written as a pθ,β with θ ∈ (0, +∞).

We now assume that J * * = ∅. From Lemma 4.6 (iii), only three cases are possible:

(a) For all j ∈ J * * , we have k j = min A j , p ′ (k j ) > 0 and p ′ (A j \ {k j }) = 0. (b) For all j ∈ J * * , we have k j = max A j , p ′ (k j ) > 0 and p ′ (A j \ {k j }) = 0. (c) For all j ∈ J * * , we have p ′ (k) > 0 for all k ∈ A j .

We shall investigate each case separately. In case (a), we deduce from Lemma 4.6 (ii) that p ′ (ℓ) = 0 for all ℓ ∈ A 0 with ℓ ≥ 2. Thus, using [START_REF] Stufler | Local limits of large Galton-Watson trees rerooted at a random vertex[END_REF], we get that the probability distribution p ′ can be written as a pθ,β with θ = 0.

In case (b), since p ′ (0) > 0, we deduce that A 1 = {0} and that if j belongs to J * * (and thus to J * ) then sup A j is finite. Then use Lemma 4.6 (ii) to deduce that there is no element ℓ ≥ 2 in A 0 , that is A 0 ⊂ {1}. Thus, using [START_REF] Stufler | Local limits of large Galton-Watson trees rerooted at a random vertex[END_REF], we get that the probability distribution p ′ can be written as a pθ,β with θ = +∞.

In case (c), to fix ideas, let i = min J * * and consider k i = min A i and ℓ = min A i \ {k i }. This uniquely determine β i and θ ∈ (0, +∞) solution of, for k ′ ∈ {k i , ℓ}:

(28) p ′ (k ′ ) = β i θ k ′ p(k ′ ).
Then for k ′′ ∈ A i larger than ℓ, use Lemma 4.6 (iii), and in particular [START_REF] Stephenson | Local convergence of large critical multi-type Galton-Watson trees and applications to random maps[END_REF], with j = i, k j = k ′′ and k = ℓ to deduce that p ′ (k ′′ ) can also be written as in [START_REF] Thévenin | Vertices with fixed outdegrees in large Galton-Watson trees[END_REF]. For j ∈ J * * with j = i, set k = min A j and define β j by:

(29) p ′ (k) = β j θ k p(k).
Then use Lemma 4.6 (iii), and in particular [START_REF] Stephenson | Local convergence of large critical multi-type Galton-Watson trees and applications to random maps[END_REF], with k j > k (and k j ∈ A j ), to deduce that (29) holds for k replaced by k j . Then for ℓ ≥ 2 in A 0 , use Lemma 4.6 (ii) to get that p ′ (ℓ) = θ ℓ-1 p(ℓ) (which is also consistent with ( 27)). We deduce that the probability distribution p ′ can be written as a pθ,β with θ ∈ (0, +∞). This concludes the proof.

Proof of Lemma 4.6. Without loss of generality, we assume 0 ∈ A 1 . In the following description of trees we don't precise the number of leaves, as it is determined through Equation ( 6).

The argument is based on considering two well chosen trees t and t ′ such that L A (t) = L A (t ′ ).

Recall that we write L k for L {k} and k ∈ N.

We prove Point (i). Assume there exist k, k ′ ∈ A 0 such that min(k, k ′ ) ≥ 2. Consider a tree t having only leaves and α = k ′ -1 > 0 vertices of out-degree k (that is L k (t) = α) and a tree t ′ having only leaves and

β = k -1 > 0 vertices of out-degree k ′ (that is L k ′ (t ′ ) = β). Set a = 1 + (k ′ -1)(k -1) > 1.
Thanks to (6), we get L 0 (t) = L 0 (t ′ ) = a, and thus:

L A (t) = L A (t ′ ) = n with n = a e 1 .
Assume that p ′ (k) > 0. We have P(L A (T p ′ ) = n) ≥ P(T p ′ = t) = p ′ (k) α p ′ (0) a > 0, and thus P(L A (T p ) = n) > 0. We set:

c = P(L A (T p ′ ) = n) P(L A (T p ) = n) > 0.
Then, we apply [START_REF] Durhuus | Trees with exponential height dependent weight[END_REF] to the trees t and t ′ to get:

p ′ (k) α p ′ (0) a = cp(k) α p(0) a and p ′ (k ′ ) β p ′ (0) a = cp(k ′ ) β p(0) a .
This readily implies that p ′ (k ′ ) is positive (as 1) . This gives Point (i).

k ′ ∈ A 0 implies that p(k ′ ) > 0) and that (p ′ (k)/p(k)) 1/(k-1) = (p ′ (k ′ )/p(k ′ )) 1/(k ′ -
We now prove Point (ii). Assume there exist k ′ > k ≥ 0 which are elements of A j with j ∈ J * * and ℓ ≥ 2 which is an element of A 0 . Notice that j can possibly take the value 1 when 1 ∈ J * * (that is, Card (A 1 ) ≥ 2). Consider a tree t having only leaves and

α = ℓ -1 > 0 vertices of out-degree k ′ (that is L k ′ (t) = α) and a tree t ′ having only leaves, β = k ′ -k > 0 vertices of out-degree ℓ and, if k > 0, α vertices of out-degree k (that is L ℓ (t ′ ) = β and, if k > 0, L k (t ′ ) = α).
We first assume that k ≥ 1 (which is automatically satisfied if j ≥ 2). Thanks to (6), we get with a = 1 + α(k ′ -1) = 1 + α(k -1) + β(ℓ -1) that L 0 (t) = L 0 (t ′ ) = a, and thus:

(30) L A (t) = L A (t ′ ) = n with n = a e 1 + αe j .
Assume that p ′ (k ′ ) > 0. We have

P(L A (T p ′ ) = n) ≥ P(T p ′ = t) = p ′ (k ′ ) α p ′ ( 
0) a > 0, and thus P(L A (T p ) = n) > 0. We set:

c = P(L A (T p ′ ) = n) P(L A (T p ) = n) > 0.
Then, we apply [START_REF] Durhuus | Trees with exponential height dependent weight[END_REF] to the trees t and t ′ to get:

p ′ (k ′ ) α p ′ (0) a = cp(k ′ ) α p(0) a and p ′ (k) α p ′ (ℓ) β p ′ (0) a = cp(k) α p(ℓ) β p(0) a .
This readily implies that p ′ (k) and p ′ (ℓ) are positive (as k ∈ A j and ℓ ∈ A 0 imply that p(k) and p(ℓ) are positive). Similarly, assuming that p ′ (k) and p ′ (ℓ) are positive implies that p ′ (k ′ ) is positive. Notice also that ( 25) is obvious.

We now consider the case k = 0 and thus j = 1 (as 0 ∈ A 1 ). One has

L A 1 (t) = L 0 (t) + L k ′ (t) = 1 + α(k ′ -1) + α = 1 + (ℓ -1)k ′ , and L A 1 (t ′ ) = L 0 (t ′ ) = 1 + β(ℓ -1) = 1 + (ℓ -1)k ′ ,
which implies that (30) still holds. We then conclude similarly as in the case k > 0. This gives Point (ii).

Eventually, we prove Point (iii). Assume there exist i, j ∈ J * * , k j > k ≥ 0 which are elements of A j , ℓ > k i ≥ 0 which are elements of A i , with p ′ (k j ) > 0 and p ′ (k i ) > 0. Notice that i and j can be possibly equal and can possibly take the value 1 when 1 ∈ J * * . Consider a tree t having only leaves, α = ℓ-k i > 0 vertices of out-degree k j and, if

k i > 0, β = k j -k > 0 vertices of out-degree k i (that is L k j (t) = α and, if k i > 0, L k i (t) = β
) and a tree t ′ having only leaves, β vertices of out-degree ℓ, and, if k > 0, α vertices of out-degree k (that is

L ℓ (t ′ ) = β and, if k > 0, L k (t ′ ) = α).
We assume that k ≥ 1 and k i ≥ 1, and leave the cases k = 0 (and thus j = 1) and/or k i = 0 (and thus i = 1) to the reader as the proof can be handled very similarly; see also the end of the proof of Point (ii). Thanks to (6), we get with a

= 1 + α(k j -1) + β(k i -1) = 1 + α(k -1) + β(ℓ -1) that L 0 (t) = L 0 (t ′ ) = a and thus: L A (t) = L A (t ′ ) = n with n = a e 1 + αe j + βe i .
We have P(L A (T p ′ ) = n) ≥ P(T p ′ = t) = p ′ (k j ) α p ′ (k i ) β p ′ (0) a > 0, and thus P(L A (T p ) = n) > 0. We set:

c = P(L A (T p ′ ) = n) P(L A (T p ) = n) > 0.
Then, we apply [START_REF] Durhuus | Trees with exponential height dependent weight[END_REF] to the trees t and t ′ to get:

p ′ (k j ) α p ′ (k i ) β p ′ (0) a = cp(k j ) α p(k i ) β p(0) a and p ′ (k) α p ′ (ℓ) β p ′ (0) a = cp(k) α p(ℓ) β p(0) a .
This readily implies that p ′ (k) and p ′ (ℓ) are positive (as k ∈ A j and ℓ ∈ A i imply that p(k) and p(ℓ) are positive). Equation ( 26) is then obvious. This gives Point (iii).

5. Existence of a critical (p, A)-compatible distribution 5.1. Parametrization of the (p, A)-compatible probability distributions using their direction. We define the direction of a probability distribution p ′ with respect to A.

