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Micro-RNAs (miRNAs) are short (∼21 nt) non-coding RNAs that regulate

gene expression through the degradation or translational repression of

mRNAs. Accumulating evidence points to a role of miRNA regulation in the

pathogenesis of a wide range of neurodegenerative (ND) diseases such as,

for example, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral

sclerosis and Huntington disease (HD). Several systems level studies aimed

to explore the role of miRNA regulation in NDs, but these studies remain

challenging. Part of the problem may be related to the lack of sufficiently rich

or homogeneous data, such as time series or cell-type-specific data obtained

in model systems or human biosamples, to account for context dependency.

Part of the problem may also be related to the methodological challenges

associated with the accurate system-level modeling of miRNA and mRNA

data. Here, we critically review the main families of machine learning methods

used to analyze expression data, highlighting the added value of using shape-

analysis concepts as a solution for precisely modeling highly dimensional

miRNA and mRNA data such as the ones obtained in the study of the HD

process, and elaborating on the potential of these concepts and methods for

modeling complex omics data.

KEYWORDS

neurodegenerative disease, miRNA regulation, complex RNA-seq data, machine
learning, precision analysis, shape analysis

Introduction

MicroRNAs (miRNAs) are short endogenously expressed non-coding RNA
molecules that regulate gene expression by binding directly to the messenger RNA of
protein coding genes. This layer of molecular regulation plays a pivotal role in several
biological processes and is essential to brain development and homeostasis, regulating
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cell proliferation, differentiation, and apoptosis (Yang et al.,
2013; Dahariya et al., 2019). Both the regulation of genes
controlled by miRNAs and altered miRNA expression have
been linked to several neurodegenerative diseases (NDs) such
as Alzheimer’s disease and Parkinson’s disease. In the context
of these two diseases, studies using blood samples and post-
mortem brain tissue from patients have highlighted differential
expression of miRNAs such as mir-1, mir-22p, mir-26b -3p,
and mir-28-3p (Pritchard et al., 2012; Hu et al., 2016; Kumar
et al., 2017; Garcia-Fonseca et al., 2021). Several studies also
linked Huntington’s disease (HD) pathogenesis to miRNA
regulation (Marti et al., 2010; Ghose et al., 2011; Jin et al.,
2012). In particular, expression levels of the mir-200 family are
altered in the cortex of mice with Huntington’s disease (HD)
in the early stages of the disease. This deregulation affects a
network of genes involved in neuronal plasticity and survival
(Jin et al., 2012). In cellular models of HD, mir-146a, mir-
125b, and mir-150 levels are decreased while mir-34b levels may
be increased (Gaughwin et al., 2011). In amyotrophic lateral
sclerosis, down-regulation of mir-9 (Haramati et al., 2010),
up -regulation of mir-146a∗ and down-regulation of miRNAs
524-5p and 582-3p were reported in spinal cord compared
to controls (Campos-Melo et al., 2013). These studies suggest
that alterations of miRNA regulation could play a significant
role in the responses to ND-associated genes (Quinlan et al.,
2017), changing the molecular networks or signaling pathways
involved in the control of cellular physiology and related
phenotypes. It was also proposed that miRNA signatures found
in biofluids such as cerebrospinal fluid and blood (Eacker et al.,
2009; Sonntag, 2010; Ludwig et al., 2019) could provide a
useful source of biomarkers for predictive diagnosis (Cortez
et al., 2011; Noren Hooten et al., 2013; Machida et al.,
2015).

However, despite a large amount of studies aimed
at exploring the role of miRNA regulation in NDs, the
identification of miRNAs that, on a systems level, might have
a major influence on ND pathogenesis remains challenging.
Since miRNA regulation is highly context dependent, part
of this difficulty may relate to the lack of rich data, or
sufficiently homogeneous data, that are required to get precise
insights into the specificity of miRNA regulation, e.g., time
series or cell type-specific data obtained in model systems
time series data obtained from human biosamples. Part of
the problem may also relate to the methodological challenges
associated with accurately modeling miRNA-mRNA networks
on a systems level.

To understand the role of miRNAs in disease pathogenesis,
two main approaches may be developed. The first main
approach relies on the analysis of miRNA data without
considering mRNA data, an approach that was for example used
to search for miRNA biomarkers. This analysis may be followed
by listing the putative targets of the miRNAs retained in the
model where information on targets is extracted from public

