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Abstract

Within-host spread of pathogens is an important process for the study of plant-pathogen interactions.
However, the development of plant-pathogen lesions remains practically difficult to characterize
beyond the common traits such as lesion area. Here, we address this question by combining
image-based phenotyping with mathematical modelling. We consider the spread of Peyronellaea
pinodes on pea stipules that were monitored daily with visible imaging. We assume that pathogen
propagation on host-tissues can be described by the Fisher-KPP model where lesion spread depends
on both a logistic growth and an homogeneous diffusion. Model parameters are estimated using
a variational data assimilation approach on sets of registered images. This modelling framework
is used to compare the spread of an aggressive isolate on two pea cultivars with contrasted levels
of partial resistance. We show that the expected slower spread on the most resistant cultivar
is actually due to a significantly lower diffusion coefficient. This study shows that combining
imaging with spatial mechanistic models can offer a mean to disentangle some processes involved in
host-pathogen interactions and further development may allow a better identification of quantitative
traits thereafter used in genetics and ecological studies.

Introduction

Assessing quantitative life-history traits of pathogens on host plants, also called quantitative traits
of pathogenicity or aggressiveness by plant pathologists, is central for the study of plant diseases.
These quantitative traits describe the essential stages of pathogens life-cycle into their hosts and are
used to understand the adaptation of pathogens to plant resistance and to identify quantitative trait
loci for both host resistance and pathogen aggressiveness [1]. In the particular case of fungal plant
pathogens, the most frequently measured traits are incubation and latency periods, spore production
and lesion size [2]. In practice, they are often obtained after inoculating a host, monitoring the
development of the lesions caused by the pathogen and finally estimating the traits of interest.
However, phenotyping the dynamics of host-pathogen interactions remains challenging and is often
performed through inaccurate traits that, though they already contrast phenotypes, poorly describe
the processes and can hide or skew differences between individuals [3]. The lesion size is a good
example to illustrate this as there is an infinity of spatial dynamics than can produce identical
size at a given time. Considering the lesion growth rate is more informative but again, it ignores
lesions shapes and depends on processes such as local growth and diffusion. Mechanistic models
offer a mean to decipher the processes involved in host-pathogen interactions but are still seldom
considered for analyzing plant disease phenotypic data [3, 4]. In this case the model should remain
parsimonious enough so that the parameters can be identified from the data.
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The recent development of image-based phenotyping methods enables in vivo non-destructive
longitudinal monitoring of infected tissues. Besides allowing precise and automated quantification
of necrotic plant tissues, that already improved disease phenotyping (e.g. [5–7]), imaging opens
new possibilities to further investigate the spatial dimension of host-pathogen interactions. As
illustrated by works on the development of human lesions, imaging data can be particularly interesting
for fitting spatially explicit process-based models [8, 9]. It provides new insights into the main
mechanisms involved in lesion development in relation with host immunity but also modelling tools
for phenotyping. Perhaps surprisingly, although the main physiological mechanisms of plants and
their parasites have been described by mathematical models (e.g. [10, 11]) the spread of lesions has
received little attention by modellers [3, 12–14] and is rarely validated against images [15].

In this study we consider the fungal pathogen Peyronellaea pinodes (formerly Mycosphaerella
pinodes and Didymella pinodes) on pea as an example pathosystem to analyze its spread using
modelling and imaging. With the two fungi Phoma medicaginis and Ascochyta pisi, P. pinodes belongs
to the Ascochyta blight of pea disease complex that causes substantial yield losses worldwide [16].
In Europe, P. pinodes is generally the predominant and the most destructive species, though P.
medicaginis is also prevalent and tends to develop later in the growing season [17, 18]. P. pinodes is
able to infect all aerial parts of its host plant and induces necrotic growing lesions. The development
of resistant cultivars to P. pinodes has been central for the integrated management of this disease, but
difficult as only quantitative (or partial) resistance was available [16,19]. For most fungal pathogens,
quantitative host resistance reduces pathogen fitness by altering spore production, infection and
within-host growth [1–3,20]. The evaluation of quantitative host resistance on pathogen life-history
traits is often performed in controlled conditions with ad hoc protocols. In the case of P. pinodes
partial resistance of pea can be assessed on inoculated detached leaflets, or stipules, by measuring
necrotic lesions either manually [21] or with imaging [17].