Definition 5.1 (Direction of compatible probability distributions). The direction α ∈ ∆ J of a (p, A)-compatible probability distribution p ′ such that p ′ (A 0 ) < 1 is defined by:

(31) α = a -1 p ′ (A) with a = 1 -p ′ (A 0 ) > 0.
Because by definition p ′ is non trivial, see (4), we shall see below that the set of possible directions is:

(32) ∆ * J = ∆ J \∆ o J ,
where the set of ineligible directions are given by:

∆ o J = J j=1 α ∈ ∆ J : α j = 0 if 0 ∈ A j or α j = 1 if A 0 ∪ A j ⊂ {0, 1} .
We shall use a parametrization of the probability distribution pθ,β using the parameter θ and its direction α ∈ ∆ * J . Recall that pθ,β (A 0 ) = 1 if and only if β = 0, see Remark 3.7 (d). Recall the set of parameters Pa * * (p, A) defined in [START_REF] Kortchemski | Large deviation local limit theorems and limits of biconditioned planar maps[END_REF], where the cases β = 0 are removed, and the set of (p, A)-compatible parameters given in Definition 3.9. The direction map D : (θ, β) → (θ, α) given by ( 31) is defined on the subset of Pa * * (p, A) of (p, A)-compatible parameters; and it is clearly injective.

Definition 5.2 (Compatible parameters). The parameter (θ, α) = D(θ, β) is (p, A)-compatible if (θ, β) is (p, A)-compatible (and β = 0).
We shall write p θ,α for pθ,β when (θ, α) = D(θ, β), and it satisfies (4) when (θ, β) is (p, A)compatible. Notice that for α ∈ ∆ * J the set:

J * β = {j ∈ [[1, J]] : β j > 0} = {j ∈ [[1, J]] : α j > 0}
is by definition non empty, and we shall also denote it by J * α or simply J * when there is no ambiguity on the parameter. For the convenience of the reader, we give explicit formulas for the probability distributions p θ,α , using (31) and Lemma 3.10. To simplify the expression we set:

(33) q 1 = 1 -p(1)½ {1∈A 0 } > 0.
Lemma 5.3 (The probability distributions p θ,α ). Let α ∈ ∆ * J and θ ∈ [0, +∞] be such that the parameter (θ, α) is (p, A)-compatible. The non-zero terms of the probability ditribution p θ,α are given as follows. (Recall that 0 ∈ A J and p (A J ∩ {0, 1} c ) > 0.) (i) If θ ∈ (0, +∞), then we have g A 0 (θ) < θ, g A j (θ) < +∞ for j ∈ J * and:

p θ,α (k) = θ k-1 p(k) for k ∈ A 0 , p θ,α (k) = α j θ -g A 0 (θ) g A j (θ) θ k-1 p(k) for k ∈ A j and j ∈ J * . (ii) If θ = 0, then we have 0 ∈ A 0 , max j∈J * min(A j ) > 1, p θ,α (1) = p(1) if 1 ∈ A 0 and: p θ,α (k) = α j q 1 for k = min A j and j ∈ J * . (iii) If θ = +∞, then we have A 0 ⊂ {1}, A j 0 = {0} for some j 0 ∈ J * , J * ⊂ J ∞ , max j∈J * max(A j ) > 1, p θ,α (1) = p(1) if 1 ∈ A 0 and: p θ,α (k) = α j q 1 for k = max A j and j ∈ J * .
For α ∈ ∆ * J , we get that p 1,α = p1,β with β j = p(A c 0 ) α j /p(A j ) satisfies (4), and thus that (1, α) is (p, A)-compatible. So ∆ * J is indeed the set of all possible directions of (p, A)compatible probability distributions. We however complete this picture with the following result.

Proposition 5.4 (Possible directions). For every α ∈ ∆ * J , there exists θ ∈ (0, 1) such that (θ, α) is (p, A)-compatible, that is, such that (θ, β) is (p, A)-compatible for some β ∈ R J + with β = 0 and α is the direction of pθ,β .

Proof. We recall the convention g A 0 = 0 if A 0 = ∅. Let us first prove that there exists θ ∈ (0, 1) such that θ > g A 0 (θ). If 0 ∈ A 0 , then g A 0 (0) = p(0) > 0 and g A 0 (1) < 1, so there exists θ 0 ∈ (0, 1) such that θ 0 = g A 0 (θ 0 ), and then g ′ A 0 (θ 0 ) < 1. This implies θ > g A 0 (θ) for θ ∈ (θ 0 , 1). If 0 ∈ A 0 , then g A 0 (0) = 0 and g A 0 (1) < 1, so 0 is the only root of θ = g A 0 (θ) in [0, 1], and thus θ > g A 0 (θ) for θ ∈ (0, 1).

Let us now fix θ ∈ (0, 1) such that θ > g A 0 (θ). We set for all j ∈ [[1, J]]:

β j = α j θ -g A 0 (θ) θg A j (θ) ≥ 0,
and β 0 = θ -1 . Since J j=1 α j = 1, we have:

j∈[[0,J]] β j g A j (θ) = θ -1 g A 0 (θ) + j∈[[1,J]] α j θ -1 (θ -g A 0 (θ)) = 1.
Hence Condition ( 13) is satisfied. Moreover we have:

pθ,β (A c 0 ) = 1 -pθ,β (A 0 ) = θ -1 (θ -g A 0 (θ)) > 0. Finally, α ∈ ∆ *
J (and thus α ∈ ∆ o J ) insures that pθ,β satisfies Lemma 3.10 (i), that is, pθ,β is non trivial.

5.2.

Properties of the mean of p θ,α . For α ∈ ∆ * J , we consider the following set: (34)

I α = {θ ∈ [0, +∞] : (θ, α) is (p, A)-compatible} .
Notice that 1 ∈ I α . Note ρ J the radius of convergence of j∈J g A j or equivalently:

(35) ρ J = min j∈J ρ A j ∈ [1, +∞].
We define:

(36)

θ min = inf I α ∈ [0, 1) and θ max = sup I α ∈ [1, ρ J ].
On the one hand, notice that θ min is the only root of g A 0 (θ) = θ in [0, 1), so this definition is consistent with [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF], and thus θ min does not depend on α. On the other hand, we have that θ max depends on the support of α as:

(37)

θ max = max ρ J * , sup{θ ∈ [1, ρ A 0 ) : g A 0 (θ) < θ} with ρ J * = min j∈J * ρ A j .
We also have that (θ min , θ max ) ⊂ I α and that θ → p θ,α is continuous on I α for the norm of the total variation. The next result is a direct consequence of Lemma 5.3 (the first point is also in Lemma 3.6).

Lemma 5.5. We have that:

(i) θ min = 0 if and only if 0 ∈ A 0 , (ii) θ min ∈ I α if and only if 0 ∈ A 0 and max j∈J * min(A j ) > 1.

(iii) If 0 ∈ A 0 , then we have I α ⊂ (0, +∞).

In order to consider finite means, we set for α ∈ ∆ * J : (38) I f α = {θ ∈ I α : µ θ,α < +∞} where µ θ,α = µ(p θ,α ) ∈ [0, +∞] is the mean of p θ,α . Notice that I α ⊂ I f α ∪ {θ max }. We are now interested in the existence of a critical probability distribution among the (p, A)-compatible probability distributions p θ,α with a given direction α ∈ ∆ * J , that is in the existence of θ ∈ I α such that µ θ,α = 1.

For α ∈ ∆ * J and θ ≥ 0 such that j∈J * g A j (θ) < +∞, we set:

(39) H α (θ) = j∈J * α j h j (θ),
where, for j ∈ J * , h j (0) = min A j and for θ > 0:

h j (θ) = θg ′ A j (θ) g A j (θ) = E Xθ X ½ {X∈A j } E θ X ½ {X∈A j } ,
where X is distributed according to p. For θ ∈ I α ∩ R * + , we have using Lemma 5.3 (i):

(40)

µ θ,α = g ′ A 0 (θ) + θ -g A 0 (θ) θ H α (θ).
Recall q 1 from (33). Using Lemma 5.3, if 0 ∈ I α we have that:

(41) µ 0,α = (1q 1 ) + q 1 j∈J * α j min A j .

and if +∞ ∈ I α that:

(42) µ ∞,α = (1 -q 1 ) + q 1 j∈J * α j max A j .
We now recall some elementary properties of the function h j , see also [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF]Lemma 3.1] for a part of the proof. Notice that if A j is a singleton, say {k j }, then the function h j is constant equal to k j . Recall that ρ A j is the radius of convergence of g A j and that lim x→ρ A j g A j (x) = g A j (ρ A j ), with the limit being possibly infinite. Lemma 5.6. Let j ∈ [[1, J]] with Card (A j ) ≥ 2. The function h j defined on [0, ρ A j ) is C 1 and increasing, with h ′ j > 0 on (0, ρ A j ). If ρ A j = +∞ or if g A j (ρ A j ) = +∞, then we have lim θ→ρ A j h j (θ) = sup A j .

As an immediate application, we get the following result (one only needs to take care of the case θ = 0, where H α (0) = j∈J * α j min A j , and of the case θ = +∞, where H α (∞) = j∈J * α j sup A j if min j∈J * ρ j = +∞).

Corollary 5.7 (Regularity of µ θ,α ). The map θ → µ θ,α is continuous on I α , finite on I f α , and C 1 on (θ min , θ max ) and also on [0, θ max ) if 0 ∈ I α .

Generic distributions.

Notice that 1 ∈ I α ; however we don't assume a priori that 1 ∈ I f α as p 1,α might have infinite mean. Recall ρ J = min j∈J ρ A j , see (35). In the next lemmas we give preliminary results on the existence of θ ∈ I α for p θ,α to be sub/super/-critical according to 0 belonging to A 0 or not. Lemma 5.8. Assume that 0 ∈ A 0 and let α ∈ ∆ * J . (i) There exists θ ∈ I α such that µ θ,α < 1.

(ii) If ρ J = +∞, then there exists θ ∈ I α such that µ θ,α > 1.

Proof. As 0 ∈ A 0 , we get using Lemma 5.5 that I α ∩ [0, 1] = (θ min , 1]. By continuity, we deduce from (40) that: lim

θ↓θ min µ θ,α = g ′ A 0 (θ min ) < 1.
This gives Point (i).

