
HAL Id: hal-04312488
https://hal.science/hal-04312488v2

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transformations on knowledge representation between
OWL and RDF knowledge graphs: A study case
Mariano Ferreirone, Mario Lezoche, Diego Torres, Hervé Panetto

To cite this version:
Mariano Ferreirone, Mario Lezoche, Diego Torres, Hervé Panetto. Transformations on knowledge
representation between OWL and RDF knowledge graphs: A study case. SADIO electronic journal
of informatics and operations research, 2023, 22 (3), pp.80-93. �hal-04312488v2�

https://hal.science/hal-04312488v2
https://hal.archives-ouvertes.fr

Transformations on Knowledge Representation
between OWL and RDF Knowledge Graphs: a Study

Case
Mariano Ferreirone1,2,3, Mario Lezoche1, Diego Torres2,3, Hervé Panetto1

1 University of Lorraine, CNRS, CRAN, F54000 Nancy, Francemariano-

julian.ferreirone@univ-lorraine.fr, mario.lezoche@univ-lorraine.fr,

herve.panetto@univ-lorraine.fr
2 LIFIA, CICPBA-Facultad de Informatica, UNLP,

Argentinamferreirone@lifia.info.unlp.edu.ar, dtorres@lifia.info.unlp.edu.ar
3 Depto. CyT, UNQ, Bernal, Argentina dtorres@unq.edu.ar,

mferreirone@unq.edu.ar

Abstract. Is well known that the semantic web is having a tremendous

impact on many aspects of the world and that it’s a wave that is far away

from going down. Ontology and Knowledge graphs are two methods of

knowledge representation that are part of the basis of this wave, and both

have their pros and cons. In this work, there is an analysis over the relation

between a rigid schema knowledge representation as OWL, and a simple and

more flexible one like RDF. This is based on the attempt of transforming an

OWL knowledge graph into an RDF knowledge graph, taking into account

the interesting possibility of combining knowledge graphs that were created

with different levels of schema formalization. The work also presents a case

of study on the chess domain.

Keywords: Ontology · Knowledge graph · OWL · RDF · knowledge representation

1 Introduction

During the last years, Knowledge Graphs (KG) have been demonstrated that are
well known alternatives for knowledge discovering. There are well known cases in

the industry that uses KG in order to organize their data and then discover
underlying knowledge that are not directly present in their data sources [8].

A KG is a formal representation of knowledge in the form of a labeled directed
graph, where the nodes represent concepts or an actual entity from the real world,

meanwhile the edges represent different relations between these nodes [5]. A
standard data model to represent KG is the Resource Description Framework

(RDF), [10] which use triples of the form (subject, predicate, object). Additionally,
the RDF model is complemented by query languages in which SPARQL is the most
prominent.

KGs could be represented with different levels of schema formalization which
co-exists. The simplest one is the aforementioned RDF, which is a data model and
it doesn’t support semantics itself. It’s based on XML, so it only inherits the XML

datatype definitions. Another level is RDFS (Resource Description Framework
Schema) which is an extension of RDF, and it introduces simple constraints and

semantics, as class and property subtypes, property range and domain restrictions.
Finally, OWL (Web Ontology Language) that introduces several ontological

characteristics on top of RDFS 1 . Taking into account the aforementioned, the

authors found interesting to investigate how these different KGs, with different
levels of schema formalization, could be combined, in order to increase the

interoperability between them.

During the last years, the amount of RDF knowledge graphs has been increasing
and the most big and popular knowledge representations of this type are created
with this formalization language. As an example, Wikidata 2 is constructed on RDF

and it has several billions of triples [4].

The RDF knowledge graphs could have a schema behind in order to add
consistency to the model and the data, and this is the case when they are

ontologybased. In the case that the KG is purely developed in RDF, the lack of a
formal schema does not ensure the consistency of the data, and there’s a lack of
semantic expressiveness in comparison with an ontology. Another strong point to

highlight is that the knowledge graphs which use a shared ontology are more inter-
operable since the ontology structure is unambiguous and it has an accepted and

common meaning in the community [5]. On the other side, RDF/S knowledge
graphs are more flexible with the addition of new information, and since they don’t
have to do a strict review of the structure, is more efficient from a computational

point of view. On the other hand, OWL KG has a lot of expressiveness in their
semantics, but they are not as fast computationally as the Knowledge graphs [7].

