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d Struttura Attività Geologiche, Regione Autonoma Valle d'Aosta, 11020 Quart, Italy 
e Fondazione Montagna Sicura, 11013 Courmayeur (Valle d'Aosta), Italy 
f Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy 
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A B S T R A C T   

Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/ 
or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall sta-
bility. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by 
observation and quantification biases, which have not received enough attention. Here, to monitor recent ac-
tivities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return 
period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a 
structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with 
volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, 
with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the 
permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant 
two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the 
fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 
× 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their 
extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure 
scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% 
chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% 
confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of 
uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to 
characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the 
return periods of some extreme scenarios and provides primary data for risk management in mountainous areas 
that are very sensitive to global warming.   

1. Introduction 

Rockfalls and rock avalanches are pervasive hazards in Alpine areas 
and can cause severe damage to infrastructure, such as ski-lifts, trans-
portation corridors and construction located in the propagation path of 

such processes (Duvillard et al., 2019). Since the late 1990s, many 
events have been reported in Alpine regions around the world (Coe 
et al., 2018; Cox and Allen, 2009; Evans and Clague, 1994; Huggel, 
2009; Noetzli et al., 2003; Ravanel et al., 2017; Ravanel and Deline, 
2010; Sepúlveda et al., 2021). Among several preliminary and 
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predisposing factors, the warming/degradation of permafrost is 
increasingly emphasized and is assumed to play a fundamental role in 
rock slope failures (Draebing et al., 2017; Gruber and Haeberli, 2007; 
Legay et al., 2021), this is especially the case during continued global 
warming, as has been demonstrated for example during the high tem-
perature summers of 2003 (Gruber et al., 2004) and 2015 (Ravanel 
et al., 2017). Thus, with continuous climate warming driving extensive 
permafrost degradation, associated geologic hazards are likely to in-
crease in Alpine regions. Although larger rock-avalanches are less 
frequent than rockfalls, larger events have a more significant impact on 
the evolution of Alpine terrain and pose a more significant threat to 
humans and infrastructures when they occur. Therefore, hazard analysis 
of rockfall/rock avalanche activity is very important not only for pre-
dictive purposes but also for conservation and mitigation efforts (Bründl 
et al., 2009). 

Magnitude-frequency relationships are the foundation of probabi-
listic hazard analysis, especially concerning hazard risk estimation (De 
Biagi et al., 2017). The hazards (rockfalls/landslides) occurring could be 
derived by magnitude-frequency relationships based on the empirical 
data. Different data sources have been used to establish these relation-
ships for cases with various geometries and scales. These include map-
ping large rockslides of different ages through satellite imagery, aerial 
photographs, and field surveys conducted at a specific time (Coe et al., 
2018; Viani et al., 2020), considering triggering events like rainstorms 
or earthquakes (Malamud et al., 2004). Continuous inventories obtained 
by terrestrial laser scanning (TLS) (Guerin et al., 2020; Ravanel et al., 
2017) and unmanned aerial vehicles (UAV) photogrammetry (Westoby 
et al., 2012) monitoring with different temporal interval have also been 
used. Ravanel and Deline (2013) implemented an observation system in 
the Alpine mountains specifically designed to record instances of rock 
failure. The magnitude-frequency relations of landslides (Brunetti et al., 
2009; Dussauge et al., 2002, 2003; Malamud et al., 2004; Stark and 
Hovius, 2001) (related to surface area or volume) or rockfalls (Guzzetti 
et al., 2003; Hantz et al., 2003; Hungr et al., 1999; Larsen et al., 2010; 
Santana et al., 2012) (related to volume) is found often sufficiently 
depicted by power-law distribution over a limited range, which means 
that smaller landslides occur more frequently than larger ones. This 
distribution can be influenced by various factors, including geological 
context, triggering events such as rainfall or earthquakes, and local 
environmental conditions, resulting in a various scaling parameter (b) of 
fitted power laws between 0.4 and 0.9 for rock slope instability (Coro-
minas et al., 2018). The magnitude (volume)-frequency relationship was 
found to be similar for different types of rock failure (Corominas et al., 
2018; Dussauge et al., 2002; Guzzetti et al., 2003; Hungr et al., 1999), 
which indicates the potential of using the same power law observed for 
smaller events to extrapolate return periods for potentially larger events 
if the provided small events record is complete. The uncertainty and 
range of validity of such extrapolation are questioned and high probably 
affected by the largest magnitude of historical landslides that is un-
common or often missing (i.e., rockfalls and rock avalanches) (Budetta 
et al., 2016; Copons and Vilaplana, 2008; Graber and Santi, 2022; 
Guzzetti et al., 2004). Nevertheless, it is inevitable that rock failure 
predictions based on power-law distribution are subject to substantial 
uncertainties. This is especially the case for epistemic uncertainties that 
mainly arise due to limited knowledge (i.e., the statistical uncertainty 
due to the small datasets) (Straub and Schubert, 2008; Ravanel et al., 
2017). Bootstrap analysis (De Biagi et al., 2017) and Monte Carlo sim-
ulations (Jaboyedoff et al., 2021; Strunden et al., 2015) are usually used 
to evaluate the uncertainty of magnitude-frequency relationship fittings. 
These fast and straightforward approaches obtain the confidence bounds 
of the fitted distributions to evaluate the associated uncertainties. A 
significant population of samples could improve a robust fit. 

In the context of quantitative risk assessment of rock slope insta-
bility, a comprehensive understanding of the various potential failure 
scenarios (referring to reasonably expected potential slope failure 
sources and corresponding volumes) and their corresponding 

frequencies or return periods (referring to the recurrence interval at 
which a particular event is expected to occur) assumes critical signifi-
cance in the effective prediction and protection against hazards (De 
Biagi et al., 2017; Fell et al., 2008; Ho, 2004). Unfortunately, the 
research concerning the relationship between these aspects based on the 
power law fitting within the domain of risk assessment of rock failure is 
still significantly lacking. The primary factors contributing to this defi-
ciency are the perceived low probability associated with such scenarios 
and the lack of standardized definitions or assessment procedures 
(Corominas et al., 2005, 2018). Nonetheless, it is imperative to duly 
consider these potential failures, irrespective of their non-occurrence in 
the past. This becomes especially crucial in light of the consequence of 
permafrost warming induced by global climate change. More than that, 
there have been few studies that assess the risk (i.e., the return period of 
the potential large failure scenarios) posed by large historical rock 
avalanche scar located in the high mountainous regions where the 
instability of rock slope is often underestimated and poorly recorded due 
to inaccessibility and observation difficulties (Ravanel and Deline, 
2010). A more accurate and comprehensive knowledge regarding the 
volume-frequency relationships of potential Alpine rock failure hazards 
is needed, especially under the continued climate warming (Stephan 
Gruber and Haeberli, 2007; Hartmeyer et al., 2020b). 