We now prove Point (ii). On the one hand, if there exists k ∈ A 0 such that k ≥ 2, then the function g A 0 is strictly convex and lim θ→∞ g A 0 (θ)/θ = +∞ as ρ A 0 ≥ ρ J = +∞. We deduce that g A 0 (θ max ) = θ max , and, as θ max > 1, that g ′ A 0 (θ max ) > 1. By continuity, we deduce from (40) that: lim

θ↑θmax µ θ,α = g ′ A 0 (θ max ) > 1.
On the other hand, if A 0 ⊂ {0, 1}, then we get that g A 0 (θ) = p(0) + (1q 1 )θ. Thus there is no root of g A 0 (θ) = θ on (1, +∞), but we have:

lim θ→∞ θ -g A 0 (θ) θ = q 1 > 0.
Then, use Lemma 5.6 and (40) to deduce that:

lim θ→+∞ µ θ,α = (1 -q 1 ) + q 1 j∈J * α j sup A j > (1 -q 1 ) + q 1 j∈J * α j = 1,
where for the inequality we used that sup j∈J * sup A j > 1 as p θ,α is non trivial and sup A 0 ≤ 1. This gives Point (ii).

Recall

J ∞ = {j ∈ [[1, : sup A j < ∞}.
Lemma 5.9. Assume that 0 ∈ A 0 and let α ∈ ∆ * J . (i) There exists θ ∈ I α such that µ θ,α ≤ 1 if and only if:

(43) j∈J * α j min A j ≤ 1.
(ii) If ρ J = +∞, then we have µ θ,α < 1 for all θ ∈ I α if and only if:

(44)
A 0 ⊂ {1}, J * ⊂ J ∞ , and

j∈J * α j max A j < 1.
Proof. We prove Point (i). We first assume that j∈J * α j min A j ≤ 1. By assumption 0 ∈ A 0 and 0 ∈ A J * as 1 ∈ I α and p 1,α satisfies (4). According to Lemma 5.5, we have θ min = 0. If 0 ∈ I α , we deduce from (41) that µ 0,α = 1q 1 + q 1 j∈J * α j min A j ≤ 1. If 0 ∈ I α , that is max j∈J * min(A j ) ≤ 1, we get that j∈J * α j min A j < 1 as 0 ∈ A J * , that is, min A j = 0 for some j ∈ J * and α j > 0. We then deduce from (40), using that q 1 defined in (33) is positive, that:

lim θ↓0 µ θ,α = (1 -q 1 ) + q 1 j∈J * α j min A j < 1.
So by Corollary 5.7, there exists θ ∈ (0, 1], such that µ θ,α < 1.

In conclusion, Condition (43) implies that µ θ,α ≤ 1 for some θ ∈ I α .

Let us now assume that j∈J * α j min A j > 1 (and thus 0 ∈ I α by Lemma 5.5). Using (40), the fact that the functions h j are non-decreasing (see Lemma 5.6 and the fact that h j is constant equal to k j when A j is reduced to the singleton {k j }), we get that for θ ∈ I α ∩ (0, +∞):

µ θ,α ≥ g ′ A 0 (θ)+ θ -g A 0 (θ) θ j∈J * α j min A j > g ′ A 0 (θ)+ θ -g A 0 (θ) θ = 1+E[(X-1)θ X-1 ½ {X∈A 0 } ],
where X has distribution p. Since 0 ∈ A 0 , we deduce that E[(X -1)θ X-1 ½ {X∈A 0 } ] is nonnegative and thus µ θ,α > 1. Thanks to (41), we also have µ 0,α > 1, and thus µ θ,α > 1 for all θ ∈ I α (notice that for θ = +∞, if it belongs to I α , thanks to (42) one gets µ ∞,α ≥ µ 0,α > 1). This ends the proof of Point (i).

We prove Point (ii). If A 0 ⊂ {1}, we get θ min = 0 by Lemma 5.5 and θ max = +∞ as g A 0 (θ) = (1q 1 )θ < θ and ρ J = +∞, see (37). This gives that (0, +∞) ⊂ I α and we have:

(45) µ θ,α = 1 -q 1 + q 1 H α (θ) for θ ∈ I α .
So, if (44) holds, we have thanks to Lemma 5.6 that µ θ,α < 1 for θ ∈ (0, +∞) ⊂ I α . We also get µ 0,α < 1, resp. µ ∞,α < 1, whenever 0 ∈ I α , resp. +∞ ∈ I α . This gives that µ θ,α < 1 for all θ ∈ I α .

Let us assume that A 0 ⊂ {1} and sup A j = +∞ for some j ∈ J * (that is J * ⊂ J ∞ ). Since ρ J = +∞, Lemma 5.6 gives that lim θ→∞ µ θ,α = +∞.

We now assume that A 0 ⊂ {1}, J * ⊂ J ∞ and j∈J * α j max A j ≥ 1. Let j 0 ∈ J * such that 0 ∈ A j 0 . If A j 0 = {0}, we get that θ max = +∞ belongs to I α and (45) implies that µ ∞,α ≥ 1. If Card (A j 0 ) ≥ 2, then we get that min j∈J * max A j ≥ 1 and max j∈J * max A j > 1 (as p θ,α satisfies (4)), and thus j∈J * α j max A j > 1. Using (45) , we get that lim θ→∞ µ θ,α > 1. In both cases, there exists θ ∈ I α such that µ θ,α ≥ 1.

We now assume that A 0 ⊂ {1}. Then the function g A 0 is increasing and strictly convex. As ρ J = ∞, we deduce from (37) that θ max ∈ (1, +∞) is the maximal root of g A 0 (θ) = θ, and thus g ′ A 0 (θ max ) > 1. Then, we get from (40) that lim θ↑θmax µ θ,α = g ′ A 0 (θ max ) > 1. In conclusion, if (44) does not hold then there exists θ ∈ I α such that µ θ,α ≥ 1.

Recall J * * = {j ∈ J * : Card (A j ) ≥ 2}. We consider the following condition:

(46) A 0 ∩ {1} c = ∅ or J * * = ∅.
Proposition 5.10 (Monotonicity of θ → µ θ,α ). Let α ∈ ∆ * J . (i) Assume (46) does not hold. Then I α = I f α = [0, +∞] and the map θ → p θ,α (as well as the map θ → µ θ,α ) is constant. (ii) Assume (46) holds. Then ∂ θ µ θ,α > 0 on the interval {θ ∈ I f α : µ θ,α ≤ 1}. If this set is not empty, then its minimum is θ min . Furthermore, there exists at most one element θ ∈ I α such that µ θ,α = 1.

Remark 5.11 (µ θ,α independent of θ). Recall q 1 = 1p(1)½ {1∈A 0 } .

(a) If (46) holds and the map θ → µ θ,α is constant, then µ θ,α > 1.

(b) If (46) does not hold, that is A 0 ⊂ {1} and A j is a singleton, say {k j } for all j ∈ J * (with one of the k j equal 0 and another larger than 1 in order for p θ,α to be non trivial), then I α = [0, +∞] and µ θ,α = (1q 1 ) + q 1 j∈J * α j k j ∈ (0, +∞). Thus, we recover Proposition 5.10 (i). (c) Consider the example: A 0 = {1, k} with k ≥ 2, α ∈ ∆ * J and A j = {k j } for j ∈ J * (and thus J * * = ∅) such that k = j∈J * α j k j . Notice that H α is constant equal to k and that the mean µ θ,α is constant as:

µ θ,α = p(1) + kθ k-1 p(k) + (1 -p(1) -θ k-1 p(k))H α (θ) = 1 + (1 -p(1))(k -1).
Thus Point (a) of this remark is not void. Remark 5.12 (Is µ θ,α monotone in θ?). Consider the probability p defined by p(2) = 1/2 and p(0) = p(4) = 1/4; J = 1 (and thus α = 1) and A 1 = {0, 4} (and thus A 0 = {2}). We get that I 1 = (0, 2) as by Lemma 5.5 (ii) θ min = 0 ∈ I 1 and θ max = 2 by (37). It is elementary to check that lim θ→0+ µ θ,1 = 0, µ θ,1 ≃ 1 for θ ≃ 0.36 and that ∂ θ µ θ,1 < 0 if and only if θ ∈ [θ 0 , θ 1 ] with θ 0 ≃ 1.24 and θ 1 ≃ 1.92. This provides an example where the function θ → µ θ,α is not monotone.