These are reasons that make attractive the idea of working in a bidirectional
connection or transformation of these two knowledge representation models.

Having an ontology with all the instances from the equivalent knowledge graph

is useful for visualizing the hierarchy and the structure in a clear way, and it also
ensures the consistency of the model. Furthermore, having into account that RDF
Knowledge graphs are likely to have a good efficiency, but they lack on the

consistency since they don’t have a natural semantic schema structure behind,
there’s a gap that awakes the scientific research interest, in order to add this
expressiveness that, for example, OWL has, creating a good combination of both

characteristics.

The approach that the authors of this article have developed, in order to start a
solution path for the aforementioned points of improvement, is to create a set of

rules or steps with the objective of transforming an OWL Knowledge graph into an
RDF knowledge graph, with the intention of analyzing what is lost in the middle

and define further steps.

There are some existent interesting works which are related to converting an
RDF and OWL into different formats. An example of this is the converter developed
as part of the tool named CoGui34 by the GraphiK team at LIRMM [3] . In this case,

the transformation is done from RDF to conceptual graphs, and the resulting OWL

1 Wikidata, OWL, https://en.wikipedia.org/wiki/WebOntologyLanguage
2 Wikidata, https://www.wikidata.org/wiki/Wikidata:MainPage
3 CoGui Homepage, https://www.lirmm.fr/cogui/3/index.html. Last

 accessed
4 /5/2022

file is exported to different languages. When referring to RDF, currently, OWL rules,

constraints and type dis-junctions are ignored. Another interesting work is the
converter tool of the University of Manchester 5. This converter doesn’t have the

possibility of converting an OWL structure to a simple RDF syntax. Another
interesting concept to take into account is the ontology alignment or ontology
matching, which is based on generating a set of correspondences between

concepts, properties or instances of different structured KGs, with the objective of
unifying them into a new one [2].

This work introduced the initial analysis of applying transformation rules

which transform an OWL KG into an RDF KG. The approach is conducted over a
study case of a chess ontology. Learned lessons and challenges are reported.

The article is structured as follows: in section 2 there’s a general description
about the transformation process that the authors have designed and applied. In

section 3 we describe the creation of an OWL ontology over the chess domain, and
the application of the transformation to the corresponding file. Finally, in section 4

the learned lessons are described, and the next steps and further challenges are
mentioned.

2 Transformation

The transformation developed in this work consists of the creation of a program,
with the objective of converting an OWL KG into different types of RDF triples

representations, which means, RDF Knowledge graphs.

As a first step, the user can make the decision of working with the original OWL
KG input, or if it’s desired to infer the file in order to include also the implicit axioms
in the forward steps, using a reasoner engine and creating a new version of the file.

On the second step, the program reads the chosen input KG and obtains all the
elements from it, including classes, sub-classes, properties, etc., and assigns each

of them to a graph structure that was previously created by the authors. This graph
structure has the following classes: Graph, which contains the name of the graph,
all the classes and all the individuals; Class, that contains information related to a

class, as his name and iri, all the subclasses and the individuals of the class;
Individual, which contains the name, iri and parent class of the individual. The

figure 1 describes the graph structure. Once this graph is fed, the data and the
knowledge are ready for being processed.

As the next step, the generation of an intermediate output, which is going to be
structured as simple triple stores in the form (subject, predicate, object) takes

place. Then, the triple stores are translated to RDF/XML syntax, including also
those triples that are formed by OWL elements and don’t correspond to the RDF

semantic level. This is done using a template, which is described in the figure 2,
and creating a customized RDF structure, where some triples could be

5 OWL Syntax Converter, University of Manchester

 http://mowl-

power.cs.man.ac.uk:8080/converter/. Last accessed 5/5/2022

compounded, concatenating information in the predicate or in the object. Finally,

the latter generated output will pass through a cleaner with the objective of
creating an RDF/XML output in the corresponding RDF semantic level.