Herein, the southeastern flank of the Brenva Spur (3916 m a.s.l.; 
Mont-Blanc massif, Aosta Valley, Italy) was investigated and studied, 
mainly because it corresponds to the source of the 1997 rock avalanche 
(2 × 106 m3) that caused two deaths and led to the destruction of a large 
forest area (Deline, 2001; Giani et al., 2001). The rock avalanche scar 
was reactivated in September 2016 with a total failure volume (two 
events) of approximately 3.4 × 104 m3, which indicated an increasing 
instability of the scar. This paper presents the recent rock failure activity 
detected within the Brenva rock avalanche scar since July 2017 by 
employing a structure from motion (SfM) photogrammetric survey. 
Coupled with a detailed structural analysis of the rock mass, the sloping 
local base level (SLBL) algorithm is then used to define the potential 
future rock instabilities of the rock avalanche scar. Finally, 7 possible 
failure scenarios and their assessed return period are discussed based on 
the power-law fit considering the uncertainties (quantified by Monte 
Carlo simulations) associated with the distribution of the eroded vol-
umes (including the one in 1997 and two in 2016) and the volumes that 
could collapse in the future. 

2. Study site and geologic setting 

The Brenva rock avalanche scar, mainly formed by the large rock 
avalanche of 1997, is located at the southeastern flank of the Brenva 
Spur (3916 m a.s.l.; Deline, 2001). The scar is approximately 250 m wide 
and 300 m high (Deline, 2009) (Fig. 1d). The Brenva Spur belongs to the 
upper part of the Brenva glacial basin (Mont-Blanc massif, Aosta Valley, 
Italy) (Fig. 1b), which is a slope glacier that now only covers 4.4 km2 

(7.3 in the late 1990s according to Giani et al., 2001), with a maximum 
length of 3.6 km, and a maximum width of 1.4 km. Before the recent 
disconnection of its front, the terminus of the Brenva glacier reached 
1415 m a.s.l., which was the lowest glacier altitude in the Italian Alps. It 
is now at 2400 m a.s.l. Brenva Spur is permafrost-affected as suggested 
by permafrost statistical distribution models at the scale of the Alps 
(Boeckli et al., 2012) as well as at the scale of the Mont-Blanc massif 
(Magnin et al., 2015). The presence of cold hanging glaciers and ice 
aprons near the spur and on its northern slope also attest to this presence 
(Ravanel et al., 2023). 

From a large scale geological point of view, granite intrusions in the 
gneissic basement, which occurred approximately 300 My ago (Guer-
mani and Pennacchioni, 1998), formed the Mont-Blanc massif (mainly a 
granitic batholith) during the Hercynian orogeny. These two intrusion 
units meet at the summit of Mont Blanc (Ravanel et al., 2010). Coarse 
grained granites characterize the central part of the Mont-Blanc massif, 
while medium grain granites are distributed along its edges. 
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Additionally, the southern region is primarily made up of fine-grained 
granite (Guermani and Pennacchioni, 1998). More specifically, the 
southeastern slopes of the Mont-Blanc massif are composed of rocks 
originating from the Helvetic basement (Fig. 1c). These consists pri-
marily of granites with medium or coarse biotite, sometimes porphyritic, 
leucocratic veins, and subvertical magmatic foliation and show weak, 
low grade alpine metamorphism (Steck et al., 2001). 

Slopes of the Italian side around the Mont Blanc summit, including 
the Brenva Spur, are very steep and composed mainly of granites and 
massive crystalline schists. Cataclastic and mylonitic zones, with a 
NE–SW strike, dip steeply to the northwest and alternate with these 
granites. A complex system of joints and faults breaks up the slopes 
(Bertini et al., 1985) and form a rock mass with multiple planes and 
fractures consisting of highly variable directions and densities. Howev-
er, the shear zones of the 1997 rock avalanche are clearly visible in the 
source area (Barla et al., 2000). In this Italian region, highly fractured 
rock masses, steep slopes, and glacier retreat have resulted in frequent 
rock slope failures over the centuries (Deline et al., 2015). During the 
20th century, the Brenva glacial basin saw two large rock avalanches. As 
a result of retrogressive failures originating from the same source, five 
large rock masses (Deline, 2009; Deline et al., 2015) fell from the east 

face of the Grand Pilier d'Angle between 14 and 19 November 1920. The 
total volume of the failed rock ranges between 2.4 and 3.6 × 106 m3. On 
18 January 1997, 2 × 106 m3 of rock detached from the Brenva Spur. In 
the frontal part of the avalanche, two skiers were killed at Plan Pontquet 
near Entrèves (1306 m a.s.l.), and the shock wave destroyed a significant 
portion of the forest located on the other side of the slope (Deline, 2009; 
Fort et al., 2009; Giani et al., 2001). The 1997 Brenva rock avalanche 
scar was reactivated on 22 and 30 September 2016 with two large 
rockslide events estimated at (1.2 ± 0.3) × 104 and (1.5 ± 0.4) × 104 

m3, respectively. The maximum total volume of the two events was 
estimated to be about 3.4 × 104 m3 (Fig. 1). 

3. Materials and methods 

3.1. Data acquisition 

Following the reactivation of the Brenva rock avalanche scar in 
September 2016, SfM surveying was implemented to characterize the 
subsequent rock slope failure activity. Five helicopter flights performed 
between July 2017 and September 2021 enabled the manual acquisition 
of five series of high-resolution photographs of the scar using single-lens 

Fig. 1. Location and geological setting of 
the study area. (a) Location of the Brenva 
glacier basin (yellow frame) within the 
Mont-Blanc massif; (b) overview of the 
Brenva glacier basin, the red frame in-
dicates the location of the Brenva rock 
avalanche scar (ph.: Joëlle Hélène Vicari, 2 
September 2021); (c) simplified geotectonic 
map of the Mont-Blanc massif (modified 
after Steck et al., 2001); (d) detail view of 
the Brenva rock avalanche scar showing the 
external boundaries of the 1997 rock 
avalanche (white dotted line) and two large 
rockfall events in 2016 (orange dotted line). 
Elevations are in m a.s.l. (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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reflex cameras. Further details of the surveys are shown in Table 1. Of 
the cameras used, only the Canon 7D Mark II had an integrated GPS 
system. However, this feature was not utilized during the data collection 
process. Additionally, none of the cameras were connected to any 
external GPS devices during the survey. Overlap between photographs 
varies from 60 to 80%. Due to the difficulties of access to the Brenva 
Spur, no ground control points (GCPs) were set during these surveys that 
would have been used for the generation of SfM models. 

3.2. Data processing 

3.2.1. 3D points cloud model generation 
All the photographs were processed with Agisoft Metashape Profes-

sional (version 1.6.2) (AMP) software (Agisoft, 2020), a dedicated 
photogrammetric program that uses SfM-MVS (Multi View Stereo) al-
gorithms to generate high resolution 3D models. The main workflow 
followed to generate 3D point clouds by AMP includes photo pre-
inspection and importation, high accuracy photo alignment, and the 
generation of high-quality dense point clouds (Cook and Dietze, 2019). 
Due to the differences in camera resolution, the number of photos and 
the shooting distances, the density of the final SfM point clouds over the 
interesting part on the Brenva rock avalanche scar is variable. As a 
result, the surveys conducted in July 2017, August 2017, October 2018, 
September 2020, and September 2021 had average point cloud densities 
of 83 pts./m2 (0.11 m point-to-point spacing), 42 pts./m2 (0.15 m point- 
to-point spacing), 14 pts./m2 (0.27 m point-to-point spacing), 84 pts./ 
m2 (0.11 m point-to-point spacing), and 24 pts./m2 (0.20 m point-to- 
point spacing), respectively. 

