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Abstract

Due to the increasing amount of data to be treated and, thus, to the need
of more computational effective strategies, surrogate modeling has become a
topic of major interest during the last decades. In the modeling procedure
the data set generation plays a role of critical importance in terms of accu-
racy of the final solution. When dealing with chemical processes, some points
generated during the sampling phase could fall into a physically unfeasible
region of the domain. That is why, the design of experiment step needs to
be integrated with constraints able to describe the feasibility limitations of
the system. By means of a dedicated interface between ProSim® process
simulator, ALAMO® modeling software and Matlab® for data processing,
this research work assesses the benefits of constraints and subset-based ap-
proach on the accuracy of the model in terms of outlet streams and economic
indicators for separation units.

Keywords: surrogate modeling, design of experiment, flash, distillation,
chemical processes

1. Introduction

During the last decades, the digital transition is having an impact of
non-negligible importance on all the aspects of the engineering domain. If,

∗Corresponding author.
Email address: alessandro.dipretoro@ensiacet.fr (Alessandro Di Pretoro)

Preprint submitted to Computers and Chemical Engineering February 25, 2023



on the one hand, it allows to deal with systems with higher and higher
complexity, on the other it implies a constantly increasing amount of data to
be processed. As a consequence, the need of more computationally effective
methodologies is of critical importance to make the promising innovation
viable and feasible from a practical point of view. That is why, in recent
years, surrogate modeling has seen a renewed interest in several scientific
areas. The data-driven modeling approach can be exploited for three main
purposes[1]:

• Compensate the absence of a phenomenological model

• Reduce the computational effort by replacing complex systems with
more simple input-output relationships.

• Reduce computational effort and enhance convergence of optimization
algorithms[2].

In particular, in chemical and process engineering considerable benefits
were obtained so far by data-driven modeling since the phenomenological
model equations are usually characterized by non-linear expressions related
to equilibrium conditions and chemical kinetics. Examples of effective ap-
plications can be found for unit modeling[3, 4], energy systems[5], feasi-
bility analysis and optimization[6, 7], optimal scheduling for Demand-Side
Management[8], process control[9] or even integrated planning, scheduling
and control[10].

In the majority of literature studies, a wide range of modeling procedures
can be found. The most common among them are Response Surface Method-
ology (RSM)[11], Kriging[12], Artificial Neural Network (ANN)[13], Radial
Basis Functions (RBF)[14] or again Support Vector Regression (SVR)[15].
However, beside the diversity of them, the common aspect of all these ap-
proaches is that the Design of Experiment step is the most crucial phase. In
general, sampling strategies can be divided into two main categories, namely
one-shot (or once-through, non-adaptive) and sequential (or adaptive, model-
based). The former one has the purpose to generate all points at once by
exploiting an optimal strategy for design space filling while the latter is a
recursive method based on DoE adjustments at every modeling iteration
loop. The first method implies a higher preliminary effort to generate a huge
size dataset but lower amount of calculations during the modeling phase.
On the contrary, the second approach distributes the computational effort
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over the loops but is based on smaller samples whose quality increases at
each iteration[1]. In fact, it was proved that the relationship between sam-
ple size and model dimension with the different sampling strategies has a
non-negligible impact on the final outcome[16].

Furthermore, during recent years, many other strategies exist to improve
sampling quality have been studied. Two of the most interesting are the
subset partition of the global data set[17] and the inclusion of feasibility
constraints[18]. In particular, the first one is able to increase the local accu-
racy of the model and the second one avoids the generation of output values
that do not lie in the feasible region. As a consequence of these modeling pro-
cedure adjustments, computational times and convergence of the algorithm
are affected by perturbations that still need more analysis.