Proof of Proposition 5.10. Let θ ∈ I f α ∩ R * + . Let X θ be a random variable with distribution p θ,α . We have:

P(X θ ∈ A 0 ) = θ -1 g A 0 (θ) and g ′ A 0 (θ) = E[X θ ½ {X θ ∈A 0 } ]. Set: f (θ) = θ -g A 0 (θ) θ = P(X θ ∈ A 0 ), so that µ θ,α = g ′ A 0 (θ) + f (θ)H α (θ). We get: (47) ∂ θ µ θ,α = g ′′ A 0 (θ) + f (θ)H ′ α (θ) + f ′ (θ)H α (θ)
. (This expression can possibly be equal to +∞ if θ = θ max .) We have H α (θ) ∈ (0, +∞] as θ > 0. We have that H ′ α (θ) = 0 if J * * = ∅ and, by Lemma 5.6, that H ′ α (θ) ∈ (0, +∞] otherwise. We also have g ′′ A 0 (θ) = 0 if A 0 ⊂ {0, 1} and g ′′ A 0 (θ) ∈ (0, +∞] otherwise. Eventually we have f (θ) > 0 and:

(48) f ′ (θ) = g A 0 (θ) -θ g ′ A 0 (θ) θ 2 = θ -1 E (1 -X θ )½ {X θ ∈A 0 } , which is finite as θ ∈ I f α . Notice that µ θ,α = E[X θ ],
which is finite, and thus:

(49) θ f ′ (θ) = E (X θ -1)½ {X θ ∈A 0 } + (1 -µ θ,α ).
Case 0 ∈ A 0 . We first assume that 0 ∈ A 0 , and thus I α ⊂ R * + and θ min ∈ I α , see Lemma 5.5. We consider θ ∈ I f α such that µ θ,α ≤ 1. We deduce from (49) that f ′ (θ) = 0 if J * is reduced to a singleton, say {j 0 }, with A j 0 = {1} and µ θ,α = 1, and that f ′ (θ) > 0 otherwise (as 0 ∈ A 0 ). Notice that it is not possible to have A 0 ⊂ {0, 1}, A j 0 = {1} and J * = {j 0 } together as p θ,α is non trivial, so at least g ′′ A 0 (θ) ∈ (0, +∞] or E (X θ -1)½ {X θ ∈A 0 } > 0. The latter implies that f ′ (θ) > 0 as µ θ,α ≤ 1. Since f (θ) > 0 and H α (θ) > 0, we deduce from (47) that ∂ θ µ θ,α > 0 on {θ ∈ I f α : µ θ,α ≤ 1}. Case 0 ∈ A 0 . We now assume that 0 ∈ A 0 . This implies that θ min = 0. The function f has a continuous extension at 0 given by f (0) = q 1 > 0, see (33). We distinguish according to A 0 being empty or reduced to {1} and A 0 ∩ {1} c = ∅.

Sub-case A 0 ⊂ {1}. We consider the sub-case A 0 ⊂ {1}. The function f is constant equal to q 1 , and µ θ,α = 1q 1 + q 1 H α (θ). If J * * = ∅ and thus (46) does not hold, then we have p θ,α (k j ) = q 1 α j for A j = {k j } and j ∈ J * . Thus Point (i) is obvious.

If J * * = ∅, then we deduce from Lemma 5.6 that the functions H α and θ → µ θ,α are increasing on I f α .

Sub-case 0 ∈ A 0 and A 0 ∩ {1} c = ∅. We get in particular that θ max < +∞. We introduce an auxiliary parameterized function defined on I f α for γ > 0 by: (50) m γ (θ) = g ′ A 0 (θ) + γ f (θ). Notice that m γ (0) = (1q 1 ) + q 1 γ > 0. On the one hand, direct computation yields:

(51) m γ (θ) = m γ (0) + k∈A 0 ∩{1} c (k -γ)θ k-1 p(k).
We deduce that if γ < min(A 0 ∩ {1} c ), and in particular if γ < 2, then m ′ γ > 0 on I f α . (Notice that m ′ γ is finite on I f α except possibly at θ max in the case where it belongs to I f α .) On the other hand, if there exists θ * ∈ I f α such that m γ (θ * ) ≤ 1, we deduce that γ ≤ 1 if θ * = 0 and, from (50) that:

γ ≤ 1 -g ′ A 0 (θ * ) f (θ * ) = θ * -θ * g ′ A 0 (θ * ) θ * -g A 0 (θ * ) < 1 if θ * > 0.
In conclusion: 

(52) ∃θ * ∈ I f α s.t. m γ (θ * ) ≤ 1 =⇒ m ′ γ > 0. Now,
H α is non-decreasing, for θ ∈ I f α : (θ -θ * )(µ θ,α -m * (θ)) = (θ -θ * )(H α (θ) -H θ (θ * ))f (θ) ≥ 0.
This implies that ∂ θ=θ * µ θ,α ≥ m ′ * (θ * ), and thus is positive thanks to (52). We have obtained that

∂ θ µ θ,α > 0 on {θ ∈ I f α : µ θ,α ≤ 1}. In conclusion, if A 0 ⊂ {1} and J * * = ∅, then θ → µ θ,α is constant; if A 0 ∩ {1} c = ∅ or J * * = ∅, we have ∂ θ µ θ,α > 0 on {θ ∈ I f α : µ θ,α ≤ 1}, this set is either empty, or equal to I f α or of the form I f α ∩ [0, θ ′ ],
and it contains at most one element θ such that µ θ,α = 1. Recall that ρ J is the radius of convergence of the function j∈J g A j and I α is an interval of [0, +∞] defined in (34). We have the following theorem. Recall that assuming (46) is not very restrictive as otherwise the map θ → p θ,α is constant, see Proposition 5.10. Theorem 5.13 (Generic distribution). Let p be a probability distribution on N satisfying (4). Let A = (A j ) j∈[[1,J]] , with J ∈ N * , be pairwise disjoint non-empty subsets of supp (p). Let α ∈ ∆ * J and assume that (46) holds. The distribution p is not generic for A in the direction α if and only if one of the following conditions holds.

(i) ρ J < ∞, g ′ A 0 (ρ J ) ≤ 1, g J (ρ J ) < ∞ and:

(53) H α (ρ J ) < ρ J 1 -g ′ A 0 (ρ J ) ρ J -g A 0 (ρ J ) • (ii) 0 ∈ A 0 and j∈J * α j min A j > 1. (iii) A 0 ⊂ {1}, ρ J = ∞ and j∈J * α j sup A j < 1.
Remark 5.14 (Direction and generic distribution). A probability distribution might not be generic in all the directions; and it may happen that it is generic only in one direction. (a) Suppose supp (p) = [[0, 3]] and A = ({0}, {2, 3}) and thus A 0 = {1}. Consider the direction α = (α 1 , α 2 ).

• The distribution p is generic for A in the direction α if and only if

α 2 ∈ [1/3, 1/2]. • If α 2 ∈ (1/2, 1
), then Point (ii) of Theorem 5.13 holds since 0 ∈ A 0 and 2 j=1 α j min(A j ) = 2α 2 > 1; and in this case all the p θ,α are sub-critical. • If α 2 ∈ (0, 1/3), then Point (iii) of Theorem 5.13 holds since A 0 ⊂ {1} and 2 j=1 α j sup(A j ) = 3α 2 < 1; and in this case all the p θ,α are super-critical. (b) Suppose supp (p) = {0, 2}, and A = ({0}, {2}). Notice that (46) does not hold. In this example all probability distribution p ′ such that supp (p ′ ) = supp (p) is (p, A)compatible. The direction of p ′ is given by (p ′ (0), p ′ (2)). We recover that for all directions in ∆ * 2 there exists a (p, A)-compatible probability distribution. However, the probability distribution p is generic for A only in the direction (1/2, 1/2).

Proof. We simply write M α and m α for the respective supremum and infimum of {µ θ,α : θ ∈ I α }. Let ¬ be the usual logical negation.

We first prove that:

(54) ρ J < +∞ and ¬(i) =⇒ M α ≥ 1.
If ρ J < ∞ and g ′ A 0 (ρ J ) > 1, then we have A 0 ∩ {0, 1} c = ∅, the function g A 0 is strictly convex. So there exists θ * ∈ (θ min , ρ J ) such that g A 0 (θ * ) < θ * and g ′ A 0 (θ * ) = 1. Notice that θ * ∈ I α and use (40) to deduce that µ θ * ,α ≥ 1.

If ρ J < ∞, g ′ A 0 (ρ J ) ≤ 1 and g J (ρ J ) = ∞, then we have ρ J > 1 and ρ J ∈ I α (by Lemma 5.3 (i)). Since g ′ A 0 (ρ J ) ≤ 1, we deduce that g A 0 (ρ J ) < ρ J , and thus θ max = ρ J by (37). Since g J (ρ J ) = ∞, we deduce there exists j ∈ J * such that ρ A j = ρ J , g A j (ρ J ) = ∞ as well as sup A j = +∞. This implies by Lemma 5.6 that H α (ρ J ) = +∞ and hence by continuity that lim θ↑θmax µ θ,α = +∞.

If

ρ J < ∞, g ′ A 0 (ρ J ) ≤ 1, g J (ρ J ) < ∞ and: (55) H α (ρ J ) ≥ ρ J 1 -g ′ A 0 (ρ J ) ρ J -g A 0 (ρ J ) ,
then we have g A 0 (ρ J ) < ρ J and thus θ max = ρ J belongs to I α . Use ( 40) and ( 55) to deduce that µ θmax,α ≥ 1. This proves that (54) holds.

We now consider the case 0 ∈ A 0 . Thanks to Lemma 5.8 (i), we have m α < 1. So p is generic in the direction α if and only if M α ≥ 1. If Point (i) holds, then θ max = ρ J belongs to I α , and by ( 40) and (53) we get that µ θmax,α < 1, which by Proposition 5.10 implies that M α < 1; thus p is not generic in the direction α. Now assume that Point (i) does not hold. If ρ J < +∞, then use (54) to deduce that M α ≥ 1 and that p is generic in the direction α. If ρ J = +∞, then use Lemma 5.8 (ii) to get that M α ≥ 1, and thus p is also generic in the direction α. This proves the theorem in the case 0 ∈ A 0 .

We now consider the case 0 ∈ A 0 . If Point (ii) holds, we deduce from Lemma 5.9 (i) that m α > 1 and thus p is not generic in the direction α.

We now assume that j∈J * α j min A j ≤ 1. Thanks to Lemma 5.9 (i), we get that m α ≤ 1. So p is generic in the direction α if and only if M α ≥ 1. If ρ J = ∞, we deduce from Lemma 5.9 (ii) that A 0 ⊂ {1} and j∈J * α j sup A j < 1 are equivalent to M α < 1, that is, p is not generic in the direction α. We eventually assume that ρ J < ∞. If Point (i) holds, then θ max = ρ J belongs to I α , µ θmax,α < 1, and M α < 1 by Proposition 5.10, and thus p is not generic in the direction α. If Point (i) does not hold, then use (54) to deduce that M α ≥ 1 and that p is generic in the direction α.