3.2.2. Georeferencing and registration of 3D model 
These five sets of SfM points clouds were exported to CloudCompare 

(version 2.12. alpha) (CloudCompare, 2021) to perform further align-
ment and comparisons. The 3D point cloud (1 m resolution) extracted 
from the 2008 Digital Terrain Model (DTM) of the Valle d'Aosta Auton-
omous Region was used as the reference for the geolocation of the 3D 
point clouds obtained by the SfM photogrammetry surveys. Initially, 
rough alignment was carried out by picking at least three feature-based 
point pairs from the entire 3D point cloud. Then, an iterative closest 
point (ICP) algorithm (Besl and McKay, 1992) was applied to improve 
the coarse alignment by minimizing the root mean square error (RMSE) 
between the 3D point clouds and meshes (Abellán et al., 2010). Next, 
two manually selected areas were considered as stable, and the ICP was 
applied. The transformation matrix obtained by this process was applied 
to the remaining portions of the datasets that were considered as un-
stable. The 3D mesh was generated using the Poisson Surface Recon-
struction algorithm (Kazhdan and Hoppe, 2013) and was completed in 
3DReshaper software (Hexagon-Technodigit, 2016) and CloudCompare. 
It is worth noting that to address the absence of GCPs, the points cloud 
was divided into several smaller parts that were aligned independently 
by the ICP algorithm one by one. 

3.2.3. Change detection and noise filtering 
The cloud-to-mesh nearest orthogonal distance (C2M distance) 

(Kiryati and Székely, 1993) was computed to detect surface change 
between two models. As a result, each point on the 3D model was 

assigned a scalar value corresponding to the C2M distance. Surface 
changes with positive and negative values are caused by an accumula-
tion (e.g., debris, snow) or a loss (e.g., rockfall, snow melting), respec-
tively. A visual inspection of the RGB images helps identify artefacts 
(shown as positive changes) along the model's edges. The raw C2M 
distance was denoised using a noise filter (Abellán et al., 2009) based on 
the nearest neighbour averaging algorithm to remove spatial noise 
caused by doming and spike phenomena that arise in the process of 
photographic 3D modelling (Guerin et al., 2017). The value from 100 
neighbours was chosen for the denoising process for all the datasets in 
our study. Then, change detection thresholds were set to twice the 
standard deviations of the C2M distance for the parts supposed to be 
stable (Abellán et al., 2009), resulting in detection thresholds of 0.28, 
0.48, 0.50, and 0.50 m for the 4 successive comparisons, respectively. 

3.2.4. Rockfall clustering and volume calculation 
All points whose calculated C2M distance was below the threshold of 

detection were removed from the point cloud. The change plots and RGB 
photos were inspected to identify points related to rockfalls (Tonini and 
Abellan, 2014). Subsequently, the clusters of points associated with 
rockfalls were manually delineated and segmented. The rockfall volume 
calculation was performed using the 3D alpha-shape method following 
the guidelines suggested by Guerin et al. (2017) and Van Veen et al. 
(2017). 

An example of the change calculation and rockfall sources detection 
method applied to the comparison between July 2017 and October 2018 
that follow the above processes (Fig. 2) is shown in Fig. 3. 

3.3. Structural analysis 

Using georeferenced 3D point cloud data obtained with SfM photo-
grammetry and Coltop3D software (Jaboyedoff et al., 2007), we created 
a 3D shaded, coloured relief map that reveals topographic orientation 
(slope aspect and slope angle). This approach enabled us to conduct 
topographic structural analysis, which is crucial for studying rock mass 
slopes at high elevations. These areas are often remote and inaccessible, 
making conventional field investigations challenging. By employing this 
method, we detected discontinuities responsible for rock slope in-
stabilities. On the Brenva rock avalanche scar (Fig. 4), we identified a 
total of seven main joint sets (rock face (RF) and J1 to J6). To gain a 
better understanding of how discontinuities contribute to progressive 
slope failure, it is essential to determine the families of discontinuities 
involved in past events. To achieve this, we exported the point cloud of 
each discontinuity family from Coltop3D and imported them into 
CloudCompare. Subsequently, we linked the point clouds independently 
with the locations of rockfall sources on the 3D model (Matasci et al., 
2018). Through this method, we could determine the number of rock-
falls each joint set was involved in. 

3.4. Defining the rock instability scenarios 

3.4.1. Instability scenarios based on the structural analysis 
In the context of steep rock slopes, the significance of main discon-

tinuities in determining potential instability is widely acknowledged 
(Stead and Wolter, 2015; Wyllie and Mah, 2004). These discontinuities, 

Table 1 
Key features of the five helicopter-based SfM photogrammetry surveys.   

Survey 1 Survey 2 Survey 3 Survey 4 Survey 5 

Date of acquisition 4th July 2017 25th August 2017 23rd October 2018 18th September 2020 2nd September 2021 
Camera model Nikon D810 Nikon D700 Canon EOS 7D Mark II Canon EOS 7D Mark II Sony ILCE 7 M2 
Image resolution (pixels) 7360 × 4912 4256 × 2832 5472 × 3648 5472 × 3648 6000 × 4000 
Focal length (mm) 50 24 24 100 35 
Number of processed images 600 62 162 367 126 
Average size of images (MB) 15 9.8 7.7 9.3 6.3  
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which are visible at rock outcrops, can be examined by analyzing their 
intersecting characteristics, thereby identifying critical rock mass 
structures (Jaboyedoff et al., 2020). By integrating a 3D points cloud 
with a visual inspection of the RGB image of the scar, it becomes possible 
to assess the extent of potential instability scenarios, referred to as the 
“failure volume”. This assessment mainly involves fitting planes on the 
exposed portions of relevant unfavourable discontinuities and analyzing 
the interrelationship, which aims to delineate the large kinematically 

unstable rock mass, between the extrapolated planes of various exposed 
joints. The following procedure outlines the detailed methodology 
employed for defining instability scenarios based on the 3D point cloud 
data.  

1. Define at least three unfavourable discontinuities, permitting the 
large kinematically mobilization, based on the major historical slope 

Fig. 2. Flowchart of the 3D points cloud processing for the rockfall detection and volume estimation.  

Fig. 3. Results of the change detection between July 
2017 and October 2018. (a) Filtered point-to-mesh 
differences between the 2017 point cloud and the 
2018 reference mesh. Positive surface changes 
correspond to debris and snow accumulation. Nega-
tive surface changes indicate rockfalls and snow 
melting. (b) Detail of the surface change and the lo-
cations of the rockfall sources (indicated in light blue 
and red) in Panel a. (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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failure features and the spatial distribution characteristics of the 
main discontinuities identified in Section 3.3.  

2. Extrapolate each discontinuity and fit unconstrained planes to 
intersect each other and delineate the contour of the instability in 
CloudCompare. 