A first relevant step towards the improvement of constrained modeling
algorithm can be found in research works proposed by Beykal et al.[19] for
DAE optimization algorithms and by Boukouvala et al.[20] that introduced
the so called ARGONAUT optimization approach. For the second study, a
global optimization algorithm for general constrained grey-box models has
been proposed and tested on constrained PDE for a pressure swing adsorption
case study[21]. However, in this case, the explicit function that correlates the
independent variables involved in the feasibility constraint functions should
be known.

Based on these latest advances then, in this research work, the impact
of feasibility constraints and the use of sub-domains on data sampling is
applied on unit operations. To be more precise, their benefits are assessed
by means of two separations case study, namely a flash separation and a
distillation column unit, and the resulting outcome is analyzed in detail.
Further information about the case study and the methodology are provided
in the next sections.

2. Case study

In this research work two case studies of different complexity are pre-
sented. They both refer to a toluene-biphenyl mixture separation. The
choice of a mixture with an ideal thermodynamic behaviour has the purpose
to highlight the benefits of surrogate modeling for equilibrium units even in
absence of non-idealities and it represents the starting point for further anal-
ysis of more complex mixtures and units. The details for each unit along with
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(a) Flash separation unit (b) Distillation unit

Figure 1: Toluene−Biphenyl separation units

the input and output parameters are better described in the corresponding
sections here below.

2.1. Flash separation

Before the analysis of the distillation column, a simple flash separation
is tested first (cf. Figure 1a). In particular, the selected unit is an adiabatic
flash tank whose purpose is just to separate liquid and vapor fractions of
the feed stream. The input variables for this study are toluene and biphenyl
partial flowrates, feed stream temperature and pressure according to the
variation ranges listed in Table 1. The output variables that are stored from
simulation are toluene and biphenyl partial flowrates for the top and the
bottom products.

For this unit, the separation feasibility constraint that will be employed
in the next step concerns the enthalpic state of the feed, i.e. liquid phase
below bubble point and vapor above dew point are not included in the model
equations aimed at describing the equilibrium outlet streams.

2.2. Distillation column

The second case study is based on the same separation to be performed by
means of a standard distillation column with 12 equilibrium stages. In this
example, the output variables that are stored from simulation, beside toluene
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Input variable Symbol Unit min value max value

Toluene flowrate Ftol kmol/h 30 50
Biphenyl flowrate Fbiph kmol/h 1 6
Feed pressure FP atm 1 4
Feed temperature FT K 273.15 523.15

Table 1: Flash separation input variables

and biphenyl partial flowrates for distillate and bottom, are also OPerating
(OPEX) and CAPital (CAPEX) EXpenses. In order to be uniquely defined,
the distillation unit needs two degree of freedom to saturate. For this study
distillate and reflux streams flowrates have been selected.

However, for this unit the feasibility constraints are more complex than
for the flash. Since some of the input variables are correlated, the deviation
range of part of them is related to that of the others. Therefore, the distillate
flowrate cannot be higher than the feed one and the reflux ratio should have
a definite value higher than zero. The DoE domain for distillation is then
resumed in Table 2.

Input variable Symbol Unit min value max value

Toluene flowrate Ftol kmol/h 30 50
Biphenyl flowrate Fbiph kmol/h 1 6
Feed pressure FP atm 1 4
Feed temperature FT K 273.15 523.15
Reflux flowrate DR kmol/h > 0 < ∞
Distillate flowrate DL kmol/h > 0 < Fin

Murphree efficiency η / > 0 1

Table 2: Distillation column input variables

3. Methodology

The study was carried out by means of an interface between Matlab®,
ProSimPlus® software for process simulation and ALAMO® for surrogate
modeling. The data import and export is performed by means of .csv flow-
sheets that are updated at each optimization loop. Each of the modeling
steps as well as the data analysis are discussed in detail in the following
sections.
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3.1. Design of experiment

Based on the selected domain for the input variables, the Design of Ex-
periment (hereafter DoE) strategy is set up for the modeling phase. In this
study two of the most common sampling strategies are adopted, namely
Latin Hypercube Sampling (LHS)[22] and Quasi-Monte Carlo Halton’s[23]
sampling.