We begin by presenting the experiment, including the image acquisition protocol and the
processing framework, that allowed the longitudinal monitoring of lesions on inoculated pea stipules.
Then, we consider the Fisher-KPP reaction-diffusion model to describe the spread of necrotic lesions
on host tissues which is fitted to image sequences (Fig 1). We show that combining imaging and
spatially explicit models enables a finer description of within-host spread of pathogen, including
lesions coalescence, and allows one to disentangle local growth and diffusion of the necrosis. The
comparison of estimated parameters obtained on two cultivars provides new insights into how the
partially resistant cultivar reduces pathogen development. It highlights the potential of combining
image-based phenotyping with spatial mechanistic models to further improve our understanding of
host-pathogen interactions.

Materials and methods

Host inoculation experiment

The aggressive isolate of P. pinodes named Mp 91.31.12 was inoculated on two pea cultivars
previously tested in our laboratory: Solara, a common susceptible reference, and James, that
reduces symptom development in controlled conditions [21]. These two cultivars are semi-leafless
without conventional leaves but extended pairs of hypertrophied stipules below each stem node.
For each cultivar, leaf stipules were inoculated according to a standard biotest protocol developed
in our laboratory [17,21]. Plants were grown in a climate chamber, kept at 18◦C and with a 12h
photoperiod, in 9cm diameter pots containing vermiculite and five pea seeds. When they reached the
6 leaf stage, stipules from nodes 3 and 4 were sampled and placed on tap water in a compartmented
square Petri dish. The inoculum consisted in a pycnidiospore suspension whose concentration was
determined with a haemocytometer and adjusted at 5 × 104 spores ml-1 following [21] protocol.
For both cultivar, 16 pairs of attached stipules were inoculated by placing a 10µl droplet at their
center. Afterwards, the Petri dishes containing the inoculated stipules were placed into transparent
plastic containers to avoid drop evaporation and incubated in a climatic chamber kept at 20◦C and
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Fig 1. Schematic representation of lesion growth monitoring through imaging. The initial RGB
images (a) are first registered to align stipules in time (b). Afterwards, a supervised segmentation is
performed to produce probability maps indicating the probability of each pixel to be in either
healthy, symptomatic or background classes. Probability images of the symptomatic state (c) are
used for fitting the Fisher-KPP model. Images of day 3 are used as initial conditions while the
remaining 4 images are used to estimate the pathogen local growth rate â and diffusion coefficient
D̂ that are actually two distinct life-history traits of within-host pathogen spread.
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Fig 2. Visualization of model prediction against image data. The solution of the fitted Fisher-KPP
equation, i.e. with optimal estimated parameters θ̂, is represented through time by contours (0.2,
0.3, 0.4, 0.5) overlying the probability images of the symptomatic class for example stipules of both
cultivars, i.e. Solara n◦1 (a) and James n◦17 (b). This comparison between the spatial model and
the data is also available in S1 Movie and S2 Movie.

with a 14 h photoperiod. The protocol is summarized into a schematic diagram given in S1 Appendix.

Image acquisition

The spread of lesions caused by the pathogen was assessed daily from 3 to 7 days after inoculation
following a standardized acquisition protocol developed for plant disease phenotyping [6, 17, 22].
Image acquisition was performed using two FotoQuantum LightPro 50 × 70 cm soft boxes, placed
on both sides of the Petri dish with four daylight bulbs each (5400 K, 30 W). Pictures were taken
with a Nikon D5300 digital camera equipped with an AF-S DX Micro Nikkor 40 mm 1:2.8G lens,
on a Kaiser Repro stand, and with computer control using DigiCamControl software ver. 2.1.1.0.
Aperture was set at F22 for maximal depth of field, iso 125, daylight white balance. Initial pictures
were saved as RGB images with a resolution of 6000 × 4000 pixels.