Local limit of large Galton-Watson trees

We give the main theorem, see Theorem 6.4, on the local limit of conditioned BGW tree in the next section. Its proof relies on a transformation of BGW trees from Rizzolo, see Section 6.2, and a direct application of local limit theorems for multi-type BGW trees from [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF], see Section 6.3. 6.1. Main result. Let p be a probability distribution on N satisfying (4), and let A = (A j ) j∈[[1,J]] , with J ∈ N * , be pairwise disjoint non-empty subsets of supp (p). Let α ∈ ∆ * J be a possible direction, see (32). We assume the distribution p is generic for A in the direction α (recall Theorem 5.13). Thus, there exists a (unique) θ α ∈ I α such that: (56) p α := p θα,α is critical.

Recall T q denotes a BGW tree with offspring distribution q and T * q the corresponding Kesten tree when µ(q) ≤ 1. Recall |n| is the L 1 -norm of n ∈ N J . Lemma 6.1. If p is generic for A in the direction α ∈ ∆ * J , then there exists a sequence (n (m) ) m∈N in N J such that:

(57) P(L A (T p ) = n (m) ) > 0, (58) lim 
m→∞ |n (m) | = ∞, lim m→∞ n (m) |n (m) | = α,
and for all m ∈ N, j ∈ [[1, J]], with n (m) = (n (m) 1 , . . . , n (m) 
J ): (59)

α j = 0 =⇒ n (m) j = 0.
Proof. Since p is generic for A in the direction α ∈ ∆ * J , there exists a critical (p, A)-compatible distribution p α with direction α. Thus, by Definition 3.1 of (p, A)-compatible probability distribution, it is enough to find a sequence (n (m) ) m∈N such that (57)-(59) hold, with T p replaced by T pα .

Let T

pα be distributed as T pα conditioned to have n vertices. Notice that for all finite M > 0, there exists n > M such that the probability of T pα to have n vertices is positive. Recall L k (t) denotes the number of vertices in t with out-degree k. According to [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF]Theorem 7.11], along the sequence {n ∈ N : P(♯T pα = n) > 0}, the following convergences hold in probability for all k ∈ N:

n -1 L k (T (n) pα ) P ---→ n→∞ p α (k). Since (n -1 L k (T (n) pα )
) k∈N is a random probability distribution on N, we also get that:

(60) max j∈J n -1 L A j (T (n) pα ) -p α (A j ) P ---→ n→∞ 0.
In particular, for m ∈ N * large enough, we deduce that there exists a tree t [m] such that ♯t [m] ≥ m; P(T pα = t [m] ) > 0; and, with n (m) = (n

(m) 1 , . . . , n (m) J ) = L A (t [m] ), n (m) j = 0 if α j = 0 and for all j ∈ J * : n (m) j |n (m) | - p α (A j ) 1 -p α (A 0 ) ≤ 1 m •
Recall also that P(T pα = t) > 0 implies that P(T p = t) > 0. This and the fact α is the direction of p α , that is p α (A j )/(1p α (A 0 )) = α j , end the proof.

Recall:

J * = {j ∈ [[1, J]] : α j > 0} and J = {0} ∪ J * . For A ⊂ N, we write A -1 = {a -1 : a ∈ A} and A -A = {a -b : a, b ∈ A}. We define: (61) Γ α = j∈J A ′ j , where A ′ 0 = A 0 -1 and A ′ j = A j -A j for j ∈ J * .
Definition 6.2 (Aperiodicity). Let p be generic for A in the direction α ∈ ∆ * J . The probability distribution p is aperiodic for A in the direction α if θ α ∈ (0, +∞) and the smallest subgroup of Z that contains Γ α is Z. Remark 6.3 (On aperiodicity).

(a) If 0 ∈ A 0 , then -1 ∈ A ′ 0 , and thus the distribution p is aperiodic for A in the direction α. (b) If p is aperiodic for A in the direction α, then (46) holds. (c) Looking carefully at the proof of Lemma 6.8 (iii), it would be more natural to consider γ ′ α defined as Γ α in (61) but with A j replaced by A j ∩ supp (p α ). For θ α ∈ (0, +∞) this yields no modification as Γ ′ α = Γ α . However, for θ α ∈ {0, ∞} (which is ruled out in Definition 6.2), the set Γ ′ α is reduced to {0} (as A j ∩ supp (p α ) is either a singleton of empty). So, with the more natural definition that p is aperiodic for A in the direction α if the smallest subgroup of Z that contains Γ ′ α is Z, then we still have θ α ∈ (0, ∞).

We now state the main result. Notice we don't assume that p has a finite mean. Theorem 6.4 (Local limit of conditioned BGW tree). Let p be a probability distribution on N satisfying (4). Let A = (A j ) j∈[[1,J]] , with J ∈ N * , be a family of pairwise disjoint nonempty subsets of supp (p) and consider the direction α ∈ ∆ * J . We assume that p is generic and aperiodic for A in the direction α (and thus θ α ∈ (0, +∞)). If (n (m) ) m∈N is a sequence in N J satisfying (57)-( 59), then we have:

dist (T p | L A (T p ) = n (m) ) ----→ m→∞ dist (T * pα ).
We refer to Remark 2 and the details of its proof given in Section 6.5 for the usefulness of the condition (59), that is, α j = 0 =⇒ n (m) j = 0 for the sequence (n (m) ) m∈N . Remark 6.5 (Conditioning on the total size and the number of leaves). Notice that conditioning on the total size and the number of leaves, or equivalently on the number of internal nodes and the number of leaves, corresponds to A 1 = N * ∩ supp (p) and A 2 = {0}. Notice that A 0 = ∅. (By Remark 6.3 (b) notice that the case A 1 reduced to a singleton is excluded from Theorem 6.4, but then it is equivalent to condition on the number of leaves; and this is considered in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF].) Provided the assumptions on genericity and aperiodicity are satisfied, , this case is included in Theorem 6.4 whereas it is excluded a priori in Corollary 3.5 in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF]. Remark 6.6 (On the case J * * = ∅ and A 0 = ∅ or A 0 = {1}). Let j 0 ∈ J * be such that A j 0 = {0}. Notice that α j 0 ∈ (0, 1). Since J * * = ∅ and A 0 ⊂ {1}, the aperiodic hypothesis is not satisfied. However the condition (6) implies no choice on L 0 , so that we can without loss of generality replace A 0 by A ′ 0 = A 0 ∪ {0} and remove j 0 from J * , as well as α by α ′ ∈ R J-1

+ with α ′ j = α j /(1 -α j 0 ) for j ∈ [[1, J]] \ {j 0 }.
Then the conditioning is the same and the distribution p is aperiodic for

A ′ = (A j ) j∈[[1,J]]\{j 0 } in the direction α ′ .
Using this trick, we see that the local convergence of Theorem 6.4 holds in this case, eventhough p is not aperiodic.

The next two sections are devoted to the proof of the theorem. In Section 6.2, for a tree t such that L A (t) = ∅, we describe a map from L A (t) onto a multi-type tree, which is a direct extension of Rizzolo [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF]. Then, in Section 6.3, we use [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] on local limit of multi-type BGW trees to conclude.

From now on the direction α ∈ ∆ * J is fixed and p α given by ( 56) is the unique critical probability distribution (p, A)-compatible with the direction α. In particular, we have µ(p α ) = 1. By construction, we have p α (A j ) = 0 if α j = 0 for j ∈ [ [1, J]]. Since only the indices j such that α j is positive are pertinent, for a sequence x = (x j ) j∈[[1,J]] , we shall consider the subsequence:

(62)

x * = (x j ) j∈J * , where, we recall that J * = {j ∈ [[1, J]] : α j > 0}. For example, we write L A * (t) = (L A j (t)) j∈J * .

6.2. Extension of Rizzolo's transformation. In the following, we use the framework for multi-type trees from [6, Section 2]. For a tree t such that L A (t) = ∅, we describe a map from L A (t) onto a multi-type tree, which is a direct extension of [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF].

The vertex u ∈ t is said to have type j ∈ J , which we denote by e t (u) = j, if k u (t) ∈ A j so that (t, e t ) can be treated as a J -type tree. Note t [i] = {u ∈ t : e t (u) = i}. In order to remove the 0-type vertices, following [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF], we build a bijection φ (depending on (t, e t )) from t\t [0] to a tree t A with a J * -type e t A , which preserves the types, that is, e t A (φ(u)) = e t (u) ∈ J * . Furthermore, if t [0] is empty (which is automatically the case if A 0 = ∅), then we shall have t A = t and φ is the identity map (and thus e t = e t A ).

Let (t, e t ) be a J -type tree such that ♯(t\t [0] ) = n ≥ 1. Following [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF], we define recursively a sequence of growing J * -type trees (t k , e t k ) k∈[ [1,n]] and identify the last one as (t A , e t A ). The map φ is a by-product of this construction. Denote ≺ the lexicographic order on U . Let u 1 ≺ • • • ≺ u n be the ordered list of vertices of t\t [0] . Then, we define recursively:

• φ(u 1 ) = ∅, t 1 = {∅} and e t 1 (∅) = e t (u 1 ).

• For 1 < k ≤ n, let M (u k-1 , u k ) ∈ {u 1 , . . . , u k-1 } be the most recent common ancestor of u k-1 and u k and s the fringe subtree of t above M (u k-1 , u k ), see [START_REF] Aldous | The Continuum Random Tree. I[END_REF]. Note v = min{u ∈ s : e t (u) = 0} (for the lexicographic order). Then we set φ(u k ) as the concatenation of φ(v) and (k φ(v) (t k-1 ) + 1) and consider the tree:

t k = t k-1 ∪ {φ(u k )},
and the type map e t k coincide with e t k-1 on t k-1 and e t k (φ(u k )) = e t (u k ). (This ensures that φ preserves indeed the types.)