databases (see section “Machine learning for modeling micro-
RNA regulation in neurodegenerative research based on solely
analyzing micro-RNA data”). Modeling miRNA regulation may
indeed greatly benefit from databases in which information
on putative miRNA-mRNA pairs have been generated using
binding site data. However, several approaches have been
proposed to predict miRNA targets based on binding sites.
Some of the most commonly used criteria to predict miRNA
targets include analysis of sequence complementarity between
the “seed” region of a miRNA and the “seed match” region of
a putative target mRNA, species conservation, thermodynamic
stability and site accessibility (Menor et al., 2014). These
methods can be classified into two categories. The first
category comprises the so-called heuristic methods, namely
methods having a tractable computational complexity but with
no warranty of convergence toward a global optimum. The
databases using this family of methods include TargetScan
(Lewis et al., 2005) and mirSVR (Betel et al., 2010). The
other category comprises machine-learning (ML) techniques
such as decision trees, support vector machine and artificial
neural networks. The databases mirMark (Menor et al., 2014),
TarPmiR (Ding et al., 2016), TargetMiner (Bandyopadhyay and
Mitra, 2009), TargetSpy (Sturm et al., 2010) and MiRANN
(Rahman et al., 2012) are based on these algorithms. The
second category makes use of ML methods. More sophisticated
algorithms include deep learning methods such as for example
DeepMirTar (Wen et al., 2018). Finally, to improve the coverage
and robustness of the predictions of miRNA targets, some
studies developed combinatorial ensemble approaches (Davis
et al., 2017). For a review about the computational methods
for miRNA targets prediction based on biological feature (see
Min and Yoon, 2010). All these methods (Heuristics or ML)
generate very large number of hypotheses, available in databases,
providing putative targets for thousands of miRNAs. A common
issue in all these methods that greatly limiting biological
precision is that the number of possible targets for a single
miRNA can be very large, requiring extensive validation studies.

Another strategy for predicting miRNA targets is to
analyze miRNA and mRNA expression levels to select negative
correlations. The miRNAs may indeed regulate gene expression
by blocking translation, though should the complementary
sequences between miRNAs and their targets be good enough,
the transcript may be degraded (Figure 1). The assumption is
that these phenomena may translate into an inverse relationship
between the expression level of a miRNA and its best matching
mRNA target. Since miRNA regulation is a highly dynamic
and context-dependent process, the value of using expression
data is that these data may properly reflect molecular dynamics,
which may then be complemented by using binding site data.
Thus, a second approach is to infer miRNA regulation by
using expression data that describe miRNA levels and mRNA
levels. The conclusions obtained by using the first approach
might remain significantly limited because miRNA databases
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FIGURE 1

Simplified view of miRNA regulation of gene expression.

usually contain a large number of targets for a given miRNA.
The second approach may overcome this limitation, but this
approach is usually more challenging to use (see below section
“Machine learning for modeling micro-RNA regulation in
neurodegenerative research based on analyzing micro-RNA and
mRNA data”). Below, we review the main families of expression-
based ML methods for the analysis of miRNA regulation in ND
conditions, highlighting recent data that directly link miRNAs
and NDs, also highlighting recent progress in better predicting
the role of miRNA regulation in ND conditions thanks to the
analysis of highly dimensional miRNA and mRNA data.

Machine learning methods used to
interrogate micro-RNA regulation
in neurodegenerative diseases

ML methods are approaches from the fields of computer
science and artificial intelligence (AI), designed to learn from
the data. These technologies require large data sets, that enable
the creation of statistical models. The advent of high throughput
sequencing techniques has enabled the generation of such large
datasets, thus enabling ML to gain momentum in the fields of
medicine and biology, where it allows to analyze and integrate
large data of RNA- and microRNA- sequencing. These methods
can be divided into two main classes of algorithms: supervised
learning algorithms and unsupervised learning algorithms. The
former class involves feeding the algorithm with labeled data
that, after training, enable unknown information to be labeled
based on the patterns learned from the data used for training,
namely the training set, whereas the purpose of the latter class
is to classify the data, based on similar patterns in the data itself
(Carpenter and Huang, 2018; Garcia-Fonseca et al., 2021).

In this section, we briefly present some of the mostly used
families of algorithms for the analysis of miRNA expression data
in the context of ND research (Table 1).