On the one hand, the LHS method was developed to reduce variance in
the resulting distribution and increase the space-filling capacity. In fact, the
Latin hypercube is a statistical sampling method that generalizes the concept
of the Latin square: given a finite number of dimensions, each axis-aligned
hyperplane only contains one sample point each; this way all portions of the
continuous design space can be represented. On the other hand the Halton’s
method was conceived to have a faster rate of convergence with respect to
the Monte-Carlo one. This is due to the fact that it is a low-discrepancy
sequence, i.e. although it appears to be random, it is a set of deterministic
samples with high space-filling efficiency and high domain uniformity. In
fact, Halton’s sampling is a general n-dimension sequence of samples in the
unitary hypercube [0,1]n; for each dimension, it uses several prime bases
in order to fill the design space in a high-uniform manner.[24]. Graphical
examples of these two sampling methods are given in Figure 2.

In this study the sampling step is performed by means of the Matlab®

functions lhsdesign and haltonset respectively (the dedicated DoE toolbox
could be used as well). Sets of 10000 elements are obtained and then saved
on a .csv file that is later imported in ProSimPlus® for simulation as better
explained in the following section.

3.2. Simulation

The process simulation is performed by means of ProSimPlus® simulator
for samples generated with both the methodologies with conventional flash
and distillation units modules. An embedded script is used for a quick data
import and simulations are automatically run as shown in Figure 3.

At this stage, the first quality improvement concerning feasibility takes
place. All points who generate unfeasible simulations according to the crite-
ria explained in Section 2 are filtered and removed from the output dataset.
The obtained results are then stored in a new .csv file thanks to an embed-
ded script that respectively prints the conserved input and generated output
parameters of interest that will be used for modeling as described in the fol-
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Figure 2: ExampleofLHSandHaltonsampling

lowing section. In terms of computational effort, one simulation of this kind
takes about 1.2 s to be performed.

3.3. Surrogate modeling

The surrogate modeling step is then performed via ALAMO® ((Auto-
matic Learning of Algebraic MOdels). ALAMO® is a software developed
in 2014 by Cozad, Sahinidis and Miller[25]. Its purpose is to address the
problem of derivative-free optimization and, thus, to generate the simplest
and most accurate algebraic surrogate model of black-box systems, for which
an experimental set-up or a simulator is currently available. It is based on a
a three-step iterative process that can be resumed as follows:

• the N points from the initial DoE set are interrogated;

• In the second step, an initial algebraic model is created with integer
optimization techniques, starting from the original training set. This
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Figure 3: Example of LHS and Halton sampling

way, the best subset of simple basis functions is chosen from a set of
potential functions, that can be used in construction of the model.
The surrogate model is then obtained as a linear combination of non-
linear basis functions. To reduce the coefficients regression complexity
a “best-subset method” can be applied in order to list the possible
combinations/subsets of base functions and to choose the best one via
according to the best model fitness;

• Finally, the sample points where the model is lacking in accuracy are
identified with an adaptive-sampling methodology based on derivative
free optimization solvers. The initial training set is updated and the
second step of the algorithm is repeated until the accuracy of the model
is confirmed.

An example of the software interface is given in Figure 4.
In this research, the input variables are imported by the .cvs file obtained

from Matlab® and the coefficients for the output analytical functions are
shown in the results window.

In this phase, the second quality improvement strategy takes place. Two
kind of data subsets are organised based on the inlet feed temperature and
the inlet vaporization degree as discussed in the previous section.
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Figure 4: ALAMO® interface

Therefore, after the model equation is obtained for each of the output
variables presented in Section 2, performance indicators are calculated to
assess the quality of the result. To be more precise, the comparison has been
performed with points that are generated on purpose and that do not belong
to the set employed for the modeling phase, i.e. non-optimized points. Based
on this methodology, the results of this study are presented in detail in the
following section for each case study.