It is obvious that (t k , e t k ) k∈[ [1,n]] is a sequence of (increasing) multi-type trees. Let (t A , e t A ) = (t n , e tn ) and we view φ as a bijection from t\t [0] to t A which preserves the types. See Fig. 1 for an example of t and t A and their types.

Notice that L A j (t) = Card {u ∈ t A : e t A (u) = j} is the total progeny of type j (which is equal to 0 if j ∈ J * ). For the J * -type tree (t A , e t A ), we denote by ♯t A the vector of the total progeny of each type in J * of t A :

(63) ♯t A = L A * (t) ∈ N J * .
Let T α be a BGW tree with critical offspring distribution p α . Let T α, * be distributed as T α conditioned to have at least one vertex with out-degree in A c 0 , that is, on {L A (T α ) = 0}, and, with a slight abuse of notation, we set (T A α , e T A α ) the J * -type tree associated with T α, * by the previous construction. The proof of the next result, which is left to the reader, is an adaptation of the proof of [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF]Theorem 6]. Lemma 6.7. The random tree (T A α , e T A α ) is a multy-type BGW tree, with types in J * .

⋄ • • ⋄ ⋄ ⋄ ⋄ • ⋄ ⋄ ⋄ ⋄ ⋄ Figure 1.
A tree t on the left with A 0 = {2}, A 1 = {1, 3}, A 2 = {0} and the tree t A after the map on the right. We represent type 0 with •, type 1 with ⋄, and type 2 with •.

The root of T A α is of type e T A α (∅) = j with probability α j for j ∈ J * . Let p A,α = (p A,α j ) j∈J * be the offspring distribution of the J * -type BGW tree (T A α , e T A α ), where p A,α j , a probability distribution on N J * , is the offspring distribution of an individual of type j. To describe p A,α j , we introduce several intermediate random variables.

(a) Let X be a random variable on N distributed according to p α . (b) Let X j be distributed as X conditionally on {X ∈ A j }. (c) Let (X 0 i ) i∈N be independent random variables distributed as X -1 conditionally on {X ∈ A 0 }. (d) Let N be a geometric random variable with parameter p α (A c 0 ). We assume that the random variables X j , (X 0 i ) i∈N and N are independent. We adopt the convention inf ∅ = +∞.

(e) Set T = inf n ∈ N * :

n i=1 X 0 i = -1 . (f) Set Y j = X j + N -1
i=1 X 0 i on the event {N ≤ T } and Y j = 0 otherwise. (g) Conditionally on the above random variables, let Z j be a binomial random variable with parameters (Y j , r), where:

(64) r = P(N ≤ T ) ∈ (0, 1].

(h) Conditionally on the above random variables, let X A j = (X A j (i)) i∈J * be a multinomial random variable with parameter (Z j , α * ).

Then, the probability distribution p A,α j is defined as the law of X A j conditionally on {N ≤ T }.

Recall that p A,α is said to be aperiodic, if the smallest subgroup of Z J * that contains

j∈J * supp (p A,α j ) -supp (p A,α j ) is Z J * . The mean matrix M = (m jℓ ) j,ℓ∈J * of p A,α is defined by: (65) m jℓ = E[X A j (ℓ) | N ≤ T ].
The offspring distribution p A,α is critical if the spectral radius of the mean matrix M is one. We have the following properties. Recall θ α is the unique θ ∈ [0, +∞] such that p θ,α is critical. Lemma 6.8 (Properties of the offspring distribution p A,α ). Let p be a probability distribution on N satisfying (4), such that it is generic for A in the direction α ∈ ∆ * J . (i) The offspring distribution p A,α is critical and α * is the left eigenvector of the mean matrix associated with the eigenvalue 1.

(ii) We have m jℓ > 0 for all j, ℓ ∈ J * and j = j 0 , where j 0 ∈ J is defined by 0 ∈ A j 0 . If j 0 ∈ J * , then we have that m j 0 ℓ = 0 for all ℓ ∈ J * either if A j 0 = {0} and A 0 ⊂ {1} or if θ α = 0, and that m j 0 ℓ > 0 for all ℓ ∈ J * otherwise. (iii) The offspring distribution p A,α is aperiodic if and only if p in aperiodic for A is the direction α (and thus θ α ∈ {0, +∞}).

Proof. We prove Point (i) on the criticality of p A,α . By construction and (65), the entries of the mean matrix M are given by, for j, ℓ ∈ J * :

m jℓ = E[X A j (ℓ) | N ≤ T ] = E[Z j | N ≤ T ] α ℓ = E[Y j ]α ℓ .
In particular the mean matrix has rank one and α * is the left eigenvector associated with the non-zero eigenvalue, say ρ. Since the mean matrix has nonnegative entries and α * as positive entries, we also get that ρ is the Perron-Frobenius eigenvalue and thus the spectral radius of M . Since M has rank one, we also get that ρ is the trace of M :

ρ = j∈J * E[Y j ] α j .
We now compute rE[Y j ] using ( 64):

E[Y j ] = E X j + N -1 i=1 X 0 i ½ {N ≤T } = rE[X j ] + E N -1 i=1 X 0 i -E N -1 i=1 X 0 i ½ {N ≥T } .
Using the strong Markov property of (X 0 i ) i∈N * at the stopping time T and its definition (see (e)), we get:

E[Y j ] = rE[X j ] + E N -1 i=1 X 0 i -(1 -r) -1 + E N -1 i=1 X 0 i = 1 + rE X j -1 + N -1 i=1 X 0 i = 1 + r m j p α (A j ) -1 + m 0 -p α (A 0 ) p α (A c 0 ) = 1 + r m j p α (A j ) + m 0 -1 p α (A c 0 )
, where m ℓ = k∈A ℓ kp α (k) for ℓ ∈ J . As p α is critical, we get that j∈J m j = 1. Recall that α j = p α (A j )/p α (A c 0 ) for j ∈ J * . Therefore, we obtain:

ρ = j∈J * α j + r j∈J * m j p α (A c 0 ) + r m 0 -1 p α (A c 0 ) j∈J * α j = 1 + r 1 -m 0 p α (A c 0 ) + r m 0 -1 p α (A c 0 ) = 1.
This ensures that p A,α is critical.

We prove Point (ii) on the positive entries of the mean matrix. Let j ∈ J * . We deduce from (65) and from (h) (where α * has positive entries) and (g) (where r > 0) that (m jℓ ) ℓ∈J * are all positive if P(Y j = 0) < 1 and all zero if P(Y j = 0) = 1. Notice that T = 1 a.s. implies A 0 = {0} and thus Y j > 0 a.s. on {N ≤ T }, so P(Y j = 0) = 1 implies that P(T ≥ 2) > 0. We deduce that P(Y j = 0) = 1 is equivalent to P(X j = 0) = 1 and P(N = 1) = 1 or P(X 0 i = 0) = 1. Thus P(Y j = 0) = 1 is equivalent to 0 ∈ A j , p α (A j ∩ {0} c ) = 0 and p α (A 0 ) = 0 or p α (A 0 ∩ {1} c ) = 0, that is, 0 ∈ A j , p α (A j ∩ {0} c ) = 0 and p α (A 0 ∩ {1} c ) = 0.

To conclude, notice that those conditions are equivalent to either A j = {0} and A 0 ⊂ {1} or 0 ∈ A j and θ α = 0.

We prove Point (iii) on the periodicity of p A,α . Thanks to (h) and the fact that α * has positive entries, we deduce that p A,α is aperiodic (in Z J * ) if and only if the smallest subgroup of Z that contains Γ = j∈J * supp (Law(Z j | N ≤ T ))supp (Law(Z j | N ≤ T )) is Z. From the definition of the law of Z j given in (g), we shall consider the two cases r = 1 and r < 1. We also remark that r = 1 if and only if T = +∞ a.s. or N = 1 a.s, which corresponds to 0 ∈ A 0 ∩ supp (p α ), that is, 0 ∈ A 0 as p α (0) > 0.

In the easy case 0 ∈ A 0 (and thus θ α ∈ (0, +∞)), we get on the one hand that X j > 0 a.e., and as P(N = 1) > 0, we deduce that P(Y j > 0) > 0 and thus that {0, 1} ⊂ supp (Law(Z j | N ≤ T )). This implies that p A,α is aperiodic. On the other hand, we also get that p is (A, α)-aperiodic, see Remark 6.3 (a).

We now consider the case 0 ∈ A 0 , that is r = 1 and thus Z j = Y j and a.s. T = +∞. If p α (A 0 ) > 0, we have P(N = k) > 0 for all k ∈ N, and if p α (A 0 ) = 0, we have a.s. N = 1 and A 0 ∩ supp (p α ) ⊂ {1}. In both cases, we deduce from (f) that:

supp (Law(Z j | N ≤ T )) = supp (Law(Y j | N ≤ T )) = supp (Law(X j | N ≤ T )) + N(A α 0 -1), where NB = {nb : , n ∈ N, b ∈ B} and A α 0 = A 0 ∩ supp (p α ). We set A α j = A j ∩ supp (p α ) for j ∈ J * and notice that A α j = supp (Law(X j | N ≤ T )).
We then get that:

Γ = j∈J * (A α j -A α j ) ∪ Z(A α 0 -1).
If θ α ∈ {0, +∞}, we get that A α 0 ⊂ {1} and A α j are singletons for j ∈ J * , so that Γ = {0}. If θ α ∈ (0, +∞), we get that Γ = Γ α defined in (61).

Thus p A,α is aperiodic if and only if θ α ∈ {0, +∞} and the smallest subgroup in Z containing Γ α is Z, that is, p is aperiodic for A in the direction α.