Image processing

As illustrated in Fig 1, several processing steps were required to enable model fitting to image
sequences. First, stipules (i.e. our region of interest) were extracted from raw images using the
Simple Interactive Object Extraction algorithm [23] (Fig 1a). At this step we saved images with
stipules on a white background instead of stipules masks (i.e. binary images). Second, images were
registered (i.e. aligned to each other) using the Coherent Point Drift method [24], assuming rigid
transformations and the first image (3 days after inoculation) as the reference (Fig 1b). Third,
images were segmented by classifying pixels in either healthy, symptomatic or background states.
The prediction of each pixel-class was based on several nonlinear image features that captured local
image characteristics. In particular we computed features for colours (e.g. Gaussian blur), edges (e.g.
Laplacian), and textures (e.g. Hessian) at different scales using spherical filters with radii varying
from 1 to 16 pixels. Based on these features, Random Forest classifiers were trained for each date of
observation using the Trainable Waikato Environment for Knowledge Analysis (Weka) [25]. They
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were tested on ground truth images from an independent study [17] and showed good performances
to classify pixels (i.e. balanced accuracies above 0.82, S2 Appendix), and thus separate background,
healthy leaf and symptomatic areas. Afterwards, these classifiers were used to process the full
dataset and to get three probability images giving the probabilities of each pixel to be in each state
(e.g. Fig 1c and S3 Appendix for state symptomatic). The predicted state probabilities correspond
to the mean predicted state probabilities of the trees in the forest. For each pixel the sum is 1 and
the state (or class) obtained in the pixel-based segmentation is given by the class with the highest
probability (soft voting). To finish with, we considered the Jaccard index (i.e. the intersection over
the union of the two sets, that can vary between 0 and 1) as a measure of stipules deformation, that
was computed for each date assuming the 3rd day as the reference set. All the images and classifiers
are available in an open dataverse [26,27].

Spatial lesion growth model

Most existing models for the spread of plant pathogens within host tissues are rather spatially
implicit and generally assume a constant radial growth rate and a simplified geometry of the host
organ [12–14]. Yet, these models were able to fit non-spatial lesion size data [3], including for the
particular P. pinodes-pea pathosystem [17].

Here, we consider the Fisher-KPP equation as a model for the spatio-temporal dynamics
of lesions. Because pathogen density cannot be directly inferred from common observations of
symptoms in biotests, we describe the spread of the probability of infection, and thus the appearance
of symptomatic host tissues, rather than pathogen load. The Fisher-KPP equation was introduced
in 1937 by Fisher [28] and Kolmogorov-Petrovsky-Piskunov [29] as a semilinear parabolic partial
differential equation (PDE) combining Fick’s diffusion with logistic growth. Let Ω ⊂ R2 be the
stipules area, the Fisher-KPP equation reads as the following reaction-diffusion equation, for the
position x = (x, y) ∈ Ω and the time t > t0

∂u

∂t
(x, t) = D∆u(x, t) + au(x, t) (1− u(x, t)) . (1)

where u(x, t) the probability that the host is infected at location x and time t, D > 0 is the diffusion
coefficient, a ≥ 0 the growth rate. As P. pinodes is a necrotrophic pathogen, we can assume that
the probability of being necrotic is similar to the probability of being infected. The initial conditions
are given by an initial image u0 as

u(x, t = t0) = u0(x) in Ω.

Assuming the pathogen cannot move out of the leaf, homogeneous Neumann boundary conditions
are imposed

∂u

∂n
(x, t) = 0 on ∂Ω.

This model exhibits traveling waves with asymptotic speed 2
√
aD which is coherent with the

assumption of a constant radial growth rate considered in several studies and supported by non-spatial
lesion data [3, 17].

Numerical solutions of the model are obtained by computing the spatial domain Ω with a level-set
formalism so the boundaries ∂Ω match those of the leaves in the image [30, 31], and solving the
partial differential equations using explicit Euler finite differences in time and second order centered
finite differences in space. More details on these numerical aspects are provided in S4 Appendix.

Parameters estimation from image sequences

For each inoculated stipule, the observations consisted in a set of registered images ureg(x, t)
for times after inoculation t = {t3, t4, t5, t6, t7} (Fig 1). Parameters identification consisted in

seeking estimates θ̂ such that the output of the spatial model u(x, t, θ) matches these observations.
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Depending on the estimation problem, inverse problems or statistical inference of reaction-diffusion
can be addressed by several methods such as mathematical analysis, maximum likelihood or non-
linear least-squares [32]. When observations are image sequences, parameter estimation can be
performed using some data assimilation methods used to fit models to image data, for instance
in fluid dynamics [33] or biomedical modelling [9]. We consider a variational data assimilation
approach based on optimal control theory [34]. The estimation procedure is based on the nonlinear
least-squares cost function:

J(θ) =
1

2

∑
t∈t

∑
x∈Ω

(u(x, t, θ)− ureg(x, t))
2. (2)

Following the variational assimilation framework [34], estimates θ̂ are found by minimizing J(θ)
thanks to the Lagrangian function L(θ) and a numerical procedure both detailed in S4 Appendix.
This approach enables a more efficient numerical optimization and thus a faster parameter estimation.