3. Separate out and calculate the volume delineated by the slope sur-
face and the fitted planes. 

3.4.2. Instability scenarios based on the SLBL method 
The SLBL method was developed from the concept of base level in 

geomorphology (Jaboyedoff et al., 2019, 2020). It refers to a lower limit 
of the erosion process and is represented by a surface that is defined 
based on the altitude of streams. The SLBL method applies a similar 
principle to calculate the surface elevation above which the rock mass is 
considered susceptible to erosion. This calculation provides a potential 
3D failure surface for determining the volume of instability of slopes 
when applied to a gridded DEM. Before calculating the failure surface, 
the instability's limits or perimeter must be defined using geomorphic 
features such as streams or morphological instability features. For 
example, the base of the unstable mass could be identified as either the 
bottom of the valley or a change in the slope angle, while the top could 
be defined as tension cracks or any trace of main discontinuities. The 
lateral boundaries could be determined by the extent of the upper 
geomorphic feature. Subsequently, the failure surface can be obtained 
using the following iterative routine (Jaboyedoff et al., 2020):  

1. At each iteration t (Fig. 5), for each grid node of the DEM, the SLBL 
method is calculating an “average” altitude ztemp(t)i,j of all the four 
direct neighbouring altitudes of the previous iteration zn(t − 1)i,j, 
minus a positive, constant C(tolerance), i,j represents the number of 
the node, i.e., for example: 

ztemp(t)i,j =

(
zn(t − 1)i,j+1+zn(t − 1)i,j− 1+zn(t − 1)i+1,j+zn(t − 1)i− 1,j

)

4
− C (1)    

2. This process can be performed by either a simple average of a given 
number of neighbours or by fitting a surface. The result is a new grid 
which is compared to the previous one, and if ztemp(t)i,j < z(t − 1)i,j, 
then z(t)i,j = ztemp(t)i,j; otherwise, the value is unchanged. An addi-
tional condition can be added by limiting the z(t)i,j value changes by 
another DEM or by assuming a limiting slope angle.  

3. This calculation is performed iteratively and repeated until all the 
differences over the grid are smaller than a given threshold. 

After the sliding surface is generated in 3D, the sliding volume is 
determined by comparing it with the original DEM. 

Fig. 4. Results of the structural analysis performed on the 2018 SfM 3D point cloud. Seven main joint sets were detected within the Brenva rock avalanche scar 
(spatial orientation of dip direction/dip angle is indicated by degrees). The stereographic projection displays the poles of each joint set (Schmidt stereoplot, equal 
area, lower hemisphere). 

Fig. 5. Illustration of the SLBL iteration process (modified after Jaboyedoff 
et al. (2009)). 
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3.5. Power-law and statistical analysis 

It is possible to deduce the power laws that link the magnitude of a 
particular natural event to its frequency based on statistical analysis. For 
future events, these mathematical relationships can be employed to 
predict their type, extent, return time, and magnitude. Dussauge et al. 
(2003), Hungr et al. (1999), and Williams et al. (2018) found that 
rockfall volume and cumulative rockfall frequency have a demonstrated 
relationship, which can be visualized by using a complementary cu-
mulative distribution function (CCDF) that is commonly adopted, as it 
avoids the ambiguities caused by the subjective selection of the bin size 
within the probability density function (PDF) method (Bennett et al., 
2012; Strunden et al., 2015). The relationship is described by a power- 
law as follows (Hantz et al., 2003; Hungr et al., 1999): 

N(V) = a V − b (2)  

where N is the cumulative number of rockfalls larger than or equal to the 
volume V (in m3) per unit of time, with a and b representing the pre-
liminary factor and power-law exponent, respectively. Rockfall activity 
is directly connected to parameter a, which represents rockfall fre-
quency, and the slope of the power-law is related to the b component. 
Specifically, a higher value of a means that more frequent rock failures 
occur, and a higher value of b indicates that the proportion of smaller 
rockfall volumes is more significant than that of larger rockfall volumes. 
The value of b can be estimated either by a least squares linear regression 
or the maximum likelihood estimation (MLE) approach proposed by Aki 
(1965): 

b = 1/ln(10)(〈logV > − logV0) (3) 

Where ln(10) is a constant, < logV > is the average value of logV, and 
V0 is the minimum volume considered (cut off volume) for the fitting, 
above which the power-law relationship is robust (Dussauge et al., 
2002). 

Assuming that the rockfall volumes follow a power-law frequency 
distribution, and because of the limitation of the short span of moni-
toring in natural environments, which would lead to epistemic un-
certainties in the statistical model and prevent an exact prediction of the 
return period for a particular volume for a rock failure event (Straub and 
Schubert, 2008), we used Monte Carlo simulations to estimate the 
confidence intervals (uncertainties) of the return period of the potential 
rock failure scenarios. The simulation principle is done by simply 
inverting a certain sets of the power-law generating volumes, rather 
than removing a certain amount of sample from the large database and 
repeating the simulations, as suggested by Strunden et al. (2015): 

V =

(
Fmin + rand × (Fmax − Fmin)

a

)
− 1
b (4)  

where rand is a random number between 0 and 1, constant a and b hold 
same meaning as described in Eq. (2), and Fmin is the minimum fre-
quency corresponding to the approximate time separating the 1997 
event from subsequent events. Fmax is the maximum frequency corre-
sponding to the high rockfall frequency between 2017 and 2021 in this 
case. In this approach, 1 × 105 datasets of rockfall inventories were 
simulated. It's important to emphasize again that the validity of this 
proposed statistical approach depends on the assumption that the rock 
failure volume distribution follows a power law. 

4. Result 

4.1. Rockfall occurrence and involved structures 

Comparisons between 3D SfM point clouds allowed to identify the 
volumes of rock that fell from the scar, except for areas obscured by 

snow. As a result, the volume of the rockfall source inventory for the 
entire Brenva rock avalanche scar between 2017 and 2021 was estab-
lished. The results showed 39 rockfall source areas, with volumes 
ranging from 11 to 13,250 m3: 6 rockfalls occurred between July and 
August 2017, 18 between August 2017 and October 2018, 11 between 
October 2018 and September 2020, and 4 between September 2020 and 
September 2021 (Fig. 6). The total accumulated volume of rockfalls 
between 1997 and 2021 is approximately 2.05 × 106 m3. In average, 
9.75 events occurred per year (5600 m3) during the period 2017–2021. 
Both the average volume (or corresponding area) and number of events 
each year on the Brenva rock avalanche scar has decreased in recent 
years (Table 2). However, the frequency of events before 2017 could be 
higher even though only two significant events in 2016 were listed. The 
rock face erosion rate was calculated by dividing the related failure 
volume by the scar area (3.74 × 106 m2). Table 2 reveals that the erosion 
rate of the rock wall was significantly higher at 44 mm/year during the 
period of 2017 to 2018 compared to the subsequent period of 2018 to 
2021 (1.3 mm/year). The average erosion rate from 2017 to 2021 was 
15.5 ± 2.3 mm/year. Additionally, a noticeable trend can be observed in 
the average depth of rockfall scars, which has progressively decreased 
from 1.8 m in 2017 to 0.6 m in 2021. Similarly, the average maximum 
scar depth has decreased from 3.7 m to 1.7 m. The largest rock failure 
was approximately 1.3 × 104 m3 (Fig. 6). It occurred, between 2017 and 
2018; the corresponding scar was first observed on the 02 September 
2018. It is the only event that exceeded the magnitude of 1.0 × 104 m3 

during our investigation, resulting in a high erosion rate. This event was 
triggered on the steep ridge of the scar, where a subvertical rock face 
was formed by the 1997 rock avalanche and remained exposed to 
gravitational readjustment for 21 years. Such a large event detached 
from the scar is less frequent than small boulder falls. Specifically, we 
only documented two instances of large event in 2016 and one in 2018. 