6.3. Proof of Theorem 6.4. Recall (see Section 2.3) the set of trees T(t, x) for t ∈ T 0 and x ∈ L 0 (t). As p is generic for A in the direction α, there exists by Lemma 6.1 a sequence (n (m) ) m∈N satisfying (57)-(59). Since p α is (p, A)-compatible, we have for m ∈ N, t ∈ T 0 and x ∈ L {0} (t), with T α = T pα and T * α = T * pα , that:

P(T p ∈ T(t, x)|L A (T p ) = n (m) ) = P(T α ∈ T(t, x)|L A (T α ) = n (m) ). For j ∈ [[1, J]]
, recall e j ∈ N J is the vector with all its entries equal to 0 but the j-th which is equal to 1, and that e 0 = 0. Set j 0 ∈ [[0, J]] such that 0 ∈ A j 0 and set: b = e j 0 .

We have:

P(T α ∈ T(t, x), L A (T α ) = n (m) ) = t∈T 0 P(T α = t ⊛ ( t, x))½ {L A (t⊛( t,x))=n (m) } = 1 p α (0) t∈T 0 P(T α = t) P(T α = t)½ {L A ( t)=n (m) -L A (t)+b} = 1 p α (0) P(T α = t) P(L A (T α ) = n (m) -L A (t) + b) = P(T * α ∈ T(t, x)) P(L A (T α ) = n (m) -L A (t) + b),
where we used that p α is critical (and thus T α is a.s. finite) for first and third equalities and (10) for the last. Recall the notation x * from (62) which is the restriction of the sequence x indexed by [ [1, J]] to the indices J * , and that L A * (t) = (L A j (t)) j∈J * . We get:

P(T α ∈ T(t, x) | L A (T α ) = n (m) ) = P(T * α ∈ T(t, x)) P(L A (T α ) = n (m) -L A (t) + b) P(L A (T α ) = n (m) ) = P(T * α ∈ T(t, x)) P(L A * (T α ) = n (m) * -L A * (t) + b * ) P(L A * (T α ) = n (m) * ) , (66) 
where we used that L A j (T α ) = 0 for j ∈ J (and thus P(T α ∈ T(t, x)) = P(T * α ∈ T(t, x)) = 0 if L A j (t) = 0 for some j ∈ J ) as well as that (n (m) ) m∈N satisfies (59) for the second equality. Now we apply the extension of Rizzolo's transformation for T α to get a J * -type BGW tree T A α such that ♯T A α = L A * (T α ) (see definition (63)). Hence (66) is equivalent to:

(67) P(T α ∈ T(t, x) | L A (T α ) = n (m) ) = P(T * α ∈ T(t, x)) P(♯T A α = n (m) * -L A * (t) + b * ) P(♯T A α = n (m) * ) •
We consider the following condition which appears in Lemma 6.8 (ii):

(68) A 0 ⊂ {1} and A j 0 = {0} for some j 0 ∈ J * .

We first assume that (68) does not hold. Hypothesis of Theorem 6.4 and Lemma 6.8 ensure that Assumptions (H 1 ) (on the offspring distribution being critical and the mean matrix primitive) and (H 2 ) (on the aperiodicity of the offspring reproduction) hold in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] and that α * is the positive normalized left eigenvector of the mean matrix (see hypothesis in Lemma 3.11 in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] where a = α * and use that (n (m) , m ∈ N) is a sequence in N J satisfying (57)-( 59)), so that the strong ratio theorem or more precisely [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] holds, which entails that:

(69) lim

m→∞ P(♯T A α = n (m) * -L A * (t) + b * ) P(♯T A α = n (m) * ) = 1.
We deduce from (67) and (69) that for all t ∈ T 0 and x ∈ L {0} (t):

lim m→∞ P(T p ∈ T(t, x)|L A (T p ) = n (m) ) = P(T * α ∈ T(t, x)).
For t ∈ T 0 , it is obvious from (58) that lim m→∞ P(T p = t|L A (T p ) = n (m) ) = P(T * α = t) = 0. The result thus follows from the fact that the family {(T(t, x), t ∈ T 0 , x ∈ L 0 (t)} ∪ T 0 is convergence determining for the local convergence in T 0 ∪ T 1 .

We now consider that (68) holds. We first check that it is enough to consider the case A 0 = ∅, where the Rizzolo's transformation is the identity map. Indeed, if A 0 = ∅, that is, A 0 = {1}, then the Rizzolo's transformation corresponds to discarding individuals with only one child. This amounts to replace the offspring distribution p (resp. p θ,α ) by p ′ (resp. p ′ θ,α = (p ′ ) θ,α ) where p ′ (k) = p(k)/q 1 for k = 1 and p ′ (k) = 0 for k = 1. Then, notice that θ s.t. p ′ θ,α is critical is exactly θ α , so without confusion, we can also replace p α by p ′ α = (p ′ ) α . In conclusion, using this modification amounts to only consider the case: (70)

A 0 = ∅ and A j 0 = {0} for some j 0 ∈ J * .

Notice this case is ruled out in [6, Corollary 3.5]. However a slight modification of the proofs in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF], which we sketch in Section 6.4 (take d = Card (J * ) and d = j 0 therein) allows to get (69), which we now read as, for a sequence (n (m) , m ∈ N) in N J satisfying (57)-( 59):

(71) lim m→∞ P(♯T α = n (m) * -L A * (t) + b * ) P(♯T α = n (m) * ) = 1,
where T α is seen as a multi-type BGW tree, where a node u ∈ T α as type j ∈ J * if k u (T α ) ∈ A j . Notice the corresponding offspring distribution is p = (p (i) ) i∈J * where p (i) = (p (i) (k)) k∈N J * is a probability distribution on N J * whose non-zero terms are given by:

p (i) (k) = p α (|k|) p α (A i ) Mult(k, α * ) for |k| ∈ A i ,
and Mult(k, α * ) is the probability that a multinomial random variable with parameter (|k|, α * ) takes the value k. Furthermore the type of the root is distributed as α * . With this setting, we emphasize that (71) is exactly [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF], up to a relabeling. Once (71) is established, then we finish the proof as in the case where (68) does not hold. We now give the properties of the offspring distribution p and the type of the root (recall that (70) holds and that the Rizollo's transformation is the identity map); Under assumption of Theorem 6.4, we have:

(a) The type of the root is distributed as α * . (b) p (j 0 ) (0) = 1. (c) By Lemma 6.8 (ii), the mean matrix M = (m ij ) i,j∈J * is such that for j ∈ J * we have m ij ∈ (0, +∞) for i = j 0 and m ij = 0 otherwise. (d) By Lemma 6.8 (i) p is critical and α * is the left eigenvector with eigenvalue 1. (e) By Lemma 6.8 (iii) p is aperiodic. (f) Since p α satisfies (4) and A 0 = ∅, we deduce from the definition of p that there exists a type j ∈ J * such that individual of type j has two children or more with positive probability, that is, p is non-singular.

In particular, the offspring distribution p satisfies hypothesis (72)-(75) from Section 6.4. To conclude, we refer to Section 6.4 on how to get [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] under this set of hypothesis.

Remark 6.9 (On related work). The case A 0 = ∅ and Card (A j 0 ) ≥ 2 where j 0 ∈ [[1, J]] is such that 0 ∈ A j 0 (compare with condition (68)) could be handled using [24, Theorem 5.1] on multi-type BGW processes. (We also believe that condition (A5) there, which amounts to say that for each j ∈ [[1, J]] there is k ∈ A j such that k + 1 ∈ A j , could certainly be relaxed.) Notice that the moments condition considered there does not allow to consider directions α such that θ α = θ max (this case might indeed exist). The possible vector a = (a 1 , . . . , a J ) considered in [START_REF] Pénisson | Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process[END_REF] (which is associated with the critical BGW multi-type process) corresponds in our framework to a j = θ α α j /p(A j ) for j ∈ [[1, J]] and the direction v which appears in [24, Eq. (5.1)] corresponds to α. In our approach, we first fix the direction α, and then give sufficient (and almost necessary) conditions for the existence and uniqueness of the critical parameter θ α and thus how to choose the parameter a given the direction α.

6.4. On the proof of (71). In this section we quickly revisit the proof of ( 19) in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF], using slightly different assumptions in order to take into account the particular case (68) from Section 6.3. In this section only, we stick to the notations introduced in For i ∈ [d], let X i = (X (j) i , j ∈ [d]) be a random variable on N d with probability distribution p (i) . In particular, we have that a.s. X d = 0. We consider the generating function f = (f (i) , i ∈ [d]) of p defined by: notice that m dj = 0 for all j ∈ [d]. In particular the matrix M is not primitive, as there is no n ∈ N * such that M n has only positive finite entries; notice that M primitive is part of assumption (H1) in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] (this condition is mainly used to apply Perron-Frobenius theorem on the existence and uniqueness of a left and a right eigenvector having nonnegative entries, and their corresponding eigenvalue is in fact the spectral radius of M ). We recall that p is critical if the spectral radius of M is 1; and that p is non-singular if f (s) = M s. We assume that:

f (i) (s) = E   j∈[d]
(74) p is critical and non-singular; notice this is the other part of assumption (H1) in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF]. We also assume that:

(75) p is aperiodic, that is, the smallest subgroup of Z d which contains i∈[d] supp (p (i) )supp (p (i) ) is Z d itself; this correspond to hypothesis (H2) in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF].

For i ∈ [d], let e i denote the vector of R d with all its entries equal to 0 but the i-th which is equal to 1. Using Perron-Frobenius theorem for the matrix M reduced to the first d -1 lines and columns and using that the d-th line of M is zero and the other entries are positive, we deduce that:

-the eigenvalue 1 is simple; -there exists two left eigenvectors with non-negative entries: the vector e d with eigenvalue 0, and a vector a ∈ R d having positive with eigenvalue 1; -there exists a unique right eigenvector a * = (a * (i), i ∈ [d]) with eigenvalue 1, and its entries are positive but for the d-th wich is zero: a * (d) = 0. This result is the reason why we can remove the primitive assumption of M .