In our case, the probability images (Fig 1) were considered as the observation ureg(x, t) in the
cost function Eq (2) for parameters estimation [8]. For each image sequence, the image of the 3rd

day provides the initial conditions (t0 = t3 and u0(x) = ureg(x, t3)) while the remaining 4 images at
times {t4, t5, t6, t7} enables stable estimation of parameters [35]. Even if pixel data are spatially and
temporally correlated we did not consider any structure of the errors to fit the model to the image
data. While accounting for correlated observation errors would improve parameters estimation it
remains challenging in image data assimilation [36].

As the diffusion coefficient depends on image size, we rather consider the relative diffusion (in
cm2.day−1) obtained from the raw diffusion coefficient and the stipules area previously extracted
from the original images with dedicated landmarks used in the acquisition setup. The model was
fitted to the 2×16 inoculated stipules and we compared the two cultivars through one-way ANOVAs
on the estimated diffusion coefficient D̂ and growth rate â. The adequacy of the Fisher-KPP model
to the data was assessed by comparing observations against fitted models’ predictions and by viewing
the raw residuals for each date, i.e. [ureg(x, ti)− u(x, ti, θ̂)] for ti ∈ t (S3 Appendix). In order to
evaluate the ability of the model to capture lesions sizes rather than probabilities of infection, we
estimated symptomatic surfaces for each image by counting the number of pixels with probabilities
higher than 0.5 in probability maps and model outputs, and then compared the estimated values.

A Python code for fitting the Fisher-KPP on image sequences is available in an open reposi-
tory [37].

Results

The Fisher-KPP model and its numerical resolution were able to describe the spread and the
coalescence of lesions caused by P. pinodes on pea stipules as observed in standard biotests (Fig 2,
S1 Movie and S2 Movie). The image processing framework associated with the data assimilation
method allowed us to fit the reaction-diffusion model that captured the essential patterns of the
spatio-temporal data (S3 Appendix). Except for one stipule (James N◦27), for which only one
lesion was detected in the image at day 3, used for initial conditions, the model always described
the joint spread of the two lesions. In detail, the comparison between the fitted models and the
image data suggests that the model tends to underestimate the probability of infection, especially
at days 5 and 6. The discrepancy between the reaction-diffusion model and the data may be
mostly explained by patterns observed in the probability images (S3 Appendix). Even if the trained
Random Forest classifiers showed good performances to classify pixels (S2 Appendix), classification
became less certain over time with lower probabilities (Fig 1c). While this may not impact pixel
classification through soft voting (the probability of the symptomatic class is still the highest), it
can introduce some noise and residual errors in mechanistic model fitting. At days 5 and 6 the
contours of the lesions are relatively easy to draw and the segmentation exhibits high probabilities
in the symptomatic areas. On the contrary for the last two days the appearance of the lesions
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changes and it becomes more difficult for an expert (or annotator), and for an algorithm, to separate
healthy and symptomatic parts of the stipules. As a consequence, within lesions some pixels had
lower probabilities of being symptomatic on the last dates than for the first ones which induced
discrepancy with the Fisher-KPP model (S3 Appendix). Moreover, in this study we assumed a fixed
(non-moving or deforming) domain for the reaction diffusion using the leaf contours in the first image
(day 3). Although stipules deformation remained limited (S5 Appendix) with Jaccard indexes above
0.8 for all individuals (Fig 3), it occurred and could have induced some errors between the PDE
model and images as illustrated in Fig 2b at day 7. To finish with, when looking at symptomatic
surface instead of infection probability, the model exhibited a better adequacy with the image data
(i.e. relationship close to the first bisector (Fig 4)). Overall, despite some discrepancy between the
model and the probability images, the Fisher-KPP model appeared to be relevant for describing the
evolution of symptomatic areas.
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Fig 3. Visualization of stipules deformation in time. Change in the Jaccard index with time for
cultivars James (a) and Solara (b). At each time after inoculation the Jaccard index was calculated
in comparison with the image at day 3, also used as a reference for image registration.