The rockfalls detected during the investigation were not clustered in 
specific areas, but smaller rockfalls occurred more easily in the highly 
fractured zone (Fig. 7) of the scar where restricted movements are ex-
pected to partly affect the upper smaller instability scenarios. Unfortu-
nately, we could not trace the distribution of rockfall deposits, as it's 
challenging to determine the exact location where the rockfall has 
settled based on annual remote sensing surveys, especially considering 
the impact of melting glaciers and snow at the base. The statistical re-
sults (Fig. 8) show that the families of discontinuities RF, J1, J2, J4, and 
J5 are most often involved in these 39 events. Generally, the developed 
and persistent J1 discontinuity served as the basal plane of sliding in 
most detected rockfall cases. J2, J4 and J5 formed the lateral release 
face that constrained the volumes. The traces of the same joint sets as RF 
(indicated by the long purple dotted line in Fig. 7) are still extensively 
exposed in parallel at the top of the Brenva rock avalanche scar. The 
highly persistent discontinuity, RF, played a significant role as the large 
back release surface in the 1997 rock avalanche. Considering the 
importance of RF in historical large events and recent 39 boulder falls, 
we need to fully consider the role played by the RF discontinuity in 
defining potentially reasonable large rockfall scenarios in the future, 
which is described in Section 4.2. 

4.2. Potential slope failure volumes 

The primary progression of rock failure occurs at the intersections of 
major joints (Stead and Wolter, 2015). We adopted an assessment 
approach that incorporates both the analysis of exposed discontinuities 
and the SLBL concept outlined in Section 3.4 to evaluate potential failure 
volume scenarios. This approach led to the identification of seven rock 
failure scenarios, labeled as S1 to S7, based on their volume magnitude 
from smallest to largest. Among these scenarios, three were identified 
through geo-structural analysis, while four were derived from the SLBL 
concept. In the subsequent sections, we will provide a comprehensive 
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overview of the results obtained from both methods. 

4.2.1. Scenarios defined by structural analysis 
It is worth noting that there are some assumptions in the procedure 

described in Section 3.4.1, such as that the scenarios defined here are 
supposed to represent one single detachment each and that the main 
joints have enough persistence under the rock mass to intersect each 
other. The mentioned assumptions are applicable when considering the 
specific case of the large rock avalanche event in 1997 that is con-
strained by the top tension crack developed from high persistent RF 
under the force of gravity, lateral limit J6, and basal plane stepped J1. 
Following the above approach and assumptions, we characterized three 
largest potential rock failures of the Brenva Spur resting on the unfav-
ourable basal plane J1. The geometric characteristics and the volumes of 
three scenarios (S3, S5, and S7) identified by such geo-structural con-
straints are shown in Fig. 9. The largest rock mass failure scenario (S7) 
has a calculated volume of 4.8 × 106 m3. This volume was delimited by 
J1 (basal sliding plane), J6 (lateral limit plane), and RF (upper limit 
plane), which could be an extreme and potential continuation scenario 
of 1997 rock avalanche. S7 shows a wedge sliding failure mode plotted 
by Dips (Rocscience, 2022) (Fig. 10). S3 is bounded by J1 (basal sliding 

plane), J4 (lateral limit), and J6 (lateral limit). S5 are bounded by J1 
(basal sliding plane), J2 (lateral limit), and J5 (bottom limit). S3 and S5 
exhibit similar kinematically unstable characteristics as S7 and could be 
potential sub-level continuations of the 1997 event. 

4.2.2. Scenarios defined by SLBL method 
As mentioned in Section 3.4.2, before using the SLBL method, the 

limits of the potentially unstable rock mass should be defined. In this 
study, the structural and morphological characteristics of the Brenva 
spur are considered in defining the perimeter of potential instability, for 
instance, particular attention is given to notable features like the distinct 
RF trace adjacent to the scarp of the 1997 scar and the niche present on 
the summit. Four scenarios (S1, S2, S4, and S6) were defined based on the 
trace of joint set RF as the upper limit and the traces of joint sets J2, J4, 
and J6 as the lateral boundaries. The lower limit, referencing the base, 
corresponds to the slope angle break below the main scarp. Scenario S1, 
with a calculated volume of 3.1 × 104 m3, primarily encompasses the 
niche located at the top. S2 and S4 have a larger coverage area, extending 
southwest from S1. S6 expands northeastward, reaching the edge of the 
scar, building upon the foundation established by S4. The failure volume 
and thickness, computed using the SLBL criteria, are illustrated in 

Fig. 6. Rock failure activity highlighted for the Brenva rock avalanche scar by employing SfM monitoring from July 2017 to September 2021. 39 rockfall sources 
were detected during this period. The zone demarcated by the yellow rectangle corresponds to the background photo shown in Fig. 7. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Characteristics of the rockfalls between 2017 and 2021 in the Brenva Spur.  

Periods Rockfalls 
number 

Total failure volume 
(m3) 

Total failure scar area 
(m2) 

Average scar depth 
(m) 

Average maximum scar depth 
(m) 

Erosion rate (mm/ 
year) 

07/2017 to 10/ 
2018 

24 20,576 ± 2563 6180 ± 214 1.8 ± 0.7 3.7 ± 0.6 44 ± 5.5 

10/2018 to 09/ 
2020 11 1740 ± 612 1225 ± 54 1.2 ± 0.5 2.5 ± 0.2 2.3 ± 0.8 

09/2020 to 09/ 
2021 4 121 ± 95 190 ± 34 0.6 ± 0.3 1.7 ± 0.2 0.33 ± 0.2  
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Fig. 11. 
We conducted a comparison between volumes computed using the 

SLBL method and those estimated from the structure-based analysis 
conducted in the previous step. The results indicate that the volumes of 
scenarios S1, S2, and S3 were of similar magnitude, ranging from 3.1 ×
104 m3 to 8.0 × 104 m3. In contrast, scenarios S5 (reconstructed using 
structural analysis) as well as S4 and S6 (reconstructed using the SLBL 
method) exhibited higher magnitudes, ranging from 1.3 × 105 m3 to 8.0 
× 105 m3. Comparing S1 and S2 with S3, and S4 with S5, and S6 with S7 
reveals that the volumes obtained using the structural analysis consis-
tently exceed those obtained using the SLBL method. This can be 
attributed to the fact that the structural analysis-based approach does 
not account for interruptions caused by minor discontinuities (com-
posite structures) or the presence of rock bridges, resulting in a 

simplified sliding surface and larger volume estimates. Conversely, the 
SLBL method creates a potential failure surface by interpolating the 
instability limit without considering identified structures such as J1 
(bottom plane), which is assumed persistent and acts as the basal sliding 
plane in most instability scenarios defined by the structural approach. 