Supervised learning

Regression
The aim of this type of supervised learning is to predict the

output value from a set of input values. The algorithm is first
trained, to learn how to predict the output value, then the model
can be applied to predict the output value of new data. When
there is enough data, a good practice is to train the algorithm
to predict the output on a subset of data (training dataset) in
order to be able to verify that the algorithm is indeed capable
of predicting the output of a subset of data (test dataset) whose
output are known by the user but has not been provided to the
algorithm. An alternative approach when the dataset is small
is to use leave-one-out cross validation. The main purpose is
to determine a continuous variable based on the data, but it
can also be used for features selection. When there is a large
amount of predictors, it might be useful to use stepwise subset
selection methods in linear regression, that is to progressively
add (forward selection) or remove (backward elimination)
predictor variables and to select the model that achieves the best
performance (Zhang, 2016). In the context of big data, penalized
regressions, Ridge or Lasso, might be used. Ridge regression
shrinks the regression coefficients, to put the coefficients of the
less important variables close to zeros. The shrinkage of the
coefficients is achieved by penalizing the L2 norm (square root
of sum of the square) of the vector of coefficients (Hoerl and
Kennard, 1970; le Cessie and van Houwelingen, 1992). Lasso
stands for Least Absolute Shrinkage and Selection Operator.
This methods penalizes the L1-norm (sum of the absolute
values), it has the effect of effect of forcing some of the
coefficients, those with a minor contribution to the model, to be
exactly equal to zero (Tibshirani, 1996). Thanks to this feature,
Lasso may also be used as a variable selection method that
might achieve best performances compared to subset selection
methods (Morozova et al., 2015). Finally, Elastic Net produces
a regression model that is penalized with both the L1-norm
and L2-norm (Zou and Hastie, 2005). Therefore, ElasticNet
effectively reduces coefficients (like in ridge regression) and puts
some of them exactly to zero (as is Lasso) (Leach et al., 2022).

Classification
Classification aims to identify some patterns from a set of

data that allows to predict their label. The goal is to make
the model able to automatically label a new sample using the
patterns established from the training set. In the context of
association of dysregulated miRNAs with NDs, this type of
method may be used, for example, to classify a sample as healthy
or sick based on miRNA expression level. Some such algorithms
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TABLE 1 Machine learning methods used for research on the association between miRNAs and neurodegenerative diseases.

Methods Positive aspects Negative aspects Examples of use in
the context of
miRNA analysis

Ridge Reduces the impact of variables that are not
important for the prediction

Doesn’t eliminate irrelevant variables PMID: 26947266

Lasso Reduces overfitting by adding a penalty to
coefficients the model overemphasizes and
eliminates them

Doesn’t take into account multicollinearity in
the model and could eliminate relevant
independent variables

PMID: 34048985

PMID: 33316739

PMID: 21743061

Elastic net Combines both Lasso and Ridge aspects: It
eliminates some variables while reducing the
impact of some other variables

Computationally more expensive than LASSO
or Ridge

PMID: 35113902

PMID: 29513198

Decision tree Very simple to understand and visualize Subject to overfitting PMID: 26649272

Doesn’t work well with imbalanced data

Very different trees can be generated if a small
chance in the data is made

Random forest (RF) Can deal with imbalanced datasets and missing
data

The number of nodes in decision trees will
grow exponentially with depth

PMID: 29056906

Being an ensemble of decision trees, overfitting is
not a problem

The prediction needs to be uncorrelated PMID: 23922946

Gradient boosted decision
trees (GBDT)

More accurate than RF Sensibility to outliers PMID: 32604706

Doesn’t need bootstrap sampling like RF Overfitting can be a problem when too many
trees are added

PMID: 35051896

Support vector machine
(SVM)

Works well with 2D, 3D, or higher dimensions Computationally more expensive for larger
datasets

PMID: 29275361

PMID: 24417022

Outliers have less impact on the prediction since
the hyperplane is influenced by the support vectors
(data points closer to the hyperplane)

Works poorly if the dataset has overlapped
classes

PMID: 34442108

Artificial neural networks
(ANN)

Work very well with huge amount of data Can be quickly computationally and time
consuming

PMID: 30504368

Can handle unstructured data Big dependence on the training data, so
overfitting can be a problem

PMID: 22349176

PMID: 30519653

k-means Very simple algorithm to implement Lack of robustness with big data analysis PMID: 34879829

Choosing K can be difficult PMID: 32493067

Doesn’t work well with imbalanced data or
outliers

PMID: 22255820

Weighted correlation network
analysis (WGCNA)

Retains connectivity of nodes Can lack biological precision PMID: 32699331

PMID: 34225819

Bayesian network Can handle missing data and avoid overfitting Need for sensitivity analysis, to be applied to
the outcome

PMID: 23690582

PMID: 32368197

are Decision Trees (Breiman, 1984). Decision jungle (Shotton
et al., 2013), Random Forests (Breiman, 2001), Support Vector
Machine (Cortes and Vapnik, 1995), and k-NN classification
(Altman, 1992) among others. A decision tree is a directed graph
in which each node corresponds to a “test” on an attribute, each