Then the results on the Dwass formula for BGW multi-type trees from Section 3.2 in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] also hold, as the expressions therein are algebraic in the entries of p. (For example Lemma 3.8 holds, but notice that both terms of the equality therein are zero if r = d.) Now formula [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] is then a direct consequence of the Dwass formula and the technical Lemma 3.11 therein. This latter result, proved in Section 3.4, is also a direct consequence of Lemma 3.12, which asserts that an intermediate random variable Y on Z 2d-1 has an aperiodic distribution, and of Lemma 4.11, which is a variant of the strong ratio theorem for the random walk with increments distributed as Y . Now looking carefully at the proof of Lemma 3.12, we see that p is assumed to be aperiodic (this is (H2) therein and (75) here) and that hypothesis (H1) is only used at the end of the proof to get that P(X d = 0) > 0; but this is clearly the case if (72) holds. To conclude, notice that Lemma 4.11 on the strong ratio theorem requires only that the law of Y is aperiodic (which is provided by Lemma 3.12) and that Y is integrable. By the construction of Y given in Section 3.4, we notice that Y is integrable if and only if the mean matrix M has finite entries, which is hypothesis (73). In conclusion, we obtain that [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] holds (notice that the root has to be of type r = d otherwise the numerator and denominator are both zero). A tree t such that L A (t) = (n, 1) can be decomposed as a binary tree with ℓ leaves, and on one of those ℓ leaves one grafts a forest with k ∈ A 2 (and k ≤ n) binary trees with (n+k)/2+1-ℓ leaves; and in total the tree t has (n + k)/2 leaves, (nk)/2 binary branching nodes and one node with out-degree k. Thus, we have: 

B 2 (n) =
F k,n = n-k+1 ℓ=1 ℓf 1,ℓ f k,n+1-ℓ .
We give an explicit formula of F k,n . Lemma 6.11. We have:

F k,n = 2n -k n = 2n -k k f k,n for n ≥ k ≥ 1.
Proof. We have:

F k,n = [z n ](zC) ′ z k C k = [z n ] 1 k + 1 z k+1 C k+1 ′ = [z n+1 ] n + 1 k + 1 z k+1 C k+1 = n + 1 k + 1 f k+1,n+1 .
Then, use (77) to conclude.

We shall now consider that A 2 is unbounded. Let ε ∈ (0, 1) and write: For k > εn, we have that:

B 1 (n, ε) =
F k,(n+k)/2 = n k f k,(n+k)/2 ≤ 1 ε f k,(n+k)/2 .
This implies that:

(80) B 4 (n, ε) ≤ 1 ε B 1 (n, ε).

We now assume that A 2 = 3 + 2N and there exists b ∈ (0, 1) and M ≥ 1 finite such that M -1 ≤ p(k)b -k ≤ M for k ∈ A 2 . Then, we have with 2m = n + 3 and k = 3 + 2ℓ: where X is binomial with parameter (2m -3, r).

We now assume that ab > 1 and that ε is small enough so that ab > (1 + ε)/(1ε). This yields 2r > 1 + ε, so that for m large enough, we have (1 + ε)m ≤ r(2m -3). We deduce from [30, Theorem 2.1] that, with j = ⌊(1 + ε)m⌋ and x = r(2m -3)j + 1:

P(X ≤ (1 + ε)m) P(X = j) ≤ 2 -x + x 2 + 4(1 -r)j.
Since lim m→∞ x = +∞ and lim m→∞ (x + j)/j = 2r/(1 + ε), we deduce that: Notice that j ≥ (1 + ε)m -1 and thus k ′ ≥ εn + 1, so that:

(81) B 3 (n, ε) ≤ 2c 0 M 2 B 4 (n, ε).

Hence, using (80), we obtain that:

B 3 (n, ε) + B 4 (n, ε) ≤ 1 + 2c 0 M 2 ε B 1 (n, ε).
From the definition of B 1 (n, ε), we get that:

(p(0)p(2)) n/2 B 1 (n, ε) = P (k ∅ (T ) ≥ εn , L A (T ) = (n, 1)) .

We deduce from (79) that:

lim inf n→∞ P (k ∅ (T ) ≥ εn | L A (T ) = (n, 1)) = lim inf n→∞ B 1 (n, ε) B 2 (n) ≥ ε 1 + 2c 0 M 2 > 0,
provided that there exists b ∈ (0, 1) and M ≥ 1 finite such that M -1 ≤ p(k)b -k ≤ M for k ∈ A 2 = 3 + 2N and ε > 0 is chosen so that ab > (1 + ε)/(1ε), with a defined by (76).

In conclusion, under the above hypothesis, the distribution of T conditionally on {L A (T ) = (n, 1)} does not converge locally to the distribution of T * α as n goes to infinity, whereas the
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  we go back to the function θ → µ θ,α . Assume there exits θ * ∈ I f α such that µ θ * ,α ≤ 1. Set µ * = µ θ * ,α , γ * = H α (θ * ) and m * = m γ * . By construction, we have that m * (θ * ) = µ * ≤ 1 and, as
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

  , where s = (s j , j ∈[d]) ∈ [0, 1] d .We consider the mean matrixM = (m ij ; i, j ∈ [d]) with m ij = E[X (j) i ]. We assume that: (73) m ij ∈ (0, +∞) for all i ∈ [d -1], j ∈ [d];

  and thus:B 1 (n) = (p(0)p(2)) n/2 k∈A 2 , k≤n f k,(n+k)/2 p(k) a k .

k∈A 2

 2 , k≤n p(k)p(0) (n+k)/2 p(2) (n-k)/2 (n-k)/2+1 ℓ=1 ℓf 1,ℓ f k,(n+k)/2+1-ℓ (78) = (p(0)p(2)) n/2 k∈A 2 , k≤n F k,(n+k)/2 p(k) a k ,where for n ≥ k ≥ 1:

k∈A 2

 2 , k>εn f k,(n+k)/2 p(k) a k , B 3 (n, ε) = k∈A 2 , k≤εn F k,(n+k)/2 p(k) a k , B 4 (n, ε) = k∈A 2 , k>εn F k,(n+k)/2 p(k) a k ,so that using the two latter terms, we can rewrite B 2 (n) as:(79) B 2 (n) = (p(0)p(2)) n/2 (B 3 (n, ε) + B 4 (n, ε)) .

B 3

 3 (n, ε) ≤ M k∈3+2N,k≤εn F k,(n+k)/2 (ab) k ≤ M (ab) 3 ℓ∈N,ℓ≤εm F 3+2ℓ,m+ℓ (ab) 2ℓ = M (ab) -2m+3 1 + (ab) 2 2m-3 ℓ∈N,ℓ≤εm 2m -3 m + ℓ r m+ℓ (1r) m-3-ℓwith r/(1r) = (ab) 2 and thus r = (ab) 2 / 1 + (ab) 2 . As r < 1, we deduce that:ℓ∈N,ℓ≤εm 2m -3 m + ℓ r m+ℓ (1r) m-3-ℓ = P(m ≤ X ≤ (1 + ε)m) ≤ P(X ≤ (1 + ε)m),

  lim m→∞ P(X ≤ (1 + ε)m) P(X = j) = c 0 with c 0 = r(1ε) 2r -(1 + ε) •Recall that n = 2m -3. So for n large enough, we have with k ′ = 3 + 2ℓ ′ and ℓ ′ = jm = ⌊εm⌋, and thus n + k ′ = 2j, that:B 3 (n, ε) ≤ 2c 0 M (ab) -2m+3 1 + (ab) 2 2m-3 2m -3 j r j (1r) 2m-3-j = 2c 0 M F k ′ ,(n+k ′ )/2 (ab) k ′ .

Remark 6.10 (On the extension to the main result of [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF] under hypothesis (72)-( 75)). We leave to the interested reader the construction of the corresponding Kesten tree, see Section 2.6 in [START_REF] Abraham | Critical multi-type Galton-Watson trees conditioned to be large[END_REF], where here individuals on the infinite spine can not have type d (in particular, the root has not type d). (For example Lemma 2.9 therein holds provided i, r belong to [d -1].) Then, assuming hypothesis (72)-(75), we have the analogue of Theorem 3.1 therein on the local convergence in distribution, towards the Kesten tree of the BGW multi-type tree (with the root not being a.s. of type d and with offspring distribution p) conditioned to have population of type i equal to k(n

6.5. Details for Remark 2 on the condition n j = 0 if α j = 0. We consider the following example: a probability distribution p such that supp (p) containing but not reduced to {0, 2},

We consider the direction α = (1, 0). It is elementary to check that p is generic for A in the direction α and that p α = (p α (n)) n∈N is given by p α (0) = p α (2) = 1/2. The distribution p is however not aperiodic for A in the direction α, but thanks to Remark 1, we still have the convergence of T conditionally on L A (T ) = (n, 0), with n odd going to infinity, locally in distribution towards the Kesten's tree T * α . For n odd going to infinity, we shall check that the distribution of T conditionally on L A (T ) = (n, 1) does not converge locally to the distribution of T * α , and thus Condition (59) is required in general to get the local limit of conditioned BGW tree from Theorem 6.4. To do so, we shall simply check the positivity of the limit, for n odd going to infinity, of:

where

Before going further, we recall that the number of planar binary trees with n leaves is:

Recall also that zC 2 -C + 1 = 0. We deduce that the number of planar forests with k binary trees and n ≥ k leaves is given by f

and that according to [9, (B.5)]:

We set f k,n = 0 if k > n.

Let n ≥ k be odd integers. On the event k ∅ (T ) = k and L A (T ) = (n, 1), we get that T can be seen as a forest of k trees grafted on the root and with the forest having (n + k)/2 leaves and (nk)/2 internal nodes, all of them binary. We deduce that:

distribution of T conditionally on {L A (T ) = (n, 0)} converges locally to the distribution of T * α . Furthermore, conditioning on {L A (T ) = (n, 1)} and letting n goes to infinity gives a condensation at the root with positive probability.