4.3. Volume-Frequency (V-F) relationship 

The method described in Section 3.5 has been used to estimate the 
volume-frequency (V-F) relationship for rockfalls and rock avalanches 
that is distributed according to a power law. Not all small events were 
observed and listed during the period before 2017, which may be con-
servative and give rock failure a calculated return period differing from 
its actual occurrence but agreeing with the power law. The relationship 

Fig. 7. Highly fractured scar surface located at the top of the Brenva rock avalanche scar (the background photo refers to the yellow rectangular area shown in 
Fig. 6). The main discontinuities, RF, JI, J2, and J6, were located on the scar and intersected with each other. Most of the small boulders fell from the highly fractured 
zone delineated by the closed black polyline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 8. Statistical distribution of the discontinuities involved in the 39 detected rockfall sources. The number in the red frame indicates the number of rockfalls 
related to the corresponding joint. RF (rock face), J1, J5, and J4 are the joint sets most involved in a rockfall in sequence. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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differs if we consider only the events from 2017 to 2021 or if we include 
two large events from 2016 and one from 1997 (Fig. 12). The corre-
sponding power law fittings are as follows: N(V) = 48.65 V− 0.58 and 
N(V) = 33.78 V− 0.47 obtained using least square linear regression (LR). 
In this case, the minimum, or cut off, volume (V0) of the power law 
fitting is set as 11.35 m3. No apparent truncation or rollover and tail are 
observed from the distributions. The value of the latter power-law fitting 

exponent b is equal to 0.47 and 0.43 ± 0.14, which was estimated using 
LR and MLE within the CCDF approach, respectively. Both values are in 
the range of an average value of 0.5 ± 0.2 for subvertical rock slopes and 
close to the value from Dussauge et al. (2002, 2003) and Hungr et al. 
(1999). The MLE yields a lower exponent than the LR, which indicates 
that larger volumes dominate the tail of the power law decay produced 
by MLE, or that a particular large rock failure has a shorter return period 

Fig. 9. (a) Representation of three (S3, S5, and S7) of the seven defined large scenarios. S7 controlled by discontinuity planes J1, J6, and rock face (RF), which were 
identified on the Brenva rock avalanche scar by the SfM model and RGB photos. (b) Plot of S3 controlled by J1, J4, and J6. (c) Plot of S5 controlled by J1, J2, and J5. 

Fig. 10. Kinematic analysis for the main joint sets involved in the defined extreme scenario S7 using structural analysis. The black circular arc indicates J1, the red 
circular arc indicates the rock face (RF), and the blue circular arc indicates J6. The red solid rectangle indicates the intersection of J1 and J6, which is in the light 
orange zone (referred to as the critical zone of wedge sliding). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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and a higher frequency by MLE, which is not supported by historical 
inventory. 

Graber and Santi (2022) concluded that the maximum rock failure 
volume recorded by the historical inventory poses a more significant 
influence on the value of scaling exponent b than the minimum volume. 
They accomplished this by regressing these two types of volumes and by 
applying the scaling exponent b derived from published references. 
Undersampling large rock failure events in the fitting power-law tail 
profoundly affects the capacity to determine the frequency of future 

larger magnitude events. This also implies that the maximum rock 
failure magnitude in the inventory would be beneficial to constrain the 
unrealistic extrapolation and to obtain the accurate frequency or return 
period of larger failure events. These very large events are generally 
missing in studies on recent dynamics such as Ravanel et al. (2017). 
Therefore, we use the power-law fitting N(V) = 33.78 V− 0.47 that 
included three large historical events as the basis for the following re-
turn period analysis and interpretation. Based on this fitting, we can 
preliminarily assume that an event greater than or equal to 1 × 105 m3 

could occur every 6.6 years, while events greater than or equal to 1 ×
106 m3 could occur every 20 years. Additionally, rockfalls with volumes 
greater than or equal to the maximum scenario (4.8 × 106 m3) would 
occur approximately every 41 years, though this is not observed. The 
frequency of events with volumes between 1 × 105 m3 and 8 × 105 m3 

would occur every 11 years, which is close to the observed event fre-
quency but still high for the present situation. At last, if we extrapolate 
the return period of the 1997 event (25 years ago) using the N(V) =
48.65 V− 0.58 (2017 to 2021), it yields a value of 93 years that does not 
align with reality. This discrepancy indicates the impact of large events 
on the constraints of the power law distribution (referring to the b). 

5. Interpretation and discussion 

5.1. Rock failure feature and rock wall erosion 

The power law distribution observed in the study fits well and does 
not exhibit clear truncation (Fig. 12). The absence of truncation is likely 
attributed to the limited observations of small events before 2017 that 
are yet very numerous in the Mont-Blanc massif (Ravanel and Deline, 
2010, 2013). Slope failures can be divided into two types of processes 
based on the power-law distribution. 1) One kind of failure is the small 
magnitude, but very frequent, boulder falls and/or rockfalls from a 
highly fractured zone of granite. The stronger fitting distribution usually 
appears among the volumes of these types of failures. 2) Another type of 
failure consists of larger rock failure event that occurs with much less 
frequency along the intersections of the established discontinuities 
(Bennett et al., 2012; Katz and Aharonov, 2006). The larger the involved 

Fig. 11. Four (S1, S2, S4 and S6) of seven large potential failure volumes identified by the SLBL concept shown with the DEM shading of the Brenva rock 
avalanche scar. 

Fig. 12. Rockfall source volume-frequency relationship for the Brenva rock 
avalanche scar between 1997, 2016 and 2017–2021. Red and black data points 
are from SfM monitoring (2017–2021), and green data points are the 1997 and 
2016 historical events. The black dashed line indicates the power law fitting for 
the 42 rock failures using least square regression, while the red dashed line 
indicates that for 39 rockfalls from 2017 to 2021. S1 to S7 represent seven 
potential rock failure scenarios defined by the combination of structural anal-
ysis and SLBL, as discussed in Section 4.2. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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rock failure volume is, the longer it takes to develop the conditions that 
make it prone to collapse (Abele, 1994; Bolla and Paronuzzi, 2020) also 
in permafrost-affected areas (Gruber and Haeberli, 2007; Hartmeyer 
et al., 2020a; Messenzehl and Dikau, 2017). The upper and gentler slope 
(48◦) of the Brenva scar, characterized by highly fractured granite and 
exposed isolated blocks, experiences a higher frequency of small boulder 
detachments, with 22 rockfalls smaller than 100 m3 recorded. Notably, 
the prominent discontinuities, such as J2, J6, and RF, as well as the 
north-eastern subvertical ridge (Fig. 7), greatly control the stability of 
the rock wall. Along these discontinuities and ridge, four rockfalls 
exceeding 1000 m3 in size have been identified, comprising 80% of the 
total volume. The occurrence of these rockfalls (locate at the tail of the 
power law distribution) has directly contributed to the pronounced 
erosion rates evident on the rock wall. 

During the five-year monitoring period, the average erosion rate of 
the rock wall was 15.5 mm/year. Specifically, between 2017 and 2018, 
the erosion rate reached 44 mm/year. The recent erosion rate from 2020 
to 2021 has decreased significantly to 0.33 mm/year. When compared to 
other rock walls, this average erosion rate is much lower than the 
erosion rate observed at Drus (French side of Mont Blanc massif), which 
was 121.3 mm/year from 2005 to 2011 (Guerin et al., 2020). On the 
other hand, it is higher than the erosion rate at Gemsstock (2961 m a.s.l., 
Swiss Alps) (6.5 mm/year between 2006 and 2010) and at Tour Ronde 
(3792 m a.s.l., French Alps) (8.4 mm/year between 2005 and 2006) 
(data extracted from Hartmeyer et al. (2020a)). Furthermore, compared 
to the erosion rate of 10.32 mm/year on the Kitzsteinhorn (3060 m, a.s. 
l., Austrian Alps) north face in a cirque environment (recently deglaci-
ated area) during 2011–2017 (Hartmeyer et al., 2020b), the erosion rate 
at our monitored rock wall is higher. However, it is important to note 
that the highest retreat rates in the proximal areas (closer to the glacier 
surface) of the Kitzsteinhorn (north face) reached 57.32 mm/year, sur-
passing the rate observed for Brenva between 2017 and 2018. From a 
long-term perspective, it is worth noting that erosional processes exhibit 
high discontinuity and temporal variability. Typically, the mean rock 
wall retreat rates (long term) for the reported cirques in high altitudes 
are below 1.0 mm/year (Hartmeyer et al., 2020b). Based on the 
remarkably high erosion rates described before in the high Alps since 
2005, all the findings consistently indicate enhanced rock wall retreat 
during deglaciation, despite the inherent challenge of comparing 
geomorphic evidence across significantly different spatiotemporal 
scales. 