branch represents the result of the test, and each final node
provides predicted the label. The paths from root to leaf are
classification rules. Random forest (RF) and gradient boosted
decision trees (GBDT) (Zhang and Jung, 2021) are two widely
used machine learning algorithms, based on decision trees. In
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both methods, a weak learner (decision tree) combination is
used to obtain a more robust (but less interpretable) model.
The major difference lies in the fact that RF is built using the
so-called bagging method in which each decision tree, grown
on a subsample of the entire data-set, is used as a parallel
estimator (Breiman, 1996). For a classification task, the final
result is obtained by vote on all decision trees. In the case of
a regression task, the final result is obtained by computing the
mean value of all predictions. On the other hand, GBDT make
use of boosting techniques in order to create an ensemble learner
(Friedman, 2001). In this case, decision trees are connected
sequentially (i.e., in series) to build the final model. Thus, while
bootstrapping is of major importance to the success of a RF
model, which highly depends on using uncorrelated decision
trees, in GBDT, each decision tree is fitted on the residuals from
the previous tree, which prevents the trees to be correlated. As
a second consequence, GBDT is subject to overfitting if too
many trees are used, while adding too many trees to a forest
just increases the computational cost of the model, without
increasing the risk of overfitting. A major issue of RF is that,
given enough data are available to the analysis, the number
of nodes in decision trees will grow exponentially with depth.
Decision jungles have been developed to overcome this problem
(Shotton et al., 2013). Support Vector Machine (SVM) perform
classification task by finding the best hyperplane, that is, the one
that best separates the data. SVM are based on two key ideas: the
notion of maximum margin and the notion of kernel function.
The margin is the distance between the separation boundary
and the nearest samples. In SVM, the separation boundary is
chosen as the one that maximizes the margin. To deal with data
that are not linearly separable, the second key idea of SVM is
to transform the representation space of the input data into a
higher dimension space in which it is likely that linear separation
exists. This is achieved by a kernel function. New examples are
then mapped into that same space and predicted to belong to a
category based on the side of the separation boundary in which
they fall in Chang and Lin (2011).

Finally, Artificial neural networks (ANN) are another class
of non-linear classifiers. These classifiers are named ANN as
these models mimic the way that a signal is transmitted and
processed by biological neural networks (Abiodun et al., 2018).
The ANN are able to deal with complex interactions between
observed variables in order to predict an outcome. The basic
unit of an ANN is called an artificial neuron. These neurons
are represented by connected nodes. Each node can transmit a
signal to other neurons. An artificial neuron receives a signal,
processes it and, depending on the results, sends a signal to
the neurons connected to it. The input signals transmitted
to a neuron at every incoming connection is a number. The
output of the neuron is computed by a non-linear function
apply to the sum of its inputs. The strength at connections are
determined by weights that adjusts during the learning process.
In order to manage the complex relationships between variables,

neurons can be grouped into layers. Different layers can perform
different transformations on their inputs. Signals travel from the
input layer to the final layer, giving the desired output (labels
if a classification task is performed). Depending on the type of
neural network considered, the signal can cross the same layer
several times.

Unsupervised learning

Clustering
With regard to unsupervised learning, there is no known

desired output. Thus, this family of algorithms tries to find
clusters or groups in the unlabeled data based on their similarity.
The elements grouped in the same cluster are expected to
share similar features and be closer together than to elements
from other clusters. For instance, k-means algorithms group the
input data into a user defined number of clusters (k). The first
step of the algorithm consists of randomly choosing as many
points in the variable space as there are clusters to be identified.
These points are called centroids and are used to define the
clusters. The data are grouped according to their proximity to
the different centroids, that adapt to cluster the data such that
the data point in a given cluster share more similarity than with
points from other clusters. A limitation of these methods is the
dependence on initial centroids, chosen at random, which can
make the algorithms converge toward a different partition of the
data space, particularly if the number of data to be grouped is
high or if the data are noised.

Network inference
The purpose of these methods is to perform inferences

and predictions about a biological network. A network is
a set of nodes and a set of directed or undirected edges
connecting the nodes. It exists a wide range of type of biological
network, where edges can be protein-protein interactions or
genetic interactions. Complete true biological networks are
rarely known, but they can be statistically inferred from a
similar behavior of nodes in terms of gene expression, protein
levels or metabolite levels across conditions (Jansen et al.,
2003; Jia et al., 2017; Zheng et al., 2021). Several methods
can be used to generate biological networks, notably using
gene expression data. Among the methods that have so far
been used, to analyze the role of miRNAs in NDs, correlation
networks are becoming increasingly popular in order to analyses
the role of miRNAs in NDs, correlation networks becoming
increasingly more popular (Langfelder et al., 2018; Kakati et al.,
2019; Megret et al., 2020; Zhang et al., 2021). For instance,
weighted gene co-expression network analysis is a systems
biology method for describing the correlation patterns among
genes across microarray samples. Weighted correlation network
analysis (WGCNA) can be used for finding clusters (modules)
of highly correlated genes. Expression profiles of genes in each
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cluster are summarized using a representative profile called the
eigengene (Horvath and Dong, 2008). This method allows to
overcome the lack of robustness of clustering methods, thanks
to the use of consensus modules, but it generates large modules,
which may impair the strength of gene prioritization, even
when considering hub genes (i.e., highly connected genes) (Botia
et al., 2017). Finally, Bayesian approaches are network methods
that provide probabilistic models with a causal relationship
between entities. A Bayesian network is a probabilistic graphical
model that represents the conditional dependencies between the
variables via a directed acyclic graph (DAG). This approach
allows to introduce prior knowledge in the model via the
definition of the graph and the prior chosen for the conditional
relationships. This particularity enables prior knowledge and the
information contained in the data to be considered altogether.
However, the need for rules to build the model may increase with
the number of features. When dealing with big data sets, there is
a need for robust Bayesian analysis, that is Bayesian analysis with
some level of sensitivity analysis, to be applied to the outcome of
Bayesian inference (Berger et al., 1994). In other words, a model
is robust if it does not depend too much on the assumptions and
calculation inputs on which it is based.