Fig.1. Graph structure

Fig.2. Example of Subclass triples obtained

The implementation of the program was done using the programming language
Python. Furthermore, a part of the manipulation of the OWL file was developed re-

utilizing functions of the Python library called OWLREADY2 6, which also offers the
possibility to execute SPARQL queries over the ontology. Regarding the inference,
the reasoner Hermit 7 was the chosen one. For visualizing the obtained RDF triples

in a graphical representation, the Python package Graphviz 8 was used. However,
when the file is too large, the picture is hard to read, and the graph is often

stretched. The application Neo4J with the plugin Neosemantics was also utilized to

6 OWLREADY2, documentation, https://owlready2.readthedocs.io/en/v0.37/
7 Hermit, http://www.hermit-reasoner.com/
8 Graphviz, https://graphviz.org/

load the output triples and represent them in a graph. The transformation process

is represented in the figure 3.

Fig.3. Diagram of the transformation process

3 Case of study: application on the chess domain

3.1 The ontology

In an attempt of analyzing the existent knowledge formalization done on the chess
domain, the work done by Adila Krisnadhi and Pascal Hitzler on their published

chapter ”Modeling With Ontology Design Patterns: Chess Games As a Worked
Example” [6] was found very interesting. However, the design of the

aforementioned ontology is more oriented to the representation of a chess
competition.

Regarding this case study, the first step was to create an ontology with some
individuals (an OWL KG), based on the chess domain. The idea of the design is to

represent the game, with all the important factors, and also represent a match that
has been played as a list of movements, or in other words, as the evolution of the

pieces on the board. As a supplementary support, the rules of the game could be
found in the internet 9.

A description of the structure of the created ontology is as follows: The
ontology has five main classes which are: ”Board”, ”Match”, ”Pieces”, ”Players” and

”Rules”. The ”Board” class contains the sub-classes ”Cell”, ”file” and ”rank”, with the

9 https://en.wikipedia.org/wiki/Chess

objective of representing each position where a piece can be placed. The first

subclass contains sixty-four individuals in order to instantiate this, and each one
of these individuals is related through two object properties to one individual of

the subclass ”file” and one of the subclass ”rank”. They are also related to a string
value, so for example, the cell c3 is related to the string value ”c3”. This was done
to workaround the following issue: the reasoner engine is not capable to

understand semantically the name of a subclass or an individual. The ”Match” class
is designed to represent a specific list of movements that are attached to one

specific game played by two entities. An individual of the match is going to be
related to an object property with two different players, which one will be
identified with the white pieces, meanwhile the other one is going to be related

with the black pieces (both sides of the match). The class ”Pieces” contains all the
different pieces that are part of the game, like the Bishop, the Tower or the King as

sub-classes. Each one of this, has individuals to represent the specific pieces that
are on the board. For example, the subclass ”knight” has two individuals per color.
”Players” contains two sub-classes called ”AI” and ”Person”, and they represent the

entities that will play the match. ”Rules” class contains some specific allowed
movements (for example ”en passant”, the castle, the promotion) and also the

conditions that could get the game to the end in the subclass ”win conditions”.

The class hierarchy of the ontology is graphically represented in Protege in the
figure 4 and in the corresponding VOWL diagram in figure 5

Fig.4. Prot´eg´e structure

The main relations which help to represent a played game are the following:

– Match Where black player is Player

– Match Where white player is Player

– Match moves To cell cell

– Match moves Moving Piece Pieces

– Match moves Next move Match moves

Fig.5. VOWL diagram of the class hierarchy

– Pieces Strat cell is Cell

The object property hierarchy of the ontology is described in figure 6.

In order to represent a match, the design takes into account the following
statements: A game is played by two players. One plays the white pieces and the
other plays the black pieces. A match is a set of movements alternatively of white

pieces and black pieces from a starting situation to the end of the match. A
movement, in our chess ontology, is basically a piece which is moving from a

specific cell to another specific cell of the board.