5.2. Driving factors of rock failure 

Due to the slope aspect and high elevation, the small rock de-
tachments in the fractured zone on the Brenva scar are driven primarily 
by the initial condition of the slope, such as a well-developed fracture 
network coupled with mechanical weathering (probably driven by the 
thermally induced stress from cooling-heating cycles (Guerin et al., 
2019)), frost weathering (caused by freeze–thaw cycles (Viani et al., 
2020)), the seepage of rainwater and melting snow that induces hy-
draulic pressures in fractures (Krautblatter et al., 2013) (a snow source 
and water run-off can be seen on the upper slope and the left gully in the 
summer, as shown in Fig. 7), and cryogenic processes within the active 
layer of the permafrost (subsurface layer that thaws seasonally) (Legay 
et al., 2021). 

However, outside of fundamental factors such as topography and 
structural features, the effects of climate change on the Brenva rock 
avalanche scar are also worth considering. Some recent large rockfalls in 
Mont-Blanc massif and the enhanced rockfall activities during the heat 
waves of 2003 and 2015 showed the impact that the permafrost 
degradation and glacier retreat caused by global warming has on rock 
instability (Deline, 2001; Ravanel et al., 2010, 2017; Viani et al., 2020). 
Gradually, permafrost thaw associated with unexpected heat waves over 
the past few decades/years might have contributed to the rock collapses 
in 2016 and 2018 since rock failure caused by such climate warming 

effects could occur rapidly or with a delay of only months or years (i.e., a 
direct response) (Gruber et al., 2004) by the deepening of the active 
layer and/or by the warming of the permafrost at depth. These param-
eters are measured since 2010 in 10-m-deep boreholes at the Aiguille du 
Midi (3842 m a.s.l.; (Magnin et al., 2015)), on the French side of the 
Mont-Blanc massif, 4.7 km north of the Brenva Spur. The southern 
borehole is located at 3753 m a.s.l. on a slope that is geologically and 
topographically very similar to the Brenva spur. In this south face, the 
average depth of the active layer for the years 2010, 2011, 2014 and 
2015 (no data for 2012 and 2013) was 5.5 m with a maximum of 5.9 m 
for 2011. For 2016, 2017 and 2018, the depth of the active layer was 
quite homogeneous and much more important with an average of 6.9 m, 
i.e., 1.4 m more than for the previous years, indicating an accelerated 
degradation of the permafrost in those years. At a depth of 10 m, the 
mean annual rock temperature rose by >0.5 ◦C between 2010 and 2018, 
from − 1.6 to − 1.1 ◦C, again indicating a significant warming that might 
have contributed to the triggering of the main events of 2016 and 2018 
at the Brenva Spur, which also can be strengthen by the rockfall scar 
depth decreasing from 3.7 m (2017–2018) to 1.7 m (2020-2021). 

To other elements support the role of the permafrost degradation in 
the triggering: ice was observed at the scar after the event (see e.g. 
Cremonese et al., 2011), and the timing of the event (end of September) 
corresponding roughly to the period during which the depth of the 
active layer is maximum at the Aiguille du Midi. In addition, it can be 
assumed that the ridge that collapsed in 2018 seemingly experienced a 
faster and deeper thaw than other areas on the scar due to its sharp 
topography (Noetzli et al., 2003), especially after experiencing two 
summer heatwaves in 2003 and 2015 in the Mont-Blanc massif. Despite 
the lack of direct evidence for individual cases of rock slope instability 
and the lack of timing information on rockfalls, along with temperature 
and rainfall data, the impact of warming permafrost on rock failure 
cannot be ruled out for the Brenva rock avalanche scar. In such a remote 
environment it is almost impossible to have a permanent survey of the 
topography like the study by Williams et al. (2018). As the temperature 
rises rapidly in higher mountains (Gobiet et al., 2014), the magnitude 
and frequency of rock failure would exhibit uncertainty and likely occur 
at rates beyond the historical range in the future. Overall, the knowledge 
gained from rockfall activities in high mountains caused by permafrost 
degradation confirms the necessity of conducting continuously updated 
risk assessments for potential extreme rock instability scenarios on the 
1997 Brenva rock avalanche scar. 

5.3. Extrapolated return period of potential scenarios and uncertainty 

Return period estimation is important in rockfall hazard assessment 
because it provides valuable information about the frequency at which 
rockfall events of a certain magnitude are expected to occur in a given 
area. It helps in understanding the long-term behavior and likelihood of 
future rockfall events, which is crucial for effective rockfall or rock 
avalanche hazard mitigation and management. We use the power law 
distribution calculated in the Section 4.3 (see the slanted red solid line in 
Fig. 13a) to extrapolate the return period of those defined 7 scenarios 
and use the Monte Carlo simulation to estimate the corresponding sta-
tistical uncertainties. Applying Eq. (4) for the 1.0 × 105 simulations of 
the distribution and assuming values for the minimum frequency, Fmin =

1/(25years), and maximum frequency, Fmax = 39/(5years) = 7.8 events 
per year, it emerges that events of >1.0 × 104 m3 (served as the refer-
ence scenario S0) have an approximately 50% chance of occurring every 
2.1 years (simulated median power law fitting is indicated by bold 
slanted black solid line in Fig. 13a. However, during the 5 years of 
observation, the rock failure events seem to have exceeded this volume 
(S0) only once. This event has a volume of 1.3 × 104 m3, it can be 
assumed that at least one event was larger than 1.0 × 104 m3 in five 
years. Based on above observation and assumption, we can evaluate the 
power-law fitting of these data. Using the observed frequency of 
approximately 0.2 events per year to exceed 1.0 × 104 m3, we 
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extrapolated a power-law (see the slanted red dotted line in Fig. 13a) 
using a second point defined by the average of ± σ (in the log) of the 
zone with the minimum confidence interval. This leads to an estimated 
return period of 215 years for the extreme event (scenario S7) with a 
probability of 5.4%. The relationship between probability and return 
period for each scenario (Fig. 13b) indicates that smaller events have a 
shorter return period compared to larger events, assuming an equal 
probability of occurrence. In addition, as the magnitude of the scenarios 
decreased, the exceeding probability reduced while maintaining the 
same return period. 

Upon analyzing the confidence intervals of the power law distribu-
tion obtained through Monte Carlo simulation, we observed that for S7, 
the 95% confidence interval ranged from 8 to 399 years (a width of 391 
years). Furthermore, the interval of one standard deviations for S7 
spanned from 14 to 93 years (a width of 79 years). The corresponding 
results for other scenarios are presented in Table 3. It is evident that an 
increase in failure volume corresponds to a wider 68% and 95% confi-
dence interval, indicating greater variability in return period values. 
Thus, the uncertainty is substantial, especially for the extreme large 
scenarios. 