We successfully estimated the growth rate â and the diffusion coefficient D̂ for the 32 monitored
individuals (S6 Appendix). James cultivar was characterized by smaller stipules than Solara with
average surfaces of 4.49 and 7.93 cm2 respectively. The spread of the pathogen on James cultivar was
characterized by mean growth rate â and diffusion coefficient D̂ of respectively 0.55 and 1.33 against
1.26 and 1.54 on the more susceptible Solara. As suggested by the distributions of parameters
estimates (Fig 5), analyses of variance pointed out a significant difference between cultivars for the
diffusion coefficient D̂ (p-values < 0.05, S6 Appendix) whereas the analysis does not support the
hypothesis different growth rates â (p-values > 0.1, S6 Appendix). These results suggest that the
partial resistance of James, previously observed in controlled conditions, may only due to mechanisms
that slow down pathogen diffusion into host tissues. Therefore, for inoculated stipules with identical
areas and shapes, lesions caused by P. pinodes will spread at a higher speed, and thus coalesce and
reach edges earlier, on Solara than on James.

Discussion

In this study we combined image processing and mathematical modelling to investigate the dynamics
of host-pathogen interactions. We showed that a longitudinal monitoring of inoculated leaves through
visible imaging provides data to fit reaction-diffusion models that describe the spatio-temporal
spread of pathogen on host tissues. While such methodological approaches are common in biomedical
sciences (e.g. [9,38]) they are original in plant pathology. Here, we considered the fungal pathogen P.
pinodes on pea as an example pathosystem and used the Fisher-KPP equation to model necrotrophic
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Fig 5. Distributions of the estimated parameters. a) diffusion coefficient D̂ with a mean values of
0.55 for James against 1.54 for the more susceptible cultivar Solara, b) local growth rate â with
mean values of 1.33 and 1.26 for respectively James and Solara. The 32 estimated parameters (16
for each cultivar) are available in S6 Appendix.
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lesions. Using this PDE model with a variational data assimilation method we were able to capture
the essential patterns of image-sequences data and disentangle growth and diffusion. These processes
are actually two distinct life-history traits that both explain host colonization by the pathogen
through lesions. They provide a finer description of the interaction but cannot be determined
without the use of spatially-explicit models with spatial information, as provided by images, because
different growth rates and diffusion coefficients can lead to identical lesion speed. Furthermore, while
lesions coalescence, different leaves sizes, or lesion saturation at leaves boundaries can be problematic
when comparing lesion sizes in common aggressiveness biotests, the inference of parameters in
parsimonious PDE models can handle properly such situations.

We assessed the development of an aggressive isolate on two cultivars with contrasted level of
partial resistance using a standard protocol developed for screening both pathogen aggressiveness
and host resistance [21]. Our results were consistent with previous findings as the spread of lesions
caused by P. pinodes was slower on James than Solara. Most interestingly, by combining image-based
phenotyping and mechanistic modelling we found that the partial resistance of James were explained
by a significant lower diffusion coefficient and not by a decreased growth rate. Although this finding
may not be a posteriori surprising it remains impossible to demonstrate using usual measurements
of lesions size without the use of spatial models and data. The diffusion coefficient and the local
growth rate could be considered as hard traits that capture the function of interest but are difficult
to measure [39]. On the opposite, lesion size (or lesion growth rate) are soft traits that are easier to
measure and are surrogates of the hard traits [1]. Hard traits obtained with the use of mechanistic
models provide a better description of processes involved in pathogen fitness [3, 20]. Although
our results are obtained on only two cultivars, this study demonstrates the potential of combining
imaging with mathematical models to improve the comparison of cultivars (or isolates) and gain new
insights into plant resistance to disease. Optical sensors recently percolated in plant sciences and
contributed to recent development of precision phenotyping for plant diseases [5,7,40]. On the other
side the usefulness of mechanistic models for analyzing phenotypic data is recognized (e.g. [3, 4])
but remains seldom considered. We think that the combination of these two approaches would be
particularly relevant for investigating host-pathogen interactions in relation with quantitative or
partial resistance.