This ontology was created utilizing the free and open source software Prot´eg´e
10, which is widely used to create ontologies and it has a lot of interesting utilities.

Fig.6. Object properties in Prot´eg´e

The mentioned ontology has been stored in OWL format, since it’s one of the most
common languages for this purpose, and it has a high level of schema
formalization, so it represents the lack of flexibility that it’s needed for the

objective of this work. This file format can be open as a text file or with different
specific software like Prot´eg´e. A little part of the structure of the language is

shown in figure 7 and in figure 8.

Fig.7. Bishop class in OWL file

10 Prot´eg´e, Homepage https://protege.stanford.edu/ Last accessed 5/6/2022

In order to visualize the ontology in the tool Prot´eg´e, the plugins OWLViz 11

and VOWL 12 were utilized. A VOWL representation of the ontology can be seen in
the figure 9.

11 OWLViz, https://protegewiki.stanford.edu/wiki/OWLViz
12 VOWL, http://vowl.visualdataweb.org/

Fig.8. Moving Piece property in OWL file

Fig.9. VOWL ontology representation

3.2 From OWL to RDF

The second step of this work consists in the application of the transformation
described in section 2, with the objective of converting the OWL KG file into RDF
triples that represent an RDF KG. The created chess KG mentioned in the above

section was exported from Prot´eg´e as a .OWL file and different tests were executed
in order to evaluate the different possible behaviours of the process. The

transformation was done with the original ontology file and with the inferenced one,
and several outputs were generated formatted as RDF triple stores, customized RDF

and RDF/XML.

In order to obtain the knowledge and being able to process it, the OWL

structure was transformed into the python graph structure. This load was then
evaluated through a comparison between the number of elements that were

present in Prot´eg´e and the number of elements that were loaded to the python
graph structure. In this case, this test had successful results. The figure 10 shows
an example where the number of individuals is compared.

Fig.10. Comparison of individual between Prot´eg´e and program

The first output is generated in triples of the form (subject, predicate, object),
which represent the relation between two nodes in the knowledge graph.
Futhermore, for the sake of the analysis, a customized RDF structure output has

been generated, in which the triples are compound. This means that everything
from the OWL input is present in the output, concatenating information in the

predicate or in the object. As an example, the input OWL statement pawn promoted
to ”Pieces not(Kings) not(Pawns)” was translated to an ”RDF” triple with a
compound object ”not(Kings) not (Pawns)”. After cleaning the customized RDF

output, the triples are also translated to an RDF structure, which is described in
the figure 2. The obtained triples in this occasion have a lack of expressiveness,

since there’s an obvious schema level difference between it and OWL. This makes
that the constraints, types of relationships and all the characteristics that are
specific from OWL, are not represented in RDF. Examples of the RDF triples

obtained are shown in the figures 11 and 12.

In order to show the lost semantics that this transformation has, the OWL
statement pawn promoted to ”Pieces not(Kings) not(Pawns)” can be highlighted as

an example again. In this case, the object or range is only one element for the OWL
file, but it cannot be transformed into only one element in the RDF structure.
Moreover, it would be necessary to create several triples to represent only

Fig.11. Example of Subclass triples obtained

one OWL relation with constraints. An example of a graphical representation of the
generated triples is in the figure 13.

4 Learning lessons and further steps

Through this exercise, the authors have analyzed the lost of expressiveness that
takes place in a simple transformation from an OWL KG into an RDF KG, which is

related to the difference over the schema level of knowledge representation
between them. RDF is a lighter and more flexible representation, and it’s not

designed to express the level of semantics that takes into account knowledge like
type of relationships (symmetric, transitive, etc.), neither constraints (some, all,
etc.), between others.