Machine learning for modeling
micro-RNA regulation in
neurodegenerative research based
on solely analyzing micro-RNA
data

Dementia with Lewy bodies (DLB) is the second most
common sub-type of neurodegenerative dementia following
AD. Shigemizu et al. (2019) compared four Supervised ML
classifiers for their performance in predicting the DLB status
of data collection of Japanese individuals (n = 478), based on
miRNA expression data of serum samples, including penalized
regression, SVM, RF and GBDT. Interestingly, GBDT was
found to achieve the highest AUC in this study. GBDT
retained 7 miRNAs mir-3122, mir-6861, mir-4298,mir-6088,
mir-4728, mir-5698, and mir-1909) with the highest feature
importance. The authors then looked at the 423 genes that
were predicted as targets of these miRNA in miRDB (Chen
and Wang, 2020). Six signaling pathways were found to
be enriched in these 423 genes including: protein kinase
A signaling (21 genes), ERK/MAPK signaling (14 genes),
molecular mechanisms of cancer (20 genes), p38 MAPK
signaling (10 genes), glucocorticoid receptor signaling (18
genes), and docosahexaenoic acid (DHA) signaling (6 genes),
with a q-value < 0.05. Although these pathways may be viewed
as relevant to DLB, miRNA data were collected from serum
samples. Additionally, this study illustrates how the sole use
of miRNA databases as a way to connect miRNAs with targets

may lead to poor biological precision, particularly when one
miRNA is connected with a very large number of potential
targets.

Hearing loss is the most common ND worldwide. To
highlight the miRNAs that can be used as biomarker to predict
sensorineural hearing loss (SNHL) and severity of sensorineural
hearing loss, Shew et al. (2019) competed four supervised
ML classifiers. The miRNAs expression data were collected
from perilymph in 16 patients, a multi-class decision forests, a
decision jungle, a logistic regression and neural networks was
trained, to predict SNHL and severity of (SNHL) with miRNA
expression data. A leave-one-out cross validation approach was
used to test the model obtained. The misclassification error for
each model was: decision forest, 0%; logistic regression, 8.33%;
decision jungle, 25%; and neural network, 41.67%.

The permutation feature of importance has been applied
to the ML models in order to exhibit the most predictive
miRNA and, then explore their functional role. In order to
be considered as significant, a miRNA has to be used in the
construction of, at least, two models. The most heavily weighted
miRNAs used in the models to predict the severity of SNHL
included mir-184, mir-660, mir-let-7a-5p, mir-3142, and mir-
335. A search for anticorrelated genes in the inner ear with the
expression level of the selected miRNAs was then performed,
as well as a search for potential connections between these
miRNAs and SNHL using Ingenuity Pathway Analysis (IPA)
software. The key miRNA and their putative targets included
mir-184, mir-660, and mir-let-7a-5p. There were no known
interactions predicted using IPA software for mir-3142 and mir-
335. In this study, the decision forest method achieved the best
performance while decision jungle and neural network methods
are poor predictors. In addition to the data set being very
small, models achieving very poor performance were used in
the selection of most significant miRNAs. Small dataset and
poorly efficient predictors cast a doubt on reliability, and the
rather large set of potential targets (e.g., 34 putative targets
for mir-184) does not favor biological precision. This study
illustrates again that the sole use of miRNA databases as a way
to connect miRNAs with targets to make a hypothesis about the
role of miRNA regulation in pathogenesis is highly speculative
by design.

In another study by Gullett et al. (2020), four ML
methods were trained to predict Montreal Cognitive assessment
(MoCA) in healthy older adults solely based on miRNA
expression data. The miRNAs were collected from blood
in 115 typically aging older adults. The algorithms used in
this study included boosted decision tree (BDT), RF, ML-
based linear regression and stepwise selection based on AUC,
and their performance were compared for predicting MoCA
scores with miRNA expression data. The ability of these four
models to predict other cognitive function measurements, such
as NIHTB overall cognition, fluid cognition, and crystalized
cognition, was also tested. In the prediction of MoCA
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score, the best performance in this study was achieved by
BDT model, using only miRNAs. However, when using the
other cognition rating scales, miRNA and other explanatory
variables (clinical data, biological data, social factors) provided
the best RF prediction of cognitive performance compared
to either group of data alone. The two top miRNAs to
predict cognitive performance in terms of average rank
were mir-335-5p and mir-2110. Some other miRNAs were
highly ranked predictors across two cognitive measures,
including mir-181c-3p, mir-497-5p, mir-425-3p, and mir-221-
3p.