Although our modelling framework was able to describe the overall visible spread of nectrotrophic
lesions caused by P. pinodes it may be improved and extended on several points. Firstly, for the sake
of simplicity we ignored stipules deformation. This change in the shape of host organs caused by
parasitism frequently occurs in plants and would be worth considering using existing mathematical
and numerical methods for explicit modelling of shapes [30, 41, 42] or plant growth [43]. While
such improvement would increase the complexity of the model, it may contribute to decrease the
discrepancy between the model and the data, and perhaps, help to identify genotypes that are less
susceptible to disease-induced deformation. Secondly, the inoculated host leaves were digitalized
through visible imaging and the reaction-diffusion model was fitted to probability images obtained
with trained classifiers [8]. The appearance models, learned by experts, that transform raw image
into an output which match with the state variable of the process model can have an influence on
parameter estimation. In our case we could improve the classifiers to reduce the noise that occur
in time by training more advanced algorithm for pixel-based segmentation [44] or include some
filtering after predictions (e.g. morphological closing). Comparing different appearance models or
segmentation algorithms and assessing how they modify parameters estimation would be interesting,
especially for pathosystems that cause unclear lesions that are difficult to annotate. For practical
reasons we ignored any spatial and temporal correlation in pixel data for parameters estimation. As
such a strong assumption can bias parameters estimates (mean and variance) it would be worth
considering correlated errors in future works [36]. Yet, for comparing cultivars and isolates we
believe that the bias introduced by the classifier might have a stronger impact on parameters than
the assumption of uncorrelated data. Moreover, because there is no direct relationship between the
appearance of symptoms and pathogen density in infected tissues we rather considered the spread
of the probability of infection. Although this choice and the interpretation of some parameters
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could be criticized, it seems to describe well enough the dynamics of infections. In our case, whereas
the estimated diffusion coefficient may describe well enough within-host spread we believe that the
growth rate should be taken with care. In further studies it would be very interesting to assess the
spread of pathogen density using destructive sampling with real-time quantitative PCR [45,46] and
non-destructive monitoring, e.g. with bioluminescence imaging [47]. Thirdly, as lesions caused by
P. pinodes appeared to spread at a constant speed with quite homogeneous patterns, we choose
the Fisher-KPP equation. Although this first model already described the essential patterns of the
data, it would be interesting to relax some of its assumptions to improve the description of the
observed spatial dynamics. For instance, one could consider a heterogeneous diffusion to capture
the acceleration that seems to occur at the end of the experiment. Moreover, the Fisher-KPP
equation will not be appropriate to describe the spreading processes that occur in all pathosystems.
The spatial dynamics of plant-pathogen lesions remains poorly addressed and further works could
benefit from theoretical knowledge on PDE for propagating systems and existing models for the
spread of invasive organisms [48, 49], microbial populations and fungal colonies [10], or human
lesions [8,9]. For example, the effect of leaf veins that can guide lesion spread in some pathosystems
could be considered through advection terms or by considering hybrid reaction-diffusion models
with different dynamics on host tissues (2D) and veins (1D) [49]. On the other side, like microbial
populations in controlled media, plant-pathogen lesions can be an interesting experimental systems
to test and feed some mathematical theories [50, 51]. Fourthly, our model ignored any host response
to infection and further development could take into account some key physiological and immune
processes. For instance it would be worth including ontogenetic and disease-induced changes in
host susceptibility, e.g. caused by senescence or hypersensitive responses, that are known to occur
in several pathosystems and can be spatially localized on leaf tissues [52, 53]. Such phenomena
may be taken into account using age-structured PDE considering the age of infection [54] and the
physiological age of host tissues.

From an epidemiological point of view the within-host dynamics of the pathogen is an important
phase that can have strong impact on epidemics at the population level. Scaling-up the behaviour
of epidemics from individuals to populations is still a challenging question for mathematical and
computational epidemiology and, at least in the case of plant diseases, the within-host spread of
pathogens is either ignored or extremely simplified compared to other epidemiological processes such
as spores production [12,14,48,55]. This is mainly due to the challenges of multiscale and spatial
modelling, but perhaps, also to the lack of spatial models for within-host pathogen development.
Thus, we believe that besides providing new fundamental knowledge and phenotyping tools, spatial
lesions models that describe observable spread of pathogen on host organs would also contribute to
improve modelling works focused on higher scales. In addition, new insights into the effects of host
resistance on within-host dynamics would also feed models for understanding the durability plant
resistance to diseases [56–58]. For instance, the impact of partial resistance on either the diffusion
coefficient or the local growth rate may affect differently pathogen fitness and have contrasted
impacts on pathogen invasion, persistence and evolution.
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