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Abstract—In optical networks, wavelength dependent gain in
optical amplifiers, resulting in power excursion at their output,
is still a challenge to address. Current proposed solutions are
based on specific wavelength assignment, which can go against
the wavelength continuity constraint in transparent optical net-
works. In this paper, we propose a dynamic power predistortion
implementation using reinforcement learning to counter this
restriction. We show that a dynamic adjustment of input optical
power per each channel permits to reduce the mean power
excursion at the output of the optical line system.

Index Terms—power predistortion, optical power excursion,
reinforcement learning, optical amplifier

I. INTRODUCTION

In optical networks, dealing with the wavelength dependent
gain characteristics of optical amplifiers is still an issue.
Producing undesired optical mean power excursions, its effect
in wavelength division multiplexing (WDM) systems can be
significant. As a result, nonlinearities and Optical Signal to
Noise Ratio (OSNR) degradation are observed [1].

Gain equalization techniques mainly developed for static
channel load conditions, become unsatisfactory in more dy-
namic conditions where added and dropped channels change
the amplifier operating point [1].

New approaches to reduce power excursions have been
investigated based on the knowledge of the behaviour of an
amplifier or cascade of amplifiers obtained through amplifier
modelling, experimental characterization or data collection [2].
These approaches have been used during wavelength assign-
ment process making wavelength recommendations for add
or drop channels [3]. Control of the amplifier operating
point has also been demonstrated to be efficient for reducing
power excursions [4]. Distributing the signal power on two
different wavelengths has also been shown to be efficient to

cancel power discrepancies [5]. Signal power predistortion at
the transmitter is generally computationally complex and time
consuming. More recently, a machine learning approach to
preadjust the input optical channel power in a single step has
been proposed for reducing the power discrepancy through a
defragmentation process [6].

In this paper, we propose, for the first time to our knowl-
edge, a dynamic power predistortion implementation using
reinforcement learning (RL) for self-control of channel power
excursions in Erbium-doped fiber amplifiers (EDFAs) through
small power adjustment steps. Mean optical power excursion
reduction results from the adjustment of the input optical
power on a per each channel basis. Small-step channel power
adjustments allow for smooth power transitions and reduced
impact on the operating conditions of the line system.

The paper is organized as follows. In section II, the simu-
lation model for the double-stage optical amplifier developed
with VPItransmissionMakerTM (hereafter called VPI) is pre-
sented together with the 80-channel experimental setup used
for model validation [7]. Section III describes the proposed RL
algorithm and shows how the RL-based power predistortion
method can be used for reducing maximum absolute channel
power excursions to 0.5 dB. Some conclusions are drawn in
Section IV.

II. AMPLIFIER MODEL AND DATASET GENERATION

In this section, the double-stage amplifier VPI model is
first described and validated with measurements performed
on an experimental testbed, then used for generating the
dataset used for training the RL model. First of all, a VPI
model of a double-stage amplifier was built. For adjusting the
parameters and validating the model, a double-stage EDFA
was characterized (Fig. 1). In the experiment, two lasers are
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Fig. 1: Double stage EDFA characterization setup.

Fig. 2: Experimental dynamic gain (left) and noise spectral
power (right).

combined at the input of the EDFA operating in current control
mode, the first one acting as a gain saturating laser at a fixed
wavelength (LD1) and the second one as a tuneable probe
laser (Comb). By monitoring the output signal with an optical
spectrum analyzer (OSA) at two different saturating power
levels, the dynamic gain and noise parameters are calculated
(Fig. 2) [8].

Then, the gain saturating laser LD1 was removed from the
setup in order to test the amplifier operating in automatic gain
control (AGC) mode at 15-dB gain under different working
conditions. Three different wavelength loads are considered
on a 50-GHz ITU-T grid: 80 channels, 10 channels and
40 channels randomly selected. An equivalent amplifier model
was developed based on the black box model in VPI, making
use of the previously measured dynamic gain and noise
characteristics [8]. Due to noise related issues, an adjustment
of the locked gain in the simulation model was required to
match the experimental gain.

The resulting model permits to calculate channel gain and
power excursion. Power excursion results from the deviations
of the output power with respect to the desired mean average
power for an ideal flat 15-dB gain amplifier. The results for
40 random channels case show a good agreement between
experiment and simulation, justifying the use of the VPI model
for generating the synthetic dataset used for the RL model
(Fig. 3).