4. Results

According to the procedure explained in the previous section, the model-
ing algorithm was performed for the two case studies. The obtained results
are discussed here below according to the specific unit. One run of the algo-
rithm for a subset range took about 18 minutes for the flash and 30 minutes
for the column simulations included. At the beginning all basis functions in
ALAMO® have been selected for the functions analytical form and, after-
wards, all the terms with negligible impact on the function values have been
removed in order to further smooth the calculations. In particular, exam-
ples of the obtained model equations, quality fitting, errors and variance are
provided to give a general overview of the research outcome.

4.1. Flash separation

The flash separation unit was modeled according to the procedure pre-
viously described. In a first phase, the modeling step with ALAMO® was
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carried out on the global data set.
First of all, the so defined ”unfeasible” points, according to the previ-

ously defined constraints, have been removed. On average, about the 23% of
points have been ignored due to the combination of temperature and pressure
falling outside the defined range. Then, the remaining samples have been im-
ported in ALAMO® to model output variables with all basis functions. The
obtained outcome was based on trigonometric functions such as:

Ftol,bot = −0.474 · cos(Ftol) + 0.580 · cos(FT ) (1)

with a Maximum Absolute Error (MAE) in some points higher than 200%.
This is due to the aliasing effect that depends on the amount of unknown
variables to be regressed (in this case the model equation coefficients) and
on the sample size according to the Nyquist theorem (undersampling or
oversampling)[26]. Since there is no way to directly develop anti-aliasing
filters[27] in the software, the action should be taken on sampling. That’s
is why the second adjustment related to subsets definition was considered
strictly required.

Among the input parameters, temperature was selected as the first one
to be used for this step. The interval delimited by the lowest and highest
temperatures of the feasible points was divided into ten intervals of 12°C
each. In this case, the obtained functions have a much more reliable form;
for example the toluene bottom flowrate previously presented in Equation 1,
is now given in the interval T=[470; 482] K by:

Ftol,bot = 1.05 · Ftol − 0.98 · Fbiph + 1.97 · FT − 877.68 · ln(FT )

+ 0.001 · eFP + 1.53 · cos(FP ) + 0.04 · cos(FT ) + 4474.93
(2)

The analysis of the obtained results along with the MAE and the number
of variables are summarized in Table 3. While the average error is always
about a few percent, the maximum error for some points can also go up to
27%. In particular, it can be noticed that the MAE is usually higher when
a lower amount of coefficients, i.e. basis functions, are present in the model
equation. Although not discussed in this table, the average accuracy shows
to be higher in central subsets than in boundary ones.

Furthermore, graphical examples for variables fitting with respect to tem-
perature based subsets are shown in Figure 5.
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Ftol,top Fbiph,top Ftol,bot Fbiph,bot

FT range MAE% nvar MAE% nvar MAE% nvar MAE% nvar

388-400 9.37 20 0.02 20 6.81 19 1.87 21
400-412 12.89 1 4.18 10 11.98 2 11.46 1
412-424 20.02 1 13.10 5 27.63 1 20.61 1
424-436 11.02 1 19.59 2 12.51 2 10.03 1
436-448 9.84 2 11.91 10 12.81 1 13.67 1
448-460 26.36 6 24.31 2 5.16 4 8.94 4
460-472 16.00 3 46.75 1 15.05 1 4.74 5
472-484 5.43 1 61.49 7 1.48 9 1.91 6
484-496 19.42 1 24.47 1 0.38 8 7.95 9
496-508 0.76 25 2.21 18 0.00 23 0.04 23

Table 3: MAE and number of variables vs. α

After that, the same approach was used accounting for the feed vapor-
ization rate α. Subsets have been defined according to the amount of data.
As already explained, the deviation range goes from the bubble point to the
dew point. The size of each subset is equal to 0.1 except for the first and last
ones whose size is 0.05 to have more accuracy in correspondence of the phase
transition. For instance, the partial toluene flowrate in the bottom product
in the interval α=[0.05; 0.15] is given by:

Ftol,bot = −20.6 · FP − 0.82 · FT + 352.7 · ln(FT ) + 0.003 · eFbiph

+ 0.019 · sin(Ftol)− 0.04 · Ftol · FP + 0.0025 · Ftol · FT

− 0.0027 · Fbiph · FT + 0.043 · FP · FT − 1779.3

(3)

Even for this case, the MAE and the number of variables are listed in
Table 4 and examples for variables fitting with respect to vaporization frac-
tion based subsets are plotted in Figure 6. Remarks similar to those of the
temperature discretization apply for the vaporization fraction as well. In
particular, for those points in proximity of highly vaporized feed, the error
is almost equal to zero and the average error is lower than 1%. Thus, it can
be concluded that the vaporization rate.

For the sake of completeness, although not reported in this publication,
the analysis was carried out also with subsets based on the other input vari-
ables. The results were much less satisfying than those related to temperature
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(a) Fbiph,top in 400− 412 K interval (b) Ftol,bot in 482− 494 K interval

Figure 5: Temperature− based subsets fitting

(a) Fbiph,top in 0.35− 0.45 interval (b) Ftol,bot in 0.05− 0.15 interval

Figure 6: Feed vapor fraction based subsets fitting

12



Ftol,top Fbiph,top Ftol,bot Fbiph,bot

α range MAE% nvar MAE% nvar MAE% nvar MAE% nvar

0-0.05 61.27 3 66.80 1 0.83 8 18.22 7
0.05-0.15 10.86 8 29.47 12 2.54 10 8.44 8
0.15-0.25 36.16 6 6.61 10 5.58 5 33.48 9
0.25-0.35 22.32 7 2.72 12 7.04 4 27.49 7
0.35-0.45 10.26 11 0.65 11 5.04 18 15.95 11
0.45-0.55 4.62 20 0.11 20 3.34 17 5.77 21
0.55-0.65 3.37 19 0.08 21 4.01 21 4.75 22
0.65-0.75 1.80 20 0.04 19 3.74 20 3.30 20
0.75-0.85 0.00 23 0.00 23 0.00 23 0.00 23
0.85-1 0.00 22 0.00 22 0.00 22 0.00 22

Table 4: MAE and number of variables vs. α

and vaporization rate. Therefore, it can be concluded that, in case of flash
separation, since the liquid-vapor equilibrium is the aspect of main concern,
feed vaporization fraction represents the key variable for sample subsets par-
tition.

4.2. Distillation column

The same procedure was then performed with the 12 stages distillation
column with seven input variables. In this part of the work the difference
between Halton and LHS is one of the main focus along with the economic
assessment. As usual, a first analysis was performed on the global dataset
domain. The obtained equations for the distillate toluene are:

FHalton
tol,top = 0.94 ·DL − 0.16 ·DR − 1.45 · FP/3− 0.42 · FT/232.55

+ 0.69 · eFP /3 + 2.05 · sin(DR/9)− 1.80 · cos(Ftol/20)

+ 1.33 · cos(Fbiph/4.46)

(4)

FLHS
tol,top = 0.93 ·DL − 0.069 ·DR − 0.035 · FT + 0.33 · ln(DR)

+ 3.04 · ln(Ftol) + 0.097 · ln(FP ) + 11.72 · ln(FT )

+ 10−4 · eDR − 1.4 · 10−3 · eFbiph − 65.30

(5)
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(a) Ftol,top Halton (b) Ftol,top LHS

Figure 7: Fitting comparison between Halton and LHS sampling for distillate toluene
partial flowrate

In this case, fitting indicators are already quite accurate. The MAE are
6.6% and 6.8% respectively and the mean average errors are about 1.25%
and 1.19%. The corresponding fitting plots are provided in Figure 7.