These studies raised the possibility that decision tree forest,
and particularly BDT, may be the best methods to highlight
miRNAs as potential biomarkers in NDs. However, the source
data used in these studies are restricted to miRNA data, with
no data produced for analysis of mRNAs, which does not allow
robust conclusions to be raised on the role of the retained
miRNAs in disease pathogenesis.

Machine learning for modeling
micro-RNA regulation in
neurodegenerative research based
on analyzing micro-RNA and
mRNA data

Some approaches make use of gene expression profiles to
select putative targets among those retained targets based on
binding sites. Such approaches include the use of Bayesian
analysis such as GeneMiR++ (Generative model for miRNA
regulation), that accounts for patterns of gene expression using
miRNA expression data and a set of candidate miRNA targets.
This method has been applied to obtain several sets of causal
networks, built upon different subsets of the transcriptomics
profiling, proteomics profiling and behavioral profiling data in
the brain of the allelic series of Huntington disease knock-
in mice (Hdh mice). Yet, the optimal fit between miRNAs
and putative targets retained by Bayesian causal inference may
be biased because the network of causal interactions is large
and heterogeneous, involving miRNA-to-miRNA, mRNA-to-
mRNA, and mRNA-to-miRNA interactions in addition to direct
miRNA-mRNA interactions (Le et al., 2013). To only retain
the miRNA-to-putative targets interactions, Bayesian networks
may be filtered using information from external databases on
miRNA binding sites (Zhang et al., 2014). However, filtering
the network can exacerbate the problem of miRNA effect sizes
by aggregating all branches from one miRNA. Weighted gene
correlation network analysis (WGCNA) is another expression-
based network inference approach. For example, WGCNA
was used to search for negative correlations between miRNA
co-expression modules and target co-expression modules in
the study of miRNA regulation in hepatitis C (Peng et al.,

2009) and in the brain (striatum and cortex) of Hdh mice
(Langfelder et al., 2018). The first step in this study was
to search for the most deregulated miRNAs, which retained
480 dysregulated miRNAs in striatum, cortex, cerebellum and
liver. The second step was to evaluate possible connections
between microRNA and mRNA expression levels, which was
performed by using previously published WGCNA mRNA
modules (Langfelder et al., 2016). The enrichment of these
mRNA modules in putative [as inferred using (Betel et al.,
2008), microCosm (Griffiths-Jones et al., 2008), targetScan
(Lewis et al., 2005)] and validated [as inferred using mirTarBase
(Hsu et al., 2014)] targets of deregulated miRNAs was then
evaluated. This latter step retained 124 striatal and 10 cortical
miRNA-mRNA modules of interest with enrichment p-values
less than 0.05. The third step was to retain the links where
the miRNA expression levels are negatively correlated with the
mRNA module eigengene. About half of these links were found
to exhibit such negative correlations and the mRNAs retained
in this category were subjected to biological content analysis
to identify the biological processes and pathways that may be
impacted. The miRNAs of strong interest that were eventually
retained in this study are shown in Table 2. The use of ML
made in this study roughly paired miRNAs with mRNA modules
that are large (up to 838 mRNAs). This approach is interesting
in terms of modeling, but the information about CAG repeat-
and age-dependent changes that is contained in the data was
not fully exploited to define in a very accurate manner the
potential match between miRNAs and targets and to reduce data
complexity accordingly.

Network inference approaches such as Bayesian and
WGCNA approaches provide useful insights on the
characteristics of miRNA regulation, however, they can be
prone to aggregating a large number of assumptions around
strongly deregulated entities. Ultimately, this problem may lead
to a lack of biological precision, limiting the level of precision
that is needed to enhance data prioritization and minimize
biological follow-up studies.

To address this problem, we applied a workflow in which a
network-based analysis for reducing data complexity precedes a
RF analysis for selecting explanatory variables (i.e., miRNAs best
explaining targets, with a P-value computed for each predictor
variable). Importantly, we used as a final step a surface-
matching analysis for a more comprehensive level (shape-based)
of negative correlations between the expression patterns of
miRNAs and their putative targets. The introduction of the
“surface-matching” procedure is based on the idea that we
can consider data as shapes (e.g., expression curves, expression
surfaces) and these shapes can be tested for similarity across
conditions to delineate clusters at high precision.