Currently, the authors have in mind two possible options to treat this schema

level difference. The first one is to create a representation of the OWL ontology
without constraints, but maintaining all the logic that is behind these rules or

definitions. A possible path to do this is investigating and testing the output

generated after the inferences over the OWL structure and deleting the con-

Fig.12. Example of Individual triples obtained

Fig.13. Output triples in Neo4j

straints. The second option is to keep all the constraints and finding a way to

express them. This could represent the creation of new nodes, and additional
triples would represent the complex axioms in RDF. With the customized RDF

output, a primitive and first attempt of maintaining all the characteristics in the
RDF KG was done, but this is only with analysis purposes since it’s not practical as
its. However, this output will be also taken into account in the further steps.

Regarding the next steps, one possible path would be to add a new step in the

program with the objective of interpreting this customized RDF structure, giving
to the compound triples a representation that fits with the RDF syntax. Another

possible path to follow, in order to add these characteristics to an RDF graph, could
be to add a layer of representation, to express this structure in an efficient manner.
The authors will research existent work related to adding formalization to RDF KG.

It’s interesting for the authors to study Shapes Constraint Language [1], the
characteristics of the property graphs [9], ontology alignment [2] and the state of

the art of its applications into the knowledge graphs. The objective would be to
integrate some of this existent concepts, or develop a new one inspired by them,
and introduce it in this transformation process. Furthermore, it’s interesting for

the authors to investigate the transformation in the opposite direction, which
means from an RDF KG to an OWL KG.

References

1. Shapes constraint language (SHACL). Tech. rep., W3C (Jul

 2017), https://www.w3.org/TR/shacl/
2. Ardjani, F., Bouchiha, D., Malki, M.: Ontology-alignment techniques: Survey andanalysis.

International Journal of Modern Education and Computer Science 7, 67–78 (11 2015).

https://doi.org/10.5815/ijmecs.2015.11.08
3. Baget, J.F., Chein, M., Croitoru, M., Fortin, J., Genest, D., Gutierrez, A.,Lecl`ere, M., Mugnier,

M.L., Salvat, E.: RDF to Conceptual Graphs Translations. In: CS-TIW: Conceptual

Structures Tool Interoperability Workshop. vol. LNAI, p. 17. Springer, Moscow, Russia

(Jul 2009), https://hal-lirmm.ccsd.cnrs.fr/lirmm00410621
4. Desouki, A., R¨oder, M., Ngonga Ngomo, A.C.: Ranking on very large knowledgegraphs.

pp. 163–171 (09 2019). https://doi.org/10.1145/3342220.3343660
5. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G.d., Gutierrez, C.,Kirrane, S., Gayo,

J.E.L., Navigli, R., Neumaier, S., Ngomo, A.C.N., Polleres, A., Rashid, S.M., Rula, A.,

Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.: Knowledge Graphs. Synthesis

Lectures on Data, Semantics, and Knowledge 12(2), 1–257 (Nov 2021).

https://doi.org/10.2200/S01125ED1V01Y202109DSK022,

https://www.morganclaypool.com/doi/abs/10.2200/S01125ED1V01Y202109DSK02

2, publisher: Morgan & Claypool Publishers
6. Krisnadhi, A., Hitzler, P.: Modeling With Ontology Design Patterns: ChessGames As a

Worked Example, vol. 25, chap. 1, p. 3–21. IOS Press (2016).
https://doi.org/10.3233/978-1-61499-676-7-3

7. Lera, I., Juiz, C., Puigjaner, R.: Performance-related ontologies and semantic web

applications for on-line performance assessment of intelligent systems. Science of

Computer Programming 61(1), 27–

37 (2006). https://doi.org/https://doi.org/10.1016/j.scico.2005.11.003,

https://www.sciencedirect.com/science/article/pii/S016764230600013X, special

Issue on Quality system and software architectures
8. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scaleknowledge

graphs: lessons and challenges. Communications of the ACM 62(8), 36– 43 (Jul 2019).

https://doi.org/10.1145/3331166, https://doi.org/10.1145/3331166 9. Tomaszuk,

D., Angles, R., Thakkar, H.: Pgo: Describing property graphs in rdf. IEEE Access 8,

118355–118369 (2020)
10. Wood, D., Lanthaler, M., Cyganiak, R.: Rdf 1.1 concepts and abstract syntax.

W3C Recommendation, W3C (2014)