Therefore, the samples were ordered and distributed according to all pos-
sible parameters. The most promising results, listed in Table 5 for MAE
and number of variables, have been obtained for the variables reflux ratio,
bottom toluene flowrate and distribution rate defined as:

Dtol/biph =
ytol/xtol

ybiph/xbiph

(6)

Reflux ratio Dtol/biph Ftol,bot

Output variable MAE% nvar MAE% nvar MAE% nvar

CAPEX 0.76 13 0.55 10 0.53 11
OPEX 18.25 7 9.13 2 22.12 13
Ftol,top 4.37 11 2.49 15 0.19 11
Fbiph,top 10.93 1 32.29 2 35.39 6
Ftol,bot 12.90 6 12.71 1 0.62 11
Fbiph,bot 9.64 11 3.57 5 1.62 10

Table 5: MAE and number of variables vs. α

In this case, the average error is lower than one percent for each variable
and, except for some output parameters, the MAE as well is already quite
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(a) CAPEX (b) Ftol,top

Figure 8: Comparison according to reflux ratio, bottom toluene flowrate and reflux
ratio

low. The best performing variable to order the data set was the reflux ratio.
The comparison in terms of model fitting is shown in Figure 8 for CAPEX
and Ftol,top.

Finally, the analysis is performed with the two sampling strategies by
applying feasibility constraints on the subsets. The results for this part of
the study are provided in Table for MAE, mean average error (mae) and
number of variables.

LHS Halton
Output variable MAE% mae% nvar MAE% mae% nvar

CAPEX 0.51 0.18 11 0.44 0.15 15
OPEX 2.16 3.18 8 2.66 5.08 14
Ftol,top 0.29 0.05 16 0.16 0.03 13
Fbiph,top 9.99 4.99 4 14.71 6.59 3
Ftol,bot 0.89 0.16 16 0.45 0.08 14
Fbiph,bot 9.98 4.99 3 14.71 6.59 3

Table 6: MAE, mae and number of variables for constrained Halton and LHS samplings

The first remark concerns, as usual, the lower quality of those parameters
whose function is given by a lower number of variables. The best results are
obtained for CAPEX, Ftol,top and Ftol,bot with an average error lower than
0.2%. On the other hand, when comparing the two sampling strategies, it
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can be noticed that LHS performs slightly better for those variables who
show worse quality indicators while both sampling approaches results almost
in the same results quality.

In general, in all these studies concerning distillation column, it can be
observed that the bottom biphenyl flowrate Fbiph,bot is the most difficult vari-
able to regress with accuracy. If we take into account the flash unit as well,
biphenyl shows in general more difficulties with respect to toluene in terms
of behaviour prediction. This aspect could be related to the thermodynamic
behaviour of the specific component in the bicomponent mixture. An anal-
ogous remark could be made for opertaing expenses. Since they are more
affected by operating conditions than CAPEX, they are less simple to be
regressed with an analytical fuction.

5. Conclusions

The proposed study proved to be effective to validate its purpose. In fact,
the outcome of this research work allows to draw three main conclusions of
interest as follows.

First, surrogate modeling for chemical processes performed by means of
well established software packages showed good accuracy with respect to the
phenomenological model with a considerable gain in terms of computational
time.

Second, including feasibility constraints during sample points generation
allows to have better models with the same modeling tools and approaches by
considerably reducing the average and the maximum error with no increase
in computational time.

Third, performing the modeling process with a local approach based on
sub-domains permits to further improve the obtained accuracy with a non-
substantial increase of the computational effort due to the fact that a set of
more but simpler equations needs to be solved.

In the light of these outcome then, it could be stated that further stud-
ies concerning the inclusion of constraints and the domain subsets partition
during the DoE step for more complex systems both in terms of units config-
uration and physical behaviour are worth to be performed in order to have
a more reliable quantification of their impact on computational time and ac-
curacy. This kind of studies could enable a more conscious decision about
whether they are worth to be applied or not in terms of optimal costs-benefits
compromise.
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