The pipeline integrating WGCNA, RF and surface-matching
(see Figure 2) (called MIRAMINT) was applied to data collected
in the striatum and cortex of HD model knock-in mice
across 6 CAG repeats lengths and 3 age points (Megret et al.,

Frontiers in Molecular Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnmol.2022.914830
MicroRNA.org
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-914830 September 7, 2022 Time: 12:41 # 8

Mégret et al. 10.3389/fnmol.2022.914830

TABLE 2 Comparison of miRNAs retained in the striatum of HD model
knock-in mice using a WGCNA-centric approach (Langfelder et al.,
2018) or the MIRAMINT pipeline (Megret et al., 2020).

Mir1247 Miramint

Mir132 Miramint, WGCNA

Mir133b Miramint

Mir139 Miramint, WGCNA

Mir187 Miramint

Mir1b Miramint

Mir20b Miramint

Mir222 Miramint, WGCNA

Mir299b Miramint

Mir3102 Miramint

Mir363 Miramint

Mir378b Miramint

Mir484 Miramint

Mir673 Miramint

Mir128-1 WGCNA

Mir212 WGCNA

Mir218 WGCNA

Mir181d WGCNA

Mir128-2 WGCNA

Mir221 WGCNA

Mir29a WGCNA

Mir181a-1 WGCNA

Mir186 WGCNA

Mir320 WGCNA

Mir340 WGCNA

Mir543 WGCNA

Mir186 WGCNA

Mir363 WGCNA

2020). This approach led to the conclusion that, on a global
level, miRNA regulation may have a limited role in the HD
process, contrasting with previous analyses of the same datasets
(Langfelder et al., 2018). This approach also led to selecting a
small number of robust miRNA-mRNAs that in the striatum
could be associated to the disease process, notably implicating
Jak-STAT signaling, Th1 and Th2 cell differentiation, ether
lipid metabolism and N-glycan biosynthesis signaling pathway
(Table 2). However, shape analysis concepts in MIRAMINT
were used in a simple manner and as a refinement step after
data reduction and feature selection. Other methods in which
shape analysis is at the center of the analysis of complex
omics data may be used to interrogate miRNA regulation.
Noticeably, Geomic analysis, a shape deformation analysis that
was developed to understand the dynamics of compensatory and
pathogenic responses to mutant huntingtin in specific striatal
cell types of the HD model knock-in mice (Megret et al.,
2021) could be used for modeling miRNA and mRNA data.
Shape analysis methods such as optimal transport may also
be used for analyzing miRNA and mRNA data, as currently

illustrated by the analysis of the best mirroring relationships
between miRNA and mRNA expression levels in the striatum of
HD model knock-in mice (Nguyen et al., 2021). In this work,
optimal transport is first used to derive a similarity matrix
that quantifies the proximity between each mRNA to each
miRNA. In a second step, high values of similarity are selected
while controlling the maximum number of possible matches
between mRNAs and miRNAs. This weighted transformation
optimal transport (WTOT)-matching algorithm yielded a total
of 7,519 matched sets (mRNA, miRNA) between 4234 mRNAs
and 1043 miRNAs. In this approach, shape analysis was further
refined by specifically aiming to retain monotonous mRNAs
profiles using a first criterion and peaked mRNAs profiles
using a second criterion. The first criterion yielded 212 mRNAs
matched with 122 miRNAs, and the second criterion yielded
43 mRNAs matched with 68 miRNAs. The relatively small
number of mRNAs that were matched at high precision to the
miRNAs profiles in each shape class suggests that WTOT-based
methods are promising shape-analysis methods for reducing the
complexity of omics data. Indeed, obtained a limited number of
matched pairs allow for an easy data prioritization that is of high
importance to be able to test experimentally the best hypotheses.
In addition, large sets of matched pairs including a large
number of mRNAs, risk involving a large number of biological
signaling pathways, make it difficult to reach a claim about the
major biological mechanisms under miRNAs regulation. Since
methods are needed to perform data prioritization, having a
ML pipeline that includes a data prioritization step might be
helpful.

From a methodological standpoint, searching for perfect
matching might be not the most relevant assumption. Indeed,
the shape-analysis procedure was made possible using Log2-
fold-change (LFC) values in different conditions. For each
gene, instead of a list of count data in different conditions,
the data take the form of a unique value (LFC: z-axis)
in each condition (in this data set, three ages: x-axis and
four polyQ length: y-axis) (Figure 2). It seems reasonable
to consider the LFC instead of individual expression levels
to have a global view of the deregulation of mRNA that
might be due to miRNAs deregulation. But, since the
calculation of the LFC averages the expression on all the
samples in the same condition, it is not obvious that,
when a mRNA is under the regulation of a miRNA, their
LFC surfaces must be perfectly anti-correlated. This raises
the question of the choice of the threshold to consider
that two surfaces are “sufficiently” negatively correlated and
that this correlation may reflect biological regulation. This
threshold is probably below that required in statistical terms
to conclude to a significant anti-correlation. This leads to
very stringent criteria, which do not necessarily select the
“best” hypotheses, since there is no reason to think that
the surfaces must be perfectly anti-correlated. In addition,
whatever the method considered, a major issue of the
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FIGURE 2

Examples of a mRNA expression surface negatively correlated with a miRNA expression surface in the striatum of HD mice.

use of expression data to search for negative correlations
between miRNA and mRNA reduces the relevance of the
analysis to the case where the mRNA transcript is degraded
by the miRNA, missing all the regulation due to the
inhibition of transcription (Figure 1). It is worth to notice
that the use of LFC instead of individual expression levels
allow to filter the genes (miRNA or mRNA) that are
significantly dysregulated.

Concluding remarks and future
perspectives

On a global level, except to some miRNAs that are often
recruited across studies of NDs using ML on large miRNA
expression data sets, such as miRNA 132 (Langfelder et al.,
2018; Megret et al., 2020), miRNA 221 (Langfelder et al., 2018;
Gullett et al., 2020) or miRNA 335 (Shew et al., 2019; Gullett
et al., 2020), few overlaps have been observed between studies.
Since miRNA regulation is highly context-dependent, it is not
surprising that miRNA patterns and signatures may significantly
vary from one disease to another. However, it is interesting
to note that when the role of miRNAs in a given data set is
studied by using different approaches, conclusions may also
be significantly different, with little overlap between miRNA-
target pairs retained across approaches (Langfelder et al., 2018;

Megret et al., 2020). This phenomenon is common to all analyses
of big data using different ML methods. A major difficulty
is that the use of unsupervised methods makes it difficult
to evaluate the accuracy of the conclusions. In this context,
current studies suggest that the added value of shape matching
for the analysis of complex omics data, particularly when
omics data are sufficiently dimensional, is to greatly reduce
the number of resulting hypotheses while tipping the balance
toward biological relevance as observed with the analysis of
miRNA regulation in mouse models of HD pathogenesis.
However, several metrics can be used to compare the shapes of
highly dimensional omics data, including shape-deformation-
and optimal-transport-based metrics, and several methods can
also be used to cluster data. The statistical tests to be used for
selecting significant matching depend of the retained metrics.
In the case of a simple correlation, the p-value might be a
relevant criterion. In the case of a more refined metric, such as
shape deformation or optimal transport, the user has to choose a
threshold reflecting that the distances between a miRNA and its
putative target(s) are “small.” The distribution of the distances
over all pairs might also be used. Permutation analysis to test
for matched pairs that are truly specific to the data might be an
option, but, in practice, the computational cost associated with
performing permutation analyzes might be a limitation. In all
cases, the choice of a shape-based metric allows a great level of
refinement in the analysis of the data, providing a high degree of
precision in matching miRNA and mRNA expression profiles.
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Noticeably, the requirement for perfectly negative correlations
might be not the best criteria for retaining miRNA-mRNA
pairs of interest, and this by the way may apply to searching
for positive correlations, for example between gene or protein
expression profiles. Current data suggest that properly designed
shape analysis is a powerful approach to enhance the precision
of data modeling and to improve biological accuracy in studies
of complex omics data (Megret et al., 2020, 2021; Nguyen et al.,
2021). Another interesting feature of shape analysis is that it has
a wide range of applications for the analysis and integration of
omics data and that specific (evidence-based) assumptions on
the biological behavior of the variables of interest can be used
for building shape models. As such, shape analysis is emerging
as a promising approach for data analysis in biology and disease.
However, a challenge common to all shape-based methods is to
identify the right setting between perfect and unperfect shape-
matching, and this challenge applies to omics data and the
construction of shape models that may best account for the
phenomenon that is interrogated (e.g., molecular regulation,
cell biology, or disease progression). Considering that mRNA
biosynthesis and degradation is not fully dependent on miRNA
regulation, and considering that several biological processes may
be regulated by multiple independent factors, with stochasticity
involved, perfect shape-matching may be not the best criterion
for retaining molecular players into a model as this could lead
to a loss of relevant information. On the other hand, retaining
shape-matching events that are too imperfect might favor a
decrease in the discriminative power and biological precision of
the resulting model. With regard to miRNA regulation, it would
be interesting to have reference data, that is a large number of
biologically validated miRNA-mRNA pairs, in specific cellular
contexts, in order to have a reliable benchmark criterion for
testing the effectiveness of predictive methods, which highlights
the value of quantitative biology data in research on miRNA
regulation. Future studies involving a larger number and more
diverse array of datasets will provide important insights into the
optimization of shape analysis methods for precision machine
learning and for making sense of complex omics data.
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