The next step was to generate a dataset using the simulation
setup which includes a loop comprising 75 km of standard
single mode fiber (SSMF) and a 15-dB gain inline EDFA
(Fig. 4). After transmission in 10 loops, output power and
power excursions are derived for different channel loads,
frequency allocations and input channel power.

A dataset containing 2000 instances is generated for training
the RL model composed of 80 neural networks (one per

(a) 40 ch.-Gain (b) 40 ch.-Power excursion

Fig. 3: Gain and power excursion for 40 random channels.

Fig. 4: VPI simulation setup.

channel) and developed using Keras running on TensorFlow
Python library [9].

III. REINFORCEMENT LEARNING

RL algorithms learn from the interaction of an agent with
the environment. Here, the environment is the optical line
system whereas the agent is the power predistortion module.
Overall, for a specific power excursion at the line system out-
put, the power predistortion module takes an action changing
the input channel powers in small steps of 0.1 dB. As a conse-
quence, depending on whether the power excursion increases
or decreases, the power predistortion module receives a re-
ward. By taking actions and receiving rewards, designed agent
learns which actions maximize the rewards, and therefore it
learns to minimize the power excursion (Fig. 5).

Fig. 5: Block diagram of reinforcement learning.



A. Environment: Model based on simulations/ Agent: Power
predistortion module

Simulations are replaced by a neural network model already
successfully used to predict power excursion [3], [10]. As
indicated before, this model includes one neural network per
channel sharing the same parameters optimized after several
trials: one hidden layer with rectified linear unit activation
(Relu) and an output layer with linear activation [9].

To complete the environment, a reward is required. After
testing continuous and discontinuous reward functions, the
best results were obtained using an exponential of the distance
to the desired zero power excursion [11].

The power predistortion module objective is to adjust the
input channel power at the transmitter side in order to min-
imize the power excursion at the output of the line system.
The RL model permits to solve this complex optimization
difficulty by directly learning on the data collected from the
system. The small 0.1-dB step tuning of the input powers
allows smooth power transitions, reducing undesired impact
on the established lightpaths.

As RL algorithm, an “agent” or “actor-critic” method is
used [12]. The actor decides which action has to be taken
depending on the current state, whereas the critic evaluates
the actions of the actor. During the training, the critic learns a
reward function which defines how accurate it is for the agent
to choose an action based on the current state.

From above, “state and action” important concepts are to be
considered. Here, the state corresponds to the current power
excursion whereas the action corresponds to the fine-tuning
of the optical input power done by the power predistortion
module.

The “actor-critic” method based on neural networks was
also developed in TensorFlow [9]. For the actor, the neural
network has as input the state. After one hidden layer, the
output layer, using hyperbolic tangent (tanh) activation, returns
the action. For the critic, the neural network has as inputs the
state and the action, followed by one hidden layer. After, both
are merged in a second one, connected to the output layer with
linear activation. Both neural networks use Relu activation in
the hidden layers and Adam method for optimization [9].

B. Reinforcement learning implementation

The RL method was trained for three different channel
loads: 6, 12 and 24. Following the training process of 2 hours
in a processor Intel core i7-8654U at 1.90 GHz, Fig. 6 shows
the evolution of the input channel power and output power
excursion for the 12-channel scenario. Starting from a flat
input power per channel, the input powers are modified in
steps of 0.1 dB until the maximum absolute power excursion
is below 0.5 dB. As an example (Fig. 6), in the first channel,
power excursion is reduced from 2.03 dB before starting the
adjustment to approximately -0.34 dB after applying the power
predistortion. Further training is under progress to consider a
higher number of channels.

Fig. 6: Input power and power excursion for 12 channels.

IV. CONCLUSIONS

In this work, we have proposed a RL-based power predis-
tortion method suitable to work under wavelength continuity
constraint. The validation of the double-stage amplifier VPI
model used to generate the dataset for training the RL model
was performed with amplifier measurements performed on a
testbed. The results obtained with a 12-channel case show that
the power excursion can be reduced from 2.03 dB to -0.34 dB.
Future work includes testing the RL model at higher channel
loads and its capability of adaptation to variable channel loads.
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