The comparison between the calculated power law fitting in Section 
4.3 and the simulated median power law fitting N(V) = 30.77 V− 0.45, as 
depicted in Fig. 13a, clearly indicates a close resemblance. Utilizing this 
simulated median fitting, we estimated the median return periods for 
various volume scenarios, as illustrated in Fig. 14, which reveals that the 
median return period increases by 4 years per million cubic meters when 

the volume exceeds 106 m3. The 104 m3 (105 m3) failure will occur every 
2 years (5.5 years). It will take 15 years for a failure volume of 106 m3 to 
occur. In the case of S7, the median return period, which amounts to 31 
years, surpasses the duration of our inventory (25 years) by 6 years. 
However, it is worth noting that this additional time span is not exten-
sive when considering the rare rock avalanche magnitude. It is impor-
tant to acknowledge that our data is based on annual observations of 
rockfall source monitoring. Consequently, the slope of the power-law 
distribution may be steeper due to the possibility of multiple events 
occurring within a single year, as observed by Williams et al. (2018), 
which would result in a longer return period for those defined failure 
scenarios. Nevertheless, whether the large volumes were released in a 
single event or multiple events still remains uncertain. This ambiguity is 
partly accounted for within the interval of the simulated power law 
fitting using the Monte Carlo approach. 

While caution should be exercised when extrapolating extreme vol-
ume beyond the considered volume range (De Biagi et al., 2017), it is 
important to highlight that all scenarios in this study, except S7, remain 
below the largest recorded event in history occurred in 1997. These 
estimated return periods considering uncertainties for the six scenarios 
associated with the Brenva spur offer valuable references for risk 
assessment of rockfall/rock avalanche hazards. Anyway, improving the 
quality of the volume-frequency law and reducing statistical errors in 
the procedure can be achieved by maintaining detailed and extensive 
event records, along with conducting comprehensive surveys and proper 
definition of potential failure volumes as we did in this study. 

Fig. 13. (a) Bounds of different confidence intervals of the power-law based on Monte Carlo simulations. The dashed line indicates one of the most plausible hy-
potheses for the power-law. (b) Exceeding probability associated with the return period for each scenario. The black dots indicate the return period used to estimate 
the apparent return period based on recent past large events. 

Table 3 
Return period and the probability of exceeding that period for the reference scenario (S0:1.0 × 104 m3) and seven defined scenarios.  

Scenario Volume [m3] Return periods with different exceeding probabilities (years) 

2.3% 2.5% 15.9% 50.0% 84.1% 97.5% 97.7% 

S0 1.00E+04 7 7 3 2 1 1 1 
S1 3.10E+04 14 14 6 3 2 2 2 
S2 5.20E+04 20 19 8 4 3 2 2 
S3 8.00E+04 27 25 10 5 3 2 2 
S4 1.30E+05 37 35 13 6 4 3 2 
S5 3.20E+05 66 63 22 9 5 3 3 
S6 8.00E+05 122 115 35 14 7 5 4 
S7 4.80E+06 399 375 93 31 14 8 8  
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5.4. Issues in an overturned climatic context 

Considering all of these findings and the ongoing global warming, it 
is highly probable that cryospheric conditions will undergo rapid 
changes. The current climate warming is expected to alter the occur-
rence of rockfalls in glacial environments over several decades following 
glacier downwasting (Hartmeyer et al., 2020b). Therefore, it is sug-
gested that historical rockfall patterns in rock walls impacted by glacier 
retreat and permafrost degradation can only serve as reliable indicators 
for future events if the power law distribution is updated by the latest 
rock failure event accordingly. Thus, the uncertainties put forwards in 
our study could be real and cannot be further constrained. However, the 
observation made on the Drus tends to prove that rockfall activity can 
follow cycles after a major event (Guerin et al., 2020). For the Drus in 
2005 (0.3 × 104 m3; Guerin et al., 2020) and the Brenva Spur in 1997, a 
rock avalanche exposed a new rock wall which, exposed to air temper-
atures and solar radiation, must have developed a new active layer 
which, in addition to mechanical readjustments linked to the main 
event, can trigger rockfalls. In both cases, the decay phase of disruptive 
activity observed today could be followed by a new phase of instability 
as presently suggested by the increased rockfall activities like during the 
very hot summer of 2022 when 282 rockfall events (V > 100 m3) have 
been documented in the central part of the Mont-Blanc massif by a 
network of observers (Ravanel and Deline, 2013), a record since it 
became operational in 2007 (the previous record was for 2019 with 222 
events). 

Moreover, the observed decrease in rockfall activity does not mean 
that the entire rock avalanche scar is more stable and will be less active 
in the long term. The scar can be reactivated and produce a larger event 
(Guerin et al., 2020) as seen recently at Piz Cengalo (3678ma.s.l.; Swiss 
Alps): on the 23 August 2017, around 3 × 106m3 of granitoid rock broke 
off from the eastern face (Mergili et al., 2020) already affected by a rock 
avalanche of 1.5 × 106 m3 on the 27 December 2011 (Walter et al., 
2020). Indeed, climate change could have a significant impact on the 
failure probabilities of the different scenarios. On the other hand, it is 
also difficult to quantify the effect of the presence of highly fractured 
zones (characterized by a small spacing of many families of fractures) on 
the gradual dismantling of the rock mass in small volumes. 

6. Conclusions 

Through five SfM photogrammetry surveys conducted in the Brenva 
rock avalanche scar (Aosta Valley, Italy), we identified 39 rockfall oc-
currences ranging from 11 to 13,250 m3 between July 2017 and 
September 2021. This resulted in a high rock wall retreat rate of 15.5 ±
2.3 mm/year, possibly attributed to permafrost degradation. Monitoring 
data indicated a decrease in rockfall activity, with erosion rates reducing 
from 44 ± 5.5 mm/year to 0.33 ± 0.2 mm/year. Nevertheless, cyclical 
patterns in rockfall activity were observed, as exemplified by the po-
tential activation or acceleration during heat waves in 2022 within the 
Mont Blanc massif. 

Applying a power law-based volume-frequency relationship, we 
estimated the return period and corresponding uncertainties for seven 
potential instability volume scenarios derived from the integration of 
the SLBL concept and geo-structural analysis. The median return period 
for rock failures with volumes of 1.0 × 104 m3 was estimated to be 2 
years, indicating relatively frequent occurrences. However, the high 
confidence intervals for return periods in various scenarios introduce 
significant uncertainty, potentially extending the estimated return 
period to several decades, unless global warming initiates a new cycle of 
larger failures. 

Considering the observed activity of small rockfalls, it is probable 
that the extreme scenario S7 (4.8 × 106 m3) will collapse into multiple 
fragments due to fracking, with similar implications for other defined 
scenarios. Permafrost thaw and glacier retreat driven by global warming 
could result in shorter return periods. Nonetheless, any signs of 
increased activities such as boulder falls and small rockfalls should be 
promptly recognized as potential signals of future major rock ava-
lanches. Regular and direct observations utilizing SfM photogrammetry 
or terrestrial laser scanning are essential for monitoring the evolution of 
the Brenva rock avalanche scar. These observations will contribute to 
updating the power-law fitting of rockfall sources and rockslides, 
thereby improving the prediction of rock slope instability scenarios 
regarding the return period